48
Time & Frequency Metrology An introduction Cold Atoms and Molecules & Applications in Metrology 16-21 March 2015, Carthage, Tunisia CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 1 Noël Dimarcq SYRTE – Systèmes de Référence Temps-Espace, Paris An introduction

Time & Frequency Metrology An introduction€¦ · 1 tropical year = 365,2422 solar days = 366,2422 sideral days Definitions of the unit of time CAMAM 2015, N. Dimarcq, « T/F metrology

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Time & Frequency MetrologyAn introduction

    Cold Atoms and Molecules & Applications in Metrolog y

    16-21 March 2015, Carthage, Tunisia

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 1

    Noël DimarcqSYRTE – Systèmes de Référence Temps-Espace, Paris

    An introduction

  • Contents

    � Measurement of time with a linear process – Earth rotation

    � Measurement of time with a periodic process – The oscillators and their defaults

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 2

    � Time, frequency and phase – Relations and noise characterization

    � Conclusion

  • Contents

    � Measurement of time with a linear process – Earth rotation

    � Measurement of time with a periodic process – The oscillators and their defaults

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 3

    � Time, frequency and phase – Relations and noise characterization

    � Conclusion

  • Flows : Water clock Sand clock

    Measuring time with a « linear » process

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 4

    Combustion : Candles

    Rotation : Earth rotation angle

    Oil lamp

    Measured time = K x measured parameter = Real time?

  • Gnomons, sundials and meridian telescopes

    Measuring time with Earth rotation

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 5

    Measuring time = Knowledge ot he Earth orientation

    ���� Measured time = K x θθθθEarth

  • The SI unit of time – the second – is defined as :

    ���� until 1956 : the fraction 1/86 400 of the mean solar day

    Definitions of the unit of time

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 6

  • The length of the solar day fluctuates due to :

    - Tilt of the Earth rotation axis and the ellipticit y of the Earth orbit around the Sun

    - Precession of the equinoxes

    Irregularities of the solar day

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 7

    in minutes

  • The SI unit of time – the second – is defined as :

    ���� until 1956 : the fraction 1/86 400 of the mean solar day

    ���� 1956 to 1967 : the fraction 1/31,556,925.9747 of the tropical year 1900 1 tropical year = 365,2422 solar days = 366,2422 sideral days

    Definitions of the unit of time

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 8

    1 tropical year = 365,2422 solar days = 366,2422 sideral days

  • The earth rotation rate fluctuates due to :

    - tides (Moon, Sun)

    - inner effects (core – mantle interface)

    - atmosphere and meteorological effects

    - hydrological effects

    - seisms (earthquakes, tsunamis, …)

    Fluctuations of Earth rotation

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 9

    seisms (earthquakes, tsunamis, …)

  • Fluctuations of Earth rotation

    0

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 10

    Leap seconds

    ���� Next leap second on 30 June 2015

    23:59:5823:59:5923:59:6000:00:0000:00:01

    (in UTC)

    1900Leap seconds

  • Contents

    � Measurement of time with a linear process – Earth rotation

    � Measurement of time with a periodic process – The oscillators and their defaults

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 11

    � Time, frequency and phase – Relations and noise characterization

    � Conclusion

  • ���� Analogy with the measurement of a length with a rul er : count the graduations between the start and the end

    Measuring time with a periodic process

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 12

  • Physical signal

    Oscillator = temporal ruler

    Period = elementary temporal graduation

    ���� Measuring time with an oscillator : count the oscil lations between the start and the end

    Measuring time with a periodic process

    T : period

    ν = 1/T : frequencyT

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 13

    signal

    Counter

    1234

    t

    t

  • ���� The thinner the graduations, the better the measure ment precision

    Importance of the size of the graduations

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 14

  • t

    t

    ���� The smaller the period ( = the higher the frequency), the better the measurement precision

    Importance of the oscillator frequency

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 15

    t

    νννν [Hz]1 103 106 109 1012 1015

    mechanicalOscillator ���� quartz microwave laser

  • kHz – MHz : BAW quartz oscillators (Bulk Acoustic Waves), MEMS Si

    MHz – GHz : SAW quartz oscillators (Surface Acoustic Waves), FB AR (Film Bulk-Acoustic wawe Resonator), …

    10 GHz : DRO (Dielectric Resonator Oscillators), cryogenic o scillators (whispering modes), OEO-Optoelectronic oscillators…

    THz – 1000 THz : Laser

    Oscillators families

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 16

  • Which confidence in a measurement ?

    Measurement at another moment or with another ruler

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 17

    Quality of the measurement =

    Evaluation of the uncertainty (fluctuations, biases ) +

    Necessary comparisons between various standards

  • t

    Which confidence in time measurement ?

    Variations of the oscillation frequency during the measurement or oscillators with

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 18

    Quality of time measurement =

    Evaluation of the frequency fluctuations and freque ncy biases +

    Necessary comparisons between various standards

    oscillators with unequal frequencies

  • Defaults of oscillators

    � The frequency depends on the oscillator dimensions :L

    dLd ∝νν

    1610−=ννd

    If L = 10 cm dL ~ 0.01 fm

    � The frequency depends on the environment (temperatu re, pressure, hygrometry, gravity, vibrations, electromagnetic fi elds, radiations, …)

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 19

    Shielding, fine control, stabilization of the environment (T°, P, vibrations, e.m. fields, …)

    Use of materials with low thermal expansion coeffcients (Invar, Zerodur, ULE, …)

    Search for an inversion point to cancel the first order temperature dependence

  • Thermal sensitivity of quartz oscillators

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 20

    +g-sensitivity

  • Gravimetric sensitivity of a mechanical pendulum

    « En 1672, M. Richer étant allé à l'isle de Cayenne, environ à 5d de l'équateur, pour y faire des observations astronomiques, trouva que son horloge à pendule qu'il avoit reglée à Paris, retardoit de 2' 28''par jour »

    l

    g

    πν

    2

    1≈

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 21

    lπ2

  • Gravimetric sensitivity of a mechanical pendulum

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 22

  • CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 23

  • −≈ 20161

    12

    1 θπ

    νl

    gPendulum frequency

    Other defaults of oscillators

    � The frequency depends on the oscillation amplitude (isochronism default)

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 24

    � Ageing effects

    Frequency drifts

    Frequency jumps

  • OSCILLATOR

    (quartz, µw, laser, …)

    frequency νννν :

    Unstable

    Inaccurate

    νννν

    ATOM / ION

    SERVO LOOP

    correctionfrequency νννν :

    Stable

    Accurate

    = νννν0

    Basic principle of atomic clocks / atomic frequency standards

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 25

    νννννννν0000

    E2

    E1h νννν0 = E2 –E1

    ATOM / ION REFERENCE

    νννν0 νννν

    CLOCK SIGNAL

    2

    1

  • The SI unit of time – the second – is defined as :

    ���� until 1956 : the fraction 1/86 400 of the mean solar day

    ���� 1956 to 1967 : the fraction 1/31,556,925.9747 of the tropical year 1900 1 tropical year = 365,2422 solar days = 366,2422 sideral days

    Definitions of the unit of time

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 26

    1 tropical year = 365,2422 solar days = 366,2422 sideral days

    ���� since 1967 : the duration of 9 192 631 770 periods of the radi ation corresponding to the transition between the two hyp erfine levels of the ground state of the cesium 133 atom ( Added in 1999 ���� This definition refers to a cesium atom at rest at a temperature of 0 K)

  • Contents

    � Measurement of time with a linear process – Earth rotation

    � Measurement of time with a periodic process – The oscillators and their defaults

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 27

    � Time, frequency and phase – Relations and noise characterization

    � Conclusion

  • An oscillator is never perfect…

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 28

  • ( )y(t)ευυ(t) ++×= 100

    )()(

    νδν t

    ty =

    Real Ideal Frequency Frequency

    ( )ttA ).(.2cos. υπSignal delivered by a frequency standards :

    Frequency uncertainties

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 29

    frequency frequency bias fluctuations

    Instability : « amplitude » of frequency fluctuations (« type A » uncertainty uA)

    Inaccuracy : uncertainty δεδεδεδε on the frequency bias due to systematic effects (« type B » uncertainty uB)

    Total frequency uncertainty u total : 222

    BAtotal uuu +=

  • Stability and accuracy

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 30

  • 0υυ(t) =Frequency :

    tdttυ(t)t

    ..2')'(2 0νππϕ == ∫Phase :

    ( )ttASignal ).(.2cos. υπ= ( ) ( ))(cos.).(.2cos. tAttASignal ϕυπ == ( ) ( ) ( ))(..2cos.)(cos.).(.2cos. 0 tTAtAttASignal υπϕυπ ===Frequency, phase and time

    Linear evolution of the phase

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 31

    ttt

    tT ===00

    1.

    2

    )(

    .2

    )()(

    υπϕ

    υπϕ

    Time :

    0

    0∫

    PeriodNumber of counted oscillations

  • ( )ευυ(t) +×= 10Frequency :

    ( )tdttυ(t)t

    .1..2')'(2 0 ενππϕ +== ∫Phase :

    Frequency, phase and time

    ( ) ( ) ( ))(..2cos.)(cos.).(.2cos. 0 tTAtAttASignal υπϕυπ ===

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 32

    ( )ttttT .11.2

    )(

    .2

    )()(

    00

    ευπ

    ϕυπ

    ϕ +===Time :

    0

    0∫

  • ( )y(t)ευυ(t) ++×= 10Frequency :

    ( )

    ++== ∫∫ ')'(.1.2')'(2 0 dttytdttυ(t)

    tt

    ενππϕPhase :

    Frequency, phase and time

    ( ) ( ) ( ))(..2cos.)(cos.).(.2cos. 0 tTAtAttASignal υπϕυπ ===

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 33

    ( ) )(.11.2

    )(

    .2

    )()(

    00

    txttt

    tT ++=== ευπ

    ϕυπ

    ϕTime :

    ∫=⇔=t

    dttytxdt

    tdxty

    0

    ')'()()(

    )(

    ∫∫0

    0

    0

    with

  • Sy(f)

    Sνννν(f) [Hz2.Hz-1]

    [Hz-1] σσσσy(ττττ)[dimensionless]

    Depending on the applications, the measurement will be sensitive to frequency and/or phase and/or time fluctuations

    Characterization of frequency, phase and time noises

    Frequency

    noise / uncertainty

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 34

    Phase

    noise / uncertainty

    Time

    noise / uncertainty

    Sφφφφ(f) [rad2.Hz-1] σσσσx(ττττ) [s]

    Variances and deviations

    Characterization on long term (« low » Fourier frequency)

    Power Spectral Densities

    Characterization on short term (« high » Fourier frequency)

  • Total measurement noise with a bandpass [f0-∆f/2 , f0+∆f/2] :

    dffSff

    ff).(noise Total

    2/

    2/

    0

    0∫

    ∆+

    ∆−= υ

    Sν(f) : Power Spectral Density (PSD) of the frequency noise [in Hz2 /Hz]

    Spectral description of noise (ex.: frequency noise)

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 35

    Fourier frequency ff0

    ∆∆∆∆f

    Sν(f)

    τ1∝∆f

    Averaging over a duration ττττ

  • PSD for different noise types

    ∑== αανν fh

    fSfSy )(1

    )(20

    Relative frequency noise

    (independent of νννν0)Absolute frequency noise

    (dependent on νννν0)

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 36

    f

  • Time description of noise

    νδν=)(ty

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 37

    ( ) ( )212 21 τττσ kky yy −= +

    ( ) ( )212 τττσ kky yy −= +

    Allan deviation:

    Classical variance:

    Average over all the

    τky

  • Allan variance and filtering

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 38

  • Relation between PSD and Allan deviation

    τ τ τ τ : integration time

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 39

  • Allan deviation behaviour

    White frequency noise: the frequency stability (Allan deviation) improves as

    τ1

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 40

    σσσσy(ττττ)

    τ τ τ τ [s]

    deviation) improves asτ

    1

  • White frequency noise: the frequency stability (Allan deviation) improves as 1

    Allan deviation behaviour

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 41

    Frequency flicker noise:

    Stability floor

    σσσσy(ττττ)

    τ τ τ τ [s]

    deviation) improves asτ

    1

  • 10-13

    100

    τ τ τ τ -1/2 τ τ τ τ +1/2

    ∫=⇔=t

    dttytxdt

    tdxty

    0

    ')'()()(

    )(

    Allan deviation (in frequency) and time deviation

    ���� Case of white frequency noise

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 42

    10-1 100 101 102 103 104 105 106 107

    10-16

    10-15

    10-14

    10

    σσ σσ y( ττ ττ

    )

    ττττ [s]

    10-1 100 101 102 103 104 105 106 107

    0,1

    1

    10

    σσ σσ x( ττ ττ

    ) [p

    s]ττττ [s]

    τ τ τ τ -1/2 τ τ τ τ +1/2

    σσσσy(ττττ)σσσσX(ττττ)

    ττττ ττττ

  • [ ]( )ttt .)()(.2cos 21 υυπ −

    21 υυ −22

    21 σσ +

    Mean frequency difference :(for Tuning / Syntonisation)

    Total noise :

    Comparisons – Beatnote technique

    )T-T( 2121 ϕϕ −

    If equal frequencies, mean phase (or time) difference (for Synchronization) :

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 43

    FrequencyStandard

    1

    Frequency Standard

    2

    )).(.2cos(. 11 ttA υπ )).(.2cos(. 22 ttA υπ

    )).(.2cos().).(.2cos( 2121 ttttAKA υπυπ

    Low pass filter

  • At the beatnote output:

    o mean value of the frequency difference ���� validation of the frequency accuracy budget

    o total noise of the frequency difference ���� access to the frequency (or phase) stability

    ( ) ( ) ( )222 σσσ +=

    Comparisons – Beatnote technique

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 44

    - if standard 1 is much better than standard 2:

    - if the two standards are identical:

    ( ) ( ) ( )22 standard21 standard2notebeat σσσ +=

    notebeat 2 standard σσ =

    2notebeat

    2 standard1 standard

    σσσ ==

  • [ ]( )ttt .)()(.2cos 21 υυπ −

    Frequency / Phase locking of a slave oscillator

    to a master oscillator

    Frequency or Phase Lock Loop (PLL)

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 45

    Master oscillator

    Slaveoscillator

    )).(.2cos(. 11 ttA υπ )).(.2cos(. 22 ttA υπ

    Low Pass Filter

  • Contents

    � Measurement of time with a linear process – Earth rotation

    � Measurement of time with a periodic process – The oscillators and their defaults

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 46

    � Time, frequency and phase – Relations and noise characterization

    � Conclusion

  • 1000 yrs

    1 million yrs

    1 billion yrs

    1 second

    error after:

    Industrial Cs beam clocks

    Cold atom fountain

    Optical clocks

    Precision of time measurement

    Age of universe

    10-16

    10-18

    δν/νδν/νδν/νδν/ν

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 47

    1000 yrs

    1 year

    1 hour

    1600 1700 1800 1900 2000

    1 second

    error after:

    Harrison clock

    Shortt clock

    Quartz oscillator

    First Cs beam clock

    Astronomical, mechanical and electrical era Atomic era

    Huygens pendulum

    1 day

  • � Local oscillators in any electronic devices, PLL, f ilters, sensors, …

    � Fundamental metrology (SI units), time scales(TAI, UTC, UTC(k), )

    � Ranging, positioning, navigation, GNSS

    � Network synchronisation, telecom, smart grids, DSN, VLBI, …

    Wide spectrum of T/F metrology applications

    CAMAM 2015, N. Dimarcq, « T/F metrology – An introduction » 48

    � Fundamental physics (drift of fundamental constants , gravitational shift, high precision spectroscopy, …)

    � Detection of gravitation waves, relativistic geodes y

    � Astronomy (pulsars time tagging)

    � RADAR, LIDAR, atmosphere analysis, …

    � Etc, etc, etc …