34
197 Tight Focusing of Optical Beams; A Review - Part 1 RAKESH KUMAR SINGH, P. SENTHILKUMARAN and KEHAR SINGH* Indian Institute of Technology Delhi, New Delhi - 110 016, India *E-mail : [email protected] Abstract Complex amplitude and polarization distribution of an optical beam plays a dominant role in shaping the focused structure of the beam. It is therefore possible to engineer the focal spot using the pupil function manipulation. Helical phase structure arising due to phase singularity in the wave front plays an important role in shaping the focal spot. Tight focusing of an optical beam produces intensity distribution in the focal volume different from the well-known results based on scalar theory, and polarization distribution shows space variant characteristics. In the present paper, roles of the amplitude-, phase-, and polarization distribution on the tightly focused structure of the optical beams are reviewed. Impact of the helical phase structure in the pupil function engineering and subsequently on the focused structure is discussed with special reference to the authors' investigations at IIT Delhi. Certain applications in which tight focusing is desired are briefly discussed. Some miscellaneous investigations are also mentioned. Keywords : Debye-Wolf integral, polarization distribution, singular optics, optical vortices. 1. Introduction Beam propagation has been a subject of investigations for a long period and studies have been carried out for paraxial (Kogelnik 1965, Kogelnik and Li 1966, Siegman 1986, Seshadri 2006, 2008a, Zhou et al 2007a [1-6]), and non- paraxial regimes (Lax et al 1975, Agrawal and Pattanayak 1979, Agrawal and Lax 1983, Takenaka et al 1985, Wünsche 1992 [7-11]), (Laabs1998, Sheppard and Saghafi 1999, Martinez-Herrero et al 2001, 2008, Chen et al 2002 [12-16]), (Ciattoni et al 2002, Deng et al 2008, Seshadri 2008b [17-19]). Interest in the propagation dynamics of vectorial beams has been generated in recent years (Tervo and Turunen 2001a,b , Borghi et al 2002, Duan and Lu 2004a,b [20-24]), [Chaumet 2006, Hernandez-Aranda et al 2006, Kang and Lu 2006, Sepke and Umstadter 2006 a-c [25-30]), (Zhou 2006a, 2008a, Zhou et al 2006[31-33], Zhou et al2007a[6], Zhou et al 2007b,c [34-35]), (Zhou and Chu 2007, Wu et al 2008, Zhou and Zheng Invertis Journal of Science & Technology Vol. 1, No. 4, 2008 ; pp. 197-230 2008 [36-38]). Exact analytical solution to the Maxwell equation has been derived by Sepke and Umstadter (2006a-c [28-30], 2006d[39]) for different situations. Importance of the apertured beam and its focusing has been realized for the sake of its practical application and theory, and studies have been carried out both for paraxial (Stamnes 1981, Stamnes and Spjelkavik 1981, Belland and Crenn 1982, Tanaka et al 1985a,b [40-44]), (Stamnes 1986, Born and Wolf 1989, Stamnes and Eide 1998, Eide and Stamnes 1998a,b [45-49]), (Almeida et al 1999, Mahajan 2001, Kopeika 2003, Shamir 2003, Goodman 2007 [50-54]) and non- paraxial regimes (Duan and Lu 2003, Lu and Duan 2003, Duan and Lu 2004c,d [55-58], Zhou 2008 [38]). Propagation of vectorial apertured beams has drawn attention of several research groups (Ling and Lee 1984 [59], Lu and Duan 2003 [56], Duan and Lu 2004b [24], Gao and Lu 2006, 2007 [60-61]), (Liu et al 2006, Zheng et al 2007 [62- 63]). Focusing characteristics of the mocrolenses with long focal depth and under multiple wavelength

Tight Focusing of Optical Beams; A Review - Part 1web.iitd.ac.in/~psenthil/Conferences/InvertJSTP1-2009.pdf · Tight Focusing of Optical Beams; A Review - Part I 197 Tight Focusing

Embed Size (px)

Citation preview

Tight Focusing of Optical Beams; A Review - Part I

197

Tight Focusing of Optical Beams; A Review - Part 1

RAKESH KUMAR SINGH, P. SENTHILKUMARAN and KEHAR SINGH*Indian Institute of Technology Delhi, New Delhi - 110 016, India

*E-mail : [email protected]

Abstract

Complex amplitude and polarization distribution of an optical beam plays a dominant role in shaping thefocused structure of the beam. It is therefore possible to engineer the focal spot using the pupil functionmanipulation. Helical phase structure arising due to phase singularity in the wave front plays an important rolein shaping the focal spot. Tight focusing of an optical beam produces intensity distribution in the focal volumedifferent from the well-known results based on scalar theory, and polarization distribution shows space variantcharacteristics. In the present paper, roles of the amplitude-, phase-, and polarization distribution on thetightly focused structure of the optical beams are reviewed. Impact of the helical phase structure in the pupilfunction engineering and subsequently on the focused structure is discussed with special reference to theauthors' investigations at IIT Delhi. Certain applications in which tight focusing is desired are briefly discussed.Some miscellaneous investigations are also mentioned.

Keywords : Debye-Wolf integral, polarization distribution, singular optics, optical vortices.

1. Introduction

Beam propagation has been a subject ofinvestigations for a long period and studies havebeen carried out for paraxial (Kogelnik 1965,Kogelnik and Li 1966, Siegman 1986, Seshadri2006, 2008a, Zhou et al 2007a [1-6]), and non-paraxial regimes (Lax et al 1975, Agrawal andPattanayak 1979, Agrawal and Lax 1983, Takenakaet al 1985, Wünsche 1992 [7-11]), (Laabs1998,Sheppard and Saghafi 1999, Martinez-Herrero etal 2001, 2008, Chen et al 2002 [12-16]), (Ciattoniet al 2002, Deng et al 2008, Seshadri 2008b[17-19]). Interest in the propagation dynamics ofvectorial beams has been generated in recent years(Tervo and Turunen 2001a,b , Borghi et al 2002,Duan and Lu 2004a,b [20-24]), [Chaumet 2006,Hernandez-Aranda et al 2006, Kang and Lu 2006,Sepke and Umstadter 2006 a-c [25-30]), (Zhou2006a, 2008a, Zhou et al 2006[31-33], Zhou etal2007a[6], Zhou et al 2007b,c [34-35]), (Zhouand Chu 2007, Wu et al 2008, Zhou and Zheng

Invertis Journal of Science & Technology Vol. 1, No. 4, 2008 ; pp. 197-230

2008 [36-38]). Exact analytical solution to theMaxwell equation has been derived by Sepke andUmstadter (2006a-c [28-30], 2006d[39]) fordifferent situations. Importance of the aperturedbeam and its focusing has been realized for the sakeof its practical application and theory, and studieshave been carried out both for paraxial (Stamnes1981, Stamnes and Spjelkavik 1981, Belland andCrenn 1982, Tanaka et al 1985a,b [40-44]),(Stamnes 1986, Born and Wolf 1989, Stamnes andEide 1998, Eide and Stamnes 1998a,b [45-49]),(Almeida et al 1999, Mahajan 2001, Kopeika 2003,Shamir 2003, Goodman 2007 [50-54]) and non-paraxial regimes (Duan and Lu 2003, Lu and Duan2003, Duan and Lu 2004c,d [55-58], Zhou 2008[38]). Propagation of vectorial apertured beamshas drawn attention of several research groups(Ling and Lee 1984 [59], Lu and Duan 2003 [56],Duan and Lu 2004b [24], Gao and Lu 2006, 2007[60-61]), (Liu et al 2006, Zheng et al 2007 [62-63]). Focusing characteristics of the mocrolenseswith long focal depth and under multiple wavelength

Rakesh Kumar Singh et al

198

illumination has been investigated by (Wang et al2007 [64]). Vector diffraction theory of refractionof light by a spherical surface has been investigatedby (Guha and Gillen 2007 [65]).

As is well-known, diffraction pattern of auniformly illuminated circular aperture shows brighthigh intensity ring surrounded by low intensity ringsin the far field. This intensity distribution is referredto as the 'Airy pattern'. A focusing system convertsthe plane wave front into a converging sphericalwave front with common center located at the focalpoint. Diffraction pattern at the focal plane of anaberration-free optical system is the Airy pattern,and Lommel functions are used to describe the fielddistribution in the focal volume. Engineering of theAiry pattern using pupil function manipulation hasdrawn attention of several researchers (Linfoot andWolf 1953, Welford 1960, Singh and Dhillon 1969,Singh and Gupta 1970, 1971 [66-70]), (Sheppardand Wilson 1979 [71], Born and Wolf 1989 [46],Horikawa 1994 [72], Luo and Zhou 2004 [73]).Positional shift of the high intensity regions fromthe geometrical focal point for low Fresnel numberoptical systems has also become an area of interestof some research groups (Li and Wolf 1981, Li1982, Carter 1982, Li and Platzer 1983 [74-77],Stamnes 1986 [45]), (Carter and Aburdene 1987,Poon 1988, Mahajan 1994 [78-80], Mahajan2001[51]). Positional shift of the high intensity regionfrom the focal point is referred to as 'focal shift'.

For various reasons, focusing of optical beamsby high numerical aperture (NA) systems hasattracted considerable interest in optics(Ingnatowsky 1919, 1920, Hopkins 1943, 1945,Richards 1955[81-85]), (Richards and Wolf 1956,1959, Burtin 1956, Focke 1957, Wolf 1959 [86-90]), (Barakat 1961, Barakat and Levi 1963,Carswell 1965, Innes and Bloom 1966, Luneburg1966 [91-95]), (Tremblay and Boivin 1966, Boivinand Wolf 1965, Boivin et al 1967, 1978, Carter1973a,b [96-101]), (Hardy and Treves 1973,Harrach 1973, Yoshida and Asakura1974a,b, vanden Berg and Zieren 1980 [102-106]), (Sheppardand Wilson 1981,1982, Sheppard 1978, 1988,1997[107-111]),(Sheppard 2001, 2004a,b, 2007

[112-115]), (Sheppard and Torok 1997a-c, 1998,2003, Sheppard and Yew 2008 [116-121]),(Sheppard et al 1977, 1994, 2008, Barakat 1987[122-125]), (Sheppard and Matthews 1987, Kant1991, 1993a,b,1995 [126-130]), (Kant 1996,2000, 2004, 2005, Mansuripur 1986 [131-135]),(Mansuripur 1991, Sheppard and Gu 1991,1993,Visser et al 1991, Visser and Wiersma 1991 [136-140]) (Visser and Wiersma 1992-1994, Flagelloand Milster 1992,Flagello and Rosenbluth 1992[141-145]), (Flagello and Rosenbluth 1993, Flagello1993, Hsu and Barakat 1994, Visser and Wiersma1994, Muller and Brakenhoff 1995 [146-150]),(Flagello et al 1996, Dhayalan 1996, Mittleman etal 1996, Dhayalan et al 1997, Karman et al 1998[151-155]), (Torok and Varga 1997, Torok andWilson 1997, Jiang and Stamnes 1998, Gu 1996a,Gu 1996b [156-160]), (Gu 2000, Müller et al 1997,Bahlmann and Hell 2000, Cronin et al 2000,Dhayalan and Stamnes 2000 [161-165]),(Sheppard and Aguilar 2000, Torok and Gu 2000,Varga and Torok 2000a,b, Drechsler et al2001[166-170]), (Lieb and Meixner 2001, Rhodes2001, Shimura and Milster 2001, Stamnes 2001,Rhodes et al 2002 [171-175]), (Helseth 2001-2004,2006, Varga 2002, Arnison and Sheppard2002 [176-180]), (Blanca and Hell 2002, Chon etal 2002, Hess and Webb 2002, Zhan and Leger2002, Dorn et al 2003a [181-185]), (Ganic et al2003, Ruckstuhl and Seeger 2003, Alvarez-Cabanillas et al 2004, Davidson and Bokor 2004,Diehl and Visser 2004 [186-190]), (Haeberle 2003,Sherif and Torok 2004, 2005, Torok and Munro2004, Torok 1998 [191-195]), (Torok 2004, vande Nes et al 2004a-b, Flagello and Progler 2005a,b[196-200]), (Munro and Torok 2004, 2005,2007,Bomzon and Gu 2006, 2007 [201-205]), (Guo etal 2006a,b, Bokor and Davidson 2007a,b,Botcherby et al 2007 [206-210]), (Bouchelier etal 2007, Hao and Leger 2007, Iketaki et al 2007,Juskaitis 2007, Khoptyar et al 2008 [211-215]),(Lindlein et al 2007, Liu and Lu 2007, Moore et al2007, Yew and Sheppard 2007a, Zhao C-.L. et al2007 [216-220]), (Alali and Massoumian 2008,Ando et al 2008, Bowlan et al 2008, Foreman et al2008, Gao 2008 [221-225]), (Jabbour and Kuebler2006-2008, Jabbour et al 2008, Kauert et al 2008

Tight Focusing of Optical Beams; A Review - Part I

199

[226-230]), (Kim et al 2008, Lerman and Uriel2007, Lerman and Levy 2008, Leutenegger andLasser 2008, Li, J.-s. et al 2008 [231-235]), (Olivierand Beaurepaire 2008, Romero and Hernandez2008, Rydberg 2008, Schonbrun and Crozier2008, Sheppard and Martinez-Corral 2008 [236-240]), (Sheppard and Yew 2008 [121], Sherif et al2008, Stadler et al 2008, Torok et al 1995a-c [241-245]), (Torok et al 1996a, b,1997,2006, 2008[246-250]), (Vamivakas et al 2007, 2008,Wang etal 2008, Zapata-Rodriguez 2008, Zhan 2006 [251-255]), (Zhang et al 2008a-d, Zhao Y et al 2008,Zhao Z-g et al 2008 [256-261]).

Literature on the high NA focusing bydiffractive lenses is also available (Sergienko et al2001, Menon et al 2006. Oron et al 2000a [262-264]) have demonstrated that a diffractive lensbehaves differently than an aplanatic lens.Investigations on the high NA focusing of beamshave been carried out by making the modificationin the scalar diffraction theory or by using thevectorial characteristics of the beam. (Ingnatowsky1919, 1920 [81-82]) started work on high NAfocusing and (Hopkins 1943, 1945[83-84], Burtin1956 and Focke 1957 [88-89]) also madecontributions in this direction. However thedetailed framework to analyze the focused structureof the beam using the vectorial characteristics wasinitiated by (Wolf 1959 [90] and Richards and Wolf1959 [87]). The scalar Huygens-Fresnel principlehas also been reformulated to take into accountthe vector nature of light Marathay and (McCalmont2001 [265]). The Debye approach for high NAfocusing systems (Richards and Wolf 1959 [87])begins to give error in the case of stronglyconvergent beam and study on the subject has beencarried out by (Duan and Lu 2004c [57]) based onRayleigh-Sommerfeld diffraction integral.

As is well-known, a plane wave is purelytransversal. However it possible to generate thelongitudinal polarization components by providingspherical curvature in the wavefront using high NAsystems (Richards and Wolf 1959 [87]). Restrictionon the spatial expansion of the beam is responsiblefor the mechanical strength even in a plane wave

and this logic has been used to explain the origin ofmechanical force in Beth's experiment (Allen et al2003[266]). Optical beam focused by high NAsystems possesses all three polarizationcomponents namely x-, y-, and z in contrast totransverse field in the low NA systems.Contribution of the longitudinal polarizationcomponent increases with an increase in the angleof convergence. As a result, high NA focusing ofthe optical beams has attracted much attentionduring the last decade. Polarization distribution ofthe beam becomes important in shaping the pointspread function (PSF) in high NA focusing(Youngworth and Brown 2000, Youngworth 2002[267-268], Zhan and Leger 2002 [184], Biss andBrown 2001, 2003 [269-270]), (Sun and Liu 2003,Sheppard and Choudhury 2004, Biss 2005,Beversluis et al 2006, Chen and Zhan 2006 [271-275]), (Grosjean and Courjon 2007, Iglesian andVohnsen 2007, [276-277], Zhan 2006 [255]) andmanipulation of the PSF by polarization distributionis referred to as 'polarization engineering' (Hao etal 2008 [278]). Initial studies on the subject werelimited to the beam with homogeneous polarizationdistributions such as linear, circular and ellipticalpolarizations. However, spatially inhomogeneouspolarization has drawn attention of researchers inrecent years due to its increasing number ofapplications (Scully and Zubairy 1991, Niziev andNesterov 1999, Salamin and Keitel 2002, Dorn etal 2003b[279-282], Davidson and Bokor 2004[189]), (Quabis et al 2000, 2001, 2005, Ferrari etal 2007, Gupta et al 2007 [283-287]), (Salamin2007a,b [288-289], Zhao Z-g et al 2008 [261]).One of the reasons for increasing interest in theinhomogeneous polarization is due to availability oftechniques for the generation of such beams.Radially and azimuthally polarized beams areexamples of inhomogeneous polarizationdistribution, and these are also referred to ascylindrical vector (CV) beams (Hall 1996 [290]).Wigner function of high convergent and non-paraxialwave has also been investigated (Sheppard andLarkin 2001a,b [291-292]).

With ever increasing number of applications,

Rakesh Kumar Singh et al

200

the three-dimensional structure of the beam in thefocal region of high NA systems has attracted agreat deal of attention in recent years. Prominentexamples are applications in data storage (Day andGu 1998, Guo et al 2008, Yuan et al 2007[293-295]), microscopy (Kawata et al 1994 [296],Ruckstuhl and Seeger 2003 [187], Torok and Kao2003, Boruah and Neil 2007, Tang et al 2007 [297-299]), (Yew and Sheppard 2007b, Mondal andDiaspro 2008 [300-301], Olivier and Beaurepaire2008 [236]), and optical trapping (Ganic et al2004a,b, Zhan 2004a, Marenda et al 2007, Padgett2007 [302-306], Zhao C-L et al 2007 [220]) etc.Due to the dominating role of polarization in thehigh NA systems, the scalar diffraction theory doesnot give accurate results (Richard and Wolf 1959[87]). Tight focusing of a singular beam has alsoemerged as a promising alternative in particletrapping (Gahagan and Swartzlander 1996, 1999[307-308], Allen et al 2003[266], Jeffries et al 2007,Nieminen et al 2008 [309-310], Zhao et al 2008[260]) and in stimulated emission depletion (STED)microscopy because of the beam's inherent darkcore in the center (Torok and Munro 2004 [194],Willig et al 2006a,b, Iketaki et al 2006 [311-313],Iketaki et al 2007 [213]), (Bokor et al 2005, 2007,2008 [314-316]).

Deviation of the spherical wavefront from itsideal shape, and its impact on the diffraction patternhas been investigated extensively. This deviation isreferred to as aberration and its effect on thediffraction pattern in the focal region has beeninvestigated by several groups. In a number ofpapers, researchers have studied the effects ofaberrations in terms of optical transfer function(OTF) and/or PSF (Kapany and Burke 1962, Barakatand Houston 1966, Hunt et al 1976, Gupta et al1977, 1978 [317-321]), (Gupta and Singh 1978a,b, Yoshida 1982, Biswas and Villeneuve 1985, 1986[322-326]), (Born and Wolf 1989 [46], Williamsand Becklund 1989, Cojocaru et al 1990 [327-328],Mahajan 2001 [51], Sanyal and Ghosh 2002 [329],Goodman 2007 [54]). Deviation in the shape ofthe ideal wavefront is also possible due to deepfocusing of the beam into media of differentrefractive indices (Ling and Lee 1984 [59], Torok

et al 1995a-c, 1996a-b [243-247], Wiersma et al1997[330]). Subject has attracted considerableinterest in the recent years due to increasingnumber of applications in imaging (Sheppard andGu 1991[137], Sheppard et al 1994, Booth andWilson 2000, Ganic et al 2000 [331-333], Gu 2000[161]), (Fwo et al 2005 [334], Botcherby et al2007 [210], Escobar et al 2008 [335], Mondal andDiaspro 2008[301], Olivier and Beaurepaire 2008[236]), data storage (Day and Gu 1998 [293],Wang H-f et al 2007[336]), and optical trapping(Ke and Gu 1998 , Rohrbach and Stelzer 2002 [337-338], Ganic et al 2004a [302],Theofanidou et al2004, Reihani et al 2006[339-340]). Investigationson the compensation of the effect of sphericalaberration have also been subject of interest (Ganicet al 2000 [333], Theofanidou et al 2004 [339],Escobar et al 2006 [341]). Investigation on tightfocusing of astigmatic Gaussian beam has beencarried out by (Gregor and Enderlein 2005[342]).

A singular beam has an azimuthal angulardependence of the complex form exp (im φ), whereφ is the azimuthal coordinate in the transverse planeand m is an integer (Allen et al 2003[266]). Presenceof the azimuthal phase factor creates helical phasestructure with a point of undefined phase in theheart of the wavefront. The point of undefinedphase is referred to as 'singular point' (opticalvortex), and the accumulated phase around thispoint is 2mπ, where m is called the 'topologicalcharge'. When an optical vortex is hosted within aGaussian beam, the resulting beam exhibits anannular intensity profile with a dark core, whilstmaintaining a helical phase structure. Free-spacepropagation of singular beams in the paraxial andnon-paraxial regimes has been investigated byseveral authors (Kogelnik and Li 1966, Siegman1986[2-3], Allen et al 1992, Seshadri 2002[343-344], Allen et al 2003[266]),(Duan et al 2005,Zhangrong and Daomu 2007, Kang et al 2007, Meiand Zhao 2007, Yan and Yao 2008[345-349]),(Zhou 2006b, 2008b[350-351], Zhou and Zheng2008 [38]. Zhou 2006a [31]) has investigated theanalytical vectorial structure of the Laguerre-Gaussian beam in the far field. Effect of sphericalaberration arising due to refractive index mismatch

Tight Focusing of Optical Beams; A Review - Part I

201

on the tightly focused structure of linearly polarizedsingular beam has also been investigated (Zhang etal 2008b[257]). Interest in the structure of theapertured singular beams has increased in recentyears due to their various applications. Some ofthese applications are in astronomy, microscopy,optical trapping, and lithography etc (Swartzlander2001[352], Allen et al 2003[266], Torok and Munro2004[194], Levenson et al 2004, Iketaki et al 2005[353-354], Iketaki et al 2006 [313], Iketaki et al2007[213]), (Andrews 2008 , Davila Romero andAndrews 2008, Juzeliunas and Ohberg 2008,Padgett and Leach 2008, Spalding et al 2008,Swartzlander et al 2008 [355-360]).

Size and shape of the dark core in the diffractionpattern of the singular beam plays an important rolein many applications; for example the size of thefocused annular ring influences the transfer ofmechanical strength to the trapped particles(Courtial and Padgett 2000[361]), and to givesmallest fluorescent spot in the case of stimulatedemission and depletion microscopy (Torok andMunro 2004[194], Bokor et al 2007[315], 2008[316]). Structural change in the focused structureof the singular beam has also been investigated dueto refractive index mismatch (Zhang, Z-m et al2008a [256]). However role of the aberrations onthe focused structure of the singular beam has notbeen discussed in detail or studies have been limitedto low NA systems. It has been observed thateven with optics considered being well-corrected,the intensity distribution of a vortex beam getsdistorted in the presence of small amount ofazimuthally-dependent aberrations, in comparisonto that of the non-vortex beam (Boruah and Neil2006 [362]). Structural modifications in the focusedstructure of the singular beam due to primaryaberrations in low NA system have been carriedout in recent years (Roichman et al 2006, Fatemiand Bashkansky 2007, Singh et al 2007a-d, 2008a,b [363-370]). However these studies are not usefulfor high NA systems due to dominating role of thevectorial characteristics of the beam.

It is impossible to avoid presence of opticalaberrations completely in the focusing systems.

Hence investigations have been carried out tomeasure aberrations in the focusing systems andcompensation of the effect of aberrations bydifferent means (Tanaka and Yoshikawa 1992, Strandand Werlich 1994, vander Avoort et al 2005[371-373], Roichman et al 2006 [363], Wang et al2006a-c [374-376]). (Tanaka and Yoshikawa1992[371]) proposed a method for novel

calculation of aberrations in objective lenses inthe context of optical disk systems. (Mahajan2001[51]) has carried out extensive study on thecompensation of effect of aberrations using theZernike polynomials. Zenike representations havebeen used for variable numerical aperture systemsand in the presence of aberrations (Braat et al 2003,2005, Janssen et al 2008 [377-379]). It is well-known that possibility of aberrations can not beruled out even for well-corrected high NA systems.Investigations in this direction have been initiatedin the past by several groups (Sheppard 1988,1997[110-111], Visser and Wiersma 1991 [140],1992 [141], Kant 1993a [128]), (Kant 1995, 1996,2000 [130-132], Braat et at 2003 [377], Biss andBrown 2004 [380], Lan and Tien 2007 [381]). Focalshift in the high NA systems and vectorial beamhas also been investigated by several researchgroups (Sheppard and Torok 2003 [120], Li Y-J2005a, 2005b, 2008, Wang, X-e et al 2006[382-385]). However no systematic study on theeffect of aberrations seems to have been carriedout on the beams with phase singularity for highNA systems except by (Braat et al 2003, 2005[377-378]) who used extended Nijboer- Zernikerepresentation for evaluation of intensity in the focalregion of an aberrated high NA system. In view ofthe importance of the high NA focusing of vortexbeams, and their structure in the focal region, wehave undertaken a comprehensive study on thesubject (Singh et al 2008c-e [386-388]).

The present review is aimed at discussing brieflythe tight focusing of optical beams and theirapplications. The article is arranged as follows.Section 1 is introductory in nature and besidesoutlining the historical perspective, provides a briefreview of the tight focusing of optical beams. In

Rakesh Kumar Singh et al

202

section 2, basic theory and properties of opticalbeams in the high NA systems are outlined. Section3 discusses the numerical methods used to evaluatethe diffraction integrals. Section 4 providesinformation on the singular beams and theirstructure in the focal region of high NA systems.Section 5 describes applications of tightly focusedbeams and few of these applications are discussedbriefly. Section 6 mentions some miscellaneousinvestigations. Finally in section 7, we presentsummary and conclusions.

2. Theoretical background

When a positive lens projects real image of apoint source, it produces converging wavefrontwith a common center of conversion. However,image of a point never becomes as precise as thepoint source itself and spreading takes place aroundthe image point. Spreading around the image pointis referred to as 'point spread function' (PSF).Spreading results due to finite size of the focusingsystem, and referred to as diffraction limitedsituation. We have considered the optical geometryshown in Fig.1. The position of a point in the exitpupil-, and observation planes, is denoted by polarcoordinates (ρ, φ, f) and (rP,φP,z) respectively. ρ isthe normalized position coordinate written asρ = r/ r0 where r is the distance of a point fromthe center on the exit pupil plane of radius r0. Thediffraction image centered at the Gaussian imagepoint P/ is aberration-free, if converging waveemanating from the exit pupil has center of curvatureat point P/. In the presence of aberration, center ofcurvature of wave shifts from point P/ because ofthe deviation of the actual wave front from the idealwave front at the exit pupil (Born and Wolf 1989[46], Mahajan 2001 [51]).

Paraxial or Gaussian optics is only approximatelycorrect in describing the diffraction pattern forsmall angles. In this situation, approximations likesinθ θ≈ and cosθ ≈1are correct and next term intheir expansion can be ignored. If the next term isconsidered in the expansion, then we have third-

order approximation, in which case sin /!θ θ θ≈ − 3 3

and cos /θ θ= −1 22 are the lowest order terms. The

aberrations that affect image quality are generallymost important in third-order approximation(Mahajan 2001 [51], Trappe et al 2003 [389]).These aberrations have been classified by von Seideland are referred to as 'Seidel aberrations' (Pedrotti1993[390]). For coherent systems the phaseerrors due to distorted wavefront can also beexpanded in a series of Zernike polynomials (Bornand Wolf 1989 [46], Mahajan 2001 [51]). Advantageof the Zernike polynomials lies with their usefulnessin balancing the aberrations to reduce the effect ofaberrations on image quality. The Seidel (or primary)aberrations are divided into five categories, namelyspherical aberration, coma, astigmatism, curvatureof the field, and distortion.

As is well-known, light is transverse in natureand in the case of optical systems with smallnumerical aperture, only small twist of relativepolarizations takes place. For these, it is reasonableapproximation to use scalar theory of diffractionor ignore vectorial characteristics of the beam inthe evaluation of diffraction pattern (Wolf 1959 [90],Richards and Wolf 1959[87], Boivin and Wolf 1965[97], McCutchen 1965 [391]). However vectorialcharacteristics of the beam in high NA focusingbecomes dominating and the diffraction evaluationcan be categorized into two parts: one based onvectorial properties and the other on scalar. Thescalar theory of diffraction for converging beambegins to breakdown for NA of about 1/ 2 andfocusing is characterized as high NA focusing(Sheppard and Matthews 1987 [126]). Howevermodifications in the scalar theory have been madefor high NA systems (Miks et al 2007 [392]).

2.1 Debye-Wolf diffraction integral

With dominating role of the vectorialcharacteristics of the beam in high NA focusing, itis desirable to use diffraction integral which canincorporate the vectorial characteristics of theincident beam in the diffraction integral. Debye-Wolf integral is suitable for this purpose and it givesthe same results for low NA systems as obtainedusing the scalar diffraction theory. Investigationson the Debye integral and its validity have also beena subject of much interest (Wolf and Li 1981,

Tight Focusing of Optical Beams; A Review - Part I

203

Pedersen and Stamnes 1983, 1992 [393-395],Stamnes 1986 [45], Gu 2000 [161], Sheppard 2000[396], Zapata-Rodriguez 2007 [397]). The fielddistribution at a point in the image space is given(Wolf 1959 [90], Richards and Wolf 1959 [87]) as:

E x y zik a s s

se ds dsP P P

x y

z

i k s s s rx y

x y( , , )( , ) [ ( , ) . ]=− ∫∫ −

2π Ω

Φ (1)

H x y zik b s s

se ds dsP P P

x y

z

i k s s s rx y

x y( , , )( , ) [ ( , ) . ]=− −∫∫2π

Φ

Ω (2)

b s a= × (3)

Here E and H are respectively the electric andmagnetic vectors, a and b and are strength factorsat the exit pupil. The strength factor includescontribution from the polarization, phase, and

amplitude distribution at the exit pupil. k( )= 2πλ

is

the wave number, λ is wavelength, Φ is aberrationfunction of the system, s is unit vector along atypical ray in the image space (with its positivedirection in the direction of propagation of thebeam) and Ω is the solid angle formed by all thegeometrical rays which pass through the exit pupilof the system.

2.2 Focusing by an aberrated high NA system

Following (Richards and Wolf 1959 [87]), thefield distribution in the focal volume of a high NAoptical system is given by the diffraction integral(also known now as the Debye-Wolf integral) as:

E Pik a s s

sik s s s r P ds dsx y

zx y x y( )

( , )exp { ( , ) . ( )}=− −⎡⎣ ⎤⎦∫∫2π Ω

Φ (4)

where a is a strength factor, r(P) is the radiusvector connecting the point P with the Gaussianfocus which is also the origin of the coordinate

system (Fig. 1), s s s sx y z= ( , , ) is the direction vectorof a typical ray in the image space,

Φ

is the waveaberration function which denotes the deviation ofthe actual wavefront from the ideal one, and

k( )= 2πλ

. The integral is taken over the entire

surface of the wavefront leaving the exit pupil. Inthe presence of the aberrations, the radial distanceof any point on the wavefront depends on the angularcoordinates and written (Kant 1995 [130]) as:

r f W( , )θ φ = + Δ

r P r P i j kP P P P P( ) ( )(sin cos sin sin cos )= + +θ φ θ φ θ (5)

Φ = + +A A As a cρ ρ φ ρ φ4 2 2 3cos cos

where ρθα

= sinsin

is zonal radius, is maximum angle

of convergence (Fig. 1b), f is the focal length ofthe optical system, Φ is phase aberration, As,Ad, Aa and Acare the spherical aberration, defocusing, astigmatic,and comatic aberration coefficients respectively inthe units of wavelength, and ( , , )rP P Pθ φ are theposition coordinates of a point on the observationplane.

Using the concept of the two orthogonaltangent vectors in the polar and azimuthaldirections, the unit normal to the aberratedwavefront is given as:

sr

rr

r

s

x

y

= − ∂∂

+ ∂∂

⎛⎝⎜

⎞⎠⎟

=

1 1 1

1

σθ φ

θθ φ

θ φφ

σθ

sin cos cos cossin

sin

sin ssin cos sinsin

cos

cos sin

φθ

θ φθ φ

φ

σθ θ

− ∂∂

− ∂∂

⎛⎝⎜

⎞⎠⎟

= + ∂

1 1

1 1

rr

rr

srz

rr∂

⎛⎝⎜

⎞⎠⎟θ

(6)

where σis the normalization factor given as :

σθ θ φ

= + ∂∂

⎛⎝⎜

⎞⎠⎟

+ ∂∂

⎛⎝⎜

⎞⎠⎟

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

⎣⎢⎢

⎦⎥⎥

11 12

2

2

21 2

rr r

sin

/

Using the binomial expansion and ignoring thehigher order derivative of the position vector dueto small value of the aberrations, we write

11

σ≅ − +Θ Θo( )

Rakesh Kumar Singh et al

204

where Θ = ∂∂

⎛⎝⎜

⎞⎠⎟

+ ∂∂

⎛⎝⎜

⎞⎠⎟

⎣⎢⎢

⎦⎥⎥

12

12

2

2

2

rr rθ θ φsin

Using the approach of (Richards and Wolf 1959[87]) for the linearly polarized beam and of (Visserand Wiersma 1991 [140]) for the arbitrarypolarization, one can derive the contribution of the

Fig. 1. (a) Schematic representation of the wavefront deviation and (b) geometrical configuration of the focusing system

Tight Focusing of Optical Beams; A Review - Part I

205

polarization factor in the evaluation of strengthfactor a.

a s k s s

A s s s B s s s s s

A sP x y

y x z x y x y z

( , ) ( . ) /( )

( ) ( )

(/θ φ = +

+ + − +

−1 2 2 2

2 2

xx y x y z x y z

x y x y

s s s s B s s s

A s B s s s

+ + +

− + − +

⎢⎢⎢⎢

) ( )

[ (( ) ( )]( )

2 2

2 2

⎥⎥⎥⎥⎥ (7)

or a A PP = 2 ( ) ( , )θ θ φ

where A s k sz21 2 1 2( ) ( . ) ( )/ /θ = = , and

Ps s

A s s s B s s s s s

A s s s s sx y

y x z x y x y z

x y x y( , )( )

( ) ( )

(θ φ =+

+ + − +

− +12 2

2 2

zz x y z

x y x y

B s s s

A s B s s s

) ( )

[ ( ) ( )]( )

+ +

− + − +

⎢⎢⎢⎢

⎥⎥⎥⎥

2 2

2 2 (8)

Here A( , )θ φ , B( , )θ φ are respectively thestrengths of the x-, and y- polarized input beams,A2(θ ) corresponds to the apodization factor equalto cos /1 2θ for an aplanatic lens (Richards and Wolf1959 [87], Stamnes 1986 [45], Gu 2000 [161]).In the aberration-free case, the position coordinatesat the wavefront are independent of the polar andradial coordinates, and in this situation the unitnormal to the wavefront is transformed to the caseof Richards and Wolf. The polarization distributionin the aberration-free case is transformed intopolarization matrix of (Helseth 2004 [177]). Foraberration-free case and x polarization ( )B = 0 , thepolarization distribution at the exit pupil istransformed into results of the (Richards and Wolf1959 [87] and Boivin and Wolf 1965 [97]).Expression for the unit normal to the aberratedwavefront can be written as the sum of two termsrepresenting the vector along the unit normal tothe ideal wavefront and other representing thedeviation such as:

s n F= − +( ) ( , )11

Θσ

θ φ

where n i j k= + +sin cos sin sin cosθ φ θ φ θ

and

Fr

rr

r

Fr

r

x

y

( , ) ( cos cossin

sin )

( , ) ( co

θ φθ

θ φθ φ

φ

θ φθ

= − ∂∂

+ ∂∂

= − ∂∂

1 1

1ss sin

sincos )

( , ) ( sin )

θ φθ φ

φ

θ φ θθ

− ∂∂

= ∂∂

⎪⎪⎪

⎪⎪⎪

1

1r

r

Fr

rz

(9)

Expressing the ds dsx y as a function of d dθ φ

and using Eqs. (5)-(8), Eq. (4) can be written, as:

E u vikf

A im A P

ik n

( , ) ( )exp( ) ( ) ( , )exp

[ (

=−

+ −

∫∫2

1

1 20

2

0πθ φ θ θ φ

σ

πα

Φ Θ FF r P iu

iv

). ( )] expcossin

exp

sinsin

c

⎧⎨⎩

⎫⎬⎭

× −⎛⎝⎜

⎞⎠⎟

−⎛⎝⎜

⎞⎠⎟

θα

θα

2

oos( )φ φ φ θ−⎡⎣⎢

⎤⎦⎥

P J d d

(10)

where the optical coordinates ( , )v u are defined as:

v k r

u k rP P

P P

=

=

sin sin

cos sin ,

θ α

θ α2

and Js s s sx y x y= ∂

∂∂∂

− ∂∂

∂∂

⎝⎜

⎠⎟θ φ φ θ

2.2 Focusing by aberration-free high NA systems

In the aberration-free case ( )Φ = 0 , the unitnormal to the wavefront is given as:

s n i j k= = + +sin cos ˘ sin sin ˘ cos ˘θ φ θ φ θ

where (˘,˘,˘)i j k are the unit vectors in the Cartesiancoordinate systems. The field distribution in thefocal region for an aberration-free case is given(Richards and Wolf 1959 [87], Helseth 2004 [177])as:

Rakesh Kumar Singh et al

206

E u v if A A P

im iv

( , ) ( / ) ( ) ( ) ( , )exp

( ) exp[sin

si

= −

∫∫λ θ θ θ φ

φα

πα

10

2

02

nn cos( )]

exp(sin

cos )sin

θ φ φ

αθ θ θ φ

P

iu

d d2

(11)

where f is focal length of the optical system and λis the wavelength of light in the medium withrefractive index nin the focal region. P( , )θ φ represents the

polarization distribution of the input beam, E0( , )θ φrepresents the complex amplitude of the inputbeam, A1( )θ represents amplitude distribution of the

beam, A 2( )θ and is the apodization factor. Thepolarization distribution of the input beam can bewritten (Helseth 2004 [177]) as :

P

A B

A( , )

[cos cos sin ]

[cos sin cos sin cos ]

[cos coθ φ

θ φ φθ φ φ φ φθ=

+ +−

2 2

ss sin sin cos ]

[cos sin cos ]

sin cos sin sin

φ φ φ φ

θ φ φθ φ θ φ

− ++

− −

B

A B

2 2

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

(12)

where A( , )θ φ and B( , )θ φ are the strengths of thex-, and y- polarized incident beams respectively. Inthe case of uniform polarization the strength ofthe x-, and y- polarized incident beams areindependent of the angular coordinates, whereasin the non-uniform polarization case the strengthfactors depend on the coordinates. Azimuthal andradial polarization distributions are example of non-uniform or inhomogeneous polarizationdistribution. The strength factor A ( , ) cosθ φ φ= ,B( , ) sinθ φ φ= for radial case and B( , ) sinθ φ φ= ,B( , ) sinθ φ φ= in the in the azimuthal polarizationcase respectively (Helseth 2004 [177]). Fig. 2shows how the linear polarization state istransformed into radially and azimuthally polarizedbeam using the liquid crystal devices. A polarizationconverter is commercially available from ARCoptix(Switzerland) and can be used to convert the linearlypolarized beam into radial or azimuthal polarization.

Intensity distributions of a Gaussian beam atthe focal plane for various polarization distributionsare shown in Fig. 3. For the linear polarizationdistribution, the focal spot shows elliptical structure

for an aplanatic system with α =75 (Fig. 3a), and

Fig. 2. Polarization distribution of the linear, radial andazimuthal states (web page of ARCoptix Switzerland)

Tight Focusing of Optical Beams; A Review - Part I

207

circular symmetry is achieved for incident beamswith radial and azimuthal polarization as shown inFigs. 3b & 3c. In case of a low numerical aperturesystem, circular symmetry in the intensitydistribution is also obtained even for a linearlypolarized beam (Fig. 3d). Fig. 3d shows the intensitydistribution of the linearly polarized (x

polarized) Gaussian beam at the focal plane of an

aplanatic lens withα =30 . These results show thatthe circular symmetry vanishes in the tight focusingof the optical beam, and symmetry can be achievedfor radial and azimuthal polarizations even in caseof tight focusing. Removal of the circular symmetryfor the linearly polarized beam in a high NA focusing

Fig. 3. Intensity distribution of the Gaussian beam focused by an air aplanatic lens with α =75 for

(a) linear (b) radial and (c) azimuthal polarizations ; for α =30 (d) for linear polarization

Rakesh Kumar Singh et al

208

results due to depolarization effect. The square ofthe polarization components for the x polarizedGaussian beam focused by an aplanatic lens with

are α =75 shown in Fig. 4. The electric field at thefocal point is purely x-polarized (Fig. 4a) and thecontribution of different polarization componentsvaries along different directions. |Ey|

2 and |Ez|2

possess respectively four fold (Fig. 4b) and twofold (Fig. 4c) symmetry about the coordinate axes.In order to obtain a circular focal spot, thepolarization distribution of the input beam must berotationally symmetric, as is the case e.g. forradially or azimuthally polarized fields (Quabiset al 2005 [285]).

3. Numerical methods for evaluation of theintegral

Analytical solution of the diffraction integrals isdifficult in the presence of aberrations. Hencenumerical methods are preferred for theirevaluation, and a fair amount of literature is availableon the subject (Hopkins 1957, Barakat 1964, 1980,Hopkins and Yzuel 1970, Matsui et al 1976[398-402]), (Yzuel and Arlegui 1980, Gravelsaeterand Stamnes 1982, Stamnes and Spjelkavik 1983,Hazra 1988, Mendlovic et al 1997 [403-407]),

(Stamnes and Heier 1998, Cooper et al 2002,Cooper and Sheppard 2003, Engelberg and Ruschin2004, Leutenegger et al 2006 [408-412]), (Xin etal 2007, Kaddour et al 2008, Shimobaba et al 2008[413-415]). To avoid the numerical difficultiesseveral assumptions are made like paraxialapproximation and number of samples. Even thoughthe paraxial approximation is not a limitation in theintegral in vectorial diffraction, direct numericalevaluation of the integral is time consuming. Herewe discuss some of the numerical methods usefulin the evaluation of the diffraction integrals on thebasis of speed and accuracies.

3.1 Hopkins' Method

(Hopkins 1957 [398]) presented a numericalmethod for the frequency response of opticalsystems based on dividing the region of integration intosmall rectangles. Let us consider the diffraction integralin the form (Hopkins 1957 [398] as given below:

I if x y dx dyS

= { }∫∫ exp ( , ) (13)

Let the region of the rectangle be defined by

x x

y yp x

p y

= ±

= ±

ε

ε

,

Fig. 4. Distribution and contour lines of the squares of x-,y-, and z- polarization components at thefocal plane of an aplanatic lens with α=75º for an x- polarized Gaussian beam (m=0) with γ=1.

For As=0.0;(a) |Ex|2, (b) |Ey|

2(c) |Ez|2

Tight Focusing of Optical Beams; A Review - Part I

209

The mean value of the integrand of (13) over thisrectangle will be given by

14ε ε ε

ε

x yp q x p q p

x

x

if x y if x y x x dxp x

p x

exp ( , ) exp ( , )( )

exp

{ } −{ } ×−

+

iif x y y y dyy p q qy

y

p y

p y

( , )( )−{ }−

+

∫ε

ε

i.e exp ( , )sin ( , )

( , )

sin ( , )if x y

f x y

f x y

f x yp q

x x p q

x x p q

y y p q{ } { }{ }

ε

ε }}{ }ε y y p qf x y( , ) (14)

The value of the integral (14) is given by

I if x yf x y

f x yx y p qq

p

x x p q

x x p q

= { } { }{ }∑∑( ) exp ( , )sin ( , )

( , )

si4ε ε

ε

ε

nn ( , )

( , )

i f x y

f x yy p q

y y p q

{ }{ }ε

where 4ε εx y is the area of elementary rectangle. In

the limiting case of ε x → 0 and ε y → 0 , the righthand side of Eq. (14) converges to the correctvalue of the integral and it simply becomes thedefinition of integration. However increasing thenumber of rectangles results into increasing the timeof evaluation. Limitation and drawback of themethod is associated with the fact that boundaryof the integration domain should be in rectangularform and inaccuracy arises due to mismatchbetween boundary of the sampled rectangles andboundary of the integration. One can accuratelyhandle rectangular aperture by using Cartesiancoordinates, and circular and elliptical apertures byusing polar coordinates in this apporach, but notaperture of general shape, unless the number ofsubdivisions is greatly increased (Stamnes et al1983[405]).

3.2 Linear Phase and Amplitude Approximation

(Gravelsaeter and Stamnes 1982 [404])proposed a method based on linear phase andamplitude approximation as used by Hopkins forspeedy evaluation even in the high NA systems.Let us consider the diffraction integral in the formas given below:

I g x y if x y dx dyx

x

y

y

L

U

L

U

= ∫∫ ( , )exp[ ( , )]

The technique is implemented by dividing theintegration domain in M x N rectangular subdomains, so that

I Im nm

M

n

N

===

∑∑ ,11

where I g x y i f x y dx dym n

x

x

y

y

mL

mU

nL

nU

, ( , )exp[ ( , )]= ∫∫

Let us introduce the quantities (with n =1, 2…, N;m=1, 2,…..M)

Δ Δx x x y y y

x x x ym m

UmL

n nU

nL

mA

mU

mL

nA

= − = −

= + =

1 2 1 2

1 2 1 2

/ ( ), / ( )

/ ( ), / ( yy ynU

nL+ )

Performing first the x integration and using thelinearization in the phase function, we can write

f x y f x y a y b yx x

xx x xm m m

mA

mmL

mU( , ) ( , ) ( ) ( ) ;≈ = + − < <

Δ

where

a f x y f x y f x y

b f x y f xm m

AmU

mL

m mU

= + +

= −

2 3 1 6

1 2

/ ( , ) / ([ ( , ) ( , )],

/ [ ( , ) ( mmL y, )]

The coefficients am and bm are found by requiringsize such that in each subdomain phase errorΔ= −f x y f x ym( , ) ( , ) at the mid point be equal to halfof the negative phase error at either end point.This approach requires fewer subdomians incomparison to the (Hopkins approach 1957 [398])which results in less time for the computation. Anassumption is made that the amplitude g(x,y) variesso slowly over each subinterval that it may bereplaced by its value at the mid point and theexpanded function is substituted in the integral.Similarly the integration with respect to the ycoordinates can be carried out first by expandingboth the phase and amplitude functions such as:

Rakesh Kumar Singh et al

210

I G y iF y dym n m m

y

y

nL

nU

, ( )exp[ ( )]= ∫

and

G y G y c dy yy

F y F y e fy y

m m n m n m nnA

n

m m n m n m nn

( ) ( )

( ) ( )

, , ,

, , ,

≈ = + −

≈ = + −

ΔAA

nyΔ

The coefficients , , and areobtained by the same as described for coefficientsam and bm. In the first integration (involving thevariable x) the amplitude is set equal to a constantin each subdomain, and the phase is linearalized; inthe second integration both the phase andamplitude are linearalized. In these methods, theboundary of integration is approximately zig-zagdue to division of the area of integration intorectangular subdomains and numerical integrationusing the polar coordinates provides less error incomparison to Cartesian coordinates. The numericalevaluation of the diffraction integral is still a timeconsuming process and it depends on the numberof sampling points in the quadrature method.Another most important numerical method for thediffraction evaluation is the fast Fourier transform(FFT) which is very useful in terms of the time ofcomputation. (Leutenegger et al 2006 [412]) havepresented a fast field calculation based on FFT forhigh NA systems. Instead of direct integration,vectorial Wolf-Debye integral is evaluated with theFFT for the evaluation of complex field in the focalregion of a high NA system.

References

[1] Kogelnik, H. "On the propagation ofGaussian beams of light through lens likemedia including those with a loss and gainvariation" Appl. Opt. 4 (1965) 1562-1569.

[2] Kogelnik, H. and T. Li, "Laser beams andresonators" Proc. IEEE 54 (1966)1312-1329.

[3] Siegman, A. E., "Lasers" (Oxford Univ.Press 1986).

[4] Seshadri, S. R., "Quality of paraxialelectromagnetic beams" Appl. Opt. 45(2006) 5335-5345.

[5] Seshadri, S. R., "Response to comments on-Quality of paraxial electromagnetic beams"Appl. Opt. 47 (2008a) 3770-3772.

[6] Zhou, G.-q., K. Zhu, and F. Liu, "Analyticalstructure of the TE and TM terms ofparaxial Gaussian beam in the near field"Opt. Commn. 276 (2007a) 37-43.

[7] Lax, M., W. H. Louisell, and W. B. McKnight,"From Maxwell to paraxial wave optics"Phys. Rev. A 11 (1975) 1365-1370.

[8] Agrawal, G. P., and D. N. Pattanayak,"Gaussian beam propagation beyond theparaxial approximation" J. Opt. Soc. Am.69 (1979) 575-578.

[9] Agrawal, G. P., and M. Lax, "Free spacepropagation beyond the paraxialapproximation" Phys. Rev. A 27 (1983)1693-1695.

[10] Takenaka, T., M. Yokota, and O. Fukumitsu,"Propgation of light beyond the paraxialapproximation" J. Opt. Soc. Am. A 2(1985) 826-829.

[11] Wünsche, A., "Transition from the paraxialapproximation to exact solutions of thewave equation and application to Gaussianbeams," J. Opt. Soc. Am. A 9 (1992) 765-774.

[12] Laabs, H., "Propagation of Hermite-Gaussian beams beyond the paraxialapproximation" Opt. Commun. 147 (1998)1-4.

[13] Sheppard, C. J. R., and S. Saghafi,"Transverse-electric and transverse-magnetic beam modes beyond the paraxialapproximation" Opt. Lett. 24 (1999) 1543-1545.

[14] Martinez-Herrero, R., P. M. Mejias, S.Bosch and A. Carnicer, "Vectorial structureof nonparaxial electromagnetic beams" J.Opt. Soc. Am. A 18 (2001) 1678-1680.

[15] Martinez-Herrero, R., P. M. Mejias and S.

Tight Focusing of Optical Beams; A Review - Part I

211

Bosch, "On the vectorial structure of non-paraxial radially polarized light fields" Opt.Commun. 281 (2008) 3046-3050.

[16] Chen, C. G., P. T. Konkola, J. Ferrera, R. K.Heilmann, and M. L. Schattenburg, "Analysesof vector Gaussian beam propagation andthe validity of paraxial and sphericalapproximations," J. Opt. Soc. Am. 19(2002) 404-412.

[17] Ciattoni, A., B. Crosignani and P. D. Porto,"Vectorial analytical description ofpropagation of a highly nonparaxialbeam"Opt. Commun. 202 (2002) 17-20.

[18] Deng, D.-g., H. Yu, S. Xu, G. Tian, and Z.Fan, "Nonparaxial propagation of vectorialhollow Gaussian beams" J. Opt. Soc. Am.B 25 (2008) 83-87.

[19] Seshadri, S. R., "Fundamentalelectromagnetic Gaussian beam beyond theparaxial approximation" J. Opt. Soc. Am. A25 (2008b) 2156-2164.

[20] Tervo, J., and J. Turunen, "Generation ofvectorial propagation-invariant fields bypolarization-grating axicons" Opt.Commun. 192 (2001a) 13-18.

[21] Tervo, J., and J. P. Turunen, "Rotating scale-invariant electromagnetic fields" Opt.Express 9 (2001b) 9-15.

[22] Borghi, R., A. Ciattoni, and M. Santarsiero,"Exact axial electromagnetic field forvectorial Gaussian and flattened Gaussianboundary distributions" J. Opt. Soc. Am. A19 (2002) 1207-1211.

[23] Duan, K., and B. Lu, "Propagation propertiesof vectorial elliptical Gaussian beamsbeyond the paraxial approximation" Opt.Laser Technol. 36 (2004a) 489-496.

[24] Duan, K., and B. Lu, "Partially coherentvectorial nonparaxial beams" J. Opt. Soc.Am. A 21 (2004b) 1924-1932.

[25] Chaumet, P. C., "Fully vectorial highlynonparaxial beam close to the waist" J. Opt.Soc. Am. A 23 (2006) 3197-3202.

[26] Hernandez-Aranda, R. I., J. C. Gutierrez-Vega, M. Guizar-Sicairos, and M. A.Bandres, "Propagation of generalized vectorHelmholtz-Gauss beams through paraxialoptical systems"Opt. Express 14 (2006)8974-8988.

[27] Kang, X.-p, and B. Lu, "Vectorial nonparaxialflattened Gaussian beams and their beamquality in terms of the power in the bucket"Opt. Commun. 262 (2006) 1-7.

[28] Sepke, S. M., and D. P. Umstadter, "Exactanalytical solution for the vectorelectromagnetic field of Gaussian, flattenedGaussian, and annular Gaussian laser modes"Opt. Lett. 31 (2006a) 1447-1449.

[29] Sepke, S. M., and D. P. Umstadter,"Analytical solutions for the electromagneticfields of flattened and annular Gaussian lasermodes. I. Small F-number laser focusing" J.Opt. Soc. Am. B 23 (2006b) 2157-2165.

[30] Sepke, S. M., and D. P. Umstadter,"Analytical solutions for the electromagneticfields of flattened and annular Gaussian lasermodes. II. Large F- number laser focusing"J. Opt. Soc. A. B 23 (2006c) 2166-2173.

[31] Zhou, G.-q., "Vectorial structure of non-paraxial linearly polarized Gaussian beamand their beam propagation factors" Opt.Commun.265 (2006a) 39-46.

[32] Zhou, G.-q., "The analytical vectorialstructure of a nonparaxial Gaussian beamclose to the source" Opt. Express 16(2008a) 3504-3514.

[33] Zhou, G.-q., R. Chen and J. Chen,"Propagation of non-paraxialnonsymmetrical vector Gaussian beam"Opt. Commun. 259 (2006) 32-39.

[34] Zhou, G.-q., Y. Ni and Z. Zhang, "Analyticalvectorial structure of non-paraxialnonsymmetrical vector Gaussian beam inthe far field" Opt. Commun. 272 (2007b)32-39.

[35] Zhou, G.-q., L. Chen and Y. Ni,"Investigation in the far field characteristics

Rakesh Kumar Singh et al

212

of TM polarized Gaussian beam from thevectorial structure" Opt. Laser Techn. 39(2007c) 1473-1477.

[36] Zhou, G.-q., and X.-X. Chu, "Investigationin the propagation of non-paraxial TEvector Gaussian beam from vectorialstructure"J. Mod. Opt. 54 (2007) 1151-1163.

[37] Wu, G-h., Q. Lou and J. Zhou, "Analyticalvectorial structure of hollow Gaussianbeams in the far field" Opt. Express 16(2008) 6417-6424.

[38] Zhou, G.-q., and J. Zheng, "Vectorialstructure of Hermite-Laguerre-Gaussianbeam in the far field" Opt. Laser. Tech. 40(2008) 858-863.

[39] Sepke, S. M., and D. P. Umstadter,"Analytical solutions for the electromagneticfields of flattened and annular Gaussian lasermodes. III. Arbitrary length pulses and spotsizes" J. Opt. Soc. Am. B 23 (2006d) 2295-2302.

[40] Stamnes, J. J, "Focusing of two-dimensionalwaves"J. Opt. Soc. Am. A 71 (1981)15-31.

[41] Stamnes, J. J. and B. Spjelkavik, "Focusingat small angular apertures in the Debye andKirchhoff approximations" Opt. Commun.40 (1981) 81-85.

[42] Belland, P., and J. P. Crenn, "Changes in thecharacteristics of a Gaussian beam weaklydiffracted by a circular aperture" Appl. Opt.21 (1982) 522-527.

[43] Tanaka, K., N. Saga and H. Mizokami, "Fieldspread of a diffracted Gaussian beamthrough a circular aperture" Appl. Opt. 24(1985a) 1102-1106.

[44] Tanaka, K., N. Saga and K. Hauchi, "Focusingof a Gaussian beam through a finite aperturelens" Appl. Opt. 24 (1985b) 1098-1101

[45] Stamnes, J. J., "Waves in Focal regions"(Hilger, Bristol 1986).

[46] Born, M., and E. Wolf, "Principles of optics"

(Pergamon Press, New York, 6thEd.1989).

[47] Stamnes, J. J., and H. A. Eide, "Exact andapproximate solutions for focusing of two-dimensional waves. I. Theory" J. Opt. Soc.Am. A 15 (1998) 1285-1291.

[48] Eide, H. A., and J. J. Stamnes, "Exact andapproximate solutions for focusing of two-dimensional waves. II Numericalcomparison among exact, Debye, andKirchhoff theories" J. Opt. Soc. Am. A 15(1998a) 1292-1307.

[49] Eide, H. A., and J. J. Stamnes, "Exact andapproximate solutions for focusing of two-dimensional waves. III. Numericalcomparison between exact and Rayleigh-Sommerfeld theories" J. Opt. Opt. Soc. Am.A 15 (1998b) 1308-1319.

[50] Almeida, A. M., E. Nogueira and M. Belsley,"Paraxial imaging: Gaussian beams versusparaxial - spherical waves" Am. J. Phys. 67(1999) 428-433.

[51] Mahajan V. N., "Optical Imaging andAberrations, Part 2 Wave and DiffractionOptics" (SPIE, Press, Bellingham WA 2001)

[52] Kopeika, N. S., "A system engineeringapproach to imaging" (Prentice-Hall of IndiaPvt. Ltd. 2003).

[53] Shamir, J., "Optical systems and processes"(Prentice Hall of India Pvt. Ltd. New Delhi2003).

[54] Goodman, J W, "Fourier Optics" (VivaBooks Pvt. Ltd. Indian Ed. 2007).

[55] Duan, K., and B. Lu, "Nonparaxial analysisof far-field properties of Gaussian beamdiffracted at a circular aperture" Opt.Express 11 (2003) 1474-1480.

[56] Lu, B. and K. Duan, "Nonparaxialpropagation of vectorial Gaussian beamsdiffracted at circular aperture" Opt. Lett.28 (2003) 2440-2442.

[57] Duan, K., and B. Lu, "Vectorial nonparaxialpropagation equation of elliptical Gaussian

Tight Focusing of Optical Beams; A Review - Part I

213

beams in the presence of a rectangularaperture" J. Opt. Soc. Am. A 21 (2004c)1613-1620.

[58] Duan, K., and B. Lu, "Intensity distributionnear focus of a strongly convergingspherical waves diffracted at a circularaperture" Opt. Quant. Electron. 36(2004d) 1135-1145.

[59] Ling, H. and S.-W. Lee, "Focusing ofelectromagnetic waves through a dielectricinterface" J. Opt. Soc. Am. A 1 (1984) 965-973.

[60] Gao, Z.-h. and B. Lu, "Propagation ofvectorial apertured cosh-Gaussian beamsbeyond the paraxial approximation" Optik117 (2006) 67-71.

[61] Gao, Z.-h. and B. Lu, "Analytical descriptionof propagation of vectorial apertured off-axis Gaussian beams beyond the paraxialapproximation" Opt. Laser Technol. 39(2007) 379-384.

[62] Liu, P., B. Lu and K. Duan, "Propagation ofvectorial nonparaxial Gaussian beamsthrough an annular aperture" Opt. LaserTechnol. 38 (2006) 133-137

[63] Zheng, C.-w, Y. Zhang and L. Wang,"Propagation of vectorial beams behind acircular aperture" Opt. Laser Techn. 39(2007) 598-604.

[64] Wang, S.-q, J. Liu, B.-y. Gu, Y-q. Wang, B.Hu, X.-d. Sun and S. Di, "Rigorouselectromagnetic analysis of the commonfocusing characteristics of a cylindricalmicrolens with long focal depth and undermultiwavelength illumination" J. Opt. Soc.Am. A 24 (2007) 512-516.

[65] Guha, S., and G. D. Gillen, "Vectordiffraction theory of refraction of light bya spherical surface" J. Opt. Soc. Am. B 24(2007) 1-8.

[66] Linfoot, E. H., and E. Wolf, "Diffractionimages in systems with an annular aperture"Proc. Phys. Soc. London B 66 (1953)145-149.

[67] Welford, W. T., "Use of annular aperturesto increase focal depth" J. Opt. Soc. Am50 (1960) 749-753.

[68] Singh, K., and H. S. Dhillon, "Diffraction ofpartially coherent light by an aberration-free annular aperture"J. Opt. Soc. Am. A59 (1969) 395-401.

[69] Singh, K., and B. N. Gupta, "Fraunhoferdiffraction in partially space coherent lighby slit aperture with amplitude filters" Opt.Acta 17 (1970) 609-622.

[70] Singh, K., and B. N. Gupta, "Partiallycoherent Fraunhofer diffraction by acircular aperture with pupil of nonuniformtransmission" Nouv. Rev. d' Opt. Appl. 2(1971) 97-104.

[71] Sheppard, C J R and T. Wilson, "Imagingproperties of annular lenses" Appl. Opt. 18(1979) 3764.

[72] Horikawa, Y., "Resolution of annular pupiloptical systems" J. Opt. Soc. Am. A 11(1994) 1985-1992.

[73] Luo, H. and C. Zhou, "Comparison ofsuperresolution effects with annular phaseand amplitude filters"Appl. Opt. 43 (2004)6242-6247.

[74] Li, Y.-J. and E. Wolf, "Focal shift in diffractedconverging spherical waves" Opt.Commun. 39 (1981) 211-215.

[75] Li, Y.-J., "Dependence of the focal shift onFresnel number and f number" J. Opt. Soc.Am. 72 (1982) 770-775.

[76] Carter, W. H., "Focal shift and concept ofeffective Fresnel number for a Gaussianlaser beam" Appl. Opt. 21 (1982) 1989-1994.

[77] Li, Y.- J. and H. Platzer, "Experimentalinvestigation of diffraction patterns in lowFresnel-number focusing systems" Opt.Acta 30 (1983) 1621-1643.

[78] Carter, W. H., and M. F. Aburdene, "Focalshift in Laguerre-Gaussian beams" J. Opt.Soc. Am. A 4 (1987) 1949-1952.

Rakesh Kumar Singh et al

214

[79] Poon, T.-C., "Focal shift in focused annularbeams" Opt. Commun. 65 (1988) 401-406

[80] Mahajan, V. N., "Symmetries properties ofaberrated point spread function" J. Opt.Soc. Am. A 11 (1994) 1993-2003.

[81] Ignatowsky, V. S., "The relationship betweengeometrical and wave optics and diffractionof homecentrical beams"Trans. Opt. Inst.Petrograd (Leningrad) 1/3 (1919) 1-30.

[82] Ignatowsky, V. S., "Diffraction by aparaboloid mirror with arbitrary aperture"Trans. Opt. Inst. Petrograd (Leningrad) 1/5 (1920) 1-30.

[83] Hopkins, H. H., "The Airy disc formula forsystems of high relative aperture" Proc.Phys. Soc. (London) 55 (1943) 116-128.

[84] Hopkins, H. H., "Resolving power of themicroscope using polarized light" Nature155 (1945) 275-276.

[85] Richards, B., "Diffraction in systems of highrelative apertures" in Proc. Symp. onAstronom. Opt., Univ. Manchester 1955,pp 351-359 (Ed.) Z. Kopal (NorthHolland, 1956).

[86] Richards, B., and E. Wolf, "The Airy patternin systems of high angular aperture" Proc.Phys. Soc. (London) 69 (1956) 854-856.

[87] Richards, B., and E. Wolf, "Electromagneticdiffraction in optical systems II. Structureof the image field in an aplanatic system"Proc. Roy. Soc. London Ser. A 253 (1959)358-379.

[88] Burtin, R., "Two problems of opticaldiffraction at large apertures" Opt. Acta 3(1956) 104-109.

[89] Focke, J., "On wave-optical imagery insystems with large relative aperture" Opt.Acta 4 (1957) 124-126.

[90] Wolf, E., "Electromagnetic diffraction inoptical systems, I.An integralrepresentation of the image field" Proc. R.Soc. London Ser. A 253 (1959) 349-357.

[91] Barakat, R., "The intensity distribution and

total illumination of aberration-freediffraction images" in 'Progress in Optics'Ed. E. Wolf (North Holland, Amsterdam,1961) vol. 1, pp. 67-108.

[92] Barakat, R., and D. Levi, "Transfer functionand total illuminance of high numericalaperture systems obeying the sinecondition" J. Opt. Soc. Am. 53 (1963) 324-332.

[93] Carswell, A. I., "Measurements of thelongitudinal component of theelectromagnetic field at the focus of acoherent beam" Phys. Rev. Lett. 15 (1965)647-649.

[94] Innes, J. D., and A. L. Bloom, "Design ofoptical systems for use with laser beams"Spectra-Physics Laser Tech. Bull. 5 (1966)1-10.

[95] Luneburg, R. K., "Mathematics theory ofoptics" (Univ. Calif. Press, California 1966)

[96] Tremblay, R., and A. Boivin, "Concepts andtechniques of microwave optics"Appl. Opt.5 (1966) 249-278.

[97] Boivin, A., and E. Wolf, "Electromagneticfield in the neighborhood of the focus of acoherent beam" Phys. Rev. B 138 (1965)1561-1565.

[98] Boivin, A., J. Dow and E. Wolf, "Energy flowin the neighborhood of the focus of acoherent beam" J. Opt. Soc. Am. 57(1967) 1171-1175.

[99] Boivin,A., N. Broussean, and S. C. Biswas,"Electromagnetic diffraction in the focalregion of a wide-angle spherical mirrorunder oblique illumination: An integralrepresentation of the field" Opt. Acta 25(1978) 415-44.

[100] Carter, W. H., "Longitudinal electric field Ia Gaussian beam near focus" Appl. Opt. 12(1973a) 1732-1733.

[101] Carter, W. H., "Anomalies in the field of aGaussian beam near focus" Opt. Commun.7 (1973b) 211-218.

Tight Focusing of Optical Beams; A Review - Part I

215

[102] Hardy, A., and D. Treves, "Structure of theelectromagnetic field near the focus of astigmatic lens" J. Opt. Soc. Am 63 (1973)85-90.

[103] Harrach, R. J., "Electric field componentsin a focused laser beam" Appl. Opt. 12(1973) 133-135.

[104] Yoshida, A., and T. Asakura, "Electrmagneticfield in the focal plane of a coherent beamfrom a wide-angular annular-aperturesystem" Optik 40 (1974a)322.

[105] Yoshida, A., and T. Asakura,"Electromagnetic field near the focus ofGaussian beams" Optik 41 (1974b) 281.

[106] van den Berg, H. A. M., and V. Zieren,"Image formation in photosensitive layerson top of highly conductive substrates" J.Opt. Soc. Am. 70 (1980) 110-117.

[107] Sheppard, C. J. R and T. Wilson, "Effect ofhigh angles of convergence of V(z) in thescanning acoustic microscope" Appl. Phys.Lett. 38 (1981) 858-859.

[108] Sheppard, C. J. R. and T. Wilson, "Theimage of a single point in microscopes oflarge numerical aperture," Proc. R. Soc.London, Ser. A 379 (1982) 145-158 .

[109] Sheppard, C. J. R, "Electromagnetic field inthe focal region of wide-angular annular lensand mirror systems" Microwaves opticsand Acoustics 2 (1978) 163-166.

[110] Sheppard, C. J. R., "Aberrations in highaperture conventional and confocal imagingsystems" Appl. Opt.27 (1988) 4782.

[111] Sheppard, C.J.R., "Aberrations in highaperture optical systems" Optik 105 (1997)29-33.

[112] Sheppard, C.J.R., "High-aperture beams"J.Opt. Soc. Am. A 18 (2001)1579-1587.

[113] Sheppard, C. J. R., "Orthogonal aberrationfunctions for high-aperture optical systems"J. Opt. Soc. Am. 21 (2004a) 832-838.

[114] Sheppard, C. J. R., "Orthogonal aberrationfunctions for high-aperture optical systems:

erratum" J. Opt. Soc. Am. A 21 (2004b)2468-2469.

[115] Sheppard, C. J. R., "Filter performanceparameters for high aperture focusing" Opt.Lett. 32 (2007) 1653-1655.

[116] Sheppard, C. J. R., and P. Torok,"Electromagnetic field in the focal regionof an electric dipole wave" Optik 104(1997a) 175-177.

[117] Sheppard, C. J. R., and P. Torok, "Efficientcalculation of electromagnetic diffraction inoptical systems using a multipoleexpansion"J. Mod. Opt. 44 (1997b)803-818.

[118] Sheppard, C. J. R., and P. Torok, "Effects ofspecimen refractive index on confocalimaging" J. Microsc. 185 (1997c) 366-374.

[119] Sheppard, C. J. R., and P. Torok, "Effects ofFresnel number in focusing and imaging" in'Optics and Optoelectronics' Eds. O. P.Nijhawan, A. K. Gupta, A. K. Musla andKehar Singh (Norosa Publ. House, NewDelhi, 1998) Vol. 1, pp 635-649.

[120] Sheppard, C. J. R., P. Torok, "Focal shift andaxial optical coordinate for high-aperturesystems of finite Fresnel number" J. Opt.Soc. Am. A 20 (2003) 2156-2162.

[121] Sheppard, C. J. R., and E. Y. S Yew,"Performance parameter for focusing ofradial polarization" Opt. Lett 33 (2008)497-499.

[122] Sheppard, C. J. R., A. Chowdhury and J.Gannaway, "Electromagnetic field near thefocus of wide-angular annular lens andmirror systems" J. Microw. Opt. Acoust.1 (1977) 129-132.

[123] Sheppard, C.J.R., M. Gu, Y. Kawata, and S.Kawata "Three dimensional transferfunctions for high-aperture systems" J. Opt.Soc. Am. A 11 (1994) 593-598.

[124] Sheppard, C. J. R., M. A. Alonso, and M. J.Moore, "Localization measures for highaperture-wavefields based on pupilmoments" J. Opt. A: Pure Appl. Opt. 10

Rakesh Kumar Singh et al

216

(2008) 033001-1/10.

[125] Barakat, R., "Diffracted electromagneticfields in the neighborhood of the focus ofa paraboloidal mirror having a centralobscuration" Appl. Opt. 26 (1987) 3790-3795.

[126] Sheppard, C. J. R., and H. J. Matthews,"Imaging in high-aperture optical systems"J. Opt. Soc. Am. A 4 (1987) 1354-1360.

[127] Kant, R., "A general numerical solution ofvector diffraction for aplanatic systems"Tech. Rep. TR.02.1713.B (IBM, San Jose,Calif. 1991).

[128] Kant , R., " An analytical solution of vectordiffraction for focusing optical systems"J.Mod. Opt. 40 (1993a) 337-347.

[129] Kant, R. "An analytical solution of vectordiffraction for focusing optical systems withSeidel aberrations. I. Spherical aberration,curvature of field, and distortion," J. Mod.Opt. 40 (1993b) 2293-2310.

[130] Kant, R. "An analytical method of vectordiffraction for focusing optical systems withSeidel aberrations II: Astigmatism and coma"J. Mod. Opt. 42 (1995) 299-320.

[* There seems to be an error in this paperin Eq. 17, the value of (Sx

2+Sy2+Sz

2) shouldbe equal to unity].

[131] Kant, R., "Vector diffraction in paraboloidalmirrors with Seidel aberrations. I: sphericalaberration, curvature of field aberration anddistortion" Opt. Commun. 128 (1996)292-306.

[132] Kant, R., "Superresolution and increaseddepth of focus: an inverse problem ofvector diffraction" J. Mod. Opt. 47 (2000)905-916.

[133] Kant, R., "Vector diffraction problem offocusing a category 1 aberrated wavefrontthrough a multilayered lossless medium" J.Mod. Opt. 51 (2004) 343-366.

[134] Kant, R., "Generalized Lorentz-Miescattering theory for focused radiation andfinite solids of revolution: case I.

Symmetrically polarized beams" J. Mod.Opt. 52 (2005) 2067-2092.

[135] Mansuripur, M., "Distribution of light at andnear the focus of high numerical-apertureobjectives" J. Opt. Soc. Am. A 3 (1986)2086-2093.

[136] Mansuripur, M., "Effect of high-numericalaperture focusing on the state ofpolarization in optical and magneto-opticdata storage system" Appl. Opt. 30 (1991)3154-3162.

[137] Sheppard, C. J. R., and M. Gu, "Aberrationcompensation in confocal microscopy"Appl. Opt. 30 (1991) 3563.

[138] Sheppard, C. J. R., and M. Gu, "Imaging bya high aperture optical system"J. Mod. Opt.40 (1993) 1631-1651.

[139] Visser, T. D., G. T. Brakenhoff and F. C. A.Groen, "The one-point fluorescenceresponse in confocal microscopy" Optik 87(1991) 39-40.

[140] Visser, T. D., and S. H. Wiersma, "Sphericalaberration and the electromagnetic field inhigh-aperture systems," J. Opt. soc. Am.A 8 (1991)1404-1410.

[141] Visser, T. D., and S. H. Wiersma,"Diffraction of converging electromagneticwaves" J. Opt. Soc. Am. A 9 (1992) 2034-2047.

[142] Visser, T. D., and S. H. Wiersma,"Diffraction of converging electromagneticwaves: erratum" J. Opt. Soc. Am. A 10(1993) 765.

[143] Visser, T. D., and S. H. Wiersma,"Electromagnetic description of imageformation in confocal fluorescencemicroscopy" J. Opt. Soc. Am. A 11 (1994)599-608.

[144] Flagello, D. G. and T. Milster, "Three-dimensional modeling of high numericalaperture imaging in thin films" Proc. SPIE1625 (1992) 246-261.

[145] Flagello, D. G. and A. E. Rosenbluth,"Lithographic tolerances based on vector

Tight Focusing of Optical Beams; A Review - Part I

217

diffraction theory" J. Vac. Sci. Technol. 10(1992) 2997-3003.

[146] Flagello, D. G. and A. E. Rosenbluth,"Vector diffraction analysis of phase-maskimaging in photoresist films"Proc. SPIE1927 (1993) 395-412.

[147] Flagello, D. G., "High numerical apertureimaging in homogeneous thin films" Ph.Dthesis (Univ. of Arizona, Tucson, Arizona1993).

[148] Hsu, W., and R. Barakat, "Stratton-Chuvectorial diffraction of electromagneticfields by apertures with application to small-Fresnel-number systems" J. Opt. Soc. Am.A 11 (1994) 623-629.

[149] Visser, T. D., and S. H. Wiersma,"Electromagnetic description of imageformation in confocal fluorescencemicroscopy" J. Opt. Soc. Am. A 11 (1994)599-608.

[150] Müller, M., and G. J. Brakenhoff,"Characterization of high-numerical-aperture lenses by spatial autocorrelationof the focal field" Opt.Lett. 20 (1995)2159-2161.

[151] Flagello, D. G., T. Milster and A. E.Rosenbluth, "Theory of high-NA imagingin homogeneous thin films" J. Opt. Soc. Am.A 13 (1996) 53-64.

[152] Dhayalan, V., "Focusing of electromagneticwaves" Ph. D Thesis (Univ. of Berger,Norway 1996).

[153] Mittleman, D. M., D. C. Douglass, Z. Henis,O. R. Wood, R. R. Freeman and T. J.McIlrath, "High-field harmonic generationin the tight-focusing limit" J. Opt. Soc. Am.B 13 (1996) 170-179.

[154] Dhayalan, V., T. Standnes, J. J. Stamnes andH. Heier, "Scalar and electromagneticdiffraction point spread functions for high-NA microlenses" Pure Appl. Opt. 6 (1997)603-615.

[155] Karman, G. P., M. W. Beijersbergen, A. vanDuijl, D. Bouwmeester, J. P. Woerdman,

"Airy pattern reorganization andsubwavelength structure in a focus" J. Opt.Soc. Am. A 15 (1998) 884-899.

[156] Torok, P., and P. Varga, "Electromagneticdiffraction of light focused through astratified medium" Appl. Opt. 36 (1997)2305-2312.

[157] Torok, P., and T. Wilson, "Rigorous theoryfor axial resolution in confocal microscopes"Opt. Commun. 137 (1997) 127-135.

[158] Jiang, D. and J. J. Stamnes, "Theoretical andexperimental results for two-dimensionalelectromagnetic waves focused through aninterface" J. Opt. A: Pure Appl. Opt.7(1998) 627-641

[159] Gu, M., "Principles of three dimensionalimaging in confocal microscopes" (WorldScientific 1996a)

[160] Gu, M., "Effect of apodization on axialresolution with a high-aperture objective"Proc. SPIE 2655 (1996b) 53-61

[161] Gu, M., "Advanced optical imaging theory"(Springer-Verlag, New York 2000)

[162] Müller, M., A. H. Buist, G. J. Brakenhoff,and J. Squier, "Method for complex focalfield measurement of a high-numerical-aperture lens under cw pulsed conditions,"Opt. Commun. 138 (1997) 16-20

[163] Bahlmann, K., and S. W. Hell, "Electric fielddepolarization in high aperture focusingwith emphasis on annular apertures" J.Microscopy 200 (2000) 59-67

[164] Cronin, P. J., P. Torok, P. Varga, and C.Cogswell, "High-aperture diffraction of ascalar, off-axis Gaussian beam" J. Opt. Soc.Am A 17 (2000) 1556-1564.

[165] Dhayalan, V., and J. J. Stamnes, "Comparisonof exact and asymptotic results for thefocusing of electromagnetic waves througha plane interface" Appl. Opt. 39 (2000)6332-6340.

[166] Sheppard, C. J. R., and J. F. Aguilar,"Electromagnetic imaging in the confocal

Rakesh Kumar Singh et al

218

microscope" Opt. Commun. 180 (2000)1-8.

[167] Torok, P., and M. Gu, "High numericalaperture optical microscopy and modernapplications: Introduction to the featureissue" Appl. Opt. 39 (2000) 6277-6278

[168] Varga, P., and P. Torok, "Focusing ofelectromagnetic waves by paraboloidmirrors. I. Theory" J. Opt. Soc. Am. A 17(2000a) 2081-2089.

[169] Varga, P., and P. Torok, "Focusing ofelectromagnetic waves by paraboliodmirrors. II. Numerical results" J. Opt. Soc.Am. A 17 (2000b) 2090-2095.

[170] Drechsler, A., M. A. Lieb, D. Debus, A. J.Meixner and G. Tarrach, "Confocalmicroscopy with a high numerical apertureparabolic mirror" Opt. Express 9 (2001)637-644.

[171] Lieb, M. and A. Meixner, "A high numericalaperture parabolic mirror imaging devicefor confocal microscopy" Opt. Express 8(2001) 458-474.

[172] Rhodes, S. K., "High-resolution studies ofelectromagnetic fields in focal regions,"Ph.D. thesis (University of Melbourne,Melbourne, Australia, 2001).

[173] Shimura, K and T. D Milster, "Vectordiffraction analysis by discrete-dipoleapproximation" J. Opt. Soc. Am. A 18(2001) 2895-2900.

[174] Stamnes, J. J. (Ed.) "Selected papers onelectromagnetic fields in the focal region"Vol. MS 168 (SPIE Press, Bellingham 2001)

[175] Rhodes, S. K., K. A. Nugent and A. Roberts,"Precision measurement of theelectromagnetic fields in the focal regionof a high-numerical -aperture lens using atapered fiber probe" J. Opt. Soc. Am. A19 (2002) 1689-1693.

[176] Helseth, L. E, "Roles of polarization, phaseand amplitude in solid immersion lens" Opt.Commun. 191 (2001) 161-172.

[177] Helseth, L. E., "Optical vortices in focalregions" Opt. Commun. 229 (2004) 85-91.

[178] Helseth, L. E, "Smallest focal hole" Opt.Commun. 257 (2006) 1-8.

[179] Varga, P., "Focusing of electromagneticradiation by hyperboloidal and ellipsoidallenses" J. Opt. Soc.Am. A 19 (2002)1658-1667

[180] Arnison, M. R., and C. J. R. Sheppard, "A3D vectorial optical transfer functionsuitable for arbitrary pupil functions"Opt.Commun. 211 (2002) 53-63.

[181] Blanca, C. M., and S. W. Hell, "Axialsuperresolution with ultrahigh aperturelenses" Opt. Express 10 (2002) 893-898

[182] Chon, J. W. M., X. Gan, and M. Gu, "Splittingof the focal spot of a high numerical-aperture objective in free space" Appl. Phys.Lett. 81 (2002) 1576-1578.

[183] Hess, S. T., and W. W. Webb, "Focal volumeoptics and experimental artifacts in confocalfluorescence correlation spectroscopy"Biophys. J. 83 (2002) 2300-2317.

[184] Zhan, Q.-w., and J. R. Leger, "Focus shapingusing cylindrical vector beams" Opt.Express 10 (2002) 324-331.

[185] Dorn, R., S. Quabis and G. Leuchs, "Thefocus of light - linear polarization breaksthe rotational symmetry of the focal spot"J. Mod. Opt. 50 (2003a) 1917-1926.

[186] Ganic, D., X. Gan, and M. Gu, "Focusing ofdoughnut laser beams by a high numerical-aperture objective in free space" Opt.Express 11 (2003) 2747-2752.

[187] Ruckstuhl, T., and S. Seeger, "Confocal total-internal-reflection fluorescence microscopywith a high-aperture parabolic mirror lens"Appl. Opt. 42 (2003) 3277-3283.

[188] Alvarez-Cabanillas, A. A., F. Xu, and Y.Fainman, "Modelling microlenses by use ofvectorial field rays and diffraction integrals"Appl. Opt. 43 (2004) 2242-2250.

[189] Davidson, N. and N. Bokor, "High-

Tight Focusing of Optical Beams; A Review - Part I

219

numerical aperture focusing of radiallypolarized doughnut beams with a parabolicmirror and a flat diffractive lens" Opt. Lett.29 (2004) 1318-1320.

[190] Diehl, D. W., and T. D. Visser, "Phasesingularities of the longitudinal fieldcomponents in the focal region of a high-aperture optical system" J. Opt. Soc. Am.A 21 (2004) 2103-2108.

[191] Haeberle, O., "Focusing of light through astratified medium: a practical approach forcomputing microscope point spreadfunctions. Part I: Conventional microscopy"Opt. Commun. 216 (2003) 55-63.

[192] Sherif, S. S., and P. Torok, "Pupil plane masksfor super-resolution in high-numerical-aperture focusing" J. Mod. Opt. 51 (2004)2007-2019.

[193] Sherif, S. S., and P. Torok, "Eigenfucntionrepresentation of the integrals of theDebye-Wolf diffraction formula"J. Mod.Opt. 52 (2005) 857-87 6.

[194] Torok P., and P.R.T. Munro, "The use ofGauss-Laguerre vector beams in STEDmicroscopy" Opt. Express 12 (2004)3605-3617.

[195] Torok, P., "Focusing of electromagneticwaves through a dielectric interface bylenses of finite Fresnel number" J. Opt. Soc.Am. A 15 (1998) 3009-3015.

[196] Török, P. "An imaging theory for advanced,high numerical aperture opticalmicroscopes," (2004). DSc thesis,Hungarian Academy of Sciences.

[197] van de Nes, A. S., L. Billy, S. F. Pereira andJ. J. M. Braat, "Calculation of the vectorialfield distributions in a stratified focal regionof a high numerical aperture imagingsystem" Opt. Express 12 (2004a) 1281-1293.

[198] van de Nes,A. S., P. R. T. Munro, S. F. Pereira,J. J. M. Braat, and P. Torok, "Cylindricalvector beam focusing through a dielectricinterface; Comment" Opt. Express 12

(2004b) 967-969.

[199] Flagello, D. G. and C. J. Progler,"Polarization and hyper-NA lithography" J.Microlith. Microfab. Microsyst. 4 (2005a)031101.

[200] Flagello, D. G. and C. J. Progler,"Polarization effects associated with hyper-numerical aperture (>1) lithography" J.Microlith. Microfab. Microsyst. 4 (2005b)031104.

[201] Munro, P. R. T. and P. Török, "Vectorial,high-numerical-aperture study of phase-contrast microscopes," J. Opt. Soc. Am.A. 21, (2004) 1714-1723.

[202] Munro, P. R. T. and P. Torok, "Vectorial, highnumerical aperture study of Nomarski'sdifferential interference contrastmicroscope" Opt. Express13 (2005) 6833-6847.

[203] Munro, P. R. T. and P. Torok, "Calculation ofthe image of an arbitrary vectorialelectromagnetic field" Opt. Express 15(2007) 9293-9307.

[204] Bomzon, Z., and M. Gu, "Angularmomentum and geometrical phases intightly focused circularly polarized planewaves" Appl. Phys. Lett. 89 (2006)241104-1/3.

[205] Bomzon, Z., and M. Gu, "Space-variantgeometrical phases in focused cylindricallight beams" Opt. Lett. 32 (2007)3017-3019.

[206] Guo, H.-m, S. Zhuang, J. Chen, and Z. C.Liang, "Imaging theory of an aplanaticsystem with a stratified medium based onthe method for a vector coherent transferfunction" Opt. Lett. 31 (2006a)2978-2980.

[207] Guo, H-m, J. Chen and S. Zhuang,"Resolution of an aplanatic systems withvarious semiapertures, viewed from thetwo sided of the diffracting aperture" J. Opt.Soc. Am. A 23 (2006b) 2756-2763.

Rakesh Kumar Singh et al

220

[208] Bokor, N., and N. Davidson, "Tightparabolic dark spot with high numericalaperture focusing with a circular ? phaseplate"Opt. Commun. 270 (2007a) 145-150.

[209] Bokor, N., and N. Davison, "A threedimensional dark focal spot uniformlysurrounded by light" Opt. Commun. 279(2007b) 229-234.

[210] Botcherby, E. J., R. Juskaitis, M. J. Boothand T. Wilson, "Aberration-free opticalrefocusing in high numerical aperturemicroscopy" Opt. Lett. 32 (2007)2007-2009.

[211] Bouhelier, A., F. Ignatovich, A. Bruyant, C.Huang, G. Colas des Francs, J-C. Weeber,A. Dereux, G. P. Wiederrecht and L.Novotny, "Surface plasmon interferenceexcited by tightly focused laser beams"Opt. Lett. 32 (2007) 2535-2537.

[212] Hao, B., and J. Leger, "Experimentalmeasurement of longitudinal component inthe vicinity of focused radially polarizedbeam" Opt. Express 15 (2007) 3550-3556.

[213] Iketaki, Y. , T. Watanabe, N. Bokor, and M.Fujii, "Investigation of the center intensityof first- and second- order Laguerre-Gaussian beams with linear and circularpolarization" Opt. Lett. 32 (2007) 2357-2359.

[214] Juskaitis, R., "Characterizing high numericalaperture microscope objective lenses" inOptical imaging and microscopy:Techniques and advanced systems" Eds. P.Torok and F.-J. Kao (Springer, Berlin 2007)Chap. 2, pp. 21-43.

[215] Khoptyar D., R. Gutbrod, A. Chizhik, J.Enderlein, F. Schleifenbaum, M. Steiner andA. J, Meixner, "Tight focusing of laser beamsin a ?/2- microcavity" Opt. Express 16(2008) 9907-9917.

[216] Lindlein, N., S. Quabis, U. Peschel, and G.Leuchs, "High numerical aperture imagingwith different polarization patterns" Opt.Express 15 (2007) 5827-5842.

[217] Liu, P. and B. Lu, "Phase singularities of thetransverse field component of highnumerical aperture dark-hollow Gaussianbeams in the focal region" Opt. Commun.272 (2007) 1-8.

[218] Moore, N. J., M. A. Alonso and C. J. R.Sheppard "Monochromatic electromagneticfields with maximum focal energy density"J. Opt. Soc. Am. A 24 (2007) 3115-3122.

[219] Yew, E. Y. S. and C. J. R. Sheppard, "Secondharmonic generation polarizationmicroscopy with tightly focused linearly andradially polarized beams" Opt. Commun.275 (2007a) 453-457.

[220] Zhao, C.-L., L.-G Wang, and X-H Lu,"Radiation forces on a dielectric sphereproduced by highly focused hollowGaussian beams" Phys. Lett. A 363 (2007)502-506.

[221] Alali, S., and F. Massoumian, "Images of finitesized spherical particles in confocal andconventional microscopes when illuminatedwith arbitrary polarization"Appl. Opt. 47(2008) 453-458.

[222] Ando, T., Y. Ohtake, T. Inoue, H. Itoh, N.Matsumoto and N. Fukuchi, "Shaping tight-focusing patterns of linearly polarizedbeams through elliptic apertures" Appl.Phys. Lett. 92 (2008) 02116-1/3.

[223] Bowlan, P, U. Fuchs, R. Trebino and U. D.Zeitner, "Measuring the spatiotemporalelectric field of tightly focused ultrashortpulses with sub-micron spatial resolution"Opt. Express 18 (2008) 13663-13675.

[224] Foreman, M. R., S. S. Sherif, P. R. T. Munro,and P. Torok, "Inversion of the Debye-Wolfdiffraction integral using an eigenfunctionrepresentation of the electric fields in thefocal region" Opt. Express 16 (2008) 4901-4917.

[225] Gao, W. "Effects of coherence and vectorproperties of the light on the resolutionlimit in stimulated emission depletionfluorescence microscopy" J. Opt. Soc. Am.

Tight Focusing of Optical Beams; A Review - Part I

221

A 25 (2008) 1378-1382.

[226] Jabbour, T. G., and S. M. Kuebler, "Vectordiffraction analysis of high aperture focusedbeams modified by two-and three annularmulti-phase plates" Opt. Express 14 (2006)1033-1043.

[227] Jabbour, T. G., and S. M. Kuebler, "Axial fieldshaping under high-numerical-aperturefocusing" Opt. Lett. 32 (2007) 527-529.

[228] Jabbour, T. G., and S. M. Kuebler, "Vectorialbeam shaping" Opt. Express 16 (2008)7203-7213.

[229] Jabbour, T. G., M. Petrovich and S. M.Kuebler, "Design of axially super-resolvingphase filters using the method ofgeneralized projections" Opt. Commun.281 (2008) 2002-2011.

[230] Kauert, M., M. Frenz and J. Ricka,"Characterization and preparation offocused laser beams" Opt. Eng. 47 (2008)014201-1/12.

[231] Kim, W.-C., Y.-J. Yoon, H. Choi, N.-C. Parkand Y.-P. Park, "Effects of optical variablesin immersion lens-based near-field optics"Opt. Express 16 (2008) 13933-13948.

[232] Lerman, G. M., and L. Uriel, "Tight focusingof spatially variant vector optical fields withelliptical symmetry of linear polarization"Opt. Lett 32 (2007) 2194-2196.

[233] Lerman, G. M. and U. Levy, "Effect of radialpolarization and apodization on spot sizeunder tight focusing conditions" Opt.Express 16 (2008) 4567-4581.

[234] Leutenegger, M., and T. Lasser, "Detectionefficiency in total internal reflectionfluorescence microscopy" Opt. Express 16(2008) 8519-8531.

[235] Li, J.-s., X. Gao, J. Wang, and S. Zhuang,"Focusing properties of Gaussian beam bya nonspiral phase plate system"Optik 119(2008) 671-681.

[236] Olivier, N. and E. Beaurepaire, "Third-harmonic generation microscopy with

focus-engineered beams: a numerical study"Opt. Express 16 (2008) 14703-14715.

[237] Romero, J. A., and L. Hernandez,"Diffraction by a circular aperture: anapplication of the vectorial theory ofHuygens' principle in the near field" J. Opt.Soc. Am. A. 25 (2008) 2040-2043.

[238] Rydberg, C., "First- and second-orderstatistics of partially coherent, high-numerical aperture optical fields" Opt. Lett.33 (2008) 104-106.

[239] Schonbrun, E., and K. B. Crozier, "Springconstant modulation in a zone plate tweezerusing linear polarization" Opt. Lett. 33(2008) 2017-2019.

[240] Sheppard, C. J. R., and M. Martinez-Corral,"Filter performance parameters forvectorial high aperture wave fields" Opt.Lett. 33 (2008) 476-478.

[241] Sherif, S.S., M. R. Foreman, P. Torok,"Eigenfunction expansion of the electricfields in the focal region of a high numericalaperture focusing system" Opt. Express 16(2008) 3397-3407.

[242] Stadler, J., C. Stanciu, C. Stupperich and A.J. Meixner, "Tighter focusing with aparabolic mirror" Opt. Lett. 33 (2008)681-683.

[243] Torok, P., P. Verga, Z. Laczik and G. R.Booker, "Electromagnetic diffraction of lightfocused through a planar interface betweenmaterials of mismatched refractive indices:an integral representation" J. Opt. Soc. Am.A 12 (1995a) 325-332.

[244] Torok, P., P. Verga, and G. R. Booker,"Electromagnetic diffraction of light focusedthrough a planar interface betweenmaterials of mismatched refractive indices:structure of electromagnetic field. I" J. Opt.Soc. Am. A 12 (1995b) 2136-2144.

[245] Torok, P., P. Varga, and G. Nemeth,"Analytical solution of the diffractionintegrals and interpretation of wave-frontdistortion when light is focused through a

Rakesh Kumar Singh et al

222

planar interface between materials ofmismatched refractive indices" J. Opt. Soc.Am. A 12 (1995c) 2660-2671.

[246] Torok, P., P. Verga, A. Konkol, and G. R.Booker, "Electromagnetic diffraction of lightfocused through a planar interface betweenmaterials of mismatched refractive indices:structure of the electromagnetic field. II" J.Opt. Soc. Am. A 13 (1996a) 2232-2238.

[247] Torok, P., C. J. R. Sheppard and P. Varga,"Study of evanescent waves for transmissionnear-field optical microscopy" J. Mod. Opt.43 (1996b) 1167-1183.

[248] Torok, P., S. J. Hewlett and P. Varga, "Onthe series expansion of high aperture,vectorial diffraction integrals" J. Mod. Opt.44 (1997) 493-503.

[249] Torok, P., P. R. Munro and E. E. Kriezis,"Rigorous near-to far-field transformationfor vectorial diffraction calculations and itsnumerical implementation" J. Opt. Soc. Am.A 23 (2006) 713-722.

[250] Torok, P., P. R. T. Munro and E. E. Kriezis,"High numerical aperture vectorial imagingin coherent optical microscopes" Opt.Express 16 (2008) 507-523.

[251] Vamivakas, A. N., S. B. Ippolito, A. K. Swan,M. S. Unlu, M. Dogan, E. R. Behringer andB. B. Goldberg, "Phase-sensitive detectionof dipole radiation in a fiber-based highnumerical aperture optical system" Opt.Lett. 32 (2007) 970-972.

[252] Vamivakas, A. N., R. D. Younger, B. B.Goldberg, A. K. Swan, M. S. Unlu, E. R.Behringer and S. B. Ippolito, "A case studyfor optics: The solid immersion microscope"Am. J. Phys. 76 (2008) 758-768.

[253] Wang, K., L. Qian, P. Qiu and H. Zhu, "Phasevelocity measurement of a tightly focusedGaussian beam by use of sum frequencygeneration" Appl. Phys. Lett. 92 (2008)121114-1/3.

[254] Zapata-Rodriguez, C. J., "Ultrafastdiffraction of tightly focused waves with

spatio temporal stabilization" J. Opt. Soc.Am. B 25 (2008) 1449-1457.

[255] Zhan, Q.-w., "Properties of circularlypolarized vortex beams" Opt. Lett. 31(2006) 867-869.

[256] Zhang, Z.-m., J. Pu, and X. Wang, "Focusingof partially coherent Bessel-Gaussianbeams through a high numerical apertureobjective"Opt. Lett. 33 (2008a) 49-51.

[257] Zhang, Z.-m., J. Pu and X. Wang,"Distribution of phase and orbital angularmomentum of tightly focused vortexbeams" Opt. Eng. 47 (2008b) 068001-1/6

[258] Zhang, Z.-m., J. Pu, and X. Wang, "Tightlyfocusing of linearly polarized vortex beamsthrough a dielectric interface" Opt.Commun. 281 (2008c) 3421-3426.

[259] Zhang, Z.-m., J. Pu, and X. Wang, "Tightfocusing of radially and azimuthally polarizedvortex beams through a uniaxialbirefringent cryastal"Appl. Opt. 47(2008d) 1963.

[260] Zhao, Y., G. Milne, J. S. Edgar, G. D. M.Jeffries and D. McGloin and D. T. Chiu,"Quantitative force mapping of an opticalvortex trap"Appl. Phys. Lett. 92 (2008)0161111.

[261] Zhao, Z-g., D. Yang and B. Lu, "Electronacceleration by a tightly focused Hermite-Gaussian beam: Higher order corrections"J. Opt. Soc. Am. B 25 (2008) 434-442.

[262] Sergienko, N., V. Dhayalan and J. J. Stamnes,"Comparison of focusing properties ofconventional and diffractive lenses" Opt.Commun. 194 (2001) 225-234.

[263] Menon, R., D. Gil, and H. I. Smith,"Experimental characterization of focusingby high-numerical-aperture zone plates" J.Opt. Soc. Am. A 23 (2006) 567-571.

[264] Oron, R., J. L. Guedalia, N. Davidson, A.A.Friesem and E. Hasman, "Anomaly in high-numerical aperture diffractive focusing lens"Opt. Lens 25 (2000a) 439-441.

Tight Focusing of Optical Beams; A Review - Part I

223

[265] Marathay, A. S. and J. F. McCalmont,"Vector diffraction theory forelectromagnetic waves" J. Opt. Soc. Am.A 18 (2001) 2585-2593.

[266] Allen L., S. M. Barnett, M. J. Padgett (Eds.)"Optical Angular Momentum" (Institute ofPhysics Publishing, Bristol, 2003).

[267] Youngworth, K. S. and T.G. Brown,"Focusing of high numerical aperturecylindrical vector beams" Opt. Express 7(2000) 77-87.

[268] Youngworth, K. S., "Inhomogeneouspolarization in confocal microscopy" Ph.DThesis, Univ. Rochester, NY (USA) 2002.

[269] Biss, D. P. and T. G. Brown, "Cylindricalvector beams focusing through a dielectricinterface" Opt. Express 9 (2001) 490-497.

[270] Biss, D. P., and T. G. Brown, "Polarization-vortex-driven second-harmonic generation"Opt. Lett. 28 (2003) 923-925.

[271] Sun, C.-C., and C-K Liu, "Ultrasmall focusingspot with a long depth of focus based onpolarization and phase modulation" Opt.Lett. 28 (2003) 99-101.

[272] Sheppard, C. J. R., and A. Choudhury,"Annular pupils, radial polarization, andsuperesolution" Appl. Opt. 43 (2004)4322-4327.

[273] Biss, D. P., "Focal field interactions fromthe cylindrical vector beams" Ph.DDissertation, Univ. Rochester NY (USA)2005.

[274] Beversluis, M. R., L. Novotny and S. J.Stranick, "Programmable vector point-spread function engineering" Opt. Express14 (2006) 2650-2656.

[275] Chen, W.-b, and Q. Zhan, "Threedimensional focus shaping with cylindricalvector beams" Opt. Commun. 265 (2006)411-417.

[276] Grosjean, T., D. Courjon and C. Bainier,"Smallest lithographic masks generated byoptical focusing systems" Opt. Lett. 32(2007) 976-978.

[277] Iglesias, I. and B. Vohnsen, "Polarizationstructuring for focal volume shaping in high-resolution microscopy" Opt. Commun.271 (2007) 40-47.

[278] Hao, B., J. Burch and J. Leger, "Smallest flattop focus by polarization engineering" Appl.Opt. 47 (2008) 2931-2940.

[279] Scully, M. O., and M. S. Zubairy, "Simplelaser accelerator: optics and particledynamics" Phys. Rev. A 44 (1991) 2656-2663.

[280] Niziev, V. G., and A. V. Nesterov, "Influenceof beam polarization on laser cuttingefficiency" J. Phys. D: Appl. Phys. 32 (1999)1455-1461.

[281] Salamin, Y. I., and C. H. Keitel, "Electronacceleration by a tightly focused laserbeam"Phys. Rev. Lett. 88 (2002) 095005/1-4.

[282] Dorn, R., S. Quabis and G. Leuchs, "Sharperfocus for a radially polarized light beam"Phys. Rev. Lett. 91 (2003b) 233901.

[283] Quabis, S., R. Dorn , M Eberler , O Glockland G. Leuchs, "Focusing light to a tighterspot" Opt. Commun. 179 (2000) 1-7.

[284] Quabis, S., R. Dorn, M. Eberler, O. Glöckl,and G. Leuchs, "The focus of light-theoretical calculation and experimentaltomographic reconstruction," Appl. Phys.B 72 (2001) 109-113.

[285] Quabis, S., R. Dorn and G. Leuchs,"Generation of a radially polarized doughnutmode of high quality" Appl. Phys. B 81(2005) 597-600.

[286] Ferrari, J. A., W. Dultz, H. Schmitzer andE. Frins, "Achromatic wavefront formingwith space-variant polarizers: applicationto phase singularities and light focusing"Phys. Rev. A 76 (2007) 053815/1-6.

[287] Gupta, D. N., N. Kant, D. E. Kim and H.Suk, "Electron accerleration to GeV energyby a radially polarized laser" Phys. Lett. A368 (2007) 402-407.

Rakesh Kumar Singh et al

224

[288] Salamin, Y. I., "Mono-energetic GeVelectrons from ionization in a radiallypolarized laser beam" Opt. Lett. 32(2007a) 90-92.

[289] Salamin, Y. I, "Acceleration in vaccum of barenuclei by tightly focused radially polarizedlaser light" Opt. Lett. 32 (2007b) 3462-3464

[290] Hall, D. G.,"Vector-beam solutions ofMaxwell's wave equation," Opt. Lett. 21,(1996) 9-12.

[291] Sheppard, C. J. R., and K. G. Larkin,"Wigner function for highly vonvergentthree-dimensional wave" Opt. Lett. 26(2001a) 968-970.

[292] Sheppard, C. J. R., and K. G. Larkin,"Wigner function for non-paraxial wavefields"J. Opt. Soc. Am. A 18 (2001b)1486-1490.

[293] Day, D., and M. Gu, "Effect of refractiveindex mismatch on three-dimensionaloptical data storage density in a two-photonbleaching polymer" Appl. Opt. 37 (1998)6299-6304.

[294] Guo, H-m., S. Guo, J. Chen and S. Zhuang,"Full and rigorous vector diffraction modelfor a multilayered optical disc" Opt. Express16 (2008) 2797-2803.

[295] Yuan, H.-b, D. Xu, Q. Zhang and J. Song,"Dynamic model of mastering for multilevelrun-length limited read-only disc" Opt.Express 15 (2007) 4176-4181.

[296] Kawata, S., Y. Inouye and T. Sugiura, "Near-field scanning optical microscope with alaser trapped probe" Jpn. J. Appl. Phys. 33(1994) L 1725-L1727.

[297] Torok, P., and F-J. Kao, "Optical imaging andmicroscopy: Techniques and AdvancedSystems" (Springer-Verlag 2003).

[298] Boruah, B. R., and M. A. A. Neil,"Programmable diffractive optics for laserscanning confocal microscopy" Proc. SPIE6443 (2007) 644310 - 1/10.

[299] Tang, W. T., E. Chung, Y-H Kim, P. T. C. So

and C. J. R. Sheppard, "Investigation of thepoint spread function of surface plasmon-coupled emission microscopy"Opt.Express 15 (2007) 4634-4646.

[300] Yew, E. Y. S., and C. J. R. Sheppard, "Tightfocusing of radially polarized Gaussian andBessel-Gauss beams"Opt. Lett. 32 (2007b)3417-3419.

[301] Mondal, P. P., and A. Diaspro, "Lateralresolution improvement in two-photonexcitation microscopy by apertureengineering" Opt. Commun. 281 (2008)1855-1859.

[302] Ganic, D., X. Gan and M. Gu, "Exactradiation trapping force calculation basedon vectorial diffraction theory" Opt.Express 12 (2004a) 2670-2675.

[303] Ganic, D., X. Gan and M. Gu, "Trappingforce and optical lifting under evanescentwave illumination" Opt. Express 12 (2004b)5533-5538.

[304] Zhan, Q.-w, "Trapping metallic Rayleighparticles with radial polarization" Opt.Express 12 (2004a) 3377-3382.

[305] Marenda, F., J. Rohner, J-M. Fournier andR.-P. Salathe, "Miniaturized high-NA focusingmirror multiple optical tweezers" Opt.Express 15 (2007) 6075-6086.

[306] Padgett, M. "Optical tweezers: All-fiber-design" Nature Photonics 1(2007) 688-689.

[307] Gahagan, K. T., and G. A. Swartzlander,Jr., "Optical vortex trapping of particles"Opt. Lett. 21 (1996) 827-829.

[308] Gahagan, K. T., and G. A. Swartzlander Jr.,"Simultaneous trapping of low-index andhigh-index microparticles observed withan optical-vortex trap" J. Opt. Soc. Am.. B16 (1999) 533-537.

[309] Jeffries, G. D. M., J. S. Edgar, Y. Zhao, J. P.Shelby, C. Fong and D. T. Chiu " Usingpolarization-shaped optical vortex traps forsingle-cell nanosurgery," Nano Lett. 7(2007) 415-420.

Tight Focusing of Optical Beams; A Review - Part I

225

[310] Nieminen, T. A., A. B. Stilgoe, N. R.Heckenberg and H. Rubinsztein-Dunlop,"Angular momentum of a strongly focusedGaussian beam" J. Opt. A: Pure Appl. Opt.10 (2008) 115005- 1/6.

[311] Willig, K. I., J. Keller, M. Bossi, and S. W.Hell, "STED microscopy resolvesnanoparticle assemblies," New J. Phys. 8(2006a) 106-1/8.

[312] Willig K. I., S. O. Rizzoli, V. Westphal, R.Jahn, and S.W. Hell," STED microscopyreveals that synaptotagimin remainsclustered after synaptic vesicle exocytosis"Nature 440 (2006b) 935-339.

[313] Iketaki, Y., T. Watanabe, N. Bokor, and M.Fujii, "Construction of super-resolutionmicroscope based on cw laser lightsource"Rev. Scint. Instr. 77 (2006) 063112-1/8.

[314] Bokor, N., Y. Iketaki, T. Watanabe and M.Fujii, "Investigation of polarization effectsfor high - numerical-aperture first - orderLaguerre-Gaussian beams by 2D scanningwith a single fluorescent microbead," Opt.Express 13 (2005) 10440-10447.

[315] Bokor, N., Y. Iketaki, T. Watanabe, K.Daigoku, N. Davidson and M. Fujii, "Onpolarization effects in fluorescencedepletion microscopy" Opt. Commun. 272(2007) 263-268.

[316] Bokor, N., Y. Iketaki, T. Watanabe and M.Fujii, "Compact fluorescence depletionmicroscope system using an integratedoptical element" Opt. Commun. 281(2008) 1850-1854.

[317] Kapany, N.S., and J.J. Burke, Various imageassessment parameters, J Opt Soc Am 52(1962) 1351-1361.

[318] Barakat, R., and A. Houston, "Theaberrations of non-rotationally symmetricsystems and their diffraction effects" Opt.Acta 13 (1966) 1-30.

[319] Hunt, J.T., P. A. Renard and R. G. Nelson,"Focusing properties of an aberrated laser

beam" Appl. Opt. 15 (1976) 1458-1464.

[320] Gupta A. K., R. N. Singh and K. Singh,"Diffraction images of extended circulartargets in presence of coma" Can. J. Phys.55 (1977) 1025-1032..

[321] Gupta, A. K., R. N. Singh, and K. Singh,"Influence of optimum balanced linear comaon disk spread functions" Can. J. Phys. 56(1978) 12-16.

[322] Gupta, A.K., and K. Singh, Partially coherentfar-field diffraction in the presence ofprimary astigmatism, Can. J. Phys. 56(1978a) 1539-1544.

[323] Gupta, A. K., and K. Singh, "Diffractionimages of an annular object in the presenceof primary astigmatism" Microscop. Acta80 (1978b) 359.

[324] Yoshida, A., "Spherical aberration in beamoptical systems," Appl. Opt. 21 (1982)1812.

[325] Biswas, S. C., and J.-E. Villeneuve,"Diffraction by an aberrated optical systemwith nonuniform amplitude transmission:results for primary coma" Appl. Opt. 24(1985) 4473-4482.

[326] Biswas, S. C., and J.-E. Villeneuve,"Diffraction of a laser beam by a circularaperture under the combined effect ofthree primary aberrations," Appl. Opt. 25(1986) 2221-2232.

[327] Williams, C.S., and O.A. Becklund,"Introduction to the optical transferfunction" (Wiley, 1989).

[328] Cojocaru, E, V. Draganescu and N.Herisanu, "Astigmatism together withlongitudinal focal shift in off-axis opticalsystems" Appl. Opt. 29 (1990) 4208.

[329] Sanyal, S., and A. Ghosh, The factor ofencircled energy from the optical transferfunction, J Opt A Pure Appl Opt 4 (2002)208-212.

[330] Wiersma, S. H., P. Torok, T. D. Visser, andP. Varga, "Comparison of different theories

Rakesh Kumar Singh et al

226

for focusing through a plane interface" J.Opt. Soc. Am. A 14 (1997) 1482-1490.

[331] Sheppard, C. J. R., M. Gu, K. Brain and H.Zhou, "Influence of spherical aberration onaxial imaging of confocal reflectionmicroscopy" Appl. Opt. 33 (1994) 616.

[332] Booth, M. J, and T. Wilson, "Strategies forthe compensation of specimen-inducedspherical aberration in confocal microscopyof skin" J. Microsc. Oxford 200 (2000)68-74.

[333] Ganic, D., X. Gan and M. Gu, "Reducedeffects of spherical aberration onpenetration depth under two-photonexcitation" Appl. Opt. 22 (2000) 3945-3947.

[334] Fwo, P. T, P- H. Wang, C.- K. Tung, and C.-Y. Dung, "Effect of index-mismatch- inducedspherical aberration in pump-probemicroscopic image formation" Appl. Opt.44 (2005) 4220-4227.

[335] Escobar, I., G. Saavedra, A. Pons and M.Martinez-Corral, "Simple demonstration ofthe impact of spherical aberration on opticalimaging" Eur. J. Phys. 29 (2008) 619-627.

[336] Wang, H.-f, G. Yuan, W. Tan, L. Shi and T.Chong, "Spot size and depth of focus inoptical data storage system" Opt. Eng. 46(2007) 065201-1/3.

[337] Ke, P. C., and M. Gu, "Characterization oftrapping force in the presence of sphericalberration" J. Mod. Opt. 45 (1998)2159-2168.

[338] Rohrbach, A., and E. H. K. Stelzer, "Trappingforces, force constant, and potential depthsfor dielectric spheres in the presence ofspherical aberrations" Appl. Opt. 41 (2002)2494-2507.

[339] Theofanidou, E., L. Wilson, W. J. Hossackand J. Arlt, "Spherical aberration correctionfor optical tweezers" Opt. Commun. 236(2004) 145-150.

[340] Reihani, S. N. S., M. A. Charsooghi, H. R.Khalesifard, R. Golestanian, "Efficient in-

depth trapping with an oil-immersionobjective lens" Opt. Lett. 31 (2006) 766-768.

[341] Escobar, I., G. Saavedra, M. Martinez-Corral and J. Lancis, "Reduction of thespherical aberration effect in high-numerical -aperture optical scanninginstruments" J. Opt. Soc. Am. A 23 (2006)3150-3155.

[342] Gregor, I., and J. Enderlein, "Focusingastigmatic Gaussian beams through opticalsystems with a high numerical aperture"Opt. Lett. 30 (2005) 2527-2529.

[343] Allen L., M. W. Beijersbergen, R. J. C.Spreeuw, J. P.Woerdman, "Orbital angularmomentum of light and the transformationof Laguerre-Gaussian laser modes" Phys.Rev. A 45 (1992) 8185-8189.

[344] Seshadri, S. R. "Virtual source for aLaguerre-Gauss beam" Opt. Lett. 27(2002) 1872-1874.

[345] Duan, K., B. Wang and B. Lu, "Propagationof Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxialapproximation"J. Opt. Soc. Am. A 22(2005) 1976-1980.

[346] Zhangrong, M., and Z. Daomu,"Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams" Opt. Express 19(2007) 11942-11951.

[347] Kang, X.-p, Z.He, and B. Lu, "Far fieldproperties and beam quality of vectorialHermite-Laguerre-Gaussian beams beyondthe paraxial approximation" Opt. LaserTechnol. 39 (2007) 1046-1053.

[348] Mei, Z.-r. and D. Zhao, "Nanparaxial analysisof vectorial Laguerre-Bessel-Gaussian beams"Opt. Express 15 (2007) 11942-11951.

[349] Yan, S.-h., and B. Yao, "Exact descriptionof a cylindrically symmetrical complex-argument Laguerre-Gaussian beam" Opt.Lett. 33 (2008) 1074-1076.

[350] Zhou, G.-q., "Analytical vectorial structureof Laguerre-Gaussian beam in the far field"

Tight Focusing of Optical Beams; A Review - Part I

227

Opt. Lett. 31 (2006b) 2616-2618.

[351] Zhou, G.-q, "Propagation of a vectorialLaguerre-Gaussian beam beyond theparaxial approximation" Opt. Laser Tech.40 (2008b) 930-935.

[352] Swartzlander Jr. G. A., "Peering intodarkness with a vortex spatial filter" Opt.Lett. 26 (2001 ) 497.

[353] Levenson M. D., T. Ebihara, G. Dai, Y.Morikawa, N. Hayashi, S. M. Tan, "Opticalvortex masks for via levels" J. Mircorlith.Microfab. Microsyst. 3 (2004) 293-304.

[354] Iketaki, Y., T. Watanabe, M. Sakai, Sh.Ishiuchi, M. Fujii and T.Wananabe,"Theoretical investigation of thepoint-spread function given by super-resolving fluorescence microscopy usingtwo color fluorescence dip spectroscopy"Opt. Eng. 44 (2005) 033602-1/9.

[355] Andrews, D. L. (Ed.), "Structured light andits applications" (Elsevier Amsterdam2008).

[356] Davila Romero, L. C., and D. L. Andrews,"Nanoscale optics: interparticle forces" in'Structured light and its applications' Ed. D.L. Andrews (Elsevier Amsterdam 2008)Chap. 4, pp. 79-105.

[357] Juzeliunas, G., and P. Ohberg, "Opticalmanipulation of ultracold atoms" in'Structured light and its applications', Ed.D. L. Andrews (Elsevier Amsterdam 2008)Chapt. 12, pp 295-333.

[358] Padgett, M. and J. Leach, "Rotation ofparticles in optical tweezers" in 'Structuredlight and its applications', Ed. D. L. Andrews(Elsevier Amsterdam 2008) Chap. 9, pp237-248.

[359] Spalding, G. C., J. Courtial and R. D.Leonardo, "Holographic optical tweezers"in 'Structured light and its applications', Ed.D. L. Andrews (Elsevier Amsterdam 2008)Chap. 6, pp.139-168

[360] Swartzlander, G. A., Jr., E. L. Ford, R. S.Abdul Malik, L M. Close, M. A. Peters, D.

M. Palacios and D. W. Wilson, "Astronomicaldemonstration of an optical vortexcoronagraph" Opt. Express 16 (2008)10200

[361] Courtial, J., and M. J. Padgett, "Limit to theorbital angular momentum per unit energyin a light beam that can be focused onto asmall particle" Opt. Commun. 173 (2000)269-274

[362] Boruah, B. R. and M. A. A. Neil,"Susceptibility to and correction ofazimuthal aberrations in singular lightbeams" Opt. Express 14 (2006) 10377-10385

[363] Roichman, Y., A. Waldron, E. Gardel andD. G. Grier, "Optical traps with geometricaberrations" Appl. Opt. 45 (2006) 3425-3429

[364] Fatemi, F. K., and M. Bashkansky, "Focusingproperties of high charged number vortexlaser beams" Appl. Opt. 46 (2007) 7573-7578

[365] Singh, R. K., P. Senthilkumaran and K. Singh,"Influence of astigmatism and defocusing onthe focusing of a singular beam" Opt.Commun. 270 (2007a) 128-138

[366] Singh, R. K., P. Senthilkumaran and K. Singh,"Effect of coma on the focusing of anapertured singular beam" Opt. Laser Eng.45 (2007b) 488-494

[367] Singh, R. K., P. Senthilkumaran and K. Singh,"Focusing of a vortex carrying beam withGaussian background by a lens in thepresence of spherical aberration anddefocusing" Opt. Laser Eng. 45 (2007c)773-782

[368] Singh, R. K., P. Senthilkumaran and K. Singh,"Effect of astigmatism on the diffraction ofa vortex carrying beam with Gaussianbackground " J. Opt. A: Pure Appl. Opt. 9(2007d) 543-554

[369] Singh, R. K., P. Senthilkumaran and K. Singh,"Focusing of a singular beam in the presenceof spherical aberration" Optik 119 (2008a)

Rakesh Kumar Singh et al

228

459-464

[370] Singh, R. K., P. Senthilkumaran and K. Singh,"Focusing of a vortex carrying beam withGaussian background by an aperturedsystem in presence of coma" Opt.Commun. 281 (2008b) 923-934

[371] Tanaka, Y., and M. Yoshikawa, "Novelmeasuring technique of the opticalperformance of objective lenses for opticaldisk systems" Appl. Opt. 31 (1992) 5305

[372] Strand, T. C., and H. Werlich, "Aberrationlimit for annular Gaussian beams for opticalstorage" App. Opt. 33 (1994) 3533

[373] vander Avoort, C., J. J. M. Braat, P. Dirksenand A. J. E. M. Janssen, "Aberration retrievalfrom the intensity point spread function inthe focal region using the extended Nijboer-Zernike approach" J. Mod. Opt. 52 (2005)1695-1728

[374] Wang, F., Y. Wang and M Ma, "Measurementtechnique for in situ characterizingaberrations of projection optics inlithographic tools" Appl. Opt. 45 (2006a)6086-6093

[375] Wang, F, X. Wang, M. Ma, D. Zhang, W.Shi and J. Hu, "Coma measurement using aPSM and transmission image sensor," Optik117 (2006b) 21-25

[376] Wang, F, X. Wang, M. Ma, D. Zhang, W.Shi and J. Hu, "Aberration measurement ofprojection optics in lithographic tools byuse of an alternating phase-shifting mask,"Appl. Opt. 45 (2006c) 281-287

[377] Braat, J. J. M. , P Dirksen, A. J. E. M. Janssenand A. S. van de Nes, "Extended Nijboer-Zernike representation of the vector fieldin the focal region of an aberrated high-aperture optical system"J. Opt. Soc. Am A20 (2003) 2281-2292.

[378] Braat, J. J. M., P. Dirksen, A. J. E. M. Janssen,S. van Haver, and A. S. van de Nes,"Extended Nijboer-Zernike approach toaberration and birefringence retrieval in ahigh-numerical-aperture optical system"J.

Opt. Soc. Am. A 22 (2005) 2635-2650.

[379] Janssen, A. J. E. M., S. van Haver, P. Dirksenand J. J. Braat, "Zernike representation andStrehl ratio of optical systems with variablenumerical aperture" J. Mod. Opt. 55(2008) 127-1157.

[380] Biss, D.P., and T.G. Brown, "Primaryaberrations in focused radially polarizedvortex beams," Opt. Express 12 (2004)384-393.

[381] Lan, T-H.,and C-H Tien, "Servo study ofradially polarized beam in high numericalaperture optical data storage system" J.App. Phys. 46 (2007) 3758-3760.

[382] Li, Y.- J., "Focal shifts in diffractedconverging electromagnetic waves I.Kirchhoff theory" J. Opt. Soc. Am. A 22(2005a) 68-76.

[383] Li, Y.- J., "Focal shifts in diffractedconverging electromagnetic waves II.Rayleigh theory" J. Opt. Soc. Am. A 22(2005b) 77-83.

[384] Li, Y.-J., "Prediction of Rayleigh's diffractiontheory for the effect of focal shift in high-aperture systems" J. Opt. Soc. Am. A 25(2008) 1835-1842.

[385] Wang, X-e., Z. Fan and T. Tang, "Numericalcalculation of a converging vectorelectromagnetic wave diffracted by anaperture using Borgnis potentials. II.Application to the study of focal shift" J.Opt. Soc. Am. A 23 (2006) 1326-1332.

[386] Singh, R. K., P. Senthilkumaran and K. Singh,"Effect of primary spherical aberration onhigh numerical aperture focusing of aLaguerre Gaussian beam" J. Opt. Soc. Am.A 25 (2008c) 1307-1318.

[387] Singh, R. K., P. Senthilkumaran and K. Singh,"Effect of primary coma on the focusing ofa Laguerre-Gaussian beam by a highnumerical aperture; vectorial diffractiontheory" J. Opt. A: Pure Appl. Opt. 10(2008d) 075008-1/10.

[388] Singh, R. K., P. Senthilkumaran and K. Singh,

Tight Focusing of Optical Beams; A Review - Part I

229

"Focusing of linearly and circularly polarizedGaussian background vortex beam by a highnumerical aperture system afflicted withthird-order astigmatism" Opt. Commun.281 (2008e) 5939-5948.

[389] Trappe, N., J. A Murphy and S. Withington,"The Gaussian beam mode analysis ofclassical phase aberrations in diffraction-limited optical systems" Eur. J. Phys. 24(2003) 403-412.

[390] Pedrotti, F and L Pedrotti, "Introductionto optics" (2nd edn, Englewood Cliffs, NJ,Prentice- Hall 1993)

[391] McCutchen, C. W., "Generalized apertureand the three-dimensional diffractionimage"J. Opt. Soc. Am 54 (1965) 240-244.

[392] Miks, A., J. Novak and P. Novak,"Calculation of point-spread function foroptical systems with finite value ofnumerical aperture" Optik 118 (2007)537-543.

[393] Wolf, E., and Y-j Li, "Conditions for thevalidity of the Debye integral representationof focused fields" Opt. Commun. 39 (1981)205-210.

[394] Pedersen, H. M. and J. J. Stamnes,"Reciprocity principles for focusedwavefield and the modified Debye integral"Opt. Acta 30 (1983) 1437-1454.

[395] Pedersen, H. M., and J. J. Stamnes, "Van-Cittert-Zernike theorem forquasihomogeneous wave fields and themodified Debye integrals" Pure Appl. Opt.1 (1992) 13-28.

[396] Sheppard, C.J.R., "Validity of the Debyeapproximation" Opt. Lett. 25 (2000)1660-1662.

[397] Zapata-Rodriguez, C. J., "Debyerepresentation of dispersive focused waves"J. Opt. Soc. Am. A 24 (2007) 675-686.

[398] Hopkins, H. H., "The numerical evaluationof the frequency response of opticalsystems" Proc. Phys. Soc. B 70 (1957)

1002-1005.

[399] Barakat, R., "Application of the samplingtheorem to optical diffraction theory" J.Opt. Soc. Am. 54 (1964) 920-930.

[400] Barakat, R., "The calculation of integralsencountered in optical diffraction theory"in 'The Computer in Optical Research' Ed.B. R. Frieden (Springer-Verlag, 1980) pp.35-80.

[401] Hopkins, H. H., and M. J. Yzuel, "Thecomputation of diffraction patterns in thepresence of aberrations" Opt. Acta 17(1970) 157-182.

[402] Matsui, Y., S. Minami, S. Yamaguchi, R.Ogawa and T. Nakamura, "On theimprovement of accuracy in wave-opticalMTF calculation" Opt. Acta 23 (1976)389-411.

[403] Yzuel, M. J., and F. J. Arlegui, "A study onthe computation accuracy of theaberrational diffraction images" Opt. Acta27 (1980) 549-562.

[404] Gravelsaeter, T, and J. J. Stamnes,"Diffraction by a circular aperture 1:Method of linear phase and amplitudeapproximation" Appl. Opt. 21 (1982)3644-3651.

[405] Stamnes J. J, B. Spjelkavik and H. M.Pedersen, "Evaluation of diffraction integralsusing local phase and amplitudeapproximations" Opt. Acta 30 (1983)207-222.

[406] Hazra, L. N., "Numerical evaluation of aclass of integrals for image assessment"Appl. Opt. 27 (1988) 3464-3467.

[407] Mendlovic, D. Z. Zalevsky and N. Konforti,"Computation considerations and fastalgorithms for calculating the diffractionintegral" J. Mod. Opt. 44 (1997) 407-414.

[408] Stamnes, J. J., and H. Heier, "Scalar andelectromagnetic diffraction point spreadfunctions" Appl. Opt. 37 (1998)3612-3622.

Rakesh Kumar Singh et al

230

[409] Cooper, I. J., C. J. R. Sheppard and MSharma, "Numerical integration ofdiffraction integrals for a circular aperture"Optik 113 (2002) 293-298.

[410] Cooper, I. J. and C. J. R. Sheppard, "A matrixmethod for calculating the three-dimensional irradiance distribution in thefocal region of a convergent beam" Optik114 (2003) 298-304.

[411] Engelberg, Y. M., and S. Ruschin, "Fastmethod for physical optics propagation ofhigh numerical -aperture beams" J. Opt.Soc. Am. A 21 (2004) 2135-2145.

[412] Leutenegger, M., R. Rao, R. A. Leitgeb, andT. Lasser, "Fast focus field calculations" Opt.Express 14 (2006) 11277-11291.

[413] Xin, Y., M. Pawlak and S. Liao, "Accuratecomputation of Zernike moments in polarcoordinates" IEEE Trans. Image Process. 16(2007) 581-587.

[414] Kaddour, Z. D., A. Taleb, K. A. Ameur, G.Martel and E. Cagniot, "Alternative modelfor computing intensity patterns throughapertured ABCD systems" Opt. Commun.281 (2008) 1384-1395.

[415] Shimobaba, T., T. Ito, N. Masuda, Y. Abe,Y. Ichihashi, H. Nakayama, N. Takada, A.Shiraki and T. Sugie, "Numerical calculationlibrary for diffraction integarals using thegraphic processing unit: the GPU-basedwave optics library" J. Opt. A : Pure Appl.Opt. 10 (2008) 075308-1/5.