39
Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008 New Theoretical Conversion Coefficients. Comparison with Experimental Values and Recent Additions to the Band-Raman Internal Conversion Coefficients (BrIcc) T. Kibédi Dept. of Nuclear Physics, Australian National University, Canberra, Australia T.W. Burrows National Nuclear Data Center, Brookhaven National Laboratory, Upton, U.S.A. M.B. Trzhaskovskaya Petersburg Nuclear Physics Institute, Gatchina, Russia P.M. Davidson Dept. of Nuclear Physics, Australian National University, Canberra, Australia C.W. Nestor, Jr. Oak Ridge National Laboratory, Oak Ridge , U.S.A

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008 New Theoretical Conversion Coefficients. Comparison with

Embed Size (px)

Citation preview

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

New Theoretical Conversion Coefficients. Comparison with Experimental Values

and Recent Additions to the Band-Raman Internal

Conversion Coefficients (BrIcc)

T. Kibédi Dept. of Nuclear Physics, Australian National University, Canberra, Australia

T.W. Burrows National Nuclear Data Center, Brookhaven National Laboratory, Upton, U.S.A.

M.B. Trzhaskovskaya Petersburg Nuclear Physics Institute, Gatchina, Russia

P.M. Davidson Dept. of Nuclear Physics, Australian National University, Canberra, Australia

C.W. Nestor, Jr. Oak Ridge National Laboratory, Oak Ridge , U.S.A 

Conversion Electron Process (CE)

Transition probability

T = + K + L + M…… +

Selection rules (L)

|L-ji| ≲ jf ≲ L+ji = (-1)L for EL

= (-1)L+1 for ML

Tibor Kibèdi, D`ep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Energetics of CE-decay (i=K, L, M,….)

Ei - Ef = Ece,i + EBE,i + Tr

KL

M

-ray

pairproduction

(Etr > 1022 keV)conversion

electron

K

M

Physical model Calculations up to the first nonvanishing order of the perturbation theory

One electron approximation

Atomic field model Exchange term

Relativistic Hartree-Fock-Slater (HsIcc, RpIcc): approximately

Relativistic Dirac-Fock (RAINE used for BrIcc): exactly

Free neutral atom

Screening of the nuclear field by the atomic electrons

Spherically symmetric atomic potential

Experimental electron binding energies

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

How good the theoretical ICCs are?How good the theoretical ICCs are?

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

How good the theoretical ICCs are?How good the theoretical ICCs are?

Nuclear model Spherically symmetric nucleus; most abundant isotope Finite nuclear size, penetration effects

203203Tl: ETl: E=279.1955(12) keV; M1+E2; =279.1955(12) keV; M1+E2; =+1.17(5)=+1.17(5)

KK(exp) =0.1642(11) (exp) =0.1642(11) from 7 measurementsfrom 7 measurements Non-hindered transitions, RAINE used for BrIcc: “Static effects”Non-hindered transitions, RAINE used for BrIcc: “Static effects” treated

approximately, but consistently (SC model, Sliv)approximately, but consistently (SC model, Sliv) Hindered transitions: correction for “dynamic effects” (Pauli)Hindered transitions: correction for “dynamic effects” (Pauli)

2

5432

21

21

1)()(

1)()(

iiiiiii

iiii

aaaaaELEL

bbMLML

measured

theoretical

λ, η, ξ: depend on nuclear parameters(from fit to the experimental data)

a1i, a2i, a3i, a4i, a5i, b1i, b2i: depend on electronic parameters(from theoretical calculations)

KK(HsIcc)=0.216(10)(HsIcc)=0.216(10)

KK(RpIcc)=0.218(10)(RpIcc)=0.218(10)

KK(BrIcc)=0.209(8)(BrIcc)=0.209(8)

Higher order effect – ignored in most models

Atomic many body correlations: factor ~2 for EAtomic many body correlations: factor ~2 for Ekinkin(ce) < 1 keV (ce) < 1 keV

Partially filled valence shell: non-spherical atomic field Partially filled valence shell: non-spherical atomic field

Binding energy uncertainty: <0.5% for EBinding energy uncertainty: <0.5% for Ekinkin(ce) > 10 keV (ce) > 10 keV

Chemical effects: <<1%Chemical effects: <<1%

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

How good the theoretical ICCs are?How good the theoretical ICCs are?

BrIcc: for i-th atomic shell i is given for Etr ≥ BEi + 1 keV

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

“No Hole” Approximation, BTNTRBand, Trzhaskovskaya, et. al. (2002)

-ray

KLM r

Radial distribution of EWF

bound state electron free particle electron *efe

i

Electron conversion

Vacancy disregarded

in the SCF of a neutral atom

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

-ray

KLM r

Radial distribution of EWF

bound state electron free particle electron *efe

i

Electron conversion

Vacancy included

in the SCF

of a neutral atom

in the SCF

of an ion

“Self Consistent” Approximation, RNIT(1)Band, Trzhaskovskaya, et. al. (2002)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

-ray

KLM r

Radial distribution of EWF

bound state electron free particle electron *efe

i

Electron conversion

in the SCF

of a neutral atom

Constructed from bound wave function of a neutral

atom; it is NOT SCF

Vacancy included

“Frozen Orbital” Approximation, RNIT(2) Band, Trzhaskovskaya, et. al. (2002)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

HoleHole / No Hole – how sizable is it? / No Hole – how sizable is it?

0

2

4

6

8

10

IC

C

(RN

IT(2

):B

TN

TR

) in %

T

ota

l

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Log (E /E ) 10 tr BE

0.1 1 10 100 1000

E2(Z=20)

M4(Z=20)

E2(Z=50)

M4(Z=50)

E2(Z=80)

M4(Z=80)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.1 1 10 100 1000

“Frozen Orbital” vs. “No Hole”

(Total ICC)

(K-shell)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Benchmark experimental ICC data

Benchmark data setsBenchmark data sets 100 100 KK and and TT - - S. Raman, et al., Phys. Rev. C66, 044312 (2002) 1510 ICC ratios – S. Raman, et al., Atomic Data and. Nucl. Data Tables 92,

207 (2006)New experiments – New experiments – see talk by Ninel Nicasee talk by Ninel NicaKK(80 keV (80 keV 193193Ir M4) Ir M4)

Nica, et al., Phys. Rev. C 70 (2004) 054305

TT(88 keV (88 keV 109109Ag E3) Ag E3) Kossert et al., App. Rad. and Isotopes 64 (2006) 1031

KK(128 keV (128 keV 134134Cs E3)/Cs E3)/KK(662 keV (662 keV 137137Ba M4) Ba M4) Nica et al., Phys. Rev. C 75, (2007) 024308

KK(128 keV (128 keV 134134Cs E3) and Cs E3) and KK(662 keV (662 keV 137137Ba M4) Ba M4) Nica et al., Phys. Rev. C 77, (2008) 034306

History

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

K(experimental)(31 published value)

0.070 0.080 0.090 0.100 0.110 0.1202009

1999

1989

1979

1969

1959

1949 (1949Mi01)(1949Os03) 1951Wa19(1952He18)(1953Do31) 1954Az01 1957Mc34 1958Yo01 1959Hu23 1960De17 1961Hu12 1962Da05(1963Le20) 1965Me03(1965Pa17) 1965Ra12 1966Hs02 1966Hs02 1966Hu02 1967Ba80 1967HaZX 1969Ha05 1969Ra35 1971BrXX 1973LeZJ 1973Wi10 1978Ch22 1978Gr09(1983Be18) 1987Vi08

2008NiAA

ICC K

137 Ba 661.657(3) keV M4 K-shell ICC

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

History

Calculations

0.070 0.080 0.090 0.100 0.110 0.1202009

1999

1989

1979

1969

1959

1949 (1949Mi01)(1949Os03) 1951Wa19(1952He18)(1953Do31) 1954Az01 1957Mc34 1958Yo01 1959Hu23 1960De17 1961Hu12 1962Da05(1963Le20) 1965Me03(1965Pa17) 1965Ra12 1966Hs02 1966Hs02 1966Hu02 1967Ba80 1967HaZX 1969Ha05 1969Ra35 1971BrXX 1973LeZJ 1973Wi10 1978Ch22 1978Gr09(1983Be18) 1987Vi08

2008NiAA

Rose et al. 1949Ro20Rose et al. 1951Ro34

Sliv & Band 1956Sl44Rose 1958Ro60

Sliv & Band 1966Sl05

Hager & Seltzer 1968Ha53

Rosel et al. 1978Ro22

1968Ha53 & 1990Ne01

BTNTR 2002Ba85RNIT(1)RNIT(2)

ICC K

137 Ba 661.657(3) keV M4 K-shell ICC

More than 20% of the ICC values and/or uncertainties have been changed.More than 20% of the ICC values and/or uncertainties have been changed.

ENSDF

KK ( (124124Te, 646 keV, E2(+M3)) Te, 646 keV, E2(+M3)) 0.00340(14)

KK((5858Co, 25 keV, M3) Co, 25 keV, M3) 1860(100)

1063.656(3) keV M4+E5 in 1063.656(3) keV M4+E5 in 207207Pb Pb KK 0.0972(23)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

New review of high precision ICC`sNew review of high precision ICC`s

NPG changed KK(557)

XPG changed XPG changed K

Re-evaluated; 8 measurements; 1 excludedRe-evaluated; 8 measurements; 1 excluded

Raman

2002

---

2030(90)

0.0945(22)

Present work

0.00345(14)

1860(69)

0.0946(15)

General policies to deduce adopted ICCsGeneral policies to deduce adopted ICCs

Primary data:Primary data: ≤ 15%; Adopted values ≤ 15%; Adopted values:: ≤ 5% ≤ 5%

Multipolarity: E2, M3, E3, E4, M4, E5. Excluded: E1 (hindered) and Multipolarity: E2, M3, E3, E4, M4, E5. Excluded: E1 (hindered) and

M1 M1 (mixed)(mixed), M2 , M2 (mixed)(mixed)

ICCs considered: ICCs considered: KK, , LL, , TotalTotal, , KK//LL

Energy (uncertainty), mixing ratio from adopted ENSDF data setEnergy (uncertainty), mixing ratio from adopted ENSDF data set

Multipolarity must determined from other quantities Multipolarity must determined from other quantities

When more than two measurements are known, three statistical When more than two measurements are known, three statistical methods used to methods used to identify discrepant data points and deduce weighted mean values and assign uncertainties

– Limitation of Relative Statistical Weights Method (LWM),– Normalized Residuals Method (NRM),

– Rajeval Technique (RT).

http://wwwrsphysse.anu.edu.au/~txk103/avetools/

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

New review of high precision ICC`sNew review of high precision ICC`sWith Thomas Burrows (NNDC) in 2005-2008

NN≥3 – no single value should have a weight >50% ≥3 – no single value should have a weight >50%

Discrepant data: more than 3Discrepant data: more than 3 away from the mean away from the mean

χχ22/(N-1) < /(N-1) < χχ22(critical) – weighted mean used(critical) – weighted mean used

χχ22/(N-1) /(N-1) ≥ ≥ χχ22(critical) –(critical) – weighted or unweighted average is adopted and the weighted or unweighted average is adopted and the larger value of the internal or external uncertainty is usedlarger value of the internal or external uncertainty is used

Uncertainty may be increased to include the “most precise” valueUncertainty may be increased to include the “most precise” value

In most cases LWM was adopted, however the other two methods were In most cases LWM was adopted, however the other two methods were used to identify discrepant data.used to identify discrepant data.

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Limitation of Relative Statistical Weight (LWM)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Normalized Residual Method (NRM)

Normalized Residual, RNormalized Residual, Ri i defined as:defined as:

WhereWhere

Data discrepant ifData discrepant if

and its uncertainty adjustedand its uncertainty adjusted

)( xxwW

WwR i

i

ii

ii

iii

w wWwW

wxx ;

1;

)6.2ln8.1( NRRi

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Rajeval Technique (RT)

Deviant values identified (and rejected) by comparing the absolute value of

to 1.96 where μi is the unweighted average excluding the ith value and σμi is its associated standard deviation

Uncertainties on inconsistent values are adjusted until the standardized deviate is consistent with the central deviate

22ii

iii

xy

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Calculating Experimental Averages (Adopted values)

If results from the three techniques agree, the input data can be considered consistent. Comparison of the detailed output from the three techniques may aid in an objective determination of deviant input data

Data is deviant if (Same criteria for comparing experiment to theory)

- Marked as an outlier by LWM and RT and adjusted by NRM- Marked as an outlier by LWM and significantly adjusted by

NRM and RT- Marked as an outlier by RT and significantly adjusted by NRM- Significantly adjusted by NRM and RT

Process is repeated until results from all three techniques agree or no value satisfies the above criteria

If results from the three techniques do not agree, the arithmetic mean of NRM and RT is adopted and the larger of the uncertainties from NRM and RT is used.

Summary: Adopted 213 ICC values of Total, K-, L-shells and K/L Adopted 213 ICC values of Total, K-, L-shells and K/L ratiosratios

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ENSDF (2007)

ICCK=0.0904(5)

Adopted

LWM: 0.09102(27)

Χ2/(N-1)=0.94

NRM: 0.09102(27)

RT: 0.09110(28)

DDEP (2006)

ICCK=0.0896(15)

0.070 0.080 0.090 0.100 0.110 0.1202009

1999

1989

1979

1969

1959

1949 (1949Mi01)(1949Os03)1951Wa19(1952He18)(1953Do31)1954Az011957Mc341958Yo011959Hu231960De171961Hu121962Da05(1963Le20)1965Me03(1965Pa17)1965Ra121966Hs021966Hs021966Hu021967Ba801967HaZX1969Ha051969Ra351971BrXX1973LeZJ1973Wi101978Ch221978Gr09(1983Be18)1987Vi08

2008NiAA

Rose et al. 1949Ro20Rose et al. 1951Ro34

Sliv & Band 1956Sl44Rose 1958Ro60

Sliv & Band 1966Sl05

Hager & Seltzer 1968Ha53

Rosel et al. 1978Ro22

1968Ha53 & 1990Ne01

BTNTR 2002Ba85RNIT(1)RNIT(2)

ICCK

137Ba 661.657(3) keV M4 K-shell ICC

AdoptedI CC =0. 09102(27)K

HSICC: 0.09261

RPICC: 0.09285

BTNTR: 0.09068

RNIT(1): 0.09139

RNIT(2): 0.09148

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Comparing Experiment with Theory

Difference measured as:

Compared with the three Dirac-Fock calculations ofBTNTR: “No hole”RNIT(1): “Self consistent”RNIT(2): “Frozen Orbital”

Data divided into subgroups based on multipolarity, shell (or ratio)

Looked for deviant data; same criteria as for calculating average experimental ICC

Adopted average differences from LWM; NRM and RT used onlyto identify discrepant data

Adopted average differences based on 186 ICCs

[%]100)(

)]()([):(

TheorIcc

TheorIccExpIccTheorExpICC

-20

-15

-10

-5

0

5

10

15

20

ICC(Exp:BTNTR)

in%

All shells

ICC(Exp:BTNTR)=+0.70(40) %; N=186; /(N-1)=1.82 2

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 10 100

Log (E /E )10 tr BE

T K L K/L Mult.E2M3E3M4E4E5

80.2 K (M4)193Ir

How good are the internal conversion coefficients now?

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Exp. vs. “No Hole”, BTNTR

+0.70 (40) %

ALL

+0.19(26) %Raman et al. (2002)

(K-shell)

-20

-15

-10

-5

0

5

10

15

20

ICC(Exp:RNIT(2))

in%

All shells

ICC(Exp:RNIT(2))=-0.93(14) %; N=186; /(N-1)=0.87 2

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 10 100

Log (E /E )10 tr BE

T K L K/L Mult.E2M3E3M4E4E5

80.2 K (M4)193Ir

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

-1.18(24) %Raman et al. (2002)

ALL

-0.93 (14) %

Exp. vs. “Frozen Orbital”, RNIT(2)

How good are the internal conversion coefficients now?

(K-shell)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ML Shell N “No Hole”BTNTR

”Self Consistent”RNIT(1)

“Frozen Orbital”RNIT(2)

2/(N-1) 2/(N-1) 2/(N-1)

All All 186 +0.70(40) 1.82 -0.61(14) 1.01 -0.93(14) 0.87

ICC ICC ICC

How good are the internal conversion coefficients now?

(Aug 2007)

χ2(critical)=1.25Both negative;

RNIT(1) out by 4.5RNIT(2) out by 6.9

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ML Shell N “No Hole”BTNTR

”Self Consistent”RNIT(1)

“Frozen Orbital”RNIT(2)

2/(N-1) 2/(N-1) 2/(N-1)

All All 186 +0.70(40) 1.82 -0.61(14) 1.01 -0.93(14) 0.87

Tot All 54 +0.32(25) 0.79 -0.55(24) 0.76 -0.71(24) 0.73

ICC ICC ICC

How good are the internal conversion coefficients now?

(Aug 2007)

χ2(critical)=1.51 1.3 2.3 3.0Marginal differences

-20

-15

-10

-5

0

5

10

15

20

ICC(Exp:BTNTR)

in%

K-shell

ICC(Exp:BTNTR)=+1.50(120) %; N=72; /(N-1)=3.14 2

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 10 100

Log (E /E )10 tr BE

Mult.E2M3E3M4E4E5

+1.50 (120) %

K

+0.5(5) %Raman et al. (2002)

80.2 K (M4)193Ir

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Exp. vs. “No Hole”, BTNTR

How good are the internal conversion coefficients now?

(K-shell)

-20

-15

-10

-5

0

5

10

15

20

ICC(Exp:RNIT(2))

in%

K-shell

ICC(Exp:RNIT(2))=-0.72(21) %; N=72; /(N-1)=0.80 2

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 10 100

Log (E /E )10 tr BE

Mult.E2M3E3M4E4E5

-0.72 (21) %

K

-1.4(4) %Raman et al. (2002)

80.2 K (M4)193Ir

How good are the internal conversion coefficients now?

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Exp. vs. “Frozen Orbital”, RNIT(2)

(K-shell)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ML Shell N “No Hole”BTNTR

”Self Consistent”RNIT(1)

“Frozen Orbital”RNIT(2)

2/(N-1) 2/(N-1) 2/(N-1)

All All 186 +0.70(40) 1.82 -0.61(14) 1.01 -0.93(14) 0.87

Tot All 54 +0.32(25) 0.79 -0.55(24) 0.76 -0.71(24) 0.73

K All 72 +1.5(12) 3.14 -0.18(21) 1.09 -0.72(21) 0.80

ICC ICC ICC

How good are the internal conversion coefficients now?

(Aug 2007)

χ2(critical)=1.43Not favored

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ML Shell N “No Hole”BTNTR

”Self Consistent”RNIT(1)

“Frozen Orbital”RNIT(2)

2/(N-1) 2/(N-1) 2/(N-1)

All All 186 +0.70(40) 1.82 -0.61(14) 1.01 -0.93(14) 0.87

Tot All 54 +0.32(25) 0.79 -0.55(24) 0.76 -0.71(24) 0.73

K All 72 +1.50(120) 3.14 -0.18(21) 1.09 -0.72(21) 0.80

K/L All 46 +0.00(31) 0.83 -1.64(31) 0.96 -1.94(30) 1.02

ICC ICC ICC

How good are the internal conversion coefficients now?

(Aug 2007)

RNIT(1) and RNIT(2) out by >5Unexpected

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ML Shell N “No Hole”BTNTR

”Self Consistent”RNIT(1)

“Frozen Orbital”RNIT(2)

2/(N-1) 2/(N-1) 2/(N-1)

All All 186 +0.70(40) 1.82 -0.61(14) 1.01 -0.93(14) 0.87

Tot All 54 +0.32(25) 0.79 -0.55(24) 0.76 -0.71(24) 0.73

K All 72 +1.50(120) 3.14 -0.18(21) 1.09 -0.72(21) 0.80

K/L All 46 +0.00(31) 0.83 -1.64(31) 0.96 -1.94(30) 1.02

E2 All 103 +0.21(23) 1.01 -0.77(23) 0.89 -0.93(23) 0.90

ICC ICC ICC

How good are the internal conversion coefficients now?

(Aug 2007)

RNIT(1) and RNIT(2) out by >3RNIT(2) “follows the trend” being

around -0.9

BTNTR consistent

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ML Shell N “No Hole”BTNTR

”Self Consistent”RNIT(1)

“Frozen Orbital”RNIT(2)

2/(N-1) 2/(N-1) 2/(N-1)

All All 186 +0.70(40) 1.82 -0.61(14) 1.01 -0.93(14) 0.87

Tot All 54 +0.32(25) 0.79 -0.55(24) 0.76 -0.71(24) 0.73

K All 72 +1.50(120) 3.14 -0.18(21) 1.09 -0.72(21) 0.80

K/L All 46 +0.00(31) 0.83 -1.64(31) 0.96 -1.94(30) 1.02

E2 All 103 +0.21(23) 1.01 -0.77(23) 0.89 -0.93(23) 0.90

M4 All 50 +0.98(68) 3.87 -0.51(20) 1.29 -0.93(20) 0.72

ICC ICC ICC

How good are the internal conversion coefficients now?

(Aug 2007)

χ2(critical)=1.53Not favored

RT adjusted 193Ir K from 3.4(8)% to

3.4(17)%Problems with 207Pb K/L

Problems with 207Pb K/L

New data from TAMU on 193Ir

and 137Ba!

-20

-15

-10

-5

0

5

10

15

20

ICC(Exp:BTNTR)

in%

ICC(Exp:BTNTR)= +0.77(51) %; N=25; /(N-1)=8.21 2

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 10 100

Log (E /E )10 tr BE

T K L K/L Mult.E2M3E3M4

+0.77 (51) %

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Exp. vs. “No Hole”, BTNTR

How good are the internal conversion coefficients now?

%5.1ICC

ICC

(K-shell)

-20

-15

-10

-5

0

5

10

15

20

ICC(Exp:RNIT(2))

in%

ICC(Exp:RNIT(2))=-0.95(17) %; N=25; /(N-1)=1.06 2

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 10 100

Log (E /E )10 tr BE

T K L K/L Mult.E2M3E3M4

-0.95 (17) %

How good are the internal conversion coefficients now?

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Exp. vs. “Frozen Orbital”, RNIT(2)

%5.1ICC

ICC

193Ir 80.2K M4

193Pt 135.5K M4

197Hg 165.0K M4

(K-shell)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

ML Shell N “No Hole”BTNTR

”Self Consistent”RNIT(1)

“Frozen Orbital”RNIT(2)

2/(N-1) 2/(N-1) 2/(N-1)

All All 186 +0.70(40) 1.82 -0.61(14) 1.01 -0.93(14) 0.87

Tot All 54 +0.32(25) 0.79 -0.55(24) 0.76 -0.71(24) 0.73

K All 72 +1.50(120) 3.14 -0.18(21) 1.09 -0.72(21) 0.80

K/L All 46 +0.00(31) 0.83 -1.64(31) 0.96 -1.94(30) 1.02

E2 All 103 +0.21(23) 1.01 -0.77(23) 0.89 -0.93(23) 0.90

M4 All 50 +0.98(68) 3.87 -0.51(20) 1.29 -0.93(20) 0.72

ICCs known better than 1.5% rel. unc.

All All 25 +0.77(51) 8.21 -0.56(26) 2.12 -0.95(17) 1.06

ICC ICC ICC

How good are the internal conversion coefficients now?

(Mar 2008)

χ2(critical)=1.79Not favored

Marginally larger than χ2(critical)

Favored

BrIcc – Status and plans

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Version History

• Nov-2003, NSDD, Vienna: program development initiated

• May-2004, ICC tables, based on the “No Hole” approximation developed

• Oct-2004, Version 1.3 (“No Hole” ) distributed for ENSDF evaluators

• Nov-2004, BrIcc (“No Hole”) web interface (ANU)

• Feb-2005, Review of experimental ICC`s started

• Jun-2005, NSDD, McMaster: “Frozen orbital” approximation has been adopted

• Oct-2005, BrIcc v2.0 (“Frozen orbital”, Z=10-95) released

• Apr-2007, BrIcc adopted for the DDEP network

• Mar-2008, BrIcc v2.0 (“Frozen orbital” “No Hole” and , Z=5-110, updated mass

and binding energy data)

Future: E0 and E0+M1+E2 transitions, Atomic radiations following electron conversion,

improved treatment of uncertainties

Evaluation of theoretical conversion coefficients using BrIcc

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

A general tool to obtain

• electron conversion coefficients: i; i=K, L1, L2, …R2 shells; L=1-5Based on Band et. al.,, ADNDT 81, 1 (2002) model [2002Ba85]

“Frozen Orbitals” Approximation DEFAULT & RECOMMENDED

“No Hole” Approximation

• electron-positron pair conversion coefficients: L=1-3P. Schluter and G. Soff, At. Data Nucl. Data Tables 24, 509 (1979) [1979Sc31]

C.R. Hofmann and G. Soff, At. Data Nucl. Data Tables 63, 189 (1996)[1996Ho21]

• E0 electronic factors: Ωi (K,L1,L2) and Ω

R.S. Hager and E.C. Seltzer, Nucl. Data Tables, 6, 1 (1969)[1969Ha61]

D.A. Bell, et. al., Can. J. of Phys., v48, 2542 (1970) [1970Be87]

A. Passoja and T. Salonen, JYFL Preprint 2/86 (1986) [1986PaZM]

An ENSDF evaluation tool to calculate:

i±Δαi for the GAMMA records for a given Z, E and for pure or mixed multipolarities. Uncertainties in transition energy and mixing ratio can either symmetric, asymmetric including limits.

Version 2.2• Z=5-110• ~40 atomic masses changed

Nuclear Instr. and Meth. in Phys. Res. A 589 (2008) 202

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Integration BrIcc into other programs

BrIccS “Silent” version

Called from other programs, parameters passed on the command line

ICC data returned in XML format

Simplified coding work

ICC and uncertainty evaluated according to ENSDF

Example1063.656(3) keV, M4 + E5, =0:020(10) transition in 207Pb.

Format of the command line:

briccs -Z 82 -g 1063.656 -e 3 -L M4+E5 -d 0.020 -u 10 -a -w BrIccFO

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

BrIcc on the webhttp://wwwrsphysse.anu.edu.au/nuclear/bricc/ANU - Department of Nuclear Physics - BrIcc http://wwwrsphysse.anu.edu.au/nuclear/bricc/

1 of 1 11/05/2008 6:41 AM

Skip Navigation | ANU Home | Search ANU | RSPhysSE | Nucl. Phys. Home

Department of Nuclear PhysicsResearch School of Physical Sciences and Engineering

BrIcc

BrIcc Home

Quick reference

Data tables

Program manual

Obtaining BrIcc

Version history

Authors

Nuclear Structure Links

ANU Nuclear Physics

National Nuclear Data Center

IAEA Nuclear Data Centre

NSDD network

DDEP network

BrIcc v2.2Conversion Coefficient Calculator

Z (atomic number or symbol)

-energy (in keV)

Uncertainty

Enter (optional) uncertainty in energy as x or +x-yMultipolarity

Uncertainty

Enter (optional) uncertainty in as x or +x-y

Show Subshells Data Set BrIccFOBrIccFO

Calculate Reset

Reference: T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Jr.

'Evaluation of theoretical conversion coefficients using BrIcc'Nucl. Instr. and Meth. A 589 (2008) 202-229, doi:10.1016/j.nima.2008.02.051

BrIcc was developed in an ANU - NNDC - Petersburg - ORNL collaboration for the International Network of Nuclear Structure and Decay Data (NSDD) Evaluators

Copyright | Disclaimer | Privacy | Contact ANU

Page last updated: 18 April 2008Please direct all enquiries to: [email protected]

Page authorised by: Head of departmentThe Australian National University - CRICOS Provider Number 00120C

pb

1063.656 3

M4+E5 0.020 10

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

Integration BrIcc into other programs – XML output

<BRICC version="BrIccS v2.2 (18-Apr-2008)"> <ELEM z="82" symb="Pb"> Lead </ELEM> <DATASET icc="BrIccFO"> </DATASET> <MULT mult1="M4" mult2="E5"> M4+E5 </MULT> <MR dmrh="+10" dmrl="-10"> 0.020 </MR> <E deh="+3" del="-3"> 1063.656 </E>

<MixedCC Shell="Tot" CCmult1="1.257E-01" CCmult2="5.758E-02" DCC="18"> 0.1257 </MixedCC>

<MixedCC Shell="K" Eic="975.65" CCmult1="9.427E-02" CCmult2="3.599E-02" DCC="14"> 0.0942 </MixedCC>

briccs -Z 82 -g 1063.656 -e 3 -L M4+E5 -d 0.020 -u 10 -a -w BrIccFO

XML parsers are readily available for many programming languages and operating systems

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008

BrIcc on the webhttp://wwwrsphysse.anu.edu.au/nuclear/bricc/

ANU - Department of Nuclear Physics - BrIcc http://wwwrsphysse.anu.edu.au/nuclear/bricc/

1 of 1 11/05/2008 6:46 AM

Skip Navigation | ANU Home | Search ANU | RSPhysSE | Nucl. Phys. Home

Department of Nuclear PhysicsResearch School of Physical Sciences and Engineering

BrIcc

BrIcc Home

Quick reference

Data tables

Program manual

Obtaining BrIcc

Version history

Authors

Nuclear Structure Links

ANU Nuclear Physics

National Nuclear Data Center

IAEA Nuclear Data Centre

NSDD network

DDEP network

BrIcc v2.2Conversion Coefficient Calculator

Z (atomic number or symbol)

-energy (in keV)

Uncertainty

Enter (optional) uncertainty in energy as x or +x-yMultipolarity

Uncertainty

Enter (optional) uncertainty in as x or +x-y

Show Subshells Data Set BrIccFOBrIccFO

Calculate Reset

BrIccS v2.2 (18-Apr-2008)

Z=82 (Pb, Lead)

-energy: 1063.656 (+3 -3) keV

Mixing Ratio : 0.020 (+10 -10)

Data Sets: BrIccFO

Shell E(ce) M4 E5 Mixed ICCTot 1.257E-01 5.758E-02 0.1257 (18)

K 975.65 9.427E-02 3.599E-02 0.0942 (14)

L-tot 1048.10 2.376E-02 1.614E-02 0.0238 (4)

K/L 3.968E+00 2.230E+00 3.97 (8)

M-tot 1059.92 5.887E-03 4.167E-03 0.00589 (9)

L/M 4.036E+00 3.873E+00 4.04 (8)

N-tot 1062.80 1.508E-03 1.065E-03 0.001508 (22)

L/N 1.576E+01 1.516E+01 15.8 (4)

O-tot 1063.52 2.960E-04 2.023E-04 0.000296 (5)

L/O 8.026E+01 7.978E+01 80.3 (16)

P-tot 1063.65 2.868E-05 1.688E-05 2.87E-5 (4)

L/P 8.286E+02 9.565E+02 829 (17)

Reference: T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Jr.

'Evaluation of theoretical conversion coefficients using BrIcc'Nucl. Instr. and Meth. A 589 (2008) 202-229, doi:10.1016/j.nima.2008.02.051

BrIcc was developed in an ANU - NNDC - Petersburg - ORNL collaboration for the International Network of Nuclear Structure and Decay Data (NSDD) Evaluators

Copyright | Disclaimer | Privacy | Contact ANU

Page last updated: 18 April 2008Please direct all enquiries to: [email protected]

pb

1063.656 3

M4+E5 0.020 10

Un-mixed (pure) ICC