17
1 JAJU691 – February 2019 TIDUEO9 翻訳版 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9 Copyright © 2019, Texas Instruments Incorporated 77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン 参考資料 TI Designs: TIDEP-01011 77GHz ミリ波センサを使用した自動パーキング・システムのリファ レンス・デザイン 概要 TIDEP-01011 DSPMCU、ハードウェア・アクセラレー タを内蔵した TI 77GHz シングルチップ・ミリ波レー ダー・センサ AWR1843 を使用した自動パーキング・シス テムのリファレンス・デザインです。このデザインでは、リファ レンス・データ処理チェーンを C674x DSP 上で実行し、 水平視野角 ±50 度、垂直視野角 ±15 度で、4cm40m の範囲にある物体を検出できます。本デモは、 AWR1843BOOST 評価キットで開発しました。出力を可視 化するために MATLAB ベースのリファレンスを提供してい ます。 リソース TIDEP-01011 デザイン・フォルダ AWR1843 プロダクト・フォルダ AWR1843BOOST ツール・フォルダ mmWave SDK ソフトウェア開発キット E2E™エキスパートに質問 特長 TI 77GHz シングルチップ・ミリ波センサを使用した 物体検出クラスタ化による、環境堅牢性の高い物体検 出のデモ AWR1843 – 3Tx/4Rx RF フロント・エンド、ADCDSP (C674x)MCU (Cortex-R4F)、ハードウェア・アクセラ レータを内蔵する TI FMCW ミリ波 (7681GHz) シングルチップ・レーダー 完全なレーダー・データ処理機能を搭載 UART インターフェイスによりポイント・クラウドおよび物 体クラスタ化情報を出力 データ処理アルゴリズムを C674x DSP 上で実行 アプリケーション 自動パーキング 駐車支援 クロス・トラフィック・アラート 追突警戒レーダー

TI Designs: TIDEP-01011 77GHz ミリ波センサを使用した自動 …

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

1JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

参参考考資資料料

TI Designs: TIDEP-0101177GHz ミミリリ波波セセンンササをを使使用用ししたた自自動動パパーーキキンンググ・・シシスステテムムののリリフファァレレンンスス・・デデザザイインン

概概要要

TIDEP-01011 は DSP、MCU、ハードウェア・アクセラレー

タを内蔵した TI の 77GHz シングルチップ・ミリ波レー

ダー・センサ AWR1843 を使用した自動パーキング・シス

テムのリファレンス・デザインです。このデザインでは、リファ

レンス・データ処理チェーンを C674x DSP 上で実行し、

水平視野角 ±50 度、垂直視野角 ±15 度で、4cm~40mの範囲にある物体を検出できます。本デモは、

AWR1843BOOST 評価キットで開発しました。出力を可視

化するために MATLAB ベースのリファレンスを提供してい

ます。

リリソソーースス

TIDEP-01011 デザイン・フォルダ

AWR1843 プロダクト・フォルダ

AWR1843BOOST ツール・フォルダ

mmWave SDK ソフトウェア開発キット

E2E™エキスパートに質問

特特長長

• TI の 77GHz シングルチップ・ミリ波センサを使用した

物体検出クラスタ化による、環境堅牢性の高い物体検

出のデモ

• AWR1843 – 3Tx/4Rx RF フロント・エンド、ADC、DSP(C674x)、MCU (Cortex-R4F)、ハードウェア・アクセラ

レータを内蔵する TI の FMCW ミリ波 (76~81GHz)シングルチップ・レーダー

• 完全なレーダー・データ処理機能を搭載

• UART インターフェイスによりポイント・クラウドおよび物

体クラスタ化情報を出力

• データ処理アルゴリズムを C674x DSP 上で実行

アアププリリケケーーシショョンン

• 自動パーキング

• 駐車支援

• クロス・トラフィック・アラート

• 追突警戒レーダー

System Description www.tij.co.jp

2 JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

使用許可、知的財産、その他免責事項は、最終ページにあるIMPORTANT NOTICE (重要な注意事項)をご参照くださいますようお願いいたします。

1 System Description

Level 3 and higher autonomous driving is moving away from parking assistance to automated parking ofcars, and mmWave sensors are increasingly being considered as a solution by car manufacturers andTier1’s. This is due to the advantages which the mmWave sensors provide compared to other sensingtechnologies. The mmWave sensors can be placed behind bumpers, with no need to drill holes insidebumpers, for an aesthetic solution. At a system level, the TI mmWave sensors can be re-purposedbecause of the multimodal nature. That is, when the car is in motion, the rear corner sensors can be usedas a blind spot detector, and when the car is in parking mode, it can be used for parking. The number ofsensors required for a 360-degree sensing around the car is also reduced. In addition, the mmWavesensors provide high-resolution detection in a wide field of view in azimuth, as well as the elevation planein any challenging environmental conditions.

1.1 Why Radar?

Frequency-modulated continuous-wave (FMCW) radars allow the accurate measurement of distances andrelative velocities of obstacles and other vehicles; therefore, radars are useful for autonomous vehicularapplications (such as parking assist and lane change assist) and car safety applications (such asautonomous breaking and collision avoidance). An important advantage of radars over camera and light-detection-and-ranging (LIDAR)-based systems is that radars are relatively immune to environmentalconditions (such as the effects of rain, dust, and smoke). Because FMCW radars transmit a specific signal(called a chirp) and process the reflections, they can work in either complete darkness or bright daylight(radars are not affected by glare). When compared with ultrasound, radars typically have a much longerrange and much faster time of transit for their signals.

Additionally, radar sensors are easy to install, and provide accurate detections of several kinds of objectsin any challenging environmental conditions such as rain, dust, smoke. They are multi-functional, as theycan be used as blind-spot sensors in one mode and the configuration can be changed to work as aparking sensor in another. They enable detection in 3D space in azimuth and elevation plane, with a high-range resolution of less than 4 cm.

TIDEP-01011 is an introductory application that is configured for ultra-short range applications. Thisreference design can be used as a starting point to design a standalone sensor for a variety of automotiveapplications beyond automated parking.

1.2 Key System Specifications

表表 1. Key System Specifications

PARAMETER SPECIFICATIONS DETAILS

Maximum range 40 m This represents the maximum distance that the radar can detect an object,representing an RCS of approximately 10 m2.

Range resolution 0.175 m This is the ability of a radar system to distinguish between two or more targetson the same bearing, but at different ranges.

Maximum velocity 8.33 m/s

This is the native maximum velocity obtained using a two-dimensional FFT onthe frame data. This specification will be improved over time by showing howhigher-level algorithms can extend the maximum measurable velocity beyondthis limit.

www.tij.co.jp System Description

3JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

表表 1. Key System Specifications (continued)PARAMETER SPECIFICATIONS DETAILS

Velocity resolution 0.131 m/sThis parameter represents the capability of the radar sensor to distinguishbetween two or more objects at the same range, but moving with differentvelocities.

System Overview www.tij.co.jp

4 JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

2 System Overview

2.1 Block Diagram

As described in 図 1, the implementation of the automated parking processing chain consists of thefollowing blocks, implemented as DSP code executing on the C674x core of the AWR1843.

図図 1. TIDEP-01011 Block Diagram

• Range processing

– For each antenna, 1D windowing, and 1D fast Fourier transform (FFT)

– Range processing is interleaved with the active chirp time of the frame

• Doppler processing

– For each antenna, 2D windowing, and 2D FFT

– Then non-coherent combining of received power across antennas in floating-point precision

• Range-Doppler detection algorithm

– Constant false-alarm rate, cell averaging smallest of (CASO-CFAR) detection in range domain, plusCFAR-cell averaging (CACFAR) in Doppler domain detection, run on the range-Doppler powermapping to find detection points in range and Doppler space

• Angle estimation

– For each detected point in range and Doppler space, reconstruct the 2D FFT output with Dopplercompensation, then a beamforming algorithm is applied to calculate the angle spectrum on theazimuth direction with multiple peaks detected. After that the elevation angle is estimated for eachdetected peak angle in azimuth domain.

• Clustering

– Collect all detected points and perform DBSCAN-based clustering algorithm for every fixed numberof frames. The reported output includes the number of clusters and properties for each cluster, likecenter location and size

After the DSP finishes frame processing, the results consisting of range, doppler, 3D location, andclustering are formatted and written in shared memory (L3RAM) for R4F to send all the results to the hostthrough UART for visualization.

www.tij.co.jp System Overview

5JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

2.2 Highlighted Products

2.2.1 AWR1843 Single-Chip Radar Solution

The AWR1843 device is an integrated single-chip FMCW radar sensor solution that simplifies theimplementation of automotive radar sensors in the band of 76 to 81 GHz. It is built on TI’s low-power 45-nm RFCMOS process, which enables a monolithic implementation of a 3TX, 4RX system with built-in PLLand A2D converters. It integrates the DSP subsystem, which contains TI’s high-performance C674x DSPfor the radar signal processing.

The device includes a BIST processor subsystem, which is responsible for radio configuration, control,and calibration. Additionally, the device includes a user-programmable ARM R4F based for automotiveinterfacing. The Hardware Accelerator block (HWA) can perform radar processing and help save MIPS onthe DSP for higher level algorithms.

Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid,Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally,the device is provided as a complete platform solution including reference hardware design, softwaredrivers, sample configurations, API guide, and user documentation. The AWR1843 is an ideal solution forlow-power, self-monitored, ultra-accurate radar systems in the automotive space.

2.2.2 AWR1843BOOST Features

The AWR1843BOOST has the following features:

• AWR1843 radar device

• Power management circuit to provide all the required supply rails from a single 5-V input

• Three onboard TX antennas and four RX antennas

• Onboard XDS110 that provides a JTAG interface, UART1 for loading the radar configuration on theAWR1843 device, and UART2 to send the object data back to the PC

図図 2. AWR1843 EVM Block Diagram

System Overview www.tij.co.jp

6 JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

For more details on the hardware, see the AWR1843 Evaluation Module (AWR1843BOOST) Single-ChipmmWave Sensing Solution. The schematics and design database can be found in the followingdocuments: AWR1843 Evaluation Board Design Database and AWR1843BOOST Schematic, Assembly,and BOM.

2.2.3 mmWave SDK

The mmWave SDK is split in two broad components: the mmWave Suite and mmWave demos. ThemmWave Suite is the foundational software part of the mmWave SDK, and includes smaller components:

• Drivers

• OSAL

• mmWaveLink (BSS interface API)

• mmWaveLib (C674x-optimized library)

• mmWave API (high-level control API)

• BSS firmware

• Board setup and flash utilities

The mmWave SDK demos provide a suite of demonstrations that depict the various control and dataprocessing aspects of an mmWave application. Data visualization of the demonstration's output on a PC isprovided as part of these demonstrations.

2.3 System Design Theory

2.3.1 Usage Case Geometry and Sensor Considerations

The AWR1843 is a radar-based sensor that integrates a fast FMCW radar front end with both anintegrated ARM R4F MCU and TI C674x DSP for advanced signal processing.

The configuration of the AWR1843 radar front end depends on the configuration of the transmit signal andthe configuration and performance of the RF transceiver, the design of the antenna array, and theavailable memory and processing power. This configuration influences key performance parameters of thesystem.

The key performance parameters at issue are listed with brief descriptions.

• Maximum Range

– Range is estimated from a beat frequency in the de-chirped signal proportional to the round tripdelay to the target. For a given chirp ramp slope, the maximum theoretical range is determined bythe maximum beat frequency that can be detected in the RF transceiver. The maximum practicalrange is then determined by the SNR of the received signal and the SNR threshold of the detector.

• Range resolution

– This is defined as the minimum range difference over which the detector can distinguish twoindividual point targets, which is determined by the bandwidth of the chirp frequency sweep. Thehigher the chirp bandwidth, the finer the range resolution.

• Range Accuracy

– This is often defined as a rule of thumb formula for the variance of the range estimation of a singlepoint target as a function of the SNR.

• Maximum velocity

www.tij.co.jp System Overview

7JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

– Radial velocity is directly measured in the low-level processing chain as a phase shift of thedechirped signal across chirps within one frame. The maximum unambiguous velocity observable isthen determined by the chirp repetition time within one frame. Typically this velocity is adjusted tobe one-half to one-fourth of the desired velocity range, to have better tradeoffs relative to the otherparameters. Other processing techniques are then used to remove ambiguity in the velocitymeasurements, which experience aliasing.

• Velocity resolution

– This is defined as the minimum velocity difference over which the detector can distinguish twoindividual point targets that are also at the same range. This is determined by the total chirping timewithin one frame. The longer the chirping time, the finer the velocity resolution.

• Velocity accuracy

– This is often defined as a rule of thumb formula for the variance of the velocity estimation of asingle-point target as a function of the SNR.

• Field of view

– This is the sweep of angles over which the radar transceiver can effectively detect targets. This is afunction of the combined antenna gain of the transmit and receive antenna arrays as a function ofangle and can also be affected by the type of transmit or receive processing, which may affect theeffective antenna gain as a function of angle. The field of view is typically specified separately forthe azimuth and elevation.

Real Antennas

Virtual Antennas

Fre

quen

cy

Time

Tx3 Tx1

Tx2

Rx4 Rx3

Tx2

Rx2 Rx1

Rx4 Rx3 Rx2 Rx1 Rx4 Rx3 Rx2 Rx1

Tx3 Tx1

O/2

O2

O/2

System Overview www.tij.co.jp

8 JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

• Angular resolution

– This is defined as the minimum angular difference over which the detector can distinguish twoindividual point targets that also happened to have the same range and velocity. This is determinedby the number and geometry of the antennas in the transmit and receive antenna arrays. This istypically specified separately for the azimuth and elevation.

• Angular accuracy

– This is often defined as a rule of thumb formula for the variance of the angle estimation of a singlepoint target as a function of SNR.

When designing the frame and chirp configuration for the automated parking application, the device usesthe IF bandwidth and trades off the max range, max velocity, and range resolution. An example chirpdesign is listed in 表 3. In automated parking demo code, the chirp configuration is configured atpa_config_chirp_design_USRR20.h. Users must change this file and re-compile to apply a different chirpconfiguration.

2.3.2 Antenna Configuration

TIDEP-01011 uses four receivers and three transmit antennas, as shown in 図 3. When the systemoperates in time-division multiplexed (TDM) MIMO mode, a non-uniformed, synthesized array of 12antennas is achieved, as shown in 図 3. The TDM mode of operation is achieved by transmitting chirpsusing TX1, TX3, and TX2 in an alternate fashion. With 8 synthesized antennas in azimuth direction, thisantenna fashion provides a finer azimuth angle resolution and can also be used for elevation angleestimation.

The MIMO configuration synthesizes an array of twelve virtual RX antennas: 8 antennas in the azimuthalplane and 4 antennas in the elevation plane, as shown in 図 3. This technique improves the angleresolution by a factor of two when compared to a single TX configuration.

図図 3. Antenna Configuration

www.tij.co.jp System Overview

9JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

2.3.3 Processing Chain

The processing chain for TIDEP-01011 is shown in 図 4.

An example processing chain for automated parking, using the ultra short range chirp and frame design, isimplemented on the AWR1843 EVM.

System Overview www.tij.co.jp

10 JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

The main processing elements involved in the processing chain consist of the following:

• Front End

– Represents the antennas and the analog RF transceiver implementing the FMCW transmitter andreceiver and various hardware-based signal conditioning operations. This must be properlyconfigured for the chirp and frame settings of the use case.

• ADC

– The ADC is the main element that interfaces to the DSP chain. The ADC output samples arebuffered in ADC output buffers for access by the digital part of the processing chain.

• EDMA controller

– This is a user-programed DMA engine employed to move data from one memory location toanother without using another processor. The EDMA can be programed to trigger automatically,and can also be configured to reorder some of the data during the movement operations.

• C674x DSP

– This is the digital signal processing core that implements the configuration of the front end andexecutes the low-level signal processing operations on the data. This core has access to severalmemory resources as noted further in the design description.

図図 4. Processing Chain

www.tij.co.jp System Overview

11JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

A signal processing chain is implemented on the DSP. There are several physical memory resources usedin the processing chain, which are described in 表 2.

表表 2. Signal Processing Chain

SECTION NAME SIZE (KB) ASCONFIGURED

MEMORY USED(KB)

DESCRIPTION

L1D SRAM 16 16 Layer one data static RAM is the fastest data access for DSP, andused for most time-critical DSP processing data that can fit in thissection.

L1D cache 16 Used as cache Layer one data cache caches data accesses to any other sectionconfigured as cacheable. The L2, L3, and HSRAM are configured ascacheable.

L1P SRAM 16 16 Layer one program static RAM is the fastest program access RAM forDSP, and used for most time-critical DSP program that can fit in thissection.

L1P cache 16 Used as cache Layer one cache caches program accesses to any other sectionconfigured as cacheable. The L2, L3, and HSRAM are configured ascacheable.

L2 256 185 Local layer two memory is lower latency than layer three for accessing,and is visible only from the DSP. This memory is used for most of theprogram and data for the signal processing chain.

L3 1024 835 Higher latency memory for DSP accesses primarily stores the radarcube and the range-Doppler power map. It is a less time-sensitiveprogram. Data can also be stored here.

HSRAM 32 Currently unused Shared memory buffer between the DSP and the R4F relaysvisualization data to the R4F for output over the UART in this design.

2.3.4 Chirp Configuration Profile

When designing the frame and chirp configuration for the park assistant application, TI used the IFbandwidth and traded off the max range, max velocity, and range resolution. An example chirp design islisted in 表 3. In park assistant demo code, the chirp configuration is configured atpa_config_chirp_design_USRR20.h.

表表 3. Chirp Profile

Configuration Parameter ValueFrame Duration 50 msADC sampling rate 10 MSPSChirp valid sweep bandwidth 858 MHzChirp Slope 40 MHz/µsChirp time 25.6 µsChirp repetition time 115.8 µsNumber of samples per chirp 256Number of chirps per frame 64Radar cube size 192 KB

Hardware, Software, Testing Requirements, and Test Results www.tij.co.jp

12 JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

The AWR1843 BoosterPack™ from Texas Instruments is an easy-to-use evaluation board for theAWR1843 mmWave sensing devices.

The automated parking application runs on the AWR1843 EVM and connects to a visualization toolrunning on a PC connected to the EVM over USB.

For details regarding usage of this board, see AWR1843 Evaluation Module (AWR1843BOOST)SingleChip mmWave Sensing Solution.

3.1.1 Hardware

The AWR1843 core design includes:

• AWR1843 device: A single-chip, 77-GHz radar device with an integrated DSP

• Power management network using low-dropout linear regulators (LDOs), a power managementintegrated circuit (PMIC), and a DC/DC supply (TPS7A53-Q1, TPS796, LP87702-Q1, and LM53625-Q1)

• The EVM also hosts a device to assist with onboard emulation and UART emulation over a USB linkwith the PC

3.1.2 Software and GUI

The mmWave SDK can be downloaded from here. The installation program also installs all required toolcomponents.

To download the automated parking software, use the following TI Resource Explorer (TI Rex) here. AMATLAB GUI is provided in the software package.

Details on how to run the pre-built binaries and how to rebuild the demonstration application are providedin the Automated Parking User Guide in TI-Rex.

www.tij.co.jp Hardware, Software, Testing Requirements, and Test Results

13JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

3.2 Testing and Results

3.2.1 Test Setup

図 5 shows the physical setup used to test the automated parking demo. A car was parked next to a curb.A second car was used with the AWR1843 sensor attached to the back. The EVM was placed at a heightof approximately one meter off the ground on the rear of the vehicle. Additionally, two traffic cones wereplaced in front of the second car. The traffic cones have a height of 30 inches.

図図 5. Test Physical Setup

3.2.2 Test Results

By default, detected objects and clusters are displayed. Detected objects are shown as dots in the 3Dspace, and clusters are shown as boxes. Cluster box sizes are obtained from the DSP's clusteringalgorithm.

The corresponding output from the GUI visualizer is shown in 図 6.

Hardware, Software, Testing Requirements, and Test Results www.tij.co.jp

14 JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

図図 6. GUI Visualizer Output

As seen in 図 6, the AWR1843 can detect the two traffic cones as separate objects. The AWR1843 alsodetects multiple points on the parked car and clusters them together.

The detected object (dot) colors are determined by their Z distance (height) from the antenna. Clustercolors are red if the center is within 1 meter of the antenna, and green if outside 1 meter.

www.tij.co.jp Design Files

15JAJU691–February 2019

TIDUEO9 翻訳版 — 最新の英語版資料 http://www-s.ti.com/sc/techlit/TIDUEO9Copyright © 2019, Texas Instruments Incorporated

77GHz ミリ波センサを使用した自動パーキング・システムのリファレンス・デザイン

4 Design Files

The design files for TIDEP-01011 include the design database and the schematic, assembly, and BOM.

4.1 Design Database

Find the hardware files for TIDEP-01011 here.

4.2 Schematic, Assembly, and BOM

Find the schematic, assembly files, and BOM for TIDEP-01011 here.

5 Software Files

Download the software for TIDEP-01011 here. The software is found under the following folder structure:

• Software

– mmWave Sensors

• Automotive Toolbox

• Labs

• Automated Parking

6 Related Documentation1. Texas Instruments, AWR1843 Evaluation Module (AWR1843BOOST) Single-Chip mmWave Sensing

Solution2. Texas Instruments, Programming Chirp Parameters in TI Radar Devices3. Texas Instruments, AWR1843 Single-Chip 77- and 79-GHz FMCW Radar Sensor4. Texas Instruments, AR14xx/16xx/18xx Technical Reference Manual5. Texas Instruments, AWR1843 Evaluation Board Design Database6. Texas Instruments, AWR1843BOOST Schematic, Assembly, and BOM7. Texas Instruments, mmWave SDK User's Guide

6.1 商商標標

E2E is a trademark of Texas Instruments.すべての商標および登録商標はそれぞれの所有者に帰属します。

6.2 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOESNOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS ORSERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS ORSERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

7 Trademarks

BoosterPack is a trademark of Texas Instruments, Inc.

ARM, Cortex are registered trademarks of ARM Limited.

All other trademarks are the property of their respective owners.

重重要要ななおお知知ららせせとと免免責責事事項項

TI は、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、TI の販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用されるTI の保証または他の保証の放棄の拡大や変更を意味するものではありません。IMPORTANT NOTICE

Copyright © 2019, Texas Instruments Incorporated日本語版 日本テキサス・インスツルメンツ株式会社

重重要要ななおお知知ららせせとと免免責責事事項項

TI は、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、TI の販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用されるTI の保証または他の保証の放棄の拡大や変更を意味するものではありません。IMPORTANT NOTICE

Copyright © 2019, Texas Instruments Incorporated日本語版 日本テキサス・インスツルメンツ株式会社