51
Appendix A Thomas–Fermi Approximation and Basics of the Density Functional Theory As stated at the beginning of section 2.7 the total energy is a key function describ- ing the basic physical and chemical properties of materials: the ground state. It consists of both kinetic (describing motion) and potential energy parts. To make a theoretical model realistic it is very important to incorporate all important con- tributions to both the parts of the total energy. In view of the big number of the particles involved into the model, this is very challenging for the first-principles theory. Different approximations are applied in order to achieve a trade-off between complexity and accuracy. Very successful in realistic modeling of the ground state is the density functional theory, DFT. In this chapter we present the basic ideas of the DFT and demonstrate both advantages and problems for optics within this method. Initially Thomas and Fermi (TF) in the 1920s suggested describing atoms as uniformly distributed electrons (negatively charged clouds) around nuclei in a six- dimensional phase space (momentum and coordinates). This is enormous simplifi- cation of the actual many-body problem. It is instructive to consider the basic ideas of the TF approximation before starting with a more accurate theory: the DFT. The basic ideas and results of the TF model in application for atoms are provided here. Following the TF approach the total energy of the system could be presented as a function (functional) of electron density [McQuarrie (1976); Parr and Yang (1989)]. Each h 3 of the momentum space volume (h is the Planck constant) is occupied by two electrons and the electrons are moving in an effective potential field that is determined by nuclear charge and by assumed uniform distribution of electrons. The density of ΔN electrons in real space within a cube (nanoparticle) with a side l is given by ρ(r)= ΔN v = ΔN l 3 . (A.1) The electron energy levels in this three-dimensional infinite well are given by: E = h 2 8ml 2 (n 2 x + n 2 y + n 2 z )= h 2 8ml 2 ˜ R 2 , n x ,n y ,n z =1, 2, 3,... (A.2) 279

Thomas–Fermi Approximation and Basics of the Density Functional

  • Upload
    vumien

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix A

Thomas–Fermi Approximation and Basicsof the Density Functional Theory

As stated at the beginning of section 2.7 the total energy is a key function describ-ing the basic physical and chemical properties of materials: the ground state. Itconsists of both kinetic (describing motion) and potential energy parts. To makea theoretical model realistic it is very important to incorporate all important con-tributions to both the parts of the total energy. In view of the big number of theparticles involved into the model, this is very challenging for the first-principlestheory. Different approximations are applied in order to achieve a trade-off betweencomplexity and accuracy. Very successful in realistic modeling of the ground stateis the density functional theory, DFT. In this chapter we present the basic ideasof the DFT and demonstrate both advantages and problems for optics within thismethod.

Initially Thomas and Fermi (TF) in the 1920s suggested describing atoms asuniformly distributed electrons (negatively charged clouds) around nuclei in a six-dimensional phase space (momentum and coordinates). This is enormous simplifi-cation of the actual many-body problem. It is instructive to consider the basic ideasof the TF approximation before starting with a more accurate theory: the DFT.The basic ideas and results of the TF model in application for atoms are providedhere.

Following the TF approach the total energy of the system could be presentedas a function (functional) of electron density [McQuarrie (1976); Parr and Yang(1989)]. Each h3 of the momentum space volume (h is the Planck constant) isoccupied by two electrons and the electrons are moving in an effective potentialfield that is determined by nuclear charge and by assumed uniform distribution ofelectrons. The density of ΔN electrons in real space within a cube (nanoparticle)with a side l is given by

ρ(r) =ΔN

v=

ΔN

l3. (A.1)

The electron energy levels in this three-dimensional infinite well are given by:

E =h2

8ml2(n2

x + n2y + n2

z) =h2

8ml2R2, nx, ny, nz = 1, 2, 3, . . . (A.2)

279

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

280 Appendix A

Radius R = Rmax of the sphere in the space (nx, ny, nz) covering all occupiedstates determines the maximum energy of electrons: the Fermi energy F . Thenumber of energy levels within this maximum value at zero temperature is given by

NF =123

4πR3

3=

π

6

(8ml2F

h2

)3/2

. (A.3)

The density of states is defined as

g(E)dE = NF (E + dE) − NF (E) =π

4

(8ml2

h2

)3/2

E1/2dE. (A.4)

At zero temperature all energy levels below the Fermi energy are occupied:

f(E) ={

1 E ≤ F

0 E > F

}. (A.5)

Consequently the total energy of the electrons in one cell will be given by

E =∫ F

0

Ef(E)g(E)dE =4π

h3(2m)3/2l3

∫ F

0

E3/2dE

5

(2l

h

)3

(2m)3/2F 5/2. (A.6)

The Fermi energy F can be obtained from the total number of electrons ΔN in acell:

ΔN = 2∫ F

0

f(E)g(E)dE =π

h3

(2l

h

)3

(2m)3/2F 3/2. (A.7)

Combining Eqs. (A.6) and (A.7) the energy of the electrons in one cell is given by

E =310

(3π2)2/3 l3

(2π)2ρ5/3 = CF

l3

(2π)5/3,

CF =310

(3π2

)2/3= 2.871. (A.8)

In Eq. (A.8) we reverted to atomic units e = h = m0 = 1. The electron density isa smooth function in a real space. For systems without translational symmetry itis different for different cells. However, for spatially periodic systems only consider-ation within the unit cell is required since all unit cells are equivalent. Now addingthe contributions from all cells with energies within F , we obtain

TTF[ρ] = CF

∫ρ5/3(r)d3r. (A.9)

Equation Eq. (A.9) represents the well-known Thomas–Fermi kinetic energy func-tional, which is a function of the local electron density. The functional Eq. (A.9)could be applied to electrons in atoms encountering the most important idea of themodern DFT, the local density approximation (LDA) [Martin (2004)]. Adding to

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix A 281

Eq. (A.9) classical electrostatic energies of electron–nucleus attraction and electron–electron repulsion we arrive at the energy functional of the Thomas–Fermi theoryof atoms:

ETF[ρ(r)] = CF

∫ρ5/3(r)d3r − Z

∫ρ(r)r

d3r

+12

∫ρ(r1)ρ(r2)|r1 − r2|

d3r1d3r2. (A.10)

Note that the nucleus charge Z is measured in atomic units. The energy of theground state and electron density can be found by minimizing the functional (A.10)with the constrain condition

N =∫

ρ(r)d3r. (A.11)

The electron density in Eq. (A.10) has to be calculated in conjunction withEq. (A.11) from the following equation for chemical potential, defined as the varia-tional derivative according to

μTF =δETF[ρ]δρ(r)

=53CTFρ5/3(r) − Z

r+

∫ρ(r2)

|r1 − r2|d3r2. (A.12)

The Thomas–Fermi model provides reasonably good predictions for atoms. It hasbeen used before to study potential fields and charge density in metals and theequation of states of elements [Feynman et al. (1949)]. However, this method isconsidered rather crude for more complex systems because it does not incorpo-rate the actual orbital structure of electrons. In view of the modern DFT theorythe Thomas–Fermi method could be considered as an approximation to the moreaccurate theory.

For systems like molecules and solids, much better predictions are provided bythe DFT. Search for the ground state within the DFT follows the rule that theelectron density is a basic variable in the electronic problem (the first theorem ofHohenberg and Kohn [Hohenberg and Kohn (1964)]) and another rule that theground state can be found from the energy variational principle for the density (thesecond theorem of Hohenberg and Kohn [Kohn (1999)]). According to the DFT thetotal energy could be written as

E[ρ] = T [ρ] + U [ρ] + EXC[ρ], (A.13)

where T is the kinetic energy of the system of noninteracting particles and U isthe electrostatic energy due to Coulomb interactions. The most important partin the DFT is EXC, the exchange and correlation (XC) energy that includes allmany-body contributions to the total energy. The charge density is determined bythe wave functions, which for practical computations could be constructed fromsingle orbitals, φj (e.g. antisymmetrized product—the Slater determinant, atomicor Gaussian orbitals, linear combinations of plane waves). The charge density isgiven by

ρ(r) =∑

j

|φj(r)|2 , (A.14)

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

282 Appendix A

where the sum is taken over all occupied j orbitals. In the spin-resolved case therewill be orbitals occupied with spin-up and spin-down electrons. Their sum givesthe total charge density and their difference gives the spin density. In terms of theelectron orbitals the energy components are given in atomic units as

T = −12

∫ ∑j

φ∗j (r)|∇2|φj(r)d3r, (A.15)

U = −n∑j

N∑α

∫φ∗

j (r)∣∣∣∣ Zα

(Rα − r)

∣∣∣∣ φj(r)d3r

+12

∑i,j

∫φ∗

i (r1)φ∗j (r2)

1(r1 − r2)

φi(r1)φj(r2)d3r1d3r2

+N∑α

N∑β<α

Zα − Zβ

|Rα − Rβ |. (A.16)

The first term in potential energy (A.16) stands for the electron–nucleus attraction,the second term describes for electron–electron repulsion, and the third term rep-resents nucleus–nucleus repulsion. In Eq. (A.16) Zα refers to the charge on nucleusα of N−atom system.

The third term in Eq. (A.13) describes the exchange and correlation energy.Rather simple for computations but surprisingly good approximation is the localdensity approximation, LDA, which assumes that the charge density varies slowlyon the atomic scale, i.e., the effect of other electrons on the given (local) electrondensity is described as a uniform electron gas. The XC energy can be obtained byintegrating with the uniform gas model (see e.g. [Ceperley and Adler (1980)]):

EXC∼=

∫ρ(r)EXC[ρ(r)]d3(r), (A.17)

where EXC[ρ(r)] is XC energy per particle in a uniform electron gas. For manysystems a good approximation provides analytic expression for EXC[ρ(r)] suggestedby Perdew and Wang (1992). In practical calculations through minimization of thetotal energy Eq. (A.13) one determines self-consistently the electron density andthe actual XC part. A variational minimization procedure leads to a set of coupledequations proposed by Kohn and Sham [Kohn and Sham (1965)]:[

−12∇2 − VN + Ve + μXC(ρ)

]φj = Ejφj , (A.18)

with

μXC =∂

∂ρ(ρEXC) , (A.19)

The solution of the Kohn–Sham equation provides the equilibrium geometryand the ground-state energy of the system. However, eigen functions and eigenenergies of the Kohn–Sham equation cannot be interpreted as the quasiparticle

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix A 283

quantities needed for optics. The term quasiparticle refers to a particle-like entityarising in certain systems of interacting particles. If a single particle moves throughthe system, surrounded by a cloud of other interactiong particles, the entire entitymoves along somewhat like a free particle (but slightly different). The quasiparticleconcept is one of the most important in materials science, because it is one of the fewknown ways of simplifying the quantum mechanical many-body problem describingexcitation state and is applicable to an extremely wide range of many-body systems.

Calculation of the ground state from the Kohn–Sham equation does not resultautomatically in correct prediction of excitation energies required for optics. Forexample, in nonmetallic systems the predicted value of the energy difference (energygap) between the highest occupied molecular orbital (HOMO) and the lowest un-occupied molecular orbital (LUMO) in most cases is underestimated (gap problem).Special corrections (quasiparticle, QP corrections) are required to get more accu-rate excitation energies [Onida et al. (2002)]. Without corrections in semiconductorsand insulators the local density approximation, LDA, substantially underestimatesforbidden gap values. In this chapter we present LDA results for optics with dif-ferent QP corrections avoiding, however, detailed analysis of theoretical methods.For advanced reading of the DFT one can recommend original papers [Hohenbergand Kohn (1964); Kohn (1999); Ceperley and Adler (1980)] and the monographs[McQuarrie (1976); Parr and Yang (1989); Martin (2004); Michaelides and Scheffler(2008)].

This page intentionally left blankThis page intentionally left blank

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix B

Evaluation of Optical Functions withinthe Perturbation Theory

In this section we describe evaluation of the light-filled induced charge within per-turbation theory using plane wave representation, which is used in this chapter forcalculations of optical functions (see section 2.7). Equilibrium electron charge den-sity is defined through the density operator (using definition of Trace, Tr, as a sumof the diagonal elements):

neq(r) = eTr[ρ0, δ(r − r0)]. (B.1)

Without illumination if the system is periodic (at least in one dimension) the den-sity operator could be defined in energy representation on a set of Bloch functionsaccording to [Davydov (1980)]

ρ|s〉 = ρ0|k, l〉 = f(Ek,l)|k, l〉, (B.2)

where the equilibrium Fermi distribution function is given by

f(Es) =(e

F−EskT − 1

)−1

, (B.3)

The Bloch functions

|s〉 = |k, l〉 = uk,l(k)eikr, (B.4)

are solutions of an undisturbed Schrodinger equation with periodic potential:

H0|k, l〉 =[−1

2∇2 + V0(r)

]|k, l〉 = Ek,l|k, l〉. (B.5)

In an external optical field when light quanta strike electrically neutral atoms theequilibrium is broken through the deformation of electron clouds. Time-dependentchanges of the electron charge density can be represented as Taylor expansion. Thenumber of the terms to be included into the Taylor sum for the induced part of thecharge depends on the excitation intensity:

n(r, t) = neq(r) + nind(r, t) = eTr[ρ, δ]

= eTr[ρ0, δ] + eTr[ρ(1), δ] + eTr[ρ(2), δ] + . . . (B.6)

The first- and higher-order corrections to the density operator are determined fromthe standard perturbation theory:

i�dρ

dt= [H, ρ] = (Hρ − ρH), (B.7)

285

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

286 Appendix B

with

H = H0 + V (1) + . . . ,

ρ = ρ0 + ρ(1) + ρ(2) + . . . (B.8)

In Eq. (B.7) for simplicity we neglected the effect of energy dissipation, which couldbe included through the relaxation time. Plugging (B.8) in (B.7) and choosing termsof the same order on both the left and right side of the equation of motion for thedensity operator, Eq. (B.7) splits into a series of equations for zero, first, second,etc., orders of perturbations, respectively:

i�ρ0 = [H0, ρ0],

i�ρ(1) =[H0, ρ

(1)]

+[V (1), ρ0

](B.9)

i�ρ(2) =[H0, ρ

(2)]

+[V (1), ρ(1)

]Dynamic optical response is described through the time-dependent density operator.In an external electromagnetic field the perturbation is harmonic, i.e.,

ρ(t) = ρ(0)eiωt,

i�ρ(ω) = −�ωρ(ω). (B.10)

It is convenient now to switch to the matrix representation in Eq. (B.10) by pro-jecting the relevant quantities on a set of Bloch functions in Eq. (2.68). To thisend one should multiply every term in Eq. (B.10) with the function Eq. (2.68);the complex conjugate of Eq. (2.68) is then multiplied on the left and right side ofthe relevant equation. Through integration over the entire space and by taking intoaccount orthonormality conditions for Bloch functions, this leads to the followingexpression for the first-order terms:

−�ωρ(1)ss′ = (Es − Es′)ρ(1)

ss′ +∑

t

V(1)st ρ0

ts′ −∑

p

ρ0spV

(1)ps′ , (B.11)

The density operator defined as Eq. (B.2) in matrix presentation has the form

ρ(0)ss′ = f(Es)δss′ . (B.12)

Equation (B.11) is now transformed into

−�ωρ(1)ss′ = (Es − Es′)ρ(1)

ss′ + [f(Es′) − f(Es)] Vss′ . (B.13)

At zero temperature, optical excitations occur between completely filled and emptystates with Fermi functions equal to either 1 or zero, respectively. Consequently,

ρ(1)ss′(ω) =

f(Es′) − f(Es)Es − Es′ − �ω

Vss′ = (Es − Es′ − �ω)−1Vss′ |T=0. (B.14)

For the second-order perturbation one needs to use the first-order solutionEq. (B.14). Plugging it into Eq. (B.10) after some algebra leads to the follow-ing expressions at T = 0:

−�ωρ(2)ss′ = (Es − Es′)ρ(2)

ss′ +∑s′′

V(1)ss′′ρ

(1)s′′s′ −

∑s′′

ρ(1)ss′′V

(1)s′′s′ , (B.15)

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix B 287

or

ρ(2)ss′(ω) =

1Es − Es′ − �ω

∑s′′

[V (1)ss′′V

(1)s′′s′(

1Es′′ − Es′ − �ω

− 1Es − Es′′ − �ω

)]. (B.16)

Equations (B.14) and (B.16) can be used now to obtain induced charge density fromEq. (B.6) within the first and second order of external perturbation, respectively.The first- and second-order contributions to the induced charge density in Eq. (B.6)follow from (B.14) and (B.16), respectively. In a system with a periodicity theperturbation potential is given by

V (r, t) =∑qG

∫ ∞

−∞V (q + G, ω)ei(q+G)rdω, (B.17)

where G is the reciprocal lattice vector. For Fourier transform of the potential

V (r, t) =∫ ∞

−∞V (r, ω)eiωt, (B.18)

the expansion of the potential is given by

V (r, ω) =∑qG

V (q + G, ω)ei(q+G)r. (B.19)

In a periodic system with all equivalent atoms separated by Ri one has for thecharge:

neq(r0 + Ri) = neq(r0), (B.20)

with

n(r) =∑

q

eiqrn(q) =∑

q

eiqr∑G

δqGn(G). (B.21)

For induced charge density in (B.6) we have

nind(r, ω) =∑qG

nind(q + G, ω)ei(q+G)r. (B.22)

Where Fourier transform of the induced charge is given by Fourier integral by

nind(q + G, ω) =∫

nind(r, ω)e−i(q+G)rd3r, (B.23)

Linear part of the induced charge in (B.23) follows from (B.6)

nind(q + G, ω) = e

∫Tr

[ρ(1)(ω), δ(r′ − r)

]e−i(q+G)r′

d3r′

= eTr[ρ(1)(ω), e−i(q+G)r

], (B.24)

The trace of the operator product is calculated according to

Tr(AB

)=

∑m

〈m|AB|m〉 =∑m

∑n

AmnBnm. (B.25)

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

288 Appendix B

Eq. (B.24) projected on the plane wave basis 2.68 can be represented as

nind = nind(q + G, ω)

= e∑k+q

∑k,l

〈l′,k + q|ρ(1)ω |k, l〉〈l,k|δ(r′ − r)|k + q, l′〉e−i(q+G)r′

= e∑k+q

∑k,l

〈l′,k + q|ρ(1)ω |k, l〉〈l,k|

∑G′

ei(r−r′)G′e−i(q+G)r′ |k + q, l′〉

= e∑k+q

∑k,l

〈l′,k + q|ρ(1)ω |k, l〉〈l,k|e−i(q+G)r|k + q, l′〉. (B.26)

In (B.26) the bracket notation means space integration. We also used the definitionof the δ function:

δ (r − r′) =∑G

ei(r−r′)G. (B.27)

Now Eq. (B.14) can be written as

〈l′,k + q|ρ(1)ω |k, l〉 =

f [El′(k + q)] − f [El(k)]El′(k + q) − El(k) − ω − iη

〈l′,k + q|V (r, ω)|k, l〉

=f [El′(k + q)] − f [El(k)]

El′(k + q) − El(k) − ω − iη

×∑q,G

V (q + G, ω)〈l′,k + q|ei(q+G)r|k, l〉. (B.28)

The complex part of the energy in the denominator of Eq. (B.28) is introducedto prevent unphysical divergences at resonance frequencies. Plugging (B.28) into(B.26) we arrive at the following expression for the induced charge:

nind(q + G, ω) = e∑G′

PG,G′V (q + G, ω). (B.29)

Using the notation (k′ = k + q) the polarization function is defined as

PG,G′(ω) =∑k′,k

∑l′,l

〈l′,k′|ei(q+G)r|k, l〉〈l,k|ei(q+G′)r|k′, l′〉

× f [El′(k + q)] − f [El(k)]El′(k + q) − El(k) − (ω + iη)

. (B.30)

Evaluation of the full polarization function is given in Appendix C. Full potentialin materials can be separated into two parts, the external and induced potential:

V (q + G, ω) = Vext(q + G, ω) + Vind(q + G, ω). (B.31)

The Eq. (B.31) can be understood as a reduction (screening) of external potentialthrough the induced charge in materials. This can be presented in terms of dielectricfunction:

V (q + G, ω) =∑G′

ε−1G,G′Vext(q + G′, ω), (B.32)

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix B 289

or

Vext(q + G′, ω) =∑G

εG,G′V (q + G, ω), (B.33)

Equations (B.32) and (B.33) can be considered as the microscopic definition of thedielectric function. The described computation of ε presents a transformation fromthe microscopic (atom-related) quantities to the macroscopic values used in classicalelectrodynamics theory. For advanced reading related to the definition of the opticalfunction within the first-principles theory, one can recommend [Martin (2004); Yuand Cardona (2010)] or original papers (see e.g. [Onida et al. (2002); Gavrilenkoand Bechstedt (1997)] and references therein).The induced potential satisfies the Poisson equation:

Vind(q + G, ω) =4π

|q + G|2 nind(q + G, ω). (B.34)

From Eqs. (B.29), (B.31), (B.33), and (B.34) we obtain

V (q + G, ω) =∑G′

[εG,G′(ω) +

|q + G|2 PG,G′

]V (q + G, ω)

=∑G′

δG,G′V (q + G, ω). (B.35)

The dielectric function can now be expressed in terms of the polarization function:

εG,G′(ω) = δG,G′ − 4π

|q + G|2 PG,G′ . (B.36)

This page intentionally left blankThis page intentionally left blank

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix C

Local Field Effect in Optics of Solids fromthe First Principles

Local field (LF) effect plays a key role in the optics of nanostructures. Descriptionof the LF effect within classical electrodynamics is presented in many monographsand research papers (see Chapter 3 and references therein). The classical approach,however, cannot include optical excitations on the atomic scale in the whole picture.Electronic excitations are increasingly important in the optics of nanomaterials withreduction of the dimensions of nanostructures, thus requiring microscopic modeling.This section presents the evaluation of the optical dielectric function, including theLF effect within the perturbation theory (see section B).

The formula for the polarization function (see Eq. (B.30)) can be presented as

PG,G′(ω) =2Ω

∑k′,k

∑n′,n

Bk′,kn′,n(q + G)B∗k,k′

n,n′ (q + G′)

× f [El′(k + q)] − f [El(k)]El′(k + q) − El(k) − (ω + iη)

. (C.1)

The Bloch integrals in Eq. (C.1) are defined as

Bk′,kn′,n(q + G) = 〈n′,k′|ei(q+G)r|k, n〉

=1Ω

∫ψ∗

n′,k′(r)ei(q+G)rψn,kd3r. (C.2)

In plane wave representation (2.68) neglecting the umklapp processes (the noncon-serving crystal momentum electron–electron scattering) [Bechstedt (2003)] and inthe limit of q → 0 the Bloch integrals have an extremely simple form, given by

Bk′,kc,v (G) =

∑G1

d∗c,k′(G1)dv,k(G1 − G). (C.3)

Indexes c and v in Eq. (C.3) denote empty antibonding (conducting) and filledbonding (valence) electron states, respectively, at zero temperature. By derivationof Eq. (C.3) we used the following properties of direct and reciprocal lattice vectors:

GiRj = 2πδij

eiGjRj = 1 (C.4)∑Ri

ei(k′−k+q)Ri =∑Gi

δk′−k+q,Gi

291

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

292 Appendix C

Equation (C.1) at zero temperature takes the following form:

PG,G′(ω) =2Ω

∑k′,k

∑n′,n

Bk′,kn′,n(q + G)B∗k,k′

n,n′ (q + G′)El′(k + q) − El(k) − (ω + iη)

. (C.5)

From the orthonormality of the wave functions follow the properties of Bloch inte-grals:

Bk′,kc,v (0) =

∑G1

d∗c,k′(G1)dv,k(G1) = 0,

N∑n′=1

∑k′

∣∣∣Bk′,kn′,n(q + G)

∣∣∣2 = 1. (C.6)

For G = 0 and in the limit q → 0 the Bloch integrals have the following properties:

limq→0

Bk′,kc,v (q) = δk,k′ lim

q→0i

3∑α=1

qα〈c,k|rα|k, v〉

=δk,k′

Ec(k) − Ev(k)limq→0

3∑α=1

qα〈c,k|vα|k, v〉, (C.7)

limq→0

Bk′,kc,v (qα)|qα|

=1

Ec(k) − Ev(k)〈c,k|vα|k, v〉.

Here we used the general definition of velocity (or momentum) [Adolph et al. (1996)]given by

v = limq→0

1q

[H, eiqr

]. (C.8)

At the limit the velocity is given by

v = i [H, r] . (C.9)

After projecting on the full set of eigen functions of the Hamiltonian it follows that

〈nk| [H, rα] |n′k′〉 =∑m,l

〈nk|H|m, l〉〈m, l|rα|n′k′〉

−∑m′,l′

〈nk|rα|m′, l′〉〈m′, l′|H|n′k′〉 (C.10)

= (Enk − En′k′)〈nk|rα|n′k′〉.

Equation (C.11) represents the relationship between matrix elements of the velocityand of the induced dipole momentum, which could be used to obtain the relationshipbetween optical functions calculated in velocity and length gauges [Gavrilenko andBechstedt (1997)].

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix D

Optical Field Hamiltonian in SecondQuantization Representation

If there are resonances of electromagnetic field within a cavity the entire field canbe presented as a superposition of single modes in the following form [Jaynes andCummins (1963)]:

E(r, t) = −√

4π∑

j

pj(t)Ej(r), (D.1)

H(r, t) =√

4π∑

j

ωjqj(t)Hj(r). (D.2)

The total energy of the field is given by

H =18π

∫(|E|2 + |H|2)d3r =

12

∑j

(p2j + ω2

j q2j ) (D.3)

The Hamiltonian equation of motion is given by

qj =∂H

∂pj= pj ,

pj = −∂H

∂qj= −ω2

j qj . (D.4)

Mathematically, quantization of the field is represented by commutations rules forthe canonically conjugated coordinates and momenta:

[qi, qj ] = 0, [pi, pj ] = 0, [qi, pj ] = i�δij . (D.5)

The Hamiltonian of an optical field is convenient to present in terms of secondquantization operators, the Bosonic operators of creation (a†

j) and annihilation (aj)of photons using the definitions [Davydov (1976)]

pj =

√�ωj

2

(aj + a†

j

), (D.6)

ωjqj = i

√�ωj

2

(aj − a†

j

), (D.7)

with commutation rule

[ai, a†j ] = δij . (D.8)

293

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

294 Appendix D

The properties of ai operators are described through their action on state vectorφ(n1, n2, . . . ni . . .) according to

aiφ(n1, . . . ni−1, ni, ni+1 . . .) =√

niφ(n1, . . . ni−1, ni−1, ni+1 . . .),

a†iφ(n1, . . . ni−1, ni, ni+1 . . .) =

√ni + 1φ(n1, . . . ni−1, ni+1, ni+1 . . .).

The Hamiltonian of the quantized optical field is now given by

H =∑

i

�ωi

(aia

†i +

12

). (D.9)

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix E

Surface Plasmons and Surface PlasmonPolaritons

Collective electronic excitations (also known as plasma excitations) at metal sur-faces and/or metal/dielectric interfaces play a key role in the optics of nanomate-rials, ranging from physics and materials science to biology. A unified theoreticaldescription of these phenomena is based on the many-body dynamical electronicresponse of solids (see section B of the Appendix), which underlines the existence ofvarious collective electronic excitations at metal surfaces, such as the conventionalsurface plasmon, multipole plasmons, and the acoustic surface plasmon. A detaileddescription of the surface plasmon polariton (SPP) phenomena and its applicationsin modern optical spectroscopy is out of the scope of the present book. Several spe-cialized monographs and reviews can be recommended for advanced reading [Tudosand Schasfoort (2008); Pitarke et al. (2007); Liebsch (1997); Ritchie (1973); Vengeret al. (1999); Raether (1988)]. Here we present the basic conditions and propertiesof SPP that follow from classical electrodynamics.

Consider a model consisting of two semi-infinite nonmagnetic media with lo-cal (frequency-dependent) dielectric functions εd(ω) (dielectric) and εm(ω) (metal)separated by a planar interface at z = 0 [Pitarke et al. (2007)]. The full set ofMaxwell’s equations in the absence of external sources can be expressed as follows[Jackson (1975)]:

∇ × Hn = ε1c

∂tEn, (E.1)

∇ × En = −1c

∂tHn, (E.2)

∇ · (εnEn) = 0, (E.3)

∇ · Hn = 0, (E.4)

where the index n = d in dielectric (at z < 0) and n = m in metal (at z ≥ 0).Within the classical picture, the metal can be treated as a semi-infinite electron

gas with an abruptly terminated profile of the electron density function. The surfacecharge density (see Eq. (B.1)) on the metal–dielectric interface can be presented asLiebsch (1997); Raether (1988)

n(r, ω) ≈ ejq‖r‖δ(z). (E.5)

295

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

296 Appendix E

The electric field associated with the density Eq. (E.5) is given by the Gausslaw, which follows from Eq. (E.3) in the presence of charge:

∇ · E(r, ω) = −4πn(r, ω). (E.6)

Neglecting the retardation effects only the longitudinal plasma oscillations areconsidered here. In terms of the scalar potential φ the electric field is given by

E(r, ω) = ∇ · φ(r, ω). (E.7)

For the choosen model system the potential φ is given by

φ(r, ω) = ejq‖r‖φ(z, ω) (E.8)

The z components of the field decay evanescently into both media. This followsfrom the electroneutrality since ∇2φ = 0 must be valid everywhere except at z = 0[Liebsch (1997)]. Consequently the potential in Eq. (E.8) must be taken in theform

φ(r, ω) = φ0ejq‖r‖e−q|z|, (E.9)

where q ≡ qz. In this case the field determined by Eqs. (E.7) and (E.9) variescontinuously within the interface, however, the normal component is discontinuous.The components above and below the interface are given by

Ez(z + 0) = q‖φ0ejq‖r‖ ,

Ez(z − 0) = −q‖φ0ejq‖r‖ . (E.10)

The field and charge distribution for such a surface mode is represented inFig. E.1.

In the long-wavelength limit the boundary condition can be written as

εm(ω)Ez(0−) = εdEz(0+). (E.11)

For the metal–vacuum interface (i.e., by εd = 1) the condition for the existenceof the surface plasmons followed from Eqs. (E.10) and (E.11) now reads

εm(ω) = −1. (E.12)

Fig. E.1 Schematic of charge and field distribution for a surface plasmon described by Eq. (E.9).Adapted from [Hofmann (2008)]

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix E 297

Equation (E.12) defines the frequency of the surface plasmon in the q‖ = 0limit [Liebsch (1997)]. Dielectric dispersion in metal can be described by the Drudemodel (see Eq. (2.53) in section 2.5), which can be written in the form

εm(ω) = 1 −ω2

p

ω(ω + jΓ)(E.13)

Pluging the Eq. (E.12) into Eq. (E.13) results

ωs =ωp√

2(E.14)

The plasma frequency ωp is given by Eq. (2.54) (see section 2.5). The existenceof the electronic excitations on the interfaces was predicted by Ritchie (1957). Ifthe overlayer has the dielectric constant εd > 1 the condition Eq. (E.12) is given by

εm(ω) = −εd (E.15)

Consequently, the surface plasmon frequency is redshifted according to

ωs =ωp√

εd + 1. (E.16)

This redshift has been observed on different metal–dielectric interfaces (see e.g.[Ritchie (1973); Pitarke et al. (2007); Raether (1988)] and references therein). It isa key point of surface plasmon resonance (SPR)-based sensing spectroscopic toolswidely used for different fundamental and applied studies (see section 10.5)

Consider now the dispersion of surface plasmons. The solution of the system Eqs.(E.1) to (E.4) will be separated into s- (E vector perpendicular) and p-polarized (Evector parallel to the plane of incidence) EM modes. If there is a wave propagatingalong the interface, it should contain the electric field E component perpendicularto the interface (the p-polarized mode) and thus the s mode is not relevant. Con-sequently, the problem is now formulated as the search for the conditions of thepropagation of the p-polarized EM wave along the interface. Choosing the wavepropagation direction along the x-axis the solution should be taken in the form[Pitarke et al. (2007)]

En = (E0n,x, 0, E0

n,z)ej(qnx−ωt)e−kn|z|, (E.17)

Hn = (0,H0n,y, 0)ej(qnx−ωt)e−kn|z|, (E.18)

where qn denotes a two-dimensional wave vector q‖ of the wave propagating alongthe interface.

Substituting Eqs. (E.17) and (E.18) into Eqs. (E.1) to (E.4) results in thefollowing set of equations:

kdHd,y =ω

cεdEd,x, (E.19)

kmHm,y = −ω

cεmEm,x, (E.20)

and

kn =

√q2n − εn

c

)2

. (E.21)

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

298 Appendix E

The standard boundary conditions require that the components of both electricand magnetic fields must be continuous [Jackson (1975)]. Consequently, Eqs. (E.19)and (E.20) result in

kd

εdHd,y +

km

εmHm,y = 0, (E.22)

and

Hd,y = Hm,y (E.23)

The system of Eqs. (E.22) and (E.23) has a solution if the determinant is equalto zero:

εd

kd+

εm

km= 0 (E.24)

Equation (E.24) represents the surface plasmon condition [Pitarke et al. (2007)].The boundary conditions also require continuity of the two-dimensional wave vectorq‖ in Eq. (E.21), i.e., qd = qm = q. Based on this condition and combining Eq.(E.24) and Eq. (E.21) one arrives at

ε2d

(q2 − εm

ω2

c2

)= ε2

m

(q2 − εd

ω2

c2

). (E.25)

Equation (E.25) leads to another widely used form of the surface plasmon con-dition [Ritchie and Eldridge (1962); Ritchie (1973)]:

q(ω) =ω

c

√εdεm

εd + εm. (E.26)

For a metal–dielectric interface with the dielectric constant εd, the solution ω(q)of Eq. (E.26) has a slope equal to c/

√εd at the point q = 0 and is a monotonic

increasing function of q, which is always smaller than cq/√

εd and for a large q isasymptotic to the value given by the solution of

εd + εm = 0. (E.27)

This is the nonretarded surface plasmon condition that follows from Eq. (E.24)at kd = km = q. This is valid as long as the phase velocity is much smaller thanthe speed of light, i.e., ω/q � c.

It is instructive now to analyze the dispersion of the SPP propagation on theinterface between metal and dielectric. The q0 = ω/c equation represents the mag-nitude of the light wave vector. Assume that for the dielectric εd = 1. In this caseEq. (E.26) yields

q(ω) =ω

c

√ω2 − ω2

p

2ω2 − ω2p

. (E.28)

The dispersion relation described by Eq. (E.28) is represented in Fig. E.2[Hofmann (2008)].

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Appendix E 299

Fig. E.2 Bold solid lines represent the dispersion of light in the retarded (upper line) and thenonretarded surface plasmon polariton regions (lower line). By the thin line the dispersion of lightstriking the interface at different angles is shown. The thin horizontal lines indicate the values ofbulk ωp and surface plasmon frequencies ωs = ωp/

√2. (Adapted from [Hofmann (2008)]).

The upper solid line in Fig. E.2 represents the dispersion of light in solid. Thelower solid line is the surface plasmon polariton dispersion curve, which is given by

ω2(q) = ω2s + c2q2 −

√ω4

s + c4q4 (E.29)

where ωs = ωp/√

2 represents the classical nondispersive surface plasmon frequency.In the retarded region (q < ωs/c), the surface plasmon polariton dispersion curve

approaches the light line (ω = cq‖, see the thin line in Fig. E.2). At short wave-lengths where q‖ ωs/c the surface plasmon polariton approaches asymptoticallythe nonretarded surface plasmon frequency ωs = ωp/

√2 (see the horizontal dashed

line in Fig. E.2).Important conclusions can be made regarding the excitation of the surface plas-

mon polaritons corresponding to the lower branch in Fig. E.2. The wave vector ofthe SPPs has the value of the two-dimensional vector within the interface plane,q‖. Depending on the angle of incidence it varies from q‖ = 0 (normal incidence) to|q‖| = q‖ (for grazing incidence, qz = 0). The light dispersion will change from thevertical line to that given by ω = cq‖ (see Fig. E.2). For any other angle the light

dispersion is given by ω = c√

q2‖ + q2

z . Consequently, the light dispersion line andthe surface plasmon polariton dispersion curve never cross, and hence there cannotbe any excitation of SPP on an ideal interface considered above.

There are two basic approaches to generate SPP. It can be generated on a grat-ing. Additional periodic profile on the surface causes modifications of the wave

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

300 Appendix E

vector selection rules (like additional Bragg reflection in superlattices). Accord-ing to the superperiodicity the dispersion curve will get folded, crossing the lightdispersion line and thus allowing excitation of the SPPs. This has been observedexperimentally by Wood at the beginning of the last century [Wood (1902)], and hedescribed it as an “anomalous diffraction gratings” effect [Wood (1935)]. The sameeffect can be achieved by a rough surface that can be viewed as a superpositionof many gratings with different periodicities [Ritchie (1973); Venger et al. (1999);Raether (1988)]. The excitation of the SPPs via surface roughness is thought toplay a role in surface-enhanced Raman scattering (see Chapter 6).

The other way to achieve the coupling is to use an optical system where the valueof the photon wave vector will increase, thus reducing the slope of the curve. Opticalsystems with a total light reflection inside a prism mounted in a short distance overthe surface are widely used. In this case, an evanescent electric field penetrates thegap between prism and surface. The field decays exponentially because the wavevector contains an imaginary q value in the z direction (see the dashed line in Fig.E.2). The complex value of the light wave vector causes slope decrease of the lightdispersion curve in Fig. E.2 that results in the situation when the light dispersionline and the surface plasmon polariton dispersion curve cross, thus allowing theexcitation of the SPPs. Examples of the prism systems generating an evanescentlight field are shown in Figs. 3.20 and 10.3a. This design is widely used in SPR-based optical spectroscopic tools for materials characterization, biosensing, etc. (seesection 10.5).

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography

Achermann, M., Hollingsworth, J. A., and Klimov, V. I. (2003). Multiexcitons confinedwithin a subexcitonic volume: spectroscopic and dynamical signatures of neutraland charged biexcitons in ultrasmall semiconductor nanocrystals, Phys. Rev. B 68,p. 245302.

Adachi, S. (1999). Optical Constants of Crystalline and Amorphous Semiconductors: Nu-merical Data and Graphical Information (Kluwer Academic Publishers, Norwell,MA).

Adler, S. L. (1962). Quantum theory of the dielectric constant in real solid, Phys. Rev.126, p. 413.

Adolph, B., Gavrilenko, V. I., Tenelsen, K., Bechstedt, F., and Sole, R. D. (1996). Non-locality and many-body effects in the optical properties of semiconductors, Phys.Rev. B 53, p. 9797.

Agranovich, V. M., Shen, Y. R., Baughman, R. H., and Zakhidov, A. A. (2004). Linearand nonlinear wave propagation in negative refraction metamaterials, Phys. Rev. B69, p. 165112.

Aikens, C. M., Li, S., and Schatz, G. C. (2008). From discrete electronic states to plasmons:TDDFT optical absorption properties of Agn (n = 10, 20, 35, 56, 84, 120) tetrahedralcluster, J. Phys. Chem. C 112, p. 11272.

Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots, Science271, p. 933.

Alivisatos, A. P. (2004). The use of nanocrystals in biological detection, Nat. Biotechnol.22, p. 47.

Alivisatos, A. P., Gu, W., and Larabell, C. (2005). Quantum dots as cellular probes. Annu.Rev. Biomed. Eng. 7, p. 55.

Allen, P. M., and Bawendi, M. G. (2008). Ternary I–III–VI quantum dots luminescent inthe red to near-infrared, J. Am. Chem. Soc 130, p. 9240.

Alu, A., and Engheta, N. (2005). Achieving transparency with plasmonic and metamaterialcoatings, Phy. Rev. E 72, p. 016623.

Ando, T. (1997). Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, p. 1066.Ando, T., Fowler, A. B., and Stern, F. (1982). Electronic properties of two-dimensional

system, Rev. Mod. Phys. 54, p. 437.Andreani, L. C., Panzanini, G., and Gerard, J.-M. (1999). Strong-coupling

regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60,p. 13276.

Arici, E., Sariciftci, N. S., and Meissner, D. (2003). Hybrid solar cells based on nanopar-ticles of CuInS2 on organic matrices, Adv. Func. Mat. 13, p. 165.

301

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

302 Bibliography

Arnaud, B., and Alouani, M. (2001). Local-field and excitonic effects in the calcu-lated optical properties of semiconductors from first principles, Phys. Rev. B 63,p. 85208.

Arora, A. K., Rajalakshmi, M., Ravindran, T. R., and Sivasubramanian, V. (2007). Ramanspectroscopy of optical phonon confinement in nanostructured materials, J. RamanSpectr. 38, p. 604.

Asanuma, H., Noguchi, H., Uosaki, K., and Yu, H.-Z. (2008). Metal cation-induced de-formation of DNA self-assembled monolayers on silicon: vibrational sum frequencygeneration spectroscopy, JACS 130, p. 9016.

Ascencio, J. A., Perez-Alvarez, M., Molina, L. M., Santiago, P., and Jose-Yacaman, M.(2003). Structural models of inorganic fullerene-like structures, Surf. Sci. 526, p.243.

Aspnes, D. E. (1972). Linearized third-derivative spectroscopy with depletion-barrier mod-ulation, Phys. Rev. Lett 28, p. 913.

Ataka, K., and Heberle, J. (2003). Electrochemically induced surface-enhanced infrareddifference absorption (SEIDA) spectroscopy of a protein monolayer. J. Am. Chem.Soc. 125, p. 4986.

Ataka, K., and Heberle, J. (2004). Functional vibrational spectroscopy of a cytochromec monolayer: SEIDAS probes the interaction with different surface-modified elec-trodes. J. Am. Chem. Soc. 126, p. 9445.

Avramenko, V. G., Dolgova, T. V., Nikulin, A. A., Fedyanin, A. A., Aktsipetrov, O. A.,Pudonin, A. F., Sutyrin, A. G., Prohorov, D. Y., and Lomov, A. A. (2006).Subnanometer-scale size effects in electronic spectra of Si/SiO2 multiple quantumwells: Interferometric second-harmonic generation spectroscopy, Phys. Rev. B 73,p. 155231.

Bake, K. D., and R.Walt, D. (2008). Multiplexed spectroscopic detections, Ann. Rev. Anal.Chem. 1, p. 515.

Banin, U., Lee, J. C., Guzelian, A. A., Kadavanich, A. V., and Alivisatos, A. P. (1997).Exchange interaction in inas nanocrystal quantum dots, Superlattices Microstruct.22, p. 559.

Banin, U., and Millo, O. (2003). Tunneling and optical spectroscopy of semiconductodnanocrystals, Ann. Rev. Phys. Chem. 54, p. 465.

Bansal, A., Yang, H., Li, C., Cho, K., Benicewicz, B. C., Kumar, S. K., and Schadler,L. S. (2005). Quantitative equivalence between polymer nanocomposites and thinpolymer films, Nature Materials 4, p. 693.

Bardoux, R., Guillet, T., Gil, B., Lefebvre, P., Bretagnon, T., Taliercio, T., Rousset, S.,and Semond, F. (2008). Polarized emission from GaN/AlN quantum dots: single-dotspectroscopy and symmetry-based theory, Phys. Rev. B 77, p. 235315.

Barford, W. (2005). Electronic and Optical Properties of Conjugated Polymers (ClarendonPress, Oxford).

Barth, J. V., Costantini, G., and Kern, K. (2005). Engineering atomic and molecularnanostructures at surfaces, Nature 437, p. 671.

Bates, F. S., and Fredrickson, G. H. (1999). Block copolymers—designer soft materials,Phys. Today , 2, p. 32.

Baughman, R. H., Zakhidov, A. A., and Heer, W. A. (2002). Carbon nanotubes—the routetoward applications, Science 279, p. 787.

Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A. A., Forchel, A., Hawrylak, P.,Fafard, S., Hinzer, K., Reinecke, T. L., Walck, S. N., Reithmaier, J. P., Klopf, F., andSchafer, F. (2002). Fine structure of neutral and charged excitons in self-assembledIn(Ga)As/(Al)GaAs quantum dots, Phys. Rev. B 65, p. 195315.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 303

Bechstedt, F. (2003). Principles of Surface Physics (Springer, Berlin, Heidelberg).Bellessa, J., Voliotis, V., Grousson, R., Wang, X. L., Ogura, M., and Matsuhata, H. (1995).

High spatial resolution spectroscopy of a single V-shaped quantum wire, Appl. Phys.Lett. 71, p. 2481.

Benten, W., Nilius, N., Ernst, N., and Freud, H.-J. (2005). Phys. Rev. B 72, p. 045403.Bernardini, F., Fiorentini, V., and Vanderbilt, D. (1997). Spontaneous polarization and

piezoelectric constants of III–V nitrides, Phys. Rev. B 56, p. R10024.Bethe, H., and Salpeter, E. (1951). A relativistic equation for bound-state problems, Phys.

Rev. 84, p. 1232.Bhaviripudi, S., Qi, J., Hu, E. L., and Belche, A. M. (2006). Synthesis, characterization,

and optical properties of ordered arrays of IIi-nitride nanocrystals, Nano. Lett. 7,p. 3512.

Bir, G. L., and Pikus, G. E. (1975). Symmetry and Strain-Induced Effects in Semiconduc-tors (Wiley, New York).

Bloembergen, N. (1982). Nonlinear optics and spectroscopy, Rev. Mod. Phys. 54, p. 685.Bloembergen, N. (1965). Nonlinear Optics (Benjamin, New York).Boca, A., Miller, R., Birnbaum, K. M., Boozer, A. D., McKeever, J., and Kimble, H. J.

(2004). Observation of the vacuum Rabi spectrum for one trapped atom, Phys. Rev.Lett. 93, p. 233603.

Bohr, M. T. (2002). Nanotechnology goals and challenges for electronic applications. IEEETrans. Nanotechnol. 1, p. 52.

Boldt, K., Bruns, O. T., Gaponik, N., and Eychmuller, A. (2006). Comparative examina-tion of the stability of semiconductor quantum dots in various biochemical buffers,J. Phys. Chem. B 110, p. 1959.

Bongiorno, A., Pasquarello, A., Hybertson, M. S., and Feldman, L. C. (2003). Validity ofthe bond-energy picture for the energetics at Si–SiO2 interfaces, Phys. Rev. Lett. 90,p. 186101.

Borensztein, Y., Pluchery, O., and Witkowski, N. (2005). Probing the Si–Si dimer breakingof Si(100)2×1 surfaces upon molecule adsorption by optical spectroscopy, Phys. Rev.Lett. 95, p. 117402.

Born, M., and Wolf, E. (1999). The Principles of Optics, 7th edn. (Cambridge UniversityPress).

Bosbach, J., Martin, D., Stietz, F., Wenzel, T., and Trager, F. (1999). Laser-basedmethod for fabricating monodisperse metallic nanoparticles, Appl. Phys. Lett. 74,p. 2605.

Bowden, C. M., and Dowling, J. P. (1993). Near-dipole–dipole effects in dense media:generalized Maxwell–Bloch equation, Phys. Rev. A 47, p. 1247.

Boyd, G. T., Yu, Z. H., and Shen, Y. R. (1986). Photoinduced luminescence from noblemetals and its enhancement on rough surfaces, Phys. Rev. B 33, p. 7923.

Boyd, R. W. (1992). Nonlinear Optics (Academic Press).Brabec, C. J., Padinger, F., Sariciftci, N. S., and Hummelen, J. C. (1999). Photo-

voltaic properties of conjugated polymer/methanofullerene composites embeddedin a polystyrene matrix, J.Appl. Phys. 85, pp. 6866–6872.

Bradley, J. S., Hill, E. W., Chaudret, B., and Duteil, A. (2000). Surface chemistry on col-loidal metals. Reversible adsorbate-induced surface composition changes in colloidalpalladium–copper alloys, J. Phys. Chem. B 104, p. 2201.

Bredas, J.-L., Cornil, J., Beljonne, D., dos Santos, D. A., and Shuai, Z.(1999). Excited-state electronic structure of conjugated oligomers and polymers:A quantum-chemical approach to optical phenomena, Acc. Chem. Res. 32,p. 267.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

304 Bibliography

Bruchez, M., Moronne, M., P, P. G., Weiss, S., and Alivisatos, A. P. (1998). Semiconductornanocrystals as fluorescent biological labels, Science 281, p. 2013.

Brune, M., Hagley, E., Dreyer, J., Maitre, X., Maali, A., Wunderlich, C., Raimond, J. M.,and Haroche, S. (1996). Observing the progressive decoherence of the meter in aquantum measurement, Phys. Rev. Lett. 77, p. 4887.

Brus, L. E. (1983). A simple model for the ionization potential, electron affinity, andaqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79,p. 5566.

Brus, L. E. (1998). Chemical approaches to semiconductor nanocrystals, J. Phys. Chem.Solids 59, p. 459.

Brust, M., and Kiely, C. J. (2002). Some recent advances in nanostructure preparationfrom gold and silver particles: a short topical review, Colloids and Surfaces 202,p. 175.

Buczko, R., Pennycook, S. J., and Pandelides, S. T. (2000). Bonding arrangements at theSi–SiO2 and SiC–SiO2 interfaces and a possible origin of their contrasting properties,Phys. Rev. Lett. 84, p. 943.

Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A. (2005). Chemistry and propertiesof nanocrystals of different shapes, Chem. Rev. 105, p. 1025.

Burns, A. A., Vider, J., Ow, H., Herz, E., Penate-Medina, O., Baumgart, M., Larson,S. M., Wiesner, U., and Bradbury, M. (2008). Fluorescent silica nanoparticles withefficient urinary excretion for nanomedicine, Nano Lett. 9, p. 442.

Cabot, A., Smith, R. K., Yin, Y., Zheng, H., Reinhard, B. M., Liu, H., and Alivisatos,A. P. (2008). Sulfidation of cadmium at the nanoscale, ACSNano 2, p. 1452.

Caetano, E. W. S., Freire, V. N., Farias, G. A., and da Silva Jr., E. F. (2004). Excitonconfinement in InGaN/GaN cylindrical quantumwires, Brazilian J. Phys. 34, p. 702.

Cai, W., Chettiar, U. K., Kildishev, A. V., and Shalaev, V. M. (2007). Optical cloakingwith metamaterials, Nature Photonics 1, p. 224.

Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D. (1993).Identification of radiative transitions in highly porous silicon, J. Phys. C 5, p. L91.

Camden, J. P., Dieringer, J. A., Wang, Y., Masiello, D. J., Marks, L. D., Schatz, G. C., andDuyne, R. P. V. (2008). Probing the structure of single-molecule surface-enhancedRaman scattering hot spots, JACS 130, p. 12616.

Campbell, I. H., and Fauchet, P. M. (1986). The effects of microcrystal size and shape onthe one phonon Raman spectra of crystalline semiconductors, Solid State Commun.58, p. 739.

Cao, P., Sun, Y., and Gu, R. (2005). Investigations of chemisorption and reaction at non-aqueous electrochemical interfaces by in situ surface-enhanced Raman spectroscopy,J. Raman Spectr. 36, p. 725.

Cao, X., Li, C. M., Bao, H., Bao, Q., and Dong, H. (2007). Fabrication of strongly flu-orescent quantum dot-polymer composite in aqueous solution, Chem. Mater. 19,p. 3773.

Cardona, M. (1969). Modulation spectroscopy (Academic press).Cardona, M. (1982). Resonance phenomena, in M. Cardona and G. Guntherodt (eds.),

Light Scattering in Solids II, Topics Appl. Phys., Vol. 50 (Springer, Berlin, Heidel-berg), p. 19.

Cardona, M., Christensen, N. E., and Fasol, G. (1988). Relativistic band structureand spin-orbit splitting of zinc-blende-type semiconductors, Phys. Rev. B 38,p. 1806.

Cardona, M., Grimsditch, M., and Olego, D. (1979). Theoretical and experimental deter-mination of Raman scattering cross sections in simple solids, in J. L. Birman, H. Z.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 305

Cummins and K. K. Rebane (eds.), Light Scattering in Solids (Plenum, New York),p. 249.

Ceperley, D. M., and Adler, B. J. (1980). Ground state of electron gas by a stochasticmethod, Phys. Rev. Lett. 45, pp. 566–569.

Chamberlain, M. P., Trallero-Giner, C., and Cardona, M. (1995). Theory of on-phonon Raman scattering in semiconductor microcrystallites, Phys. Rev. B 51,p. 1680.

Chan, W. C. W., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., and Nie, S. (2002).Luminescent quantum dots for multiplexed biological detection and imaging, Curr.Op. Biotechn. 13, p. 40.

Chen, Y.-H., Tseng, Y.-H., and Yeh, C.-S. (2002). Laser-induced alloying AuPd and AgPdcolloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles, J.Mater. Chem. 12, p. 1419.

Cheng, W., and Ren, S.-F. (2002). Calculations on the size effects of Raman intensities ofsilicon quantum dots, Phys. Rev. B 65, p. 205305.

Cheng, W., Ren, S.-F., and Yu, P. Y. (2003). Theoretical investigation of the surfacevibrational modes in germanium nanocrystals, Phys. Rev. B 68, p. 193309.

Cocoletzi, G. H., and Mochan, W. L. (2005). Excitons: from excitations at surfaces toconfinement in nanostructures, Surf. Sci. Rep. 57, p. 1.

Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. (1992). Atom-Photon Interac-tions (John Wiley and Sons, New York).

Comas, F., and Trallero-Giner, C. (2003). Interface optical phonons in spherical quantum-dot/quantum-well heterostructures, Phys. Rev. B 67, p. 115301.

Cooper, M. (2002). Optical biosensors in drug discovery, Nature Review. Drug Discovery515, p. 1.

Coropceanu, V., Cornil, J., da Silva Fino, D. A., Oliver, Y., Silbey, R., and Bredas, J.-L.(2007). Charge transport in organic semiconductors, Chem. Rev. 107, p. 926.

Crozier, K. B., Sundaramurthy, A., Kino, G. S., and Quate, C. F. (2003). Optical antennas:resonators for local field enhancement, J. Appl. Phys. 94, p. 4632.

Cumberland, S. L., Berettini, M. G., Javier, A., and Strouse, G. F. (2003). Synthesis andcharacterization of a 1:6 Au–CdSe nanocomposite, Chem. Mater. 15, p. 1047.

Cummings, F. W. (1965). Stimulated emission of radiation in a single mode, Phys. Rev.140, p. A1051.

Czajkowski, G., Bassani, F., and Silvestry, L. (2001). Electric and magnetic field effects onoptical properties of excitons in parabolic quantum wells and quantum dots, Phys.Stat. Sol. (a) 188, p. 1281.

Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heone, J. R., Mattousi, H., Ober,R., Jensen, K. F., and Bawedi, M. G. (1997). (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites,J. Phys. Chem. 101, p. 9463.

Dai, H. (2002). Carbon nanotubes: opportunities and challenges, Surf. Sci. 500, p. 218.Dai, Z. R., Sun, S., and Wang, Z. L. (2001). Phase transformation, coalescence, and

twinning of monodisperse FePt nanocrystals, Nano Lett. 1, p. 443.Daniel, M.-C., and Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chem-

istry, quantum-size-related properties, and applications toward biology, catalysis,and nanotechnology, Chem. Rev. 104, p. 293.

Davis, M. E. (2002). Ordered porous materials for emerging applications, Nature 417,p. 813.

Davydov, A. S. (1976). Quantum mechanics, 2nd edn. (Pergamon Press, New York).Davydov, A. S. (1980). Solid State Theory (Academic Press, New York).

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

306 Bibliography

Davydov, V. Y., Klochikhin, A. A., Emtsev, V. V., Kurdyukov, D. A., Ivanov, S. V.,Vekshin, V. A., Bechstedt, F., Furthmuller, J., Aderhold, J., Graul, J., Mudryi,A. V., Harima, H., Hashimoto, A., Yamamoto, A., and Haller, E. E. (2002a). Bandgap of hexagonal InN and InGaN alloys, Physica Status Solidi (b) 234, p. 787.

Davydov, V. Y., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt,F., Furthmuller, J., Harima, H., Mudryi, A. V., Aderhold, J., Semchinova, O., andGraul, J. (2002b). Absorption and emission of hexagonal InN. Evidence of narrowfundamental band gap, Physica Status Solidi (b) 229, p. R1.

Deng, D., and Lee, J. Y. (2008). Hollow core-shell mesospheres of crystalline SnO2 nanopar-ticle aggregates for high capacity Li+ ion storage, Chem. Mat. 20, p. 1841.

Delerue, C., Lannoo, M., and Allan, G. (2000). Excitonic and Quasiparticle Gap in SiNanocrystals, Phys. Rev. Lett, 84, p. 2457.

Depine, R. A., and Lakhtakia, A. (2004). A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity, Microwave Opt. Technol. Lett.41, p. 315.

Devaty, R. P., and Choyke, W. J. (1997). Optical characterization of silicon carbide poly-types, Phys. Stat. Sol. (b) 162, p. 5.

Dieringer, J. A., Wustholz, K. L., Masiello, D. J., Camden, J. P., Kleinman, S. L., Schatz,G. C., and Duyne, R. P. V. (2009). Surface-enhanced Raman excitation spectroscopyof a single rhodamine 6G molecule, JACS 131, p. 849.

DiLella, D. P., Gohin, A., Lipson, R. H., McBreen, P., and Moskovitz, M. (1980). EnhancedRaman spectroscopy of CO adsorbed on vapor-deposited silver, J. Chem. Phys. 73,p. 4282.

Dmitriev, A., Hagglund, C., Chen, S., Fredriksson, H., Pakizeh, T., Kall, M., and Suther-land, D. S. (2008). Biomolecular recognition based on single gold nanoparticle lightscattering, Nano Lett. 8, p. 3893.

Dong, L., Subramanian, A., and Nelson, B. J. (2007). Carbonanotubes for nanorobotic,Nano Today 2, p. 12.

Dovbeshko, G. I., Chegel, V. I., Gridina, N. Y., Repnytska, O. P., Shirshov, Y. M., andTryndiak, V. P. (2002). Surface enhanced IR absorption of nucleic acids from tumorcells: FTIR reflectance study. Biopolymers 67, p. 470.

Downer, M. C. (2002). A new low for nonlinear optics, Science 298, p. 373.Downer, M. C., Mendoza, B. S., and Gavrilenko, V. I. (2001). Optical second harmonic

spectroscopy of semiconductor surfaces: advances in microscopic understanding,Surf. Interf. Anal. 31, pp. 966–986.

Drachev, V. P., Chettiar, U. K., Kildishev, A. V., Yuan, H.-K., Cai, W., and Shalaev,V. M. (2008). The Ag dielectric function in plasmonic metamaterials, Opt. Expr.16, p. 1186.

Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Jorio, A. (2007). Exciton photophysicsof carbon nanotubes, Annu. Rev. Phys. Chem. 58, p. 719.

Dubach, J. M., Harjes, D. I., and Clark, H. A. (2007). Ion-selective nano-optodes incorpo-rating quantum dots, JACS. 129, p. 8418.

Dubrovsky, G. B., and Beljavskii, V. I. (1981). Selection rules and absorption lineshapesfor electron transitions between minizones in a superlattice, Phys. Stat. Sol. (b) 103,p. 131.

Dubrovsky, G. B., Lepneva, A. A., and Radovanova, E. I. (1973). Optical absorptionassociated with superlattice in silicon carbide crystals, Phys. Stat. Sol. (b) 57,p. 423.

Dubrovsky, G. B., and Radovanova, E. I. (1968). Optical absorption in n-type α-SiC 6Hnear 0.6 μm, Phys. Lett. 28, p. 283.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 307

Duval, E. (1992). Far-infrared and Raman vibrational transitions of a solid sphere: selec-tion rules, Phys. Rev. B 46, p. 5795.

Efros, A. L., and Efros, A. L. (1982). Interband absorption of light in a semiconductorsphere, Sov. Phys. Semicond. 16, p. 772.

Efros, A. L., and Rosen, M. (2000). The electronic structure of semiconductor nanocrystals,Annu. Rev. Mater. Sci. 30, p. 475.

Efros, A. L., Rosen, M., Kuno, M., Nirmal, M., Norris, D. J., and Bawendi, M. (1996).Band-edge exciton in quantum dots of semiconductors with a degenerate valenceband: dark and bright exciton states, Phys. Rev. B 54, p. 4843.

Elliott, R. J. (1957). Intensity of optical absorption of excitons, Phys. Rev. 108, p. 1384.Emory, S. R., Haskins, W. E., and Nie, S. (1998). Direct observation of size-dependent

optical enhancement in single metal nanoparticles, J. Am. Chem. Soc. 120, p. 8009.Empedocles, S. A., Norris, D. J., and Bawendi, M. G. (1996). Photoluminescence spec-

troscopy of single cdse nanocrystallite quantum dots, Phys. Rev. Lett 1996, p. 3873.Engheta, N., Salandrino, A. and Alu, A. (2005). Circuit elements at optical frequencies:

nanoinductors, nanocapacitors, and nanoresistors, Phy. Rev. Lett. 95, p. 095504.Englebienne, P., Hoonacker, A. V., and Verhas, M. (2003). Surface plasmon resonance:

principles, methods and applications in biomedical sciences, Spectrosc. 255, p. 17.Erley, G., and Daum, W. (1998). Silicon interband transitions observed at Si(100)–SiO2

interfaces, Phys. Rev. B 58, p. R1734.Faraday, M. (1857). Experimental relations of gold (and other metals) to light, Philos.

Trans. 147, p. 145.Fernandez–Arguelles, M. T., Yakovlev, A., Sperling, R. A., Luccardini, C., Gaillard, S.,

Medel, A. S., Mallet, J.-M., Brochon, J.-C., Feltz, A., Oheim, M., and Parak, W. J.(2007). Synthesis and characterization of polymer-coated quantum dots with inte-grated acceptor dyes as FRET-based nanoprobes, Nano Lett. 7, p. 2316.

Fernandez-Garcia, M., Wang, X., Belver, C., Hanson, J. C., and Rodriguez, J. A. (2007).Anatase–TiO nanomaterials: morphological/Size dependence of the crystallizationand phase behavior phenomena, J. Phys. Chem. C 111, p. 674.

Ferretti, A., Ruini, A., Molinari, E., and Caldas, M. J. (2003). Electronic properties ofpolymer crystals: the effect of interchain interactions, PRL 90, 8, p. 086401.

Feynman, R. P., Metropolis, N., and Teller, E. (1949). Equations of state of elements basedon the generalized Thomas–Fermi theory, Phys. Rev. 75, pp. 1561–1573.

Fink, Y., Urbas, A. M., Bawendi, M. G., Joannopoulos, J. D., and Thomas, E. L.(1999). Block copolymers as photonic bandgap materials, J. Lightwave Techn. 17,p. 1963.

Fleischer, K., Chandola, S., Esser, N., Richter, W., and McGilp, J. F. (2007). Surfacephonons of the Si(111): In-(4×1) and (8×2) phases, Phys. Rev. B 76, p. 205406.

Fojtik, A., and Henglein, A. (2006). Surface chemistry of luminescent colloidal siliconnanoparticles, J. Phys. Chem. B 110, p. 1994.

Foss, C. A., Hornyak, G. L., Stockert, J. A., and Martin, C. R. (1994). Template-synthesized nanoscopic gold particles: optical spectra and the effects of particlesize and shape, J. Phys. Chem. 98, p. 2963.

Fox, M. (2003). Optical Properties of Solids, 2nd edn. (Oxford University Press, New York).Franceschetti, A., Fu, H., Wang, L. W., and Zunger, A. (1999). Many-body pseudopoten-

tial theory of excitons in inp and cdse quantum dots, Phys. Rev. B 60, p. 1819.Freund, H.-J. (2002). Clusters and islands on oxides: from catalysis via electronics and

magnetism to optics, Surf.Sci. 500, p. 271.Fu, H., Ozolins, V., and Zunger, A. (1999). Phonons in GaP quantum dots, Phys. Rev. B

59, p. 2881.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

308 Bibliography

Fuchs, F., Schmidt, W. G., and Bechstedt, F. (2005). Understanding the optical anisotropyof oxidized Si(001) surfaces, Phys. Rev. B 72, p. 075353.

Fuchs, M., and Scheffler, M. (1999). Ab initio pseudopotentials for electronic structurecalculations of poly-atomic systems using density-functional theory, Comp. Phys.Commun. 119, p. 67.

Ganeev, R. A., Baba, M., Morita, M., Rau, D., Fujii, H., Ryasnyansky, A. I., Ishizawa,N., Suzuki, M., and Kuroda, H. (2004). Nonlinear optical properties of CdS and ZnSnanoparticles doped into zirconium oxide films, J. Opt. A 6, p. 447.

Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals (CambridgeUniversity Press).

Garca-Vidal, F. J. (2007). Nano-optics. Orient yourself, Nature.Photonics 1, p. 13.Gavrilenko, A. V., Black, S. M., Sykes, A. C., Bonner, C. E., and Gavrilenko, V. I.

(2008a). Computations of ground state and excitation energies of poly(3-methoxy-thiophene) and poly(thienylene vinylene) from first principles, in M. B. et al. (ed.),Lecture Notes in Computational Science, ICCS LNCS 5102, Vol. Part II (Springer),p. 396.

Gavrilenko, A. V., Matos, T. D., Bonner, C. E., Sun, S.-S., Zhang, C., and Gavrilenko,V. I. (2008b). Optical absorption of poly(thienylene vinylene)-conjugated polymers:experiment and first principle theory, J. Phys. Chem. C 112, p. 7908.

Gavrilenko, V. I. (1995). Calculated differential reflectance of the (110) surface of cubicsilicon carbide, Appl. Phys. Lett. 67, p. 16.

Gavrilenko, V. I. (2001). Ab initio theory of second harmonic generation from semicon-ductor surfaces and interfaces, Physica Status Solidi (a) 188, p. 1267.

Gavrilenko, V. I. (2006). Lecture Notes in Computer Science, chap. Ab initio Modeling ofOptical Properties of Organic Molecules and Molecular Complexes (Springer-Verlag),pp. 89–96.

Gavrilenko, V. I. (2008). Differential reflectance and second harmonic generation of theSi/SiO2 interface from first principles, Phys. Rev. B 77, p. 075811.

Gavrilenko, V. I. (2009). Optics of nanostructured materials from first principles, in M. A.Noginov, M. W. McCall, G. Dewar and N. I. Zheludev (eds.), Tutorials in ComplexPhotonic Media, chap. 15 (SPIE Press, Bellingham), pp. 479–524.

Gavrilenko, V. I., and Bechstedt, F. (1997). Optical functions of semiconductors beyonddensity functional theory, Phys. Rev. B 55, p. 4343.

Gavrilenko, V. I., Frolov, S. I., and Klyui, N. I. (1993). Energy band structure and opticalproperties of cubic silicon carbide crystals, Physica B 185, p. 394.

Gavrilenko, V. I., and Koch, F. (1995). Electronic structure of nanometer-thickness Si(001)film, J. Appl. Phys. 77, p. 3288.

Gavrilenko, V. I., Martinez, D., Cantarero, A., Cardona, M., and Trallero-Giner, C.(1990a). Resonant first- and second-order Raman scattering of AlSb, Phys. Rev.B 42, p. 11718.

Gavrilenko, V. I., and Noginov, M. A. (2006). Ab initio study of optical properties ofRhodamine 6G molecular dimers, J. Chem. Phys. 124, p. 44301.

Gavrilenko, V. I., Postnikov, A. V., Klyui, N. I., and Litovchenko, V. G. (1990b). Energyband structure and optical properties of wurtzite-structure silicon carbide crystals,Phys. Stat. Sol. (b) 162, p. 477.

Gavrilenko, V. I., and Wu, R. Q. (2000). Linear and nonlinear optical properties of group-III nitrides, Phys. Rev. B 61, p. 2632.

Gavrilenko, V. I., Wu, R. Q., Downer, M. C., Ekerdt, J. G., Lim, D., and Parkinson,P. (2000). Optical second harmonic spectra of silicon-adatom surfaces: theory andexperiment, Thin Solid Films 364, p. 1.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 309

Gavrilenko, V. I., Wu, R. Q., Downer, M. C., Ekerdt, J. G., Lim, D., and Parkinson, P.(2001). Optical second-harmonic spectra of Si(001) with H and Ge adatoms: First-principles theory and experiment, Phys. Rev. B 63, p. 165325.

Gebeyehua, D., Brabec, C. J., Sariciftcia, N. S., Vangeneugdenb, D., Kieboomsb, R.,Vanderzandeb, D., Kienbergerc, F., and Schindler, H. (2001). Hybrid solar cellsbased on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers ashole transport materials, Synth. Met. 125, p. 279.

Gerard, J., and Gayral, B. (2001). InAs quantumdots: artificial atoms for solid-statecavity-quantum electrodynamics, Physica E 9, p. 131.

Gerry, C., and Knight, P. (2005). Introductory Quantum Optics (Cambridge UniversityPress, Cambridge).

Gill, I., and Ballesteros, A. (1998). Encapsulation of biologicals within silicate, siloxane,and hybrid sol–gel polymers: an efficient and generic approach, J. Ams. Chem. Soc.120, p. 8587.

Glinka, Y. D., Lin, S.-H., and Chen, Y.-T. (2002). Time-resolved photoluminescence studyof silica nanoparticles as compared to bulk type-III fused silica, Phys. Rev. B 66,p. 035404.

Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fisher, J. E., Yi, B., Foley, H. C., and Barsoum,M. W. (2003). Nanoporous carbide-derived carbon with tunable pore size, NatureMaterials 2, p. 591.

Gonzalez-Aguilar, J., Moreno, M., and Fulcheri, L. (2007). Carbon nanostructures pro-duction by gas-phase plasma processes at atmospheric pressure, J. Phys. D 40,p. 2361.

Goodman, M. D., Xu, J., Wang, J., and Lin, Z. (2007). Synthesis and characteriza-tion of polymer-coated quantum dots with integrated acceptor dyes as FRET-basednanoprobes, Nano Lett. 7, p. 2316.

Gouadec, G., and Colomban, P. (2007). Raman spectroscopy of nanostructures and nano-sized materials, J. Raman Spectr. 38, p. 598.

Greenaway, D. L., Habbeke, G., Bassani, F., and Tosatti, E. (1969). Anisotropy of theoptical constants and the band structure of graphite, Phys. Rev 178, p. 1340.

Gross, E., Kovalev, D., Kunzner, N., Timoshenko, V. Y., Diener, J., and Koch, F. (2001).Highly sensitive recognition element based on birefringent porous silicon layers, J.Appl. Phys. 90, p. 3529.

Gubin, S. P. (2002). Metalcontaining nano-particles within polymeric matrices: prepara-tion, structure, and properties, Colloids and Surfaces 202, p. 155.

Gunes, S., Neugebauer, H., Sariciftci, N. S., Roither, J., Kovalenko, M., Pillwein, G., andHeiss, W. (2006). Hybrid solar cells using HgTe nanocrystals and nanoporous TiO2

electrodes, Adv. Func. Mat. 16, p. 1095.Gunes, S., Neugebaurer, H., and Sariciftci, N. S. (2007). Conjugated polymer-based solar

cells, Chem. Rev. 107, p. 1324.Gupta, S., Kang, H., Strassburg, M., Asghar, A., Kane, M., Fenwick, W. E., Dietz, N.,

and Ferguson, I. T. (2006). A nucleation study of group III-nitride multifunctionalnanostructures, J. Cr. Growth 287, p. 596.

Gustafsson, A., Reinhardt, F., Biasiol, G., and Kapon, E. (1995). Low-pressureorganometallic chemical vapor deposition of quantum wires on V-grooved substrates,Appl. Phys. Lett. 67, p. 3673.

Hambrock, J., Schroter, M. K., Birkner, A., Woll, C., and Fischer, R. A. (2003).Nano-brass: bimetallic copper/zinc colloids by a nonaqueous organometallicroute using [Cu(OCH(Me)CH2NMe2)2] and Et2Zn as precursors, Chem. Mat. 15,p. 4217.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

310 Bibliography

Hammer, N. I., Emrick, T., and Barnes, M. D. (2007). Quantum dots coordinated withconjugated organic ligands: new nanomaterials with novel photophysics, NanoscaleRes. Lett. 2, p. 282.

Hansen, K. H., Worren, T., Stempel, S., Legsgaard, E., Baumer, M., Freund, H.-J., Besen-bacher, F., and Stensgaard, I. (1999). Palladium nanocrystals on Al2O3: structureand adhesion energy, Phys. Rev. Lett. 83, p. 4120.

Hartstein, A., Kirtley, J. R., and Tsang, J. C. (1980). Enhancement of the infrared ab-sorption from molecular monolayers with thin metal overlayers, Phys. Rev. Lett. 45,p. 201.

Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S. (2004). Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes,Science 306, p. 1362.

Henglein, A. (2000). Preparation and optical absorption spectra of AucorePtshell andPtcoreAushell colloidal nanoparticles in aquenous solution, J. Phys. Chem. B 104,p. 2201.

Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atature, M., Gulde, S., Falt, S.,Hu, E. L., and Imamoglu, A. (2007). Quantum nature of a strongly coupled singlequantum dot-cavity system, Nature 445, p. 896.

Henry, C. R. (2005). Morphology of supported nanoparticles, Rep. Surf. Sci. 80, p. 92.Hersee, S. D., Sun, X., and Wang, X. (2006). The controlled growth of GaN nanowires,

Nano Letters 6, p. 1808.Herz, E., Ow, H., Bonner, D., Burns, A., and Wiesner, U. (2009). Dye structure-optical

property correlations in near-infrared fluorescent core-shell silica nanoparticles,J. Mater. Chem. 19, p. 6341.

Hilton, P., Goodwin, J., Harrison, P., and Hagston, W. E. (1992). Theory of exciton energylevels in multiply periodic systems, J. Phys. A 25, p. 5365.

Hines, M. A., and Guyot-Sionnest, P. (1996). Synthesis and characterization of stronglyluminescing ZnS-capped CdSe nanocrystals, J. Phys. Chem. 100, p. 468.

Hoa, X., Kirk, A., and Tabrizian, M. (2007). Towards integrated and sensitive surfaceplasmon resonance biosensors: a review of recent progress, Biosens. Bioelectr. 23,p. 151.

Hofmann, P. (2008). Solid State Physics (RSC Publishing, Berlin).Hohenberg, P., and Kohn, W. (1964). Inhomogeneous electron gas, Phys. Rev. 136,

pp. B864–B871.Holder, E., Tesslerb, N., and Rogach, A. L. (2008). Hybrid nanocomposite materials with

organic and inorganic components for opto-electronic devices, J. Mater. Chem., 18,p. 1064.

Hornyak, G. L., Patrissi, C. J., and Martin, C. R. (1997). Fabrication, characterization,and optical properties of gold nanoparticle/porous alumina composites: The non-scattering Maxwell-Garnett limit, J. Phys. Chem. B 101, p. 1548.

Howes, B. D., Guerrini, L., Sanchez-Cortes, S., Marzocchi, M. P., Garcia-Ramos, J. V., andSmulevich, G. (2007). The influence of pH and anions on the adsorption mechanismof rifampicin on silver colloids, J. Raman Spectr. 38, p. 859.

Hu, Y. Z., Lindberg, M., and Koch, S. W. (1990). Theory of optically excited intrinsicsemiconductor quantum dots, Phys. Rev. B. 42, p. 1713.

Huang, S.-P., Wu, D.-S., Hu, J.-M., Zhang, H., Xie, Z., Hu, H., and Cheng, W.-D. (2007).First-principles study: size-dependent optical properties for semiconducting siliconcarbide nanotubes, Optics Express 15, p. 10947.

Hughes, J. L. P., and Sipe, J. E. (1996). Calculation of second-order optical response insemiconductors, Phys. Rev. B 53, p. 10751.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 311

Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., Sieger, P.,Firouzi, A., Chmelka, B. F., Schuth, F., and Stucky, G. (1994). Organic-inorganicscomposites, Chem. Mater. 6, p. 1176.

Huynh, W. U., Dittmer, J. J., and Alivisatos, A. P. (2002). Hybrid nanorod-polymer solarcells, Science 295, p. 2425.

Hwang, Y.-N., Je, K.-C., Kim, D., and Park, S.-H. (2001). Observation of enhanced biex-citonic effect in semiconductor nanocrystals, Phys. Rev. B 64, p. 041305.

Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature 354, p. 56.Iijima, S., and Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter, Nature

363, p. 603.Ikezawa, M., Okuno, T., Masumoto, Y., and Lipovskii, A. A. (2001). Complementary

detection of confined acoustic phonons in quantum dots by coherent phonon mea-surement and Raman scattering, Phys. Rev. B 64, p. 201315R.

Ikushima, A. J., Fujiwara, T., and Saito, K. (2000). Silica glass: A material for photonics,J. Appl. Phys. 88, p. 1201.

Incze, A., Sole, R. D., and Onida, G. (2005). Ab initio study of reflectance anisotropyspectra of a submonolayer oxidized Si(100) surface, Phys. Rev. B 71, p. 35350.

Jackson, J. D. (1975). Classical Electrodynamics, 2nd edn. (Wiley, New York).Jackson, J. D. (1998). Classical Electrodynamics, 3rd edn. (Wiley, New York).Jacobsohn, M., and Banin, U. (2000). Size dependence of second harmonic generation in

CdSe nanocrystal quantum dots, J. Phys. Chem. B 104, p. 1.Jaynes, E. T., and Cummins, F. W. (1963). Comparison of quantum and semiclassical

radiation theories with application to the beam maser, Proc. IEEE 51, p. 89.Jensen, L., and Schatz, G. C. (2006). Resonance Raman scattering of Rhodamine 6G as

calculated using time-dependent density functional theory, J. Phys. Chem. A 110,p. 5973.

Jensen, T. R., van Duyne, R. P., Johnson, S. A., and Maroni, V. A. (2000). Surface-enhanced infrared spectroscopy: a comparison of metal island films with discreteand nondiscrete surface plasmons. Appl. Spectrosc. 54, p. 371.

Jiang, J., Bosnick, K., Maillard, M., and Brus, L. (2003). Single molecule Raman spec-troscopy at the junctions of large Ag nanocrystals, J. Phys. Chem. B 107, p. 9964.

Jin, R., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C., and Zheng, J. G. (2001).Photoinduced conversion of silver nanospheres to nanoprisms, Science. 294, p. 1901.

Joachim, C. (2005). To be or not to be nano, Nature Materials 4, p. 107.Joannopoulos, J. D., Meade, R. D., and Winn, J. N. (1995). Photonoc Crystals: Molding

the Flow of Light (Princton university press).Johansson, P., Xu, H. and Kall, M. (2005). Surface-enhanced Raman scattering and fluo-

rescence near metal nanoparticles, Phys. Rev. B 72, p. 035427.Johnson, P. B., and Christy, E. W. (1972). Optical constants of the noble metals, Phys.

Rev. B 6, p. 4370.Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., and Ha, T. (2008). Advances in

single-molecule fluorescence methods for molecular biology, Ann. Rev. Biochem. 77,p. 51.

Juarez, B. H., Klinke, C., Kornovski, A., and Weller, H. (2007). Quantum dot attachmentand morphology control by carbon nanotubes, Nano Leters 7, p. 3564.

Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N., and Yee, S. S. (1998).Quantitative interpretation of the response of surface plasmon resonance sensors toadsorbed films, Langmuir 14, p. 5636.

Kambhampati, P., and Campion, A. (1999). Surface enhanced Raman scattering as a probeof adsorbate-substrate charge-transfer excitations. Surf. Sci. 427–428, p. 115.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

312 Bibliography

Kapon, E., Hwang, D. M., and Bhat, R. (1989). Stimulated emission in semiconductorquantum wire heterostructures, Phys. Rev. Lett. 63, p. 430.

Kasai, H., Oikawa, H., and Nakanishi, H. (2000). Chemistry for the 21st century, inH. Masuhara and F. C. DeSchryver (eds.), Organic Mesoscopic Chemistry (BlackwellScience, Oxford), p. 145.

Kasha, M. (1959). Relation between exciton bands and conduction bands in molecularlamellar systems, Rev. Mod. Phys. 31, p. 162.

Kasuya, A., Sivamonah, R., Barnakov, Y. A., Dmitruk, I. M., Nirasawa, T., Romanyuk,V. R., Kumar, V., Mamykin, S. V., Tohli, K., Jeyadevan, B., Shinoda, K., Kudo,T., Terasaki, O., Liu, Z., Belosludov, R. V., Sundararayan, V., and Kawazoe, Y.(2004). Ultra-stable nanoparticles of CdSe revealed from mass spectrometry, NatureMaterials 3, p. 99.

Katari, J. E. B., Colvin, V. L., and Alivisatos, A. P. (1994). X-ray photoelectron spec-troscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface,J. Phys. Chem. 98, p. 4109.

Katsnelson, M. I. (2007). Graphene: carbon in two dimensions, Materials Today 10,p. 20.

Katz, D., Millo, O., Levi, Y., Banin, U., and Cao, Y. W. (2000). Size-dependent tunnelingspectroscopy of inas nanocrystals, Physics B 284-288, p. 1760.

Kayanuma, Y. (1988). Quantum-size effects of interacting electrons and holes in semicon-ductor microcrystals with spherical shape, Phys. Rev. B 38, p. 9797.

Kelley, A. M. (2008). A molecular spectroscopic view of surface plasmon enhanced reso-nance Raman scattering, J. Chem. Phys. 128, p. 224702.

Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G. C. (2003). The optical propertiesof metal nanoparticles: the influence of size, shape, and dielectric environment,J. Phys. Chem. B 107, p. 668.

Kiefer, W. (2008). Recent advances in linear and nonlinear Raman spectroscopy, J. RamanSpectr. 39, p. 1710.

Kikteva, T., Star, D., Zhao, Z., Baislev, T. L., and Leach, G. W. (1999). Molecular ori-entation, aggregation, and order in rhodamine films at the fused silica/air interface,J. Phys. Chem. B 103, p. 1124.

Kildishev, A. V., and Shalaev, V. M. (2006). Negative refractive index in optics of metaldi-electric composites. J. Opt. Soc. Am. B 23, p. 423.

Kim, D., Hwang, Y., Cheong, S. I., Lee, J. K., Hong, D., Moon, S., Lee, J. E., and Kim,S. H. (2008a). Production and characterization of carbon nano colloid via one-stepelectrochemical method, J. Nanopart. Res. 10, p. 1121.

Kim, S., Jin, J., Kim, Y.-J., Park, I.-Y., Kim, Y., and Kim, S.-W. (2008b). High-harmonicgeneration by resonant plasmon field enhancement, Nature 453, p. 757.

Kiraz, A., Reese, C., Gayral, B., Zhang, L., Schoenfeld, W. V., Gerardot, B. D., Petroff,P. M., Hu, E. L., and Imamoglu, A. (2003). Cavity-quantum electrodynamics withquantum dots, J. Opt. B 5, p. 129.

Klein, M. C., Hache, F., Ricard, D., and Flytzanis, C. (1990). Size dependence of electron–phonon coupling in semiconductor nanospheres: the case of CdSe, Phys. Rev. B 42,p. 11123.

Klein, M. W., Enkrich, C., Wegener, M., and Linden, S. (2006). Second-harmonic genera-tion from magnetic metamaterials, Science 313, p. 502.

Klevenz, M., Neubrech, F., Lovrincic, R., Jalochowski, M., and Pucci, A. (2008). Infraredresonances of self-assembled pb nanorods, Appl. Phys. Lett. 92, p. 133116.

Klimov, V., Hunsche, S., and Kurz, H. (1994). Biexciton effects in femtosecond nonlineartransmission of semiconductor quantum dots. Phys. Rev. B 50, p. 8110.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 313

Klimov, V. I. (2007). Spectral and dynamical properties of multiexcitons in semiconductornanocrystals, Annu. Rev. Phys. Chem. 58, p. 635.

Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A., and Bawendi,M. G. (2000). Mechanisms for intraband energy relaxation in semiconductor quan-tum dots: The role of electron–hole interactions, Phys. Rev. B 61, p. R13349.

Klitgaard, S. K., Egeblad, K., Haahr, L. T., Hansen, M. K., Hansen, D., Svagin, J.,and Christensen, C. H. (2007). Self-assembly of C60 into highly ordered chain-likestructures on HOPG observed at ambient conditions, Surf. Sci. 607, p. L35.

Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S. (1999). Ultrasensitivechemical analysis by Raman spectroscopy, Chem. Rev. 99, p. 2957.

Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., and Feld,M. S. (1997). Single molecule detection using Surface-enhanced Raman scattering(SERS), Phys. Rev. Lett. 78, p. 1667.

Knox, R. S. (1963). Theory of Excitons, Solid State Physics Supplement, Vol. 5 (AcademicPress).

Koch, F., Petrova-Koch, V., Mushik, T., Nikolov, A., and Gavrilenko, V. (1993). Someperspectives on the luminescence mechanism via surface-confined states of porousSi, Proceedings of MRS 283, p. 197.

Kohn, W. (1999). Electronic structure of matter—wave functions and density functionals,Rev. Mod. Phys. 71, pp. 1253–1266.

Kohn, W., and Sham, L. J. (1965). Self-consistent equations including exchange and cor-relation effects, Phys. Rev. 140, p. A1133.

Kolasinski, K. W. (2008). Surface Science: Foundation of Catalysis Nanoscience, 2nd edn.(Wiley, New York).

Kolasinski, K. W., Aindow, M., Barnard, J. C., Ganguly, S., Koker, L., Wellner, A.,Palmer, R. E., Field, C., Hamley, P., and Poliakoff, M. (2000). On the role of the porefilling medium in photoluminescence from photochemically etched porous silicon,J. Appl. Phys. 88, p. 2472.

Kosacki, I., Suzuki, T., Anderson, H. U., and Colomban, P. (2002). Raman scattering andlattice defects in nanocrystalline CeO2 thin films, Sol. St. Ionics 149, p. 99.

Kovalev, D., Heckler, H., Polisski, G., and Koch, F. (1999). Optical properties of Sinanocrystals, Phys. Stat. Sol. (b) 215, p. 871.

Kreibig, U., and Vollmer, M. (1995). Optical Properties of Metal Clusters (Springer Seriesin Material Science 25, Springer, Berlin).

Kresse, G., and Furthmuller, J. (1996). Effciency of ab initio total energy calculationsfor metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6,p. 15.

Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E. (1985). C60:Buckminsterfullerene, Nature 318, p. 162.

Kuhner, G., and Voll, M. (1993). Manufacture of Carbon Black, Vol. Carbon Black, 2ndedn. (Dekker, New York).

Kulawik, M., Nilius, N., and Freud, H.-J. (2006). Influence of the metal substrate on theadsorption properties of thin oxide layers: Au atoms on a thin alumina film onNiAl(110), Phys. Rev. Lett. 96, p. 036103.

Kulzer, F., and Orrit, M. (2004). Single-molecule optics, Ann. Rev. Phys. Chem. 55,p. 585.

LaBean, T., and Park, S. H. (2006). Self-assembled DNA nanotubes, in C. S. S. R. Kumar(ed.), Biological and Pharmaceutical Nanomaterials, Nanotechnologies for the LifeSciences, Vol. 2 (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim), p. 337.

Lamb, H. (1904). On group-velocity, Proc. Lond. Math. Soc. 1, p. 473.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

314 Bibliography

Lambrecht, W. R. L., Limpijumnong, S., Rashkeev, S. N., and Segall, B. (1997). Electronicband structure of SiC polytypes: a discussion of theory and experiment, Phys. Stat.Sol. (b) 202, p. 5.

Lambrecht, W. R. L., and Rashkeev, S. N. (2000). From band structures to linear andnonlinear optical spectra in semiconductors, Phys. Stat. Sol. (b) 217, p. 599.

Lambrecht, W. R. L., Segall, B., Yoganathan, M., Suttrop, W., Devaty, R. P., Choyke,W. J., Edmond, J. A., Powell, J. A., and Alouani, M. (1994). Calculated and mea-sured UV reflectivity of SiC polytypes, Phys. Rev. B 50, p. 10722.

Landau, L. D., and Lifshits, E. M. (1980). Quantum Mechanics (Academic Press, NewYork).

Laurent, G., Felifj, N., Aubard, J., Lavi, G., Krenn, J. R., Hohenau, A., Schider, G.,Leitner, A., and Aussenegg, F. R. (2005). Evidence of multipolar excitations insurface enhanced Raman scattering, Phys. Rev. B 71, p. 045430.

Lazzari, M., and Lopez-Quintela, M. A. (2003). Black copolymers as a tool for nanomate-rial fabrication, Adv. Mater. 15, p. 1583.

Lebedenko, A. N., Guralchuk, G. Y., Sorokin, A. V., Yefimova, S. L., and Malyukin,Y. V. (2006). Pseudoisocyanine J-aggregate to optical waveguiding crystallite tran-sition: microscopic and microspectroscopic exploration, J. Phys. Chem. B 110,p. 17772.

Lee, K. G. (2007). Nano-optics. Nature.Photonics 1, p. 53.Lee, R. L. (1998). Mie theory, Airy theory, and the natural rainbow, Appl. Optics 37,

p. 1506.Leitsmann, R., Schmidt, W. G., Hahn, P. H., and Bechstedt, F. (2005). Second-harmonic

polarizability including electron-hole attraction from band-srtructure theory, Phys.Rev. B 71, p. 195209.

Levine, B. F., and Bethea, C. G. (1975). Second and third order hyperpolarizabilities oforganic molecules, J. Chem. Phys. 63, p. 2666.

Levy, O., and Stroud, D. (1997). Maxwell–Garnett theory for mixtures of anisotropicinclusions: application to conducting polymers, Phys. Rev. B 56, p. 8035.

Lewis, A., Isaacson, M., Harootunian, A., and Muray, A. (1984). Development of a 500 aspatial resolution light microscope, Ultramicrosc. 13, p. 227.

Lewis, A., Taha, H., Strinkovski, A., Manevitch, A., Khatchatouriants, A., Dekhter, R.,and Ammann, E. (2003). Near-field optics: from subwavelength illumination to nano-metric shadowing, Nature. Biotechnology 21, p. 1378.

Li, D., Liu, Z. T., Leung, Y. H., Djurisic, A. B., Xie, M. H., and Chan, W. K. (2008).Transition metal-doped ZnO nanorods synthesized by chemical methods, J. Phys.Chem. Solids 69, p. 616.

Liebsch, A. (1997). Electronic Excitations at Metal Surfaces (Plenum Press, NewYork).

Lim, D., Downer, M. C., Ekerdt, J. G., Arzate, N., Mendoza, B. S., Gavrilenko, V. I., andWu, R. Q. (2000). Optical second harmonic spectroscopy of boron-reconstructedsi(001), Phys. Rev. Lett. 84, p. 3406.

Lim, S. J., Chon, B., Joo, T., and Shin, S. K. (2008). Synthesis and characterizationof zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water,J. Phys. Chem. C 112, p. 1744.

Lin, M., Tan, J. P. Y., Boothroyd, C., Loh, K. P., Tok, E. S., and Foo, Y.-L. (2007).Dynamical observation of bamboo-like carbon nanotube growth, Nano Leters 7,p. 2234.

Link, S., and El-Sayed, M. A. (1999). Size and temperature dependence of the plasmonabsorption of colloidal gold nanoparticles, J. Phys. Chem. B 103, p. 4212.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 315

Link, S., and El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiativeand photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem. 19,p. 409.

Link, S., and El-Sayed, M. A. (2003). Optical properties and ultrafast dynamics of metallicnanocrystals, Annu. Rev. Phys. Chem. 54, p. 331.

Liu, Z., Ci, L., Jin-Phillipp, N. Y., and Ruhle, M. (2007). Vapor-solid reaction for siliconcarbide hollow spherical nanocrystals, J. Phys. Chem. C 111, p. 12517.

Lu, C., Guan, C., Liu, Y., Cheng, Y., and Yang, B. (2005). PbS/polymer nanocompositeoptical materials with high refractive index, Chem. Mat. 17, p. 2448.

Luttinger, J. M., and Kohn, W. (1955). Motion of electrons and holes in perturbed periodicfields, Phys. Rev. 97, p. 869.

Lynch, D. W., and Hunter, W. R. (1985). Handbook of Optical Constants of Solids, Vol. 2,chap. Comments on the Optical Constants of Metals and an Introduction to Datafor Several Metals (Academic Press).

Mabuchi, H., and Doherty, A. C. (2001). Cavity quantum electrodynamics: coherence incontext, Science 298, p. 1372.

Macak, J., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., and Schmuki, P.(2007). TiO2 nanotubes: Self-organized electrochemical formation, properties andapplications, Curr. Op. Sol. St. Mat. Sci. 11, p. 3.

Malinsky, M. D., Kelly, K. L., Schatz, G. C., and Duyne, R. P. V. (2001). Nanospherelithography: effect of substrate on the localized surface plasmon resonance spectrumof silver nanoparticles, J. Chem. Phys. B , 105, p. 2343.

Mandelstam, L. I. (1945). Group-velocity in a crystal lattice, Zh. Eksp. Teor. Fiz. 15,p. 475.

Manna, L., Scher, E. C., and Alivisatos, A. P. (2000). Synthesis of soluble and processablerod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc.122, p. 12700.

Martin, R. M. (2004). Electronic Structure. Basic Theory and Practical Methods(Cambridge University Press, New York).

Martinez, V. M., Arbeloa, F. L., Prieto, J. B., Lopez, T. A., and Arbeloa, I. L. (2004).Characterization of rhodamine 6G aggregates intercalated in solid thin films oflaponite clay. 1. Absorption spectroscopy, J. Phys. Chem. B 108, p. 20030.

Masiello, D. J., and Schatz, G. C. (2008). Many-body theory of surface-enhanced Ramanscattering, Phys. Rev. A 78, p. 042505.

Masters, B. R., and So, P. T. C. (2008). The genesis of nonlinear microscopies andtheir inpact on modern development, in B. R. Masters and P. T. C. So (eds.),Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press),p. 5.

Mathieu, F., Liao, S., Wang, T., Kopatsch, J., Mao, C., and Seeman, N. C. (2005). Six-helix bundles designed from DNA, Nano Lett. 5, p. 661.

Matsumoto, T., Suzuki, J., Ohnuma, M., Kanemitsu, Y., and Masumoto, Y. (2001). Ev-idence of quantum size effect in nanocrystalline silicon by optical absorption, Phys.Rev. B 63, p. 195322.

Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P. W. H., and Rempe, G. (2005).Normal mode spectroscopy of a single-bound-atom-cavity system, Phys. Rev. Lett.94, p. 033002.

Maxwell-Garnett, J. C. (1904). Colours in metal glasses and metal films, Philos. Trans.R. Soc. London 3, p. 385.

McCall, M. W., Lakhtakia, A., and Weiglhofer, W. S. (2002). The negative index ofrefraction demystified. Eur. J. Phys. 23, p. 353.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

316 Bibliography

McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J. D., Levina, L., andSargent, E. H. (2005). Solution-processed PbS quantum dot infrared photodetectorsand photovoltaics, Nature Materials 4, p. 138.

McKinney, S. A., Declais, A.-C., Lilley, D. M. J., and Ha, T. (2003). Structural dynamicsof individual Holliday junctions, Nat. Struc. Biol. 10, p. 93.

McQuarrie, D. A. (1976). Statistical Mechanics (Harper and Row, New York).Meleshko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M. A., Klein, K. L., Lown-

des, D. H., and Simpson, M. L. (2005). Vertically aligned carbon nanofibers andrelated structures: controlled synthesis and directed assembly, J. Appl. Phys. 97,p. 041301.

Mendoza, B., Palumo, M., Onida, G., and Sole, R. D. (2001). Microscopic theory of secondharmonic generation at Si(100) surfaces, Phys. Rev. B 63, p. 205406.

Menendez, E., Trallero-Giner, C., and Cardona, M. (1997). Vibrational resonant Ramanscattering in spherical quantum dots: Exciton effects, Physica Status Solidi (b) 199,p. 81.

Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., and Roth,S. (2007). The structure of suspended graphene sheets, Nature 446, p. 60.

Michaelides, A., and Scheffler, M. (2008). Textbook of Surface and Interface Science, Vol. 1,chap. An Introduction to the Theory of Metal Surfaces (Wiley-VCH).

Michaels, A. M., Nirmal, M., and Brus, L. E. (1998). Surface enhanced Raman spec-troscopy of individual Rhodamine 6G molecules on large Ag nanocrystals, J. Am.Chem. Soc. 121, p. 9932.

Michler, P., Kiraz, A., Becher, C., Schoenfeld, W. V., Petroff, P. M., Zhang, L., Hu, E.,and Imamoglu, A. (2000). A quantum dot single-photon turnstile devices, Science290, p. 2282.

Micic, O. I., Cheong, H. M., Fu, H., Zunger, A., Sprague, J. R., Mascarenhas, A., andNozik, A. J. (1997). Size-dependent spectroscopy of inp quantum dots, J. Phys.Chem. B 101, p. 4904.

Mie, G. (1908). Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen, Ann.Phys. 25, p. 377.

Mishra, P., and Jain, K. P. (2001). First- and second-order Raman scattering in nanocrys-talline silicon, Phys. Rev. B 64, p. 073304.

Mitchell, J. C., Harris, J. R., Malo, J., Bath, J., and Turberfield, A. J. (2004). Self-assemblyof chiral DNA nanotubes, JACS 126, p. 16342.

Mokari, T., Sertchook, H., Aharoni, A., Ebenstein, Y., Avnir, D., and Banin, U. (2005).Nano and micro: general method for entrapment of nanocrystals in sol0gel-derivedcomposite hydrophobic silica spheres, Chem. Mater. 17, p. 258.

Mollow, B. R. (1969). Power spectrum of light scattered by two-level system, Phys. Rev.188, p. 1969.

Morton, S. M., and Jensen, L. (2009). Understanding the molecule-surface chemical cou-pling in SERS, JACS 131, p. 4090.

Moskovits, M. (1985). Surface-enhanced spectroscopy, Rev. Mod. Phys. 57, p. 783.Moskovits, M. (2005). Surface-enhanced spectroscopy: a brief retrospective, J. Raman

Spectr. 36, p. 485.Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J., and Waggoner, A. S.

(1993). Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters, Biocon-jug. Chem. 4, p. 105.

Muller, A., Fang, W., Lawall, J., and Solomon, G. S. (2008). Emission spectrum of adressed exciton–biexciton complex in a semiconductor quantum dot, Phys. Rev. Lett.101, p. 027401.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 317

Murphy, C. J., Sau, T. K., Gole, A. K., Orendorff, C. J., Gao, J., Gou, L., Hunvadi, S. E.,and Li, T. (2005). Anisotropic metal nanoparticles: Synthesis, assembly, and opticalapplications, J. Phys. Chem. 109, p. 13857.

Murray, C. B., Kagan, C. R., and Bawendi, M. G. (2000). Synthesis and characterizationof monodisperse nanocrystals and close packed nanocrystal assemblies, Ann. Rev.Mat. Sci. 30, p. 545.

Murray, C. B., Norris, D. J., and Bawendi, M. G. (1993). Synthesis and characterizationof nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, JACS115, p. 8706.

Muskens, O. L., Diedenhofen, S. L., van Weert, M. H. M., Borgstrom, M. T., Bakkers,E. P. A. M., and Rivas, J. G. (2008). Epitaxial growth of aligned semicon-ductor nanowire metamaterials for photonic applications, Adv. Func. Mater. 18,p. 1039.

Nakai, H., and Nakatsuji, H. (1995). Electronic mechanism of the surface enhanced Ramanscattering, J. Chem. Phys. 103, p. 2286.

Nazzeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, R.,Vlachopoulos, N., and Gratzel, M. (1993). Conversion of light to electricity bycis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium (II) charge-transfer sensitizers(X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes, J. Am.Chem. Soc. 115, p. 6382.

Neubrech, F., Kolb, T., Lovrincic, R., Fahsold, G., Puccia, A., Aizpurua, J., Cornelius,T. W., Toimil-Molares, M. E., Neumann, R., and Karim, S. (2006). Resonances ofindividual metal nanowires in the infrared, Appl. Phys. Lett. 89, p. 253104.

Neugebauer, J., Reiher, M., Kind, C., and Hess, B. A. (2002). Quantum chemical calcula-tion of vibrational spectra of large molecules—Raman and IR spectra for buckmin-sterfullerene, J. comput. Chem. 23, p. 895.

Nie, S., and Emory, S. R. (1997). Probing single molecules and single nanoparticles bysurface-enhanced Raman scattering, Science 275, p. 1102.

Nilius, N., Ernst, N., and Freud, H.-J. (2000). Photon emission spectroscopy of individualoxide-supported silver clusters in a scanning tunneling microscope, Phys. Rev. Lett84, p. 3994.

Noginov, M. A. (2005). Solid-State Random Lasers (Springer, NY).Noginov, M. A., Zhu, G., Bahoura, M., Adegoke, J., Small, C. E., Ritzo, B. A., Drachev,

V. P., and Shalaev, V. M. (2006). Enhancement of surface plasmons in Ag aggregatesby optical gain in a dielectric medium, Optical Letters 31, p. 3022.

Noginov, M. A., Zhu, G., Drachev, V. P., and Shalaev, V. M. (2007). Nanophotonics withSurface Plasmons, chap. Surface Plasmons and Gain Media, Advances in Nano-Optics and Nano-Photonics (Elsevier B. V.).

Nomura, S., and Kobayashi, T. (1992). Exciton–LO–phonon coupling in spherical semi-conductor microcrystallites, Phys. Rev. B 45, p. 1305.

Nordlander, P., and Le, F. (2006). Plasmonic structure and electromagnetic field enhance-ments in the metallic nanoparticle-film system, Appl. Phys. B 84, p. 35.

Norris, D. J., Efros, A. L., Rosen, M., and Bawendi, M. G. (1996). Size dependence ofexciton fine structure in CdSe quantum dots, Phys. Rev. B 53, p. 16347.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva,I. V., Dubonos, S. V., and Firsov, A. A. (2005a). Two-dimensional gas of masslessdirac fermions in graphene, Nature 438, p. 197.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V.,Grigorieva, I. V., and Firsov, A. A. (2004). Electric field effect in atomically thincarbon films, Science 306, p. 666.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

318 Bibliography

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V.,and Geim, A. K. (2005b). Two-dimensional atomic crystals, Proc. Nat. Acad. Sci.USA 102, p. 10451.

Novotny, L., and Hecht, B. (2006). Principles of Nano-Optics (Cambridge UniversityPress).

Nozik, A. J. (2001). Spectroscopy and hot electron relaxation dynamics in semiconductorquantum wells and quantum dots, Ann. Rev. Phys. Chem. 52, p. 193.

O’Brien, S., McPeake, D., Ramakrishna, S. A., and Pendry, J. B. (2004). Near-infraredphotonic band gaps and nonlinear effects in negative magnetic metamaterials, Phys.Rev. B 69, p. 241101.

Ohtsu, M., Kobayashi, K., Kawazoe, T., Yatsui, T., and Naruse, M. (2008). Principles ofNanophotonics, Series in Optics and Optoelectronics (CRC Press).

Onida, G., Reining, L., and Rubio, A. (2002). Electronic excitations: densityfunctional versus many-body Green’s-function approach, Rev. Mod. Phys. 74,pp. 601–656.

Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions,Science 311, p. 189.

Pal, M., Serrano, J. G., Santiago, P., and Pal, U. (2007). Size-conytroled syntesis ofspherical TiO2 nanoparticles: morphology, crystallization, and phase transition,J. Phys. Chem. 111, p. 96.

Palik, E. D. (ed.) (1985). Optical Constants of Solids (Academic Press).Pan, C., Dassenoy, F., Casanove, M.-J., Philippot, K., Amiens, C., Lecante, P., Mosset,

A., and Chaudret, B. (1999). A new synthetic method toward bimetallic rutheniumplatinum nanoparticles: composition induced structural changes, J. Phys. Chem. B112, p. 10098.

Parazzoli, C., Greegor, R. B., Li, K., Koltenbah, B. E., and Tanielian, M. (2003). Experi-mental verification and simulation of negative index of refraction using Snell’s law,Phys. Rev. Lett. 90, p. 107401.

Parilla, P. A., Dillon, A. C., Jones, K. M., Riker, G., Schulz, D. L., Ginley, D. S., andHeben, M. J. (1999). The first true inorganic fullerenes? Nature 397, p. 114.

Park, J., and Cheon, J. (2001). Synthesis of solid solution and core-shell type cobalt-platinum magnetic nanoparticles via transmetalation reactions, J. Am. Chem. Soc.130, p. 5743.

Park, Y.-S., Cook, A. K., and Wang, H. (2006). Cavity QED with diamond nanocrystalsand silica microspheres, Nano Letters. 6, p. 2075.

Parr, R. G., and Yang, W. (1989). Density Functional Theory of Atoms and Molecules(Oxford University Press, New York).

Pasquarello, A., Hybertsen, M. S., and Car, R. (1995). Structurally relaxed models of theSi(001)–SiO2 interface, Phys. Rev. Lett 74, p. 1024.

Patra, A., Hebalkar, N., Sreedhar, B., and Radhakrishnan, T. P. (2007). Formation andgrowth of molecular nanocrystals probed by their optical properties, J. Phys. Chem.C 111, p. 16184.

Peek, L. J., Middaugh, C. R., and Berkland, C. (2008). Nanotechnology in vaccine delivery,Adv. Drug Deliv. Rev. 60, p. 915.

Peeters, E., Ramos, A. M., Meskers, S. C. J., and Janssen, R. A. J. (2000). Singlet andtriplet excitations of chiral dialkoxy-p-phenylene vinylene oligomers, J. Chem. Phys.112, p. 9445.

Pendry, J. B. (2000). Negative refraction makes a perfect lens, Phys. Rev. Lett. 85,p. 3966.

Pendry, J. B. (2004). Negative refraction, Cont. Phys. 45, p. 191.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 319

Pendry, J. B., Holden, A. J., and Youngs, W. J. S. I. (1996). Extremely low frequencyplasmons in metallic mesostructures, Phys. Rev. Lett. 76, p. 4773.

Pendry, J. B., Schurig, D., and Smith, D. R. (2006). Controlling electromagnetic fields.Science 312, p. 1780.

Peng, X., Schlamp, M. C., Kadavanich, A. V., and Alivisatos, A. P. (1997). Epitaxialgrowth of highly luminescent CdSe/CdS core/shell nanocrystals with photostabilityand electronic accessibility, J. Am. Chem. Soc. 119, p. 7019.

Peng, X. G., Manna, L., Yang, W. D., Wickham, J., Sher, E., Kadavanich, A.,and Alivisatos, A. P. (2000). Shape control of CdSe nanocrystals, Nature 404,p. 59.

Perdew, J. P., and Wang, Y. (1992). Accurate and simple analytic representation of theelectron-gas corelation energy, Phys. Rev. B 45, pp. 13244–13249.

Peres, N. M. R., Guinea, F., and Neto, A. H. C. (2006). Electronic properties of disorderedtwo-dimensional carbon, Phys. Rev. B 73, p. 125411.

Perevedentseva, E., Karmenyan, A., Chang, P.-H., He, Y.-T., and Cheng, C.-L. (2006).Surface enhanced Raman spectroscopy of carbon nanostructures, Surf. Sci. 600,p. 3723.

Persson, B. N. J. (1991). Surface resistivity and vibrational damping in adsorbed layers,Phys. Rev. B 44, p. 3277.

Peters, R. (2007). Single-molecule fluorescence analysis of cellular nanomachinery compo-nents, Ann. Rev. Biophys. Biomol. Struc. 36, p. 371.

Pfeiffer, L., West, K. W., Stormer, H. L., Eisenstein, J. P., Baldwin, K. W., and Gershoni,D. (1990). Formation of a high quality two-dimensional electron gas on cleaved GaAs,Appl. Phys. Lett. 56, p. 1697.

Pinchuk, A., Kalsin, A. M., Kowalczyk, B., Schatz, G. C., and Grzybowski, B. A. (2007).Modeling of electrodynamic interaction between metal nanoparticles aggregatedby electrostatic interactions into closely-packed cluster, J. Phys. Chem. C 111,p. 11816.

Pinchuk, A., Kreibig, U., and Hilger, A. (2004). Optical properties of metallic nanoparti-cles: influence of interface effects and interband transitions, Surf. Sci. 557, p. 269.

Pinkse, P. W. H., Fischer, T., Maunz, P., and Rempe, G. (2000). Trapping an atomwithsingle photons, Nature 404, p. 365.

Pitarke, J. M., Silkin, V. M., Chulkov, E. V., and Echenique, P. M. (2007). Theory ofsurface plasmons and surface-plasmon polaritons, Rep. Prog. Phys. 70, p. 1.

Plieth, W., Dietz, H., Anders, A., Sandmann, G., amd M. Weber, A. M., and Kneppe,H. (2005). Electrochemical preparation of silver and gold nanoparticles: charac-terization by confocal and surface enhanced Raman microscopy, Surf. Sci. 597,p. 119.

Podstawka, E., Kafarski, P., and Proniewicz, L. M. (2008). Effect of an aliphatic spacergroup on the adsorption mechanism on the colloidal silver surface of l-proline phos-phonodipeptides, J. Raman Spectr. 39, p. 1726.

Pohl, D., Denk, W., and Lanz, M. (1984). Optical stethoscopy: image recording withresolution λ/20, Appl. Phys. Lett. 44, p. 651.

Pope, M., and Swenberg, C. E. (1982). Electronic Processes in Organic Crystals (OxfordUniversity Press, New York).

Prezhdo, O. V. (2008). Multiple excitons and the electron–phonon bottleneck in semicon-ductor quantum dots: an ab initio perspective, Chem. Phys. Lett. 460, p. 1.

Priebe, A., Sinther, M., Fahsold, G., and Pucci, A. (2003). The correlation between filmthickness and adsorbate line shape in surface enhanced infrared absorption, J. Chem.Phys. 119, p. 4887.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

320 Bibliography

Pristinski, D., Tan, S., Erol, M., Du, H., and Sukhishvili, S. (2007). In situ SERS study ofRhodamine 6G adsorbed on individually immobilized Ag nanoparticles, J. RamanSpectr. 38, p. 859.

Prodan, E., and Nordlander, P. (2004). Plasmon hybridization in spherical nanoparticles,J. Chem. Phys. 120, p. 5444.

Puurunen, R. L. (2005). Surface chemistry of atomic layer deposition: a case study for thetrimethylaluminum/water process, J. Appl. Phys. 97, p. 121301.

Raether, H. (1988). Surface Plasmons on Smooth and Rough Surfaces and on Gratings(Springer-Verlag, Berlin, Heidelberg, New York).

Raimond, J. M., Brune, M., and Haroche, S. (2001). Colloquium: manipulating quantumentanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, p. 565.

Raschke, G., Kowarik, S., Franzl, T., Snnichsen, C., Klar, T. A., Feldmann, J., Nichtl, A.,and Kurzinger, K. (2003). Biomolecular recognition based on single gold nanoparticlelight scattering, Nano Lett. 3, p. 935.

Reimann, S. M., and Manninen, M. (2002). Electronic structure of quantum dots, Rev.Mod. Phys. 74, p. 1283.

Reithmaier, J. P., Sek, G., Loffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh,L. V., Kulakovskii, V. D., Reinecke, T. L., and Forchel, A. (2004). Strong couplingin a single quantum dotsemiconductor microcavity system, Nature 432, p. 197.

Richter, H., Wang, Z. P., and Ley, L. (1981). The one phonon Raman spectrum in micro-crystalline silicon, Sol. St. Comm. 39, p. 625.

Ritchie, R. H. (1957). Plasma losses by fast electrons in thin films. Phys. Rev. 106,p. 874.

Ritchie, R. H. (1973). Surface plasmons in solids, Surf. Sci. 34, p. 1.Ritchie, R. H., and Eldridge, H. B. (1962). Optical emission from irradiated foils. I, Phys.

Rev. 126, p. 1935.Rittenhouse, T. L., Bohna, P. W., Hossain, T. K., Adesida, I., Lindesay, J., and Marcus, A.

(2004). Surface-state origin for the blueshifted emission in anodically etched poroussilicon carbide, J. Appl. Phys. 95, p. 490.

Roca, E., Trallero-Ginner, C., and Cardona, M. (1994). Polar optical vibrations in quantumdots, Phys. Rev. B 49, p. 13704.

Roco, M. C. (2003). Nanotechnology: convergence with modern biology and medicine,Curr. Op. Biotechn. 14, p. 337.

Rohlfing, M., and Louie, S. G. (1998). Excitons and optical absorption spectrum of hy-drogenated Si clusters, Phys. Rev. Lett. 80, p. 3320.

Rohlfing, M., and Pollmann, J. (2002). Localization of optically excited states by self-trapping, Phys. Rev. Lett. 88, p. 176801.

Rolo, A. G., Vasilevskiy, M. I., Hamma, M., and Trallero-Giner, C. (2008). Anomalousfirst-order Raman scattering in III–V quantum dots: optical deformation potentialinteraction, Phys. Rev. B. 78, p. 081304.

Rosenthal, S. J., McBride, J., Pennycook, S. J., and Feldman, L. C. (2007). Synthesis,surface studies, composition and structural characterization of CdSe, core/shell andbiologically active nanocrystals, Surf. Sci. Rep. 62, p. 111.

Rothemund, P. W. K., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D. K., andWinfree, E. (2004). Design and characterization of programmable DNA nanotubes,JACS 126, p. 16344.

Ruck, T. G. (1970). Radar Cross Section Handbook, Vol. 1 (Plenum, New York).Ruffino, F., Bongiorno, C., Gianazzo, F., Roccaforte, F., Raineri, V., and Grimaldi, M. G.

(2007). Effect of surrounding environment on atomic structure and equilibrium shapeof growing nanocrystals: gold in/on SiO2, Nanoscale Res. Lett. 2, p. 240.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 321

Rumpel, A., Manschwetus, B., Lilienkamp, G., Schmidt, H., and Daum, W. (2006). Po-larity of space charge fields in second-harmonic generation spectra of Si(100)/SiO2

interfaces, Phys. Rev. B 74, p. 081303(R).Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998). Physical Properties of Carbon

Nanotubes (Imperial College Press, London).Saleh, B. E. A., and Teich, M. C. (2007). Fundamentals of Photonics, 2nd edn. (Wiley).Sano, H., and Muzitani, G. (2003). Ab initio calculation of surface nonlinear optical re-

sponse, Surf. Sci. Nanotechn. 1, p. 57.Sarychev, A. K., McPhedran, R. C., and Shalaev, V. M. (2000). Electrodynamics of metal–

dielectric composites and electromagnetic crystals, Phys. Rev. B 62, p. 8531.Sarychev, A. K., and Shalaev, V. M. (2007). Electrodynamics of Metamaterials (World

Scientific).Sasai, R., Fujita, T., Iyi, N., Itoh, H., and Takagi, K. (2002). Aggregated structures of

Rhodamine 6G intercalated in a fluor-taeniolite thin film, Langmuir 18, p. 6578.Sasovskaya, I. I., and Korabel, V. P. (1986). Optical properties of α- and β-CuZn brasses

in the region of quantum absorption, Phys. Stat. Sol. B 134, p. 621.Sato, S., and Suzuki, T. (1997). Study of surface-enhanced IR absorption spectroscopy

over evaporated au films in an ultrahigh vacuum system. Appl. Spectrosc. 51,p. 1170.

Schatz, G. C., Young, M. A., and Duyne, R. P. V. (2006). Electromagnetic mechanism ofSERS, in K. Kneipp, H. Kneipp and M. Moskovits (eds.), Surface Enhanced RamanScattering. Physics and Applications, Topics Appl. Phys., Vol. 103 (Springer, Berlin,Heidelberg), p. 19.

Scheblykin, I. G., Yartsev, A., Pullerits, T., Gulbinas, V., and Sundstrom, V. (2007).Excited state and charge photogeneration dynamics in conjugated polymers, J. Phys.Chem. B 111, p. 6303.

Scheiner, J., Goldhahn, R., Cimalla, V., Ecke, G., Attenberger, W., Lindner, J. K. M.,Gobsch, G., and Pezoldt, J. (1999). Spectroscopic ellipsometry studies of het-eroepitaxially grown cubic silicon carbide layers on silicon, Mat. Sci. Eng. B61-62,p. 526.

Schiek, M., Balzer, F., Al-Shamery, K., Brewer, J. R., Lutzen, A., and Rubahn, H.-G.(2008). Organic molecular nanotechnology, Small 2, p. 176.

Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J., and Schindler, H. (1996).Imaging of single molecule diffusion, Proc. Nat. Acad. Sci. USA 93, p. 2926.

Schmidt, W. G., Bechstedt, F., and Bernholc, J. (2001). Terrace and step contributions tothe optical anisotropy of Si(001) surfaces, Phys. Rev. B 63, p. 045322.

Schmitt, A. L., Bierman, M. J., Himpsel, D. S. F. J., and Jin, S. (2006). Synthesis andproperties of single-crystal FeSi nanowires, Nano Letters 6, p. 1617.

Schreder, B., and Kiefer, W. (2001). Raman spectroscopy of II-VI semiconductor nanos-tructures, in I. R. Lewis and H. G. M. Edwards (eds.), Handbook of Raman Spec-troscopy: From the Research Laboratory to the Process Line (CRC Press), p. 491.

Schuster, A. (1904). An Introduction to the Theory of Optics (Arnold, London).Schwartzberg, A., Olson, T. Y., Talley, C. E., and Zhang, J. Z. (2006). Synthesis, char-

acterization, and tunable optical properties of hollow gold nanospheres, J. Phys.Chem. B 110, p. 19935.

Schwartzberg, A., and Zhang, J. Z. (2008). Novel optical properties and emerging appli-cations of metal nanostructures, J. Phys. Chem. C 112, p. 10323.

Scully, M. O., and Zubairy, M. S. (1997). Quantum Optics (Cambridge University Press,Cambridge).

Seeman, N. C. (2003). DNA in a material world, Nature 421, p. 427.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

322 Bibliography

Seidel, J., Grafstrom, S., and Eng, L. (2004). Stimulated emission of surface plasmons atthe interface between a silver film and an optically pumped dye solution, Phys. Rev.Lett 94, p. 177401.

Shalaev, V. M. (2000). Nonlinear Optics of Random Media, Springer Tracts in ModernPhysics, Vol. 158 (Springer, Berlin, Heidelberg).

Shalaev, V. M. (2007). Optical negative-index metamaterials, Nature Photonics 1,p. 41.

Shalaev, V. M., Poliakov, E. Y., and Markel, V. A. (1996). Small-particle composites. II.Nonlinear optical properties, Phys. Rev. B 53, p. 2437.

Shalaev, V. M., and Sarychev, A. K. (1998). Nonlinear optics of random metal–dielectricfilms, Phys. Rev. B 57, p. 13265.

Shalaev, V. M., and Trager, F. (2006). Special issue: Optics on the nanoscale: principles,instrumentation and applications, Appl. Phys. B 84, p. 1.

Shelby, R., Smith, D. R., and Schultz, S. (2001). Experimental verification of a negativeindex of refraction, Science 292, p. 77.

Shen, Y. R. (2003). The Principles of Nonlinear Optics, 2nd edn. (Wiley).Shimizu, K., K.Woo, W., Fisher, B. R., Eisler, H. J., and Bawendi, M. (2002). Surface-

enhanced emission from single semiconductor nanocrystals, Phys. Rev. Lett. 89,p. 117401.

Shukla, N., and Nigra, M. M. (2007). Synthesis and self-assembly of magnetic nanoparti-cles, Surface Science 601, p. 2615.

Shvets, G., and Urzhumov, Y. A. (2006). Negative index meta-materials based on two-dimensional metallic structures. J. Opt. A 8, p. S122.

Silinsh, E. A., and Capek, V. (1994). Organic Molecular Crystals: Interaction, Localizationand Transport Phenomena (AIP Press, New York).

Silveirinha, M. G., Alu, A., and Engheta, N. (2008). Cloaking mechanism with antiphaseplasmonic satellites, Phy. Rev. B 78, p. 205109.

Singh, T. B., and Sariciftci, N. S. (2006). Progress in plastic electronics devices, Annu.Rev. Mater. Res. 36, p. 199.

Singha, A., and Roy, A. (2005). Surface confinement and surface phonon modes in CdSe–CdS core-shell nanocrystals, Rev. Adv. Mater. 10, p. 462.

Sipe, J. E., and Boyd, R. W. (2002). Nanocomposite materials for nonlinear optics basedon local field effect, in V. M. Shalaev (ed.), Optical Properties of NanostructuredRandom Media (Springer, Berlin, Hedelberg), p. 1.

Sivukhin, D. V. (1957). The energy of electromagnetic waves in dispersive media. Opt.Spektrosk 3, p. 308.

Smalley, R. E. (1997). Discovering the fullerenes, Rev. Mod. Phys. 69, p. 723.Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S. (2000). Com-

posite medium with simultaneously negative permeability and permittivity, Phys.Rev. Lett. 84, p. 4184.

Stahrenberg, K., Herrmann, T., Esser, N., Sahm, J., Richter, W., Hoffmann, S. V., andHofmann, P. (1998). Surface state contribution of the optical anisotropy of Ag(110)surface: a reflectance anisotropy spectroscopy and photoemission study, Phys. Rev.B 58, p. R10207.

Stockman, M. I. (2006). Electromagnetic theory of SERS, in K. Kneipp, H. Kneipp andM. Moskovits (eds.), Surface Enhanced Raman Scattering. Physics and Applications,Topics Appl. Phys., Vol. 103 (Springer, Berlin, Heidelberg), p. 47.

Strauf, S., Hennessy, K., Rakher, M. T., Choi, Y.-S., Badolato, A., Andreani, L. C., Hu,E. L., Petroff, P. M., and Bouwmeester, D. (2006). Self-tuned quantum dot gain inphotonic crystal lasers, Phys. Rev. Lett. 96, p. 127404.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 323

Stroscio, M. A., and Dutta, M. (2001). Phonons in Nanostructures (Cambridge UniversityPress).

Su, X., Zhang, J. J., Sun, L., Koo, T.-W., Chan, S., Sundararajan, N., Yamakawa, M.,and Berlin, A. A. (2005). Composite organic-inorganic nanoparticles (coins) withchemically encoded optical signatures, Nano Lett. 5, p. 49.

Sun, F., Cai, W., Li, Y., Duan, G., Nichols, W. T., Liang, C., Koshizaki, N., Feng, Q.,and Boyd, I. W. (2005). Laser morphological manipulation of gold nanoparticlesperiodically arranged on solid supports, Appl. Phys. B , 81, p. 765.

Sun, L., Sung, K.-B., Dentinger, C., Lutz, B., Nguyen, L., Zhang, J., Qin, H., Yamakawa,M., Cao, M., Lu, Y., Chmura, A. J., Zhu, J., Su, X., Berlin, A. A., Chan, S., andKnudsen, B. (2007). Composite organic-inorganic nanoparticles as Raman labels fortissue analysis, Nano Lett. 7, p. 351.

Sun, Z., and Yang, B. (2006). Fabrication of colloidal crystals and construction of orderednanostructures, Nanoscale Res. Lett. 1, p. 46.

Suzuki, N., and Ito, S. (2006). Synthesis and optical property of β-brass colloid, J. Phys.Chem. B 110, p. 2084.

Takeoka, S., Toshikiyo, K., Fujii, M., Hayashi, S., and Yamamoto, K. (2000). Photolumi-nescence from Si1−xGex alloy nanocrystals, Phys. Rev. B 61, p. 15988.

Tamura, A., Higeta, K., and Ichinokawa, T. (1982). Lattice vibrations and specific heat ofa small particle, J. Phys. C 15, p. 4975.

Tamura, A., Higeta, K., and Ichinokawa, T. (1983). The size dependence of vibrationaleigenfrequencies and the mean square vibrational displacement of a small particle,J. Phys. C 16, p. 1585.

Taneja, P., Ayyub, P., and Chandra, R. (2002). Size dependence of the optical spectrumin nanocrystalline silver, Phys. Rev. B 65, p. 245412.

Tennakone, K., Perera, V. P. S., Kottegoda, I. R. M., and Kumara, G. R. R. A. (1999).Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV)oxide films, J. Phys. D 32, p. 374.

Teranishi, T., and Miyake, M. (1999). Novel synthesis of monodispersed Pd/Ni nanopar-ticles, Chem. Mater. 20, p. 3414.

Tian, Z.-Q., Ren, B., and Wu, D.-Y. (2002). Surface-enhanced Raman scattering: fromnoble to transition metals and from rough surfaces to ordered nanostructures,J. Phys. Chem. B 106, p. 9463.

Toyama, T., Kotany, Y., Shimode, A., and Okamoto, H. (1999). Direct transition at thefundamental gap in light-emitting nanocrystalline Si thin films, Appl. Phys. Lett.74, p. 3323.

Trallero-Giner, C., Debernardi, A., Cardona, M., and Ekimov, A. (1998). Optical vi-brons in CdSe dots and dispersion relation of the bulk material, Phys. Rev. B 57,p. 4664.

Trinkler, L., Berzina, B., Kasjan, D., and Chen, L.-C. (2007). Luminescence properties ofAlN nanostructures revealed under UV light irradiation, J. Phys. C 93, p. 012040.

Troullier, N., and Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calcula-tions, Phys. Rev. B 43, p. 1993.

Tu, Y., and Tersoff, J. (2002). Microscopic dynamics of silicon oxidation, Phys. Rev. Lett.89, p. 86102.

Tudos, A. J., and Schasfoort, R. B. M. (2008). Introduction to surface plasmon resonance,in R. B. M. Schasfoort and A. J. Tudos (eds.), Handbook of Surface Plasmon Reso-nance (RCS Publishing, Cambridge), p. 1.

Tyagai, V. A., and Snitko, O. V. (1980). Electroreflectance of Light in Semiconductors(Naukova Dumka, Kiev).

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

324 Bibliography

Uchiyama, T., and Tsukada, M. (1996). Atomic and electronic structures of oxygen-adsorbed Si(001) surfaces, Phys. Rev. B 53, p. 7917.

Ushida, J., Ohta, T., and Cho, K. (1999). Radiative lifetime of an atom in- and outside ofplanar/spherical dielectrics, J. Phys. Soc. Jpn. 68, p. 2439.

van den Brink, J., Brocks, G., and Morpurgo, A. F. (2005). Electronic correlations inoligo-thiophene molecular crystals, J. Mag. Mag. Mat. 290-291, p. 294.

Vasko, F. T., and Raichev, O. E. (2005). Quantum kinetic theory and applications. Elec-trons, photons, phonons. (Springer, NY).

Venger, E. F., Goncharenko, A. V., and Dmitruk, M. L. (1999). Optics of Small Particlesand Disperse Media (Naukova Dumka, Kiev).

Verma, P., Cordts, W., Irmer, G., and Monecke, J. (1999). Acoustic vibrations of semi-conductor nanocrystals in doped glasses, Phys. Rev. B 60, p. 5778.

Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negativevalues of ε and μ, Sov. Phys. Uspekhi 10, p. 509.

Volkov, V. V., Asahi, T., Masuhara, H., Masuhara, A., Kasai, H., Oikawa, H., and Nakan-ishi, H. (2004). Size-dependent optical properties of polydiacetylene nanocrystal,J. Phys. Chem. B 108, p. 7674.

Vuckovic, J., Loncar, M., Mabuchi, H., and Scherer, A. (2001). Design of photonic crystalmicrocavities for cavity qed, Phys. Rev. A 65, p. 016608.

Walmsley, I. A. (2008). Looking to the future of quantum optics, Science 319, p. 1211.Wang, C.-J., and Lin, L. Y. (2007). Nanoscale waveguiding method, Nanoscale Res. Lett.

2, p. 219.Wang, F., Tan, W. B., Zhang, Y., Fan, X., and Wang, M. (2006). Luminescent nanoma-

terials for biological labelling, Nanotechnology 17, p. R1.Wang, J., Gudiksen, M. S., Duan, X., Cui, Y., and Lieber, C. M. (2001). Highly polar-

ized photoluminescence and photodetection from single indium phosphide nanowires,Science 293, p. 1455.

Wang, J., Zhu, W., Zhang, Y., and Liu, S. (2007). An efficient two-step technique fornitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecompo-sition of methylene blue, J. Phys. Chem. 111, p. 1010.

Wang, N., Jenkin, J. K., v. Chernjak, and Mukamel, S. (1994). Exciton confinement andnonlocal nonlinear optical response of organic quantum wells, Phys. Rev. B 49,p. 17079.

Wang, X.-L., and Voliotis, V. (2006). Epitaxial growth and optical properties of semicon-ductor quantum wires, J. Appl. Phys. 99, p. 121301.

Wang, Y., Kim, M. J., Shan, H., Kittrell, C., Fan, H., Ericson, L. M., Hwang, W.-F.,Arepalli, S., Hauge, R. H., and Smalley, R. E. (2005). Continued growth of single-walled carbon nanotubes, Nano Letters 5, p. 997.

Wang, Z., and Li, R.-X. (2007). Fabrication of DNA micropatterns on the polycarbonatesurface of compact discs, Nanoscale Res. Lett. 2, p. 69.

Wang, Z. L. (2004). Functional oxide nanobelts: Materials, properties and potential ap-plications in nanosystems and biotechnology, Annu. Rev. Phys. Chem. 55, p. 159.

Watanabe, K., Menzel, D., Nilius, N., and Freund, H.-J. (2006). Photochemistry on metalnanoparticles, Chem. Rev. 106, p. 4301.

Wei, J., Jia, Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao,A., and Wu, D. (2007). Double-walled carbon nanotube solar cells, Nano Letters 7,p. 2317.

Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., and Josephson, L. (2005). Cell-specifictargeting of nanoparticles by multivalent attachment of small molecules, Nature.Biotechnology 23, p. 1418.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Bibliography 325

White, C. T. and Mintmire, J. W. (2005). Fundamental properties of single-wall carbonnanotubes, J. Chem. Phys. B 109, p. 52.

Wiley, B. J., Chen, T., McLellan, J. M., Xiong, Y., Li, Z.-Y., Ginger, D., and Xia, Y.(2007). Synthesis and optical properties of silver nanobars and nanorice, Nano Letters7, p. 1032.

Willets, K. A., Hall, W. P., Sherry, L. J., Zhang, X., Zhao, J., and Duyne, R. P. V. (2007).Nanoscale localized surface plasmon resonance biosensors, in C. A. Mirkin and C. M.Niemeyer (eds.), Nanobiotechnology II (Wiley-VCH, Weinheim), p. 159.

Williamson, A. J., and Zunger, A. (1999). InAs quantum dots: Predicted electronic struc-ture of free-standing versus GaAs-embedded structures, Phys. Rev. B 59, p. 15819.

Wiser, N. (1963). Dielectric constant with local field effects included, Phys. Rev. 129,p. 62.

Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G., and Delerue, C. (1999). Electronicstates and luminescence in porous silicon quantum dots: The role of oxygen, Phys.Rev. Lett. 82, p. 197.

Wood, R. W. (1902). On a remarkable case of uneven distribution of light in a diffractiongrating spectrum, Phil. Mag. 4, p. 396.

Wood, R. W. (1935). Anomalous diffraction gratings, Phys. Rev. 48, p. 928.Xu, C., and Bakker, E. (2007). Multicolor quantum dot encoding for polymeric particle-

based optical ion sensors, Anal. Chem. 79, p. 3716.Xu, H., Aizpurua, J., Kall, M., and Apell, P. (2000). Fundamentals of semiconductors.

Physics and Materials Properties, Phys. Rev. B 62, p. 4318.Xu, X., and III, W. A. G. (2004). The extended Perdew–Burke–Ernzerhof functional with

improved accuracy for thermodynamic and electronic properties of molecular sys-tems, J.Chem. Phys. B 121, p. 4068.

Xu, X., Sun, B., Berman, P. R., Steel, D. G., Bracker, A. S., Gammon, D., and Sham,L. J. (2007). Coherent optical spectroscopy of a strongly driven quantum dot, Science317, p. 929.

Yablonovitch, E. (2001). Photonic crystals: semiconductors of light, Scientific AmericanN12, p. 47.

Yang, W. H., Hulteen, J., Schatz, G. C., and Duyne, R. J. V. (1995). A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibra-tional assignments: Experiment and theory, J. Chem. Phys. 104, p. 4313.

Yao, H.-B., Gao, M.-R., and Yu, S.-H. (2010). Small organic molecule templating syn-thesis of organic-inorganic hybrid materials: their nanostructures and properties,Nanoscale 2, p. 323.

Yashuda, T., Yamasaki, S., Nishizawa, M., Miyata, N., Shklyaev, A., Ichikawa, M., Mat-sumoto, T., and Ohta, T. (2001). Optical anisotropy of oxidized Si(001) surfaces andits oscillation in the layer-by-layer oxidation process, Phys. Rev. Lett. 87, p. 037403.

Ye, C., Pan, S. S., Teng, X. M., Fan, H. T., and Li, G. H. (2007). Preparation and opticalproperties of nanocrystalline thin films in the ZnO–TiO2 system, Appl. Phys. A 90,p. 375.

Yildiz, A., and Selvin, P. R. (2005). Fluorescence imaging with one nanometer accuracy:application to molecular motors, Acc. Chem. Res 38, p. 574.

Yin, Y., and Alivisatos, P. (2005). Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature 437, p. 665.

Yoffe, A. D. (2001). Semiconductor quantum dots and related systems: electronic, optical,luminescence and related properties of low dimensional systems, Adv. Phys. 50,p. 1.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

326 Bibliography

Yu, P. Y., and Cardona, M. (2010). Fundamentals of Semiconductors: Physics and Mate-rials Properties, 4th edn. (Springer-Verlag, Berlin, Heidelberg, New York).

Yu, Y. Z., Wong, K. Y., and Garito, A. F. (1997). Nonlinear Optics of Organic Moleculesand Polymers, chap. Introduction to Nonlinear Optics (CRC Press).

Zahn, M. (1979). Electromagnetic Field Theory: A Problem Solving Approach (Wiley).Zhang, J.-Y., and Xiao, X.-Y. W. M. (2002). Modification of spontaneous emission from

CdSe/CdS quantum dots in the presence of a semiconductor interface, Optics Letters27, p. 1253.

Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P. (2005). Experimental observation ofthe quantum Hall effect and Berry’s phase in graphene, Nature 438, p. 201.

Zhang, Z. Y., and Langreth, D. C. (1989). Electronic damping of adsorbate fundamentaland overtone vibrations at metal surfaces. Phys. Rev. B 39, p. 10028.

Zhao, J., Dieringer, J. A., Zhang, X., Schatz, G. C., and Duyne, R. P. V. (2008).Wavelength-scanned surface-enhanced resonance Raman excitation spectroscopy,J. Phys. Chem. C 112, p. 19302.

Zhao, L. L., Jensen, L., and Schatz, G. C. (2006). Surface-enhanced Raman scattering ofpyrazine at the junction between two Ag20 nanoclusters, Nano Letters 6, p. 1229.

Zharov, A. A., Shadrivov, I. V., and Kivshar, Y. S. (2003). Nonlinear properties of left-handed metamaterials, Phy. Rev. Lett. 91, p. 037401.

Zhu, G., Mayy, M., Bahoura, M., Ritzo, B. A., Gavrilenko, H. V., Gavrilenko, V. I., andNoginov, M. A. (2008). Elongation of surface plasmon polariton propagation lengthwithout gain, Optics Express 16, p. 15576.

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Index

additional boundary conditions (ABC),123

Autler–Townes splitting, 194

band folding, 216Bethe–Salpeter equation, 122, 148bioconjugates, 263biolabels, 19biological nanomaterials, 29biosensors, 272, 275Bloch functions, 285, 286Bloch integrals, 291, 292

block conjugated polymers, 255Bosonic operators, 293

C-dot, 19, 263carbon fibers, 9carbon nanotubes, 5, 7charge conservation, 44chemisorption, 3, 172chromoionophore, 257Clausius–Mossotti equation, 67COIN (composite organic-inorganic

nanoparticles), 269colloidal crystals, 26conjugated polymers, 29, 243constitutive relations, 43continuity equation, 44Coulomb interaction, 62

Davydov splitting, 249deformation potential interaction, 151delta function, 288density functional theory (DFT), 50, 279density of states, 38, 280density operator, 285, 286

dielectric function, 52–55, 289differential scattering cross section, 176Dirac point, 38discrete dipole approximation, 93, 175DNA-based nanotechnology, 29dressed state, 186Drude model, 48, 62

effective mass approximation (EMA), 34,126

effective medium approximation, 67electric field induced SHG (EFISH), 211,

215electro-optical spectroscopy, 215electromagnetic field enhancements, 68electromagnetic wave equation, 44electron charge density, 285electron–phonon coupling, 151electroreflectance, 215entanglement, 182–185, 189exciton, 119

biexcitons, 144Bohr radius, 123Frenkel, 119singlet exciton, 122triplet exciton, 122Wannier–Mott, 119, 120

exciton Raman scattering, 155

fabrication, 1GaN nanowires, 108Ag nanoparticles, 26carbon nanoparticles, 7CdSe nanocrystals, 18CdSe-ZnS core/shell nanocrystals, 19CVD technique, 2

327

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

328 Index

DAE-E DX tile nanotubes, 30FePt nanoparticles, 27GaMnN nanostructures, 21GaN nanowires, 21Stranski–Krastanow growth, 2titania nanoparticles, 15

Fabry–Perot resonator, 185Fermi energy, 280fluorescence emitters, 262fluorophores, 262Fourier transform, 287Frohlich constant, 155Frohlich interaction, 151, 153fullerenes, 5

graphene, 9, 11, 36Green’s function, 170

Huckel model, 245highest occupied molecular orbital

(HOMO), 35, 283Holliday junction, 267hollow nanoparticles, 23, 75hot spot, 69, 168, 177hyper-polarizability, 203hyper-Rayleigh scattering, 203

interchain polymer distance, 253invisibility cloak, 82

Jaynes–Cummings model (JCM), 183jellium approximation, 90

Kirkendall diffusion effect, 23

Laplace equation, 63LC nanoelement circuit, 223left-handed materials, 78lithography, 13local density approximation (LDA), 282local field, 53local field effect, 46, 54, 291localized atomic orbitals (LCAO), 35Lorentz force, 222Lorentz-force field, 224lowest unoccupied molecular orbital

(LUMO), 283

matrix representation, 286Maxwell’s equations, 43

Maxwell–Garnett approximation, 67metallic carbides, 5metamaterials, 77, 221Mie resonance, 224Mie theory, 62, 65, 91MOCVD, 22molecular nanocrystals, 234Mollow triplet, 192Moore’s law, 261

nanocomposites, 238, 240nanoporous carbon, 6near-field optics, 84negative-index materials, 81nonlinear optics, 202normal modes, 150

oligomers, 235optical field Hamiltonian, 293optical functions

dielectric constant, 43dielectric permittivity, 43, 81displacement, 43extinction coefficient, 44index of refraction, 44magnetic permeability, 43permeability, 81polarizability, 46refraction coefficient, 44susceptibility, 43, 48

optical labeling, 262optical loss, 47optical rectification, 45organic nanocrystals, 234organic nanofibers, 235oscillator strength, 42

para-quaterphenylene, 235perturbation theory, 285phase velocity, 45phonon bottleneck, 147phonon confinement, 161, 162phonons, 150photonic crystal, 190physisorption, 3plane wave representation, 291plasma excitations, 59plasma frequency, 48plasmon resonance, 62

electrostatic theory, 63

December 22, 2010 13:5 World Scientific Book - 9.75in x 6.5in Gavrilenko˙NanoOptics

Index 329

plasmonic density of states, 73plasmonics, 59PMMA, poly(methyl methacrylate), 4Poisson equation, 289polarization function, 45, 46, 52, 288,

291polymer–metallic nanomaterials, 29polymers, 4, 239potential well, 34Purcell effect, 188Purcell factor, 188

quantization of the field, 293quantum confinement, 35, 40quantum dots, 41quantum electrodynamics (QED), 181quantum well, 33quasiparticle, 34, 283quasistatic approximation, 63

Rabi oscillations, 184Raman polarization function, 150Raman spectroscopy, 149, 160

surface effect, 164Raman tensor, 150, 173refractive index, 65, 80, 81Rydberg atoms, 184

Schrodinger equation, 41, 120, 285second harmonic generation, 205second quantization, 293

sensorsbiosensors, 263polymer-based sensors, 257

silanization, 263silicon carbide, 216single-wall carbon nanotubes (SWNTs),

124spherical harmonics, 40split-ring resonator, 223strong coupling, 183, 188surfac-enhanced infrared absorption

(SEIRA), 271surface-enhanced Raman scattering

(SERS), 149, 165, 219surface plasmon polariton (SPP), 295surface plasmon resonance (SPR), 61, 273,

297, 300surface plasmons, 59

Taylor expansion, 285Taylor series, 46Thomas–Fermi approximation, 279trioctylphosphine oxide, 258two-level atomic system, 183

velocity operator, 292vibronic states, 160

Wannier–Mott excitons, 120weak coupling, 188Wigner symbols, 128