31
Exploration of Optical Topometry to Study the Epidermal Surface of Arabidopsis thaliana Distinction Paper for Molecular and Cellular Biology Ryan David Kelsch Senior, Molecular and Cellular Biology University of Illinois at UrbanaChampaign Research Advisor: Dr. Thomas Jacobs Ph.D Department of Plant Biology University of Illinois at UrbanaChampaign March 27, 2013

Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

                   

Exploration  of  Optical  Topometry  to  Study  the  Epidermal  Surface  of  Arabidopsis  thaliana  

Distinction  Paper  for  Molecular  and  Cellular  Biology    

 Ryan  David  Kelsch  Senior,  Molecular  and  Cellular  Biology  

University  of  Illinois  at  Urbana-­‐Champaign    

Research  Advisor:  Dr.  Thomas  Jacobs  Ph.D  Department  of  Plant  Biology  

University  of  Illinois  at  Urbana-­‐Champaign    

March  27,  2013    

                                       

 

Page 2: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Abstract  

  The  development  of  the  epidermal  surface  in  Arabidopsis  thaliana  is  affected  

directly  by  environmental  factors  including  those  associated  with  climate  change.  

Current  methods  for  studying  the  surfaces  of  plants  are  tedious  with  evolving  

technology.  Researchers  studying  epidermal  development  in  plants  are  concerned  

with  several  functionally  and  structurally  different  cell  types,  whose  development  

are  governed  by  both  environmental  and  genetic  factors.  A  high  throughput  method  

to  study  the  epidermal  surface  of  plants  that  provides  precise  quantitative  

measurements  for  quantitative  genetic  analysis  is  therefore  necessary.    Optical  

topometry  (OT,  a  subset  of  optical  profilometry)  is  a  technology  used  to  map  a  

micro-­‐scale  surface  in  three  dimensions  and  at  nanometer  precision.  Such  data  sets  

can  be  mined  by  specialized  software  to  perform  analyses  which  can  reveal  

biologically  relevant  features  of  a  plant’s  epidermal  topography  mediated  by  the  

three-­‐dimensional  patterning  of  cells.  My  research  used  OT  to  reinvent  known  

parameters  and  to  discover  novel  parameters  to  describe  the  epidermal  surface.  In  

addition,  wild  type  plants  were  compared  to  a  reported  epidermal  cell  mutant.  Also  

in  addition,  developmental  studies  compared  tissues  within  a  single  plant  and  also  

between  plants  at  different  developmental  stages.  Through  these  experiments,  I  was  

able  to  evaluate  new  parameters  such  as  three-­‐dimensional  surface  area,  which  

gives  a  quantitative  snapshot  of  the  overall  topography.  Established  parameters  

were  also  measured,  such  as  the  tallying  of  key  epidermal  cells,  as  this  is  key  to  

quantifying  plant  developmental  responses  to  climate  change.  OT  was  able  to  obtain  

conclusive  results  in  a  high-­‐throughput  fashion  with  no  tissue  preparation  time  and  

Page 3: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

yielded  three-­‐dimensional  data  sets  indicative  of  the  topographical  features  of  the  

epidermis  at  the  nanometer  scale.  This  research  has  served  as  a  proof-­‐of-­‐principle  

for  creating  a  new  standard  for  plant  epidermal  methodologies  using  optical  

topography,  and  has  also  opened  doors  for  using  optical  topography  to  study  any  

biological  surface.      

 

Introduction  

  Current  methods  for  studying  the  epidermal  surface  of  Arabidopsis  thaliana  

(a  model  organism  of  plant  biology)  are  tedious,  especially  in  the  face  of  evolving  

technology.  Researchers  in  plant  biology  are  concerned  with  the  numbers  of  both  

pavement  cells  and  stomata  per  unit  area  of  the  epidermis.  Stomata  are  pairs  of  cells  

that  are  pair-­‐of-­‐lips  like  in  morphology  and  are  involved  in  gas  exchange  (CO2  in  and  

H2O  out).  Pavement  cells  form  a  jigsaw  puzzle-­‐like  pattern  over  the  majority  of  the  

epidermal  surface  area.  The  numbers  from  counting  of  these  two  cell  types  can  be  

used  to  determine  stomatal  densities  (the  number  of  stomata  per  given  area)  and  

stomatal  indices  (Equation  1),  which  are  established  quantitative  representations  

used  for  phenotyping  and  understanding  underlying  genetics.  (Royer  2000).  These  

phenotypes  are  of  developmental  interest  due  to  our  atmosphere’s  increasing  CO2  

concentration  and  the  stomate’s  key  role  in  removing  CO2  from  the  atmosphere  

(IPCC,  2007).  A  high  throughput  method  to  study  the  epidermal  surface  of  plants  

that  provides  the  precise  quantitative  measurements  needed  for  genetics  would  be  

of  great  service  to  the  plant  research  community.      

Page 4: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

                                           𝑆𝐼 % =𝑠𝑡𝑜𝑚𝑎𝑡𝑎𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑠𝑡𝑜𝑚𝑎𝑡𝑎𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑒𝑝𝑖𝑑𝑒𝑟𝑚𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑋100  

Equation  1.  Stomatal  Index  Equation  

  The  current  method  for  generating  images  suitable  for  taking  a  census  of  

cells  populating  the  plant  epidermis  is  via  nail  polish  impressions.  These  are  viewed  

under  the  microscope  and  cell  counts  are  taken  from  recorded  images.  Image  

quality  from  nail  polish  impressions  is  variable  to  such  a  degree  that  automated  

counting  via  computer  learning  has  not  been  possible.  A  more  robust,  higher  

throughput  method  could  permit  faster  counting  and  the  possibility  of  employing  

quantitative  genetics  and  other  numerically  intensive  methods  to  this  all-­‐important  

interface  between  plants  and  the  aerial  environment.    

  Optical  topometry  (OT)  is  a  technology  used  to  collect  a  set  of  images,  

layered  in  such  a  way  to  create  a  set  of  three-­‐dimensional  data  points  that  together  

describe  the  topographical  features  of  a  surface  at  potentially  nanometer-­‐level  

precision.    This  mature  technology  finds  intensive  application  in  microelectronics  

and  materials  science,  but  has  yet  to  be  applied  in  a  systematic  fashion  to  many  

biological  questions,  particularly  regarding  plant  surfaces.  Data  sets  can  be  mined  

by  dedicated  software  to  generate  an  array  of  analyses  that  can  be  performed  on  a  

surface  in  three  dimensions.  A  nail  polish  impression  image,  by  contrast,  tends  to  

have  low  resolution  of  cells  and  high  variability  of  quality,  presenting  a  data  set  

limited  to  the  shading  of  pixels.  OT  generates  functional  data  sets  that  can  be  

manipulated  and  analyzed  to  an  extent  limited  only  by  the  investigator’s  

exploitation  of  existing,  highly  capable  topographic  analysis  software  (Figure  1).  

Page 5: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Other  advantages  of  OT  over  nail  polish  include  dramatically  decreased  sample  

preparation  time  (hours  to  seconds),  the  ability  to  take  data  directly  on  live  tissue  in  

a  repeated  non-­‐destructive  fashion,  and  decreased  variability  between  data  sets  so  

that  automated  counting  is  feasible.  

Figure  1.  Optical  Topometry  and  Nail  Polish  Comparison.  Both  images  have  the  

same  unit  area  of  the  same  leaf.  OT  rendering  depicts  surface  slopes  and  Z-­‐

dimensional  lobing,  whereas  this  is  absent  from  the  largely  2D  nail  polish  

impression  A.  Rendering  of  intensity  layer  of  OT  data  set.  B.  Nail  polish  impression  

image.      

   

In  this  study,  the  instrument  used  to  obtain  data  sets  describing  the  

epidermal  surface  of  A.  thaliana  was  the  NanoFocus  μsurf  Explorer.  This  instrument  

uses  spinning  disc  confocal  microscopy  to  obtain  topometry  data  sets.  While  

A   B  

Page 6: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

capturing  the  three-­‐dimensional  data,  the  instrument  also  records  an  intensity  

rendering  of  the  surface  based  on  surface  reflectivity  (Figure  1A).      

Optical  topometry  offers  a  novel  alternative  to  measuring  important  plant  

phenotypes.  Other  methods,  such  as  scanning  electron  microcopy,  atomic  force  

microscopy  (Mechaber,  et  al.,  1996),  dental  resin  impressions  and  nail  polish  

impressions,  are  either  too  costly  or  destructive  to  the  epidermal  surface  (due  to  

preparation  time  or  in  the  preparation  used).  Topographical  techniques  other  than  

OT  are  time  consuming,  inaccurate  and  sometimes  alter  the  tissue  in  their  sample  

preparation  (i.e.  histological  sectioning,  other  types  of  three-­‐dimensional  

microscopy)  (Wutys,  et  al.,  2010)  (Truernit,  et  al.,  2008).  OT  provides  a  solution  that  

is  inexpensive  (apart  from  the  initial  cost  of  the  instrument  and  software)  and  

completely  non-­‐destructive  to  the  epidermal  surface.  It  may  also  provide  novel,  

measurable  parameters  that  can  be  attained  in  a  high  throughput  fashion.  In  order  

to  explore  this  technology,  three  studies  were  undertaken,  each  intended  to  evaluate  

facets  of  OT  as  a  viable  approach  to  analyzing  the  epidermal  surface  of  plants.    

Studies  on  Rop2  Mutants  

rop2  mutants  of  Arabidopsis  thaliana  display  a  decrease  in  interdigitation  

(lobing)  of  leaf  epidermal  pavement  cells  (Fu,  et  al.,  2005).  A  lobe  is  defined  an  

outgrowth  from  the  cell  center  of  a  pavement  cell,  in  the  plane  of  a  captured  image  

(Fu,  et  al.,  2005).  In  the  context  of  three-­‐dimensional  data  sets,  a  lobe  must  be  

redefined  as  an  area  of  local  maximum  in  the  z  dimension,  perpendicular  to  the  

plane  of  the  leaf.  This  new  definition  also  includes  lobes  of  the  cell  center  

“backbone”  area,  since  local  maxima  can  be  observed  there  using  OT,  but  not  via  

Page 7: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

conventional  microscopy  as  previously  published  (Fu,  et  al.,  2005;  Figure  2).  rop2  

acts  in  a  pathway  of  microfilament  formation  that  controls  localized  cell  outgrowth  

(Fu,  et  al.,  2005).  Epidermal  cell  outgrowth  also  occurs  in  the  z-­‐dimension  (height),  

as  seen  in  coordinate  slices  (surface  profile  along  a  particular  line  traced  on  the  

epidermal  surface)  of  epidermal  surfaces  obtained  by  OT  (Figure  2).  A  comparison  

is  made  in  this  study  between  Col-­‐0  (wt)  and  the  rop  2  mutant  as  a  proof  of  concept  

(in  such  parameters  as  lobing)  and  to  investigate  new  parameters  (such  as  overall  

surface  area,  lobing  and  lobe  heights).      

 

 

 

 

 

 

 

 

 

 

Page 8: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

 

 

 Figure  2.  Coordinate  slice  of  A.  thaliana  epidermal  surface.  A.  Surface  filtered  to  

remove  12  forms  (removes  any  gradual  trends),  coordinates  are  marked  on  a  

topometry  diagram  of  where  a  slice  is  to  be  made.  B.  Coordinate  slice  of  line  

indicated  in  A,  shows  the  varying  heights  along  the  “backbone”  of  the  pavement  cell  

centered  in  the  red  box.  The  brackets  indicate  regions  of  local  maxima  that  translate  

into  lobes  in  figure  C.  C.  Resultant  motif  image  of  lobing  pattern.  The  red  box  

encompasses  the  same  physical  location  for  the  three  images.  D.  Intensity  image  

containing  the  pavement  cell  of  interest  in  the  red  box.  

 

 

 

Page 9: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Studies  Across  an  Entire  Plant                

  Given  that  no  published  studies  could  be  found  that  documented  the  

development  of  leaf  cellular  microtopography  throughout  the  life  of  a  plant,  I  

examined  the  entire  leaf  complement  of  several  plants  in  an  effort  to  identify  trends  

from  young  to  old  leaves  and  within  a  single  leaf.  As  younger  leaves  tend  to  have  

smaller  pavement  cells  (Staff  et  al.  2012),  it  can  be  expected  that  leaves  that  are  still  

developing  would  have  a  greater  three-­‐dimensional  surface  area  (due  to  a  greater  

number  of  cell-­‐cell  interfaces)  and  greater  numbers  of  pavement  cells  per  unit  of  

two-­‐dimensional  leaf  area.  With  that  in  mind,  parameters  such  as  surface  area,  lobe  

and  pavement  number,  and  isotropy  were  chosen  to  determine  if  trends  could  be  

seen  developmentally.    

Studies  on  Leaf  Six  Developmentally  

  Leaf  six  of  the  wild  type  was  chosen  to  look  at  developmentally,  as  it  reaches  

full  maturity  within  a  reasonable  time  and  has  enough  surface  to  take  multiple  

measurements.  The  aim  of  this  study  was  to  determine  if  the  three-­‐dimensional  

surface  morphology  of  pavement  cells    -­‐-­‐  and  that  of  the  overall  epidermal  surface  

they  create  -­‐-­‐  change  as  a  leaf  and  the  plant  matures.  It  was  predicted  that  an  overall  

decrease  in  pavement  cells  per  two-­‐dimensional  area  would  be  observed  as  leaves  

matured,  as  younger  leafs  were  seen  in  previous  experiments  (nail  polish  and  SEM),  

to  have  more,  smaller  pavement  cells  than  more  senior  leaves  (Staff  et  al.  2012).    It  

has  also  been  shown  that  as  pavement  cells  increase  in  size,  interdigitation  in  the  

plane  of  the  leaf  (lobing)  also  increases  (Staff  et  al.  2012).  Number  of  lobes  out  of  the  

Page 10: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

plane  of  the  leaf  is  predicted  to  also  correlate  to  pavement  cell  size  and  number  of  

pavement  cells  given  the  same  two-­‐dimensional  surface  area.      

 

Materials  and  Methods  

Plant  Growth  

Seeds  were  imbibed  and  stratified  in  deionized  (DI)  water  at  4˚C  for  3-­‐7  days  

before  planting.  Seeds  were  planted  in  in  4  x  9  cell  Compak™  trays  in  autoclaved  soil  

and  vermiculite  (LC1  Sunshine  Professional  growing  mix  and  Strong-­‐lite  ®  medium  

vermiculite  premium  grade  respectively),  in  a  3:1  ratio.  For  every  4L  of  soil  mix,  2L  

of  water  with  2  g  of  Gnatrol  WDG  ®  was  added  to  the  planting  mixture.  The  plants  

were  covered  with  a  plastic  dome  until  they  reached  approximately  10  mm  in  

diameter.  Plants  were  thinned  to  one  plant  per  cell  of  the  tray  and  watered  with  

approximately  1  L  of  water  per  tray  every  week  and  after  they  reached  about  20  

mm,  0.5  grams  of  Gnatrol  WDG  ®  and  0.75  g  of  Peter’s  Fertilizer  was  added  to  the  

weekly  1  L  watering  mixture.  After  approximately  1-­‐2  months  (Table  1,  growth  time  

depends  on  particular  experiment)  of  growth  in  12  hr  days  (fluorescent  light)  at  20-­‐

22°  C,  measurements  were  taken  with  OT  and  then  nail  polish  impressions  were  

taken  and  catalogued  (Table  1).  

 

 

 

 

 

Page 11: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Accession/Mutant   Number  of  

Plants  Viewed  

Days  of  Growth  

Before  Viewing  

Leaf  

(Leaves)  

Viewed  

Experiment  

Rop2     2   27   1   Studies  on  Rop2  

Mutants  

Col0     3   49   6   Studies  on  Leaf  Six  

Developmentally  

Col0     3   43   6   Studies  on  Leaf  Six  

Developmentally  

Col0     3   32   6   Studies  on  Leaf  Six  

Developmentally  

Col0     5   27  (leaf  1)  28  (leaf  

6)  

1  and  6   Studies  on  Rop2  

Mutants  and  Studies  on  

Leaf  Six  

Developmentally  

Col0     1   63-­‐65   1  thru  40   Studies  Across  an  Entire  

Plant  

Col0     1   71-­‐72   1  thru  42   Studies  Across  an  Entire  

Plant  

Col0     1   79-­‐80   3  thru  50   Studies  Across  an  Entire  

Plant  

Table  1.  Growth  time  before  data  collection.  Viewing  refers  to  OT  data  collection  

and  then  impression  taking.    

   

Data  Collection  

Data  were  collected  for  each  of  the  studies  using  the  NanoFocus  μsurf  

Explorer  and  via  conventional  nail  polish  impressions  (using  nail  polish  on  the  

abaxial  surface,  and  then  removal  with  tape).  The  abaxial  surface  of  each  leaf  was  

affixed  to  a  glass  microscope  slide  with  double-­‐sided  tape.  Data  were  collected  

Page 12: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

within  3  minutes  after  each  leaf  was  removed  from  the  plant.  All  data  were  collected  

using  the  instrument’s  50x  objective  focused  at  a  point  midway  between  veins.  For  

the  studies  on  rop2  mutants,  data  were  taken  at  three  points,  proximal  medial  and  

distal  to  the  point  of  attachment  of  the  leaf  to  the  plant,  on  both  sides  of  the  central  

vein.    For  the  studies  across  an  entire  plant,  data  were  taken  between  each  vein,  

between  the  tip  and  the  distal-­‐most  vein  and  between  the  base  and  the  basal-­‐most  

vein.  For  the  leaf  six  developmental  studies,  data  were  taken  at  a  medial  position,  on  

both  sides  of  the  central  vein.  Every  data  set  was  measured  with  the  same  two-­‐

dimensional  area.    

Data  Processing  

  All  data  processing  was  performed  using  Nanofocus’s  proprietary  μsoft  

Analysis  Premium  software  package.  This  software  tool  includes  a  wide  variety  of  

surface  analysis  algorithms  of  both  industry-­‐specific  and  more  general  purpose  

natures.    The  software  provides  a  variety  of  filters  as  well  as  offering  the  user  the  

option  to  make  fine  adjustments  away  from  the  system’s  defaults.  In  order  to  enable  

the  software  to  identify  individual  pavement  cells,  cell-­‐to-­‐cell  boundaries  had  to  be  

exaggerated.  Twelve  forms  of  the  topometry  surface  were  removed,  eliminating  the  

gradual  variation  in  height  across  the  surface.  For  cell  identification  and  counting,  a  

spatial  filter  was  then  applied  that  takes  advantage  of  the  height  minima  that  occur  

at  cell-­‐to-­‐cell  interfaces.  The  filter  negatively  amplified  all  minima  below  a  

manually-­‐set  threshold,  while  the  points  directly  adjacent  to  the  minima  were  

positively  amplifed  to  maxima  (this  is  a  so-­‐called  Mexican  Hat  filter).  All  points  that  

were  not  considered  a  minimum  were  then  flattened  so  that  the  end  result  was  

Page 13: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

flattened  pavement  cell  bodies  surrounded  by  elevated  cell  wall  interfaces  

surrounding  deep  valleys  between  cells  (Figure  3).  A  motif  analysis  was  then  

performed  to  detect  pavement  cells.  Pavement  cells  were  detected  by  asking  the  

program  to  search  for  local  minima  motifs  that  are  at  least  6%  of  the  highest  

maxima  (to  occlude  the  valleys  between  cells),  and  were  at  least  1%  of  the  overall  

surface  area  (to  occlude  stomata,  other  cell  types,  and  artifacts)  (Figure  4).    

  Although  automated  counting  compared  to  manual  counting  does  not  always  

produce  the  same  results  (automated  counting  tends  to  cut  up  larger  pavement  cells  

into  several  motifs),  automated  means  of  counting  remove  any  bias.    If  the  identical  

counting  procedures  are  used  to  obtain  all  data  sets,  then  differences  should  be  

noted,  regardless  of  differences  between  manual  and  automated  counting  in  

methods  for  counting  pavement  cells.    

Page 14: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

 

Figure  3.  Three-­‐dimensional  rendering  of  spatially  filtered  surface.  Light  

orange  indicates  a  pavement  cell  body,  dark  orange  the  exaggerated  maxima,  and  

yellow  the  exaggerated  minima.    

 

 

 

 

 

 

Page 15: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

 

Figure  4.  Motif  analysis  for  pavement  cell  detection.  Different  colored  segments  

are  computer  counted  pavement  cells.  Crosses  are  placed  on  minima  of  a  motif.  

Colors  are  overlaid  on  original  12-­‐forms  removed  image.    

 

Lobing  requires  the  surface  to  be  somewhat  unaltered  by  the  software  to  

obtain  an  accurate  count  of  the  number  of  lobes  per  unit  area  so  that  local  maxima  

are  preserved.  As  in  the  case  of  searching  for  pavement  cells,  twelve  forms  were  

removed  from  the  surface.  Defining  a  lobe  as  a  local  maximum  in  height  (Figure  2),  a  

motif  analysis  was  performed  based  on  local  maximal  heights  such  that  each  motif  

must  be  less  than  0.1%  of  the  overall  surface  area,  the  approximate  size  of  a  

Page 16: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

pavement  cell  lobe  (Figure  2C).  The  heights  of  these  local  maxima  lobe  motifs  were  

also  recorded  and  averaged  to  produce  an  average  lobe  height.    

  Finally,  μsoft  Analysis  Premium  can  calculate  the  three-­‐dimensional  surface  

area  of  a  surface  in  a  given  frame  of  view.  It  also  can  measure  the  overall  isotropy  of  

a  surface  (directional  independence,  given  as  a  percentage)  and  the  first,  second,  

and  third  directions  (prevailing  orientation  of  objects)  for  any  data  set.    

Statistical  Analysis  

  For  the  studies  on  rop2  mutants,  a  t-­‐test  was  used  with  a  least  similar  

differences  function  with  an  alpha  of  0.05.  For  the  studies  across  an  entire  plant,  an  

ANOVA  was  used  with  covariance  matrices  because  the  data  points  were  spatially  

related.  Each  dependent  variable  covariance  matrix  was  independently  analyzed.  

For  the  studies  on  leaf  six  developmentally,  a  t-­‐test  was  used  with  a  least  similar  

differences  function  with  an  alpha  of  0.05  and  a  nested  design.    

     

Results  

Studies  on  Rop2  Mutants  

Optical  topometry  data  sets  for  rop2  mutants  (SALK  line  t-­‐DNA  insertion,  

SALK_055328C)  and  Col-­‐0  (wildtype)  epidermis  were  collected  from  the  first  

matured  leaf,  on  both  sides  of  the  central  vein,  and  between  bisecting  veins  

proximally,  medially,  and  distally  from  the  stem  to  the  tip.  The  topometry  portion  of  

each  data  set  was  analyzed  using  μSurf  Analysis  parameters.  Lobe  parameters  were  

determined  from  local  maxima  of  the  z-­‐dimension  (e.g.  height),  as  well  as  a  

maximum  area  of  0.1%  of  the  surface  area  restriction.  Motif  analysis  of  lobe  number  

Page 17: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

suggests  a  decrease  in  rop2  compared  to  Col-­‐0,  with  decreased  average  height  of  

lobe  motifs  for  the  rop2  mutant  (Figure  5BC).  Motif  analysis  parameters  of  total  

pavement  cell  numbers,  after  flattening  of  the  surface  and  exaggerating  cell-­‐to-­‐cell  

interfaces,  indicate  no  difference  between  Col-­‐0  and  rop2  (Figure  5A).  Surface  area  

of  the  epidermis  also  displays  an  overall  increase  for  the  wt  compared  to  rop2  

(Figure  5D).    

 

Figure  5.  rop2  vs.  wt  epidermis.  Analyses  were  performed  on  the  entire  data  set  of  

a  given  area  of  the  plant  surface.  A.  Cell  numbers  were  determined  per  unit  area  

after  flattening  and  filtering  the  surface  based  on  depression  motifs  that  were  at  

least  6%  of  the  highest  peak  and  at  least  1%  of  the  overall  surface  area  (p=0.4895).    

Page 18: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

B.  Number  of  lobes  per  unit  area  were  counted  using  height  motifs  generated  using  

an  area  of  less  than  0.1%  of  the  total  surface  area  (p=0.0285).  C.  Average  lobe  height  

per  unit  area  was  measured  from  the  center  maxima  of  the  lobe  motif    (p=0.0049)  D.  

Three  dimensional  surface  area  was  measured  across  the  unit  area  for  each  data  set  

(p=0.007).            

 

Studies  Across  an  Entire  Plant  

  Optical  topometry  data  sets  were  obtained  of  the  epidermal  surface  of  three  

plants  on  every  leaf  that  had  not  yet  senesced,  in  every  position  between  bisecting  

veins,  before  the  most  proximal  bisecting  vein  and  after  the  last  distal  bisecting  vein,  

left  of  the  central  vein  only.  

 Variable              

Parameter   Leaf   Placement   Leaf*Placement  Pavement  Cells   0.0001   0.0048   0.7041  Lobes   0.001   0.002   0.889  Lobe  Height   0.3327   0.1034   0.9987  Surface  Area   0.0001   0.0001   0.9873  Isotropy   0.41   0.7424   0.9732  First  Direction   0.3135   0.2651   0.2715  Second  Direction   0.3135   0.2651   0.3715  Third  Direction   0.6742   0.0649   0.6649  Table  2.  P  values  for  studies  across  an  entire  plant.  

  Isotropy  and  its  first,  second  and  third  directions  were  statistically  

insignificant  (Table  2),  but  their  respective  histograms  show  interesting  groupings  

at  certain  directions.  It  can  be  seen  at  the  approximately  0°,  45°,  90°,  and  135°  

directions  (Figure  6),  that  there  are  large  groupings  in  the  first,  second  and  third  

directions.  In  addition,  isotropy  has  lower  values,  which  indicates  some  

directionality  in  the  features  of  the  surface.      

Page 19: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.  Isotropy  and  directions  for  entire  plant.  A.  Histogram  of  isotropy,  the  x-­‐

axis  is  percentage.  B.  Histogram  of  first  direction,  the  x-­‐axis  is  degrees  (0-­‐180°).  C.  

A  

B  

D  

C  

Page 20: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Histogram  of  second  direction,  the  x-­‐axis  is  degrees  (0-­‐180°).  D.  Histogram  of  third  

direction,  the  x-­‐axis  is  degrees  (0-­‐180°).  

  Surface  area,  lobe  number  and  pavement  cell  number  are  all  significant  in  

placement  across  a  leaf  (proximal  to  distal)  and  from  leaf  to  leaf  (Table  2).  Lobe  

height,  while  not  significant  at  leaf  or  placement,  is  also  grouped  with  these  

parameters  since  its  data  follows  a  similar  trend.  3D  surface  area,  lobe  height,  lobe  

number,  and  pavement  cell  number  all  follow  the  trend  of  having  higher  values  in  

young  and  old  leaves  and  intermediate  values  in  the  leaves  that  are  aged  between,  

creating  an  inverse  bell  curve  (Figure  7).  Lobe  number  and  pavement  cell  number  

follow  the  same  trend  across  placement  (proximal  to  distal),  having  inverse  bell  

curve  shaped  graphs,  whereas  3D  surface  area  and  lobe  height  both  have  standard  

bell  curve  shaped  graphs.    

 

 

 

 

 

 

 

 

 

 

 

Page 21: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 22: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Figure  7.  3D  surface  area,  lobe  height,  lobe  number,  and  pavement  cell  

number  across  leaves  and  placement  of  entire  plants.  Placement  1-­‐7  on  the  x-­‐

axis  is  proximal  to  distal.  Placement  number  7  had  only  one  value  and  is  considered  

an  outlier.  Leaves  are  numbered  1-­‐50  from  oldest  to  youngest  leaves.  A.  3D  surface  

area  across  leaves  (in  µm²E2).  B.  3D  surface  area  across  placement  (in  µm²E2).  C.  

Lobe  height  across  leaves  (µm  E-­‐2).  D.  Lobe  height  across  placement  (µm  E-­‐2).  E.  

Lobe  number  across  leaves.  F.  Lobe  number  across  placement.  G.  Pavement  cell  

number  across  leaves.  H.  Pavement  cell  number  across  placement.  

 

Studies  on  Leaf  Six  Developmentally  

  Optical  topography  data  sets  were  taken  bilaterally  of  the  central  vein  on  wt  

Col-­‐0  plants  at  a  position  midway  between  the  central  vein  and  the  leaf  margin.  The  

same  filtering  and  parameterization  that  was  used  for  the  studies  on  rop2  mutants  

was  applied.  Results  showed  values  that  were  mostly  insignificantly  different  across  

development.  The  total  pavement  cell  number  varies  insignificantly  from  week  to  

week  (Figure  8A),  whereas  lobing,  lobe  height,  and  3D  surface  area  show  significant  

differences  between  weeks  5  and  6  of  development  (Figure  8BCD).      

Page 23: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

 

Figure  8.  wt  epidermis  developmentally.  Analyses  were  performed  on  the  entire  

data  set  of  a  given  area  of  the  plant  surface.  A.  Number  of  cells  were  counted  per  

unit  area  after  flattening  and  filtering  the  surface  based  on  depression  motifs  that  

were  at  least  6%  of  the  highest  peak  and  at  least  1%  of  the  overall  surface  area  

(p=0.246).    B.  Number  of  lobes  per  unit  area  were  counted  using  height  motifs  

generated  using  an  area  of  less  than  0.1%  of  the  total  surface  area  (p=0.0006).  C.  

Average  lobe  height  per  unit  area  was  measured  from  the  center  maxima  of  the  lobe  

motif    (p=0.008)  D.  Three-­‐dimensional  surface  area  was  measured  across  the  unit  

area  of  data  taken  for  each  data  set  taken  (p=0.0013).            

 

 

 

 

Page 24: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Discussion  and  Conclusion  

Studies  on  Rop2  Mutants  

From  the  mutant  studies  of  rop2,  a  picture  begins  to  emerge  of  the  

morphological  differences  between  the  mutant  and  wildtype.  Since  the  overall  

pavement  cell  number  remains  constant  between  the  mutant  and  the  wildtype  per  

unit  area,  it  can  be  said  that  although  there  are  some  obvious  changes  in  lobe  

number,  lobe  height  and  overall  surface  area,  the  average  2D  area  that  a  given  

pavement  cell  occupies  must  remain  relatively  constant.  This  is  not  true  of  the  3D  

area.  With  an  increase  in  3D  surface  area,  lobe  number,  and  lobe  heights,  it  can  be  

said  that  the  wildtype  is  in  generally  more  “lumpy”  than  the  mutant,  with  more  

incidents  of  height  maxima,  generating  more  lobe  motifs  and  a  greater  overall  

surface  area.  This  is  not  to  say  the  level  of  interdigitation  in  rop2  is  less  than  the  

wildtype,  but  that  lobing  is  less  exaggerated  in  the  mutant  so  much  that  local  

maxima  begin  to  disappear.  These  results  are  not  surprising  in  that  it  has  been  

shown  that  rop2  carries  a  defect  in  microtubule  and  microfilament  arrangements  

that  impact  pavement  cell  morphologies,  and  mutants  were  reported  to  display  a  

decrease  in  lobing  in  two-­‐dimensions  (Fu,  et  al.,  2005).          

Studies  Across  an  Entire  Plant  

  In  looking  at  the  entire  A.  thaliana  leaf  epidermis,  several  trends  were  

apparent.  Isotropically,  having  the  directions  of  0°,  45°,  90°,  and  135°,  showing  a  

strong  bias  (Figure  8)  indicates  some  directionality  in  the  surface.  Since  the  leaf  was  

viewed  in  the  same  position  with  the  central  vein  always  oriented  in  a  north-­‐south  

fashion,  these  angles  show  some  disposition  to  the  orientation  of  cells  at  an  angle  

Page 25: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

with  or  in  line  with  the  central  vein.  The  angled  dispositions  may  be  a  result  of  the  

radiating  veins  that  branch  from  the  central  vein  at  approximately  45°.    

  Analyzing  3D  surface  area,  lobe  height,  lobe  number,  and  pavement  cell  

number,  the  similar  inverse  bell  curve  trend  can  be  seen  in  all  cases,  from  old  to  new  

leaves.  Old  and  young  leaves  tend  to  be  smaller  and  contain  more  compact  

pavement  cells,  giving  rise  to  a  greater  3D  surface  area  due  to  a  greater  number  of  

cell-­‐cell  valleys  and  greater  number  of  pavement  cells  and  number  of  lobes  (in  this  

case  the  number  of  pavement  cells  outweighs  the  increase  in  lobing  that  is  seen  with  

greater  size  of  pavement  cells).  The  increase  in  height  seen  may  be  a  result  from  the  

overall  compactness  of  the  pavement  cells,  having  not  yet  fully  expanded.  For  

placement  within  a  leaf,  across  all  leaves,  the  most  distal  and  proximal  regions  have  

greater  numbers  of  pavement  cells  and  more  lobing,  but  a  decrease  in  3D  surface  

area  and  lobe  height.  In  this  case,  the  larger  pavement  cells  of  the  more  central  

regions  of  the  leaf  have  a  greater  height  than  those  at  the  periphery,  exaggerating  

the  cell-­‐cell  valleys  and  local  undulations,  taking  up  a  greater  surface  area.  These  

two  opposing  trends  can  be  seen  in  Figure  9.  The  overall  inverse  bell  curve  can  be  

seen  across  the  entire  graph  for  3D  surface  area,  illustrating  pavement  cell  number  

outweighing  the  factors  from  large  pavement  cells.  The  local  undulations  in  the  

curve  indicate  a  movement  from  proximal  to  distal  locations  within  a  leaf,  showing  

the  large  pavement  cell  factors  outweighing  the  small  pavement  cell  factors.      

 

 

 

Page 26: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  9.  3D  Surface  Area  leaf*placement  graph.  The  x-­‐axis  numbers  indicate  

both  leaf  and  placement  in  an  increasing  fashion  from  both  proximal  to  distal  and  

both  old  to  new  leaf  (ex.  numbers  1-­‐3  indicate  the  proximal  to  distal  positions  on  

leaf  1,  the  numbers  4-­‐6  indicate  the  proximal  to  distal  positions  on  leaf  2…the  

numbers  11-­‐15  indicate  the  proximal  to  distal  positions  on  leaf  4,  etc.)

900  

950  

1000  

1050  

1100  

1150  

1200  

1250  

1   7   13  

19  

25  

31  

37  

43  

49  

55  

61  

67  

73  

79  

85  

91  

97  

104  

110  

116  

122  

128  

134  

140  

146  

152  

158  

164  

170  

176  

182  

188  

194  

200  

206  

212  

218  

224  

3D  SA  (µm²E2)  

leaf*placement  

Page 27: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Studies  on  Leaf  Six  Developmentally  

  Departures  from  results  predicted  for  the  developmental  survey  are  most  

likely  due  to  specimen  maturities  being  overly  biased  in  the  direction  of  too  mature  

to  detect  significant  differences  in  pavement  cell  number.  The  relative  decrease  in  

lobing  and  surface  area  are  positively  correlated.  This  observation  is  readily  

rationalized,  since  lobing  measurements  are  based  on  local  height  maxima,  the  less  

“bumpy”  the  surface  is,  the  lower  the  measured  surface  area  is  expected  to  be.  In  

addition,  the  height  decrease  observed  between  weeks  five  and  six  correlates  

positively  with  a  decrease  in  lobe  number.  It  can  be  extrapolated  that  late  in  

development  (between  weeks  five  and  six),  leaf  six  undergoes  a  physiological-­‐

morphological  transition  that  flattens,  but  does  not  expand  its  pavement  cells.  This  

flattening  may  be  attributed  to  the  removal  of  water  to  other  still  developing  parts  

of  the  plant,  resulting  in  a  decrease  in  turgor  pressure  from  the  water  vacuole.  This  

also  could  be  explained  by  the  increase  in  cellulose  in  the  cell  wall  of  as  pavement  

cells  develop,  increasing  their  ability  to  resist  turgor  pressure  expansion.    

Implications  for  Future  Research  

  Optical  topometry  is  a  high  throughput  tool  that  shows  terrific  promise  for  

enabling  large  scale  sampling  of  plant  epidermal  surfaces.  For  taking  cell  censuses,  

pavement  cells  can  be  identified  and  counted  from  Arabidopsis  and  undoubtedly  

most  other  species,  Arabidopsis  being  especially  challenging  with  its  highly  

irregular,  jigsaw  puzzle  epidermis.    We  have  made  progress  in  applying  OT  to  

identifying  stomata,  but  more  work,  and  possibly  purpose-­‐written  software,  is  

needed  for  this  to  become  as  reliable  as  it  is  for  pavement  cells.  By  creating  a  binary  

Page 28: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

image  from  the  original  Arabidopsis  pavement  cell  filtering  protocol,  stomata  can  be  

identified  by  the  naked  eye.    Machine  counting  is  therefore  at  least  theoretically  

within  reach,  although  more  work  needs  to  be  done  to  optimize  it  (Figure  10).  With  

automated  counting  of  both  stomata  and  pavement  cells  in  hand,  stomatal  indices  

and  densities  can  be  determined  essentially  instantaneously,  massively  accelerating  

the  quantitative,  cellular  phenotyping  of  plant  epidermises  for  large  scale  genetic  

studies.  

  In  addition  to  greatly  facilitating  cell  census  taking,  OT  opens  up  barely-­‐

explored  opportunities  for  characterizing  novel  surface  features  with  high  precision.    

For  example,  lobe  analysis  has  never  before  been  performed  on  a  plant  epidermis  in  

the  z-­‐dimension  and  represents  a  phenotype  ripe  for  genetic  analysis.  In  addition,  

three-­‐dimensional  surface  area  is  a  novel  parameter  with  potentially  valuable  

implications  for  modeling  the  plant-­‐air  interface.    Finally,  all  measurements  derived  

from  OT  can  be  logged  in  high-­‐throughput  fashion,  enabling  large  scale  explorations  

of  these  heretofore  cryptic  plant  phenotypes.    

   

Page 29: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

   

 Figure  10.  Binary  image  of  epidermal  surface.  Pavement  cells  are  colored  and  

cell-­‐cell  boundaries  are  in  light  yellow.  The  binary  nature  is  cell  body  and  cell  wall.  

*Indicates  a  stomata  that  can  clearly  be  seen  and  possibly  isolated  automatically  in  

the  future.      

 

Acknowledgements  

  I  would  like  to  thank  Dr.  Tom  Jacobs  and  Miranda  Haus  for  all  of  their  help  

along  the  way  of  this  project  in  guiding  my  research.  Miranda  Haus  ran  all  of  the  

statistics.  I  would  also  like  to  thank  Chris  Wichern  (Nanofocus,  USA)  for  providing  

the  µSurf  Explorer  instrument,  the  µSoft  Analysis  Premium  software  and  training  in  

the  use  of  both  the  hardware  and  software.    

 

*  

Page 30: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

References  

Fu,  Y.,  Gu,  Y.  Zheng,  Z.,  Wasteneys,  G.,  Yang,  Z.  (2005).  Arabidopsis  Interdigitating  

Cell  Growth  Requires  Two  Antagonistic  Pathways  with  

Opposing  Action  on  Cell  Morphogenesis.  Cell,  Vol.  120,  687–700.  

Mechaber,  W.,  Marshall,  D.,  Mechaber,  R.,  Jobe,  R.,  Chew,  F.  (1996).  Mapping  leaf  

surface  landscapes.  PNAS,  Vol.  93,  4600-­‐4603.  

IPCC,  2007:  Climate  Change  2007:  The  Physical  Science  Basis.  Contribution  of  

Working  Group  I  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  

Panel  on  Climate  Change  [Solomon,  S.,  D.  Qin,  M.  Manning,  Z.  Chen,  M.  

Marquis,  K.B.  Averyt,  M.Tignor  and  H.L.  Miller  (eds.)].  Cambridge  University  

Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  USA.  

Royer  D.L.  (2000).  Stomatal  density  and  stomatal  index  as  indicators  of  

paleoatmospheric  CO2  concentration.  Review  of  Palaeobotany  and  

Palynology,  Vol.  114,  1-­‐28  

Staff,  L.,  Hurd,  P.,  Reale,  L.,  Seoighe,  C.,  Rockwood,  A.,  Gehring,  C.  (2012).  The  Hidden  

Geometries  of  the  Arabidopsis  thaliana  Epidermis.    PLOS  ONE,  Vol.  7,  Issue  9,  

e43546.    

Truernit  E.,  Bauby,  H.,  Dubreucq,  B.,  Grandjean,  O.,  Runions,  J.,  Barthélèmy,  J.,  

Palauqui,  J.  (2008).  High  Resolution  Whole-­‐Mount  Imaging  of  Three-­‐

Dimensional  Tissue  Organization  and  Gene  Expression  Enables  the  Study  of  

Phloem  Development  and  Structure  in  Arabidopsis.  The  Plant  Cell  Vol.  20  

1494-­‐1503.  

Page 31: Thesis FINAL for PDF - University Of Illinoismcb.illinois.edu/undergrad/downloads/Kelsch_thesis HiDistinct.pdf · Explorationof+OpticalTopometrytoStudytheEpidermalSurfaceof Arabidopsis*thaliana*

Wutys,  N.,  Palaqui,  J.,  Conejero,  G.,  Verdeil,  J.,  Grainer,  C.,  Massonnet,  C.  (2010).  High-­‐

contrast  three-­‐dimensional  imaging  of  the  Arabidopsis  leaf  enables  the  

analysis  of  cell  dimensions  in  the  epidermis  and  mesophyll.  Plant  Methods,  

6:17.