19
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 09, Issue 6 (June. 2019), ||S (III) || PP 24-42 International organization of Scientific Research 24 | Page Thermo-mechanical Analysis of a Crack in an Infinite Functionally Graded Elastic Layer Rajesh Patra 1 , S. P. Barik 2 , P. K. Chaudhuri 3 1 (Department of Mathematics, Hooghly Engineering & Technology College, Vivekananda Road, Hooghly-712103, India) 2 (Department of Mathematics, Gobardanga Hindu College, 24-Parganas (N), Pin-743273, India) 3 (Retired Professor, Department of Applied Mathematics, University of Calcutta,92, A. P. C. Road, Kolkata - 700009, India) Corresponding Author: S. P. Barik Abstract: This paper aims to develop a steady state thermoelastic solution for an infinite functionally graded layer of finite thickness with a crack in it lying in the middle of the layer and parallel to the faces of the layer. The faces of the layer are maintained at constant temperature of different magnitude. The layer surfaces are supposed to be acted on by symmetrically applied concentrated forces of magnitude P 2 with respect to the centre of the crack. The applied concentrated force may be compressive or tensile in nature. The problem is solved by using integral transform technique. The solution of the problem has been reduced to the solution of a Cauchy type singular integral equation, which requires numerical treatment. Both normalized thermo-mechanical stress intensity factor (TMSIF), thermal stress intensity factor (TSIF) and the normalized crack opening displacement are determined. Thermal effect and the effects of non-homogeneity parameters of the graded material on various subjects of physical interest are shown graphically. Key words and phrases: Fourier integral transform, Singular integral equation, Stress-intensity factor. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 11-06-2019 Date of acceptance: 28-06-2019 --------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION Every solid material has its own characteristics in respect of its elastic behavior, density, porosity, thermal and electrical conductivity, magnetic permeability, and so on. In numerous situations, a particular solid does not necessarily fulfill all the criteria for a particular purpose. For example, aerospace industry requires light materials with high strength; the outer part of a space craft body should be a non-conductor of heat such that the heat generated due to friction does not disturb the interior part made of high strength metal. It is difficult to find materials with light weight but high strength or high strength metal with zero heat conductivity. These difficulties are overcome at present using two or more solids at a time to generate a new solid which will fulfill most of our requirements. Composite materials, fibre-reinforced materials and functionally graded materials (FGM) are some of newly manufactured materials which are used at present in various areas of applications. Two solids say A and B with specific properties are used to form a FGM in such a way that the composition gradually vary in space following a definite designed rule. This means that at a particular point in the medium the FGM shows (100 - x) % of A's property and x% of B's property, (0 โ‰ค x โ‰ค 100). The idea was originated in Japan in early part of the eighties in the last century and has been found to be very useful in respect of applications in various areas like resisting corrosiveness, controlling thermal activity, increasing strength and toughness in materials etc. FGMs have also several biomedical applications. Thermal loading on solids has significant effects in their after load behavior and so should be dealt with utmost care. As such, the study of thermoelastic problems has always been an important branch in solid mechanics 1,2 . In the design of a structure in engineering field , considerable attention on thermal stress is a natural task, because many structural components are subjected to severe thermal loading which might cause significant thermal stresses in the components, especially around any defect present in the solid. Thermal stresses along with the stresses due to mechanical loadings can give rise to stress concentration in an around the defects and can lead to considerable damage in the structure. In literature, problems related to defects such as cracks in solids have been studied in detail for various kinds of solid medium. Cracks in a solid may be generated due to several reasons such as uncertainties in the loading process, compositional defects in materials, inadequacies in the design, deficiencies in construction or maintenance of environmental conditions, and several others. Consequently, almost all structures contain cracks, either due to manufacturing defects or due to inappropriate thermal or mechanical loading. If proper attention to

Thermo-mechanical Analysis of a Crack in an Infinite ...1(Department of Mathematics, Hooghly Engineering & Technology College, Vivekananda Road, Hooghly-712103, India) 2(Department

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

    ISSN (e): 2250-3021, ISSN (p): 2278-8719

    Vol. 09, Issue 6 (June. 2019), ||S (III) || PP 24-42

    International organization of Scientific Research 24 | Page

    Thermo-mechanical Analysis of a Crack in an Infinite

    Functionally Graded Elastic Layer

    Rajesh Patra1, S. P. Barik

    2, P. K. Chaudhuri

    3

    1(Department of Mathematics, Hooghly Engineering & Technology College, Vivekananda Road,

    Hooghly-712103, India) 2(Department of Mathematics, Gobardanga Hindu College, 24-Parganas (N), Pin-743273, India)

    3(Retired Professor, Department of Applied Mathematics, University of Calcutta,92, A. P. C. Road,

    Kolkata - 700009, India)

    Corresponding Author: S. P. Barik

    Abstract: This paper aims to develop a steady state thermoelastic solution for an infinite functionally graded layer of finite thickness with a crack in it lying in the middle of the layer and parallel to the faces of the layer.

    The faces of the layer are maintained at constant temperature of different magnitude. The layer surfaces are

    supposed to be acted on by symmetrically applied concentrated forces of magnitude P

    2 with respect to the centre

    of the crack. The applied concentrated force may be compressive or tensile in nature. The problem is solved by

    using integral transform technique. The solution of the problem has been reduced to the solution of a Cauchy

    type singular integral equation, which requires numerical treatment. Both normalized thermo-mechanical stress

    intensity factor (TMSIF), thermal stress intensity factor (TSIF) and the normalized crack opening displacement

    are determined. Thermal effect and the effects of non-homogeneity parameters of the graded material on various

    subjects of physical interest are shown graphically.

    Key words and phrases: Fourier integral transform, Singular integral equation, Stress-intensity factor. ----------------------------------------------------------------------------------------------------------------------------- ----------

    Date of Submission: 11-06-2019 Date of acceptance: 28-06-2019

    ----------------------------------------------------------------------------------------------------------------------------- ----------

    I. INTRODUCTION Every solid material has its own characteristics in respect of its elastic behavior, density, porosity,

    thermal and electrical conductivity, magnetic permeability, and so on. In numerous situations, a particular solid

    does not necessarily fulfill all the criteria for a particular purpose. For example, aerospace industry requires light

    materials with high strength; the outer part of a space craft body should be a non-conductor of heat such that the

    heat generated due to friction does not disturb the interior part made of high strength metal. It is difficult to find

    materials with light weight but high strength or high strength metal with zero heat conductivity. These

    difficulties are overcome at present using two or more solids at a time to generate a new solid which will fulfill

    most of our requirements. Composite materials, fibre-reinforced materials and functionally graded materials

    (FGM) are some of newly manufactured materials which are used at present in various areas of applications.

    Two solids say A and B with specific properties are used to form a FGM in such a way that the composition

    gradually vary in space following a definite designed rule. This means that at a particular point in the medium

    the FGM shows (100 - x) % of A's property and x% of B's property, (0 โ‰ค x โ‰ค 100). The idea was originated in Japan in early part of the eighties in the last century and has been found to be very useful in respect of

    applications in various areas like resisting corrosiveness, controlling thermal activity, increasing strength and

    toughness in materials etc. FGMs have also several biomedical applications.

    Thermal loading on solids has significant effects in their after load behavior and so should be dealt with

    utmost care. As such, the study of thermoelastic problems has always been an important branch in solid

    mechanics1,2

    . In the design of a structure in engineering field , considerable attention on thermal stress is a

    natural task, because many structural components are subjected to severe thermal loading which might cause

    significant thermal stresses in the components, especially around any defect present in the solid. Thermal

    stresses along with the stresses due to mechanical loadings can give rise to stress concentration in an around the

    defects and can lead to considerable damage in the structure.

    In literature, problems related to defects such as cracks in solids have been studied in detail for various

    kinds of solid medium. Cracks in a solid may be generated due to several reasons such as uncertainties in the

    loading process, compositional defects in materials, inadequacies in the design, deficiencies in construction or

    maintenance of environmental conditions, and several others. Consequently, almost all structures contain cracks,

    either due to manufacturing defects or due to inappropriate thermal or mechanical loading. If proper attention to

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 25 | Page

    load condition is not paid, the size of the crack grows, catastrophically leading to a structure failure. A list of

    work on crack problems by earlier investigators has been provided 3,4,5,6,7,8,9,10,11,12

    etc. Among the recent works

    on crack problems in solids of above mentioned characteristics, notable are the works 13,14,15,16,17,18,19,20,21

    etc.

    For a solid with a crack in it loaded mechanically or thermally, determination of stress intensity factor

    (SIF) becomes a very important task in fracture mechanics. The SIF is a parameter that gives a measure of

    stress concentration around cracks and defects in a solid. SIF needs to be understood if we are to design fracture

    tolerant materials used in bridges, buildings, aircraft, or even bells. Polishing just won't do if we detect crack.

    For a thermoelastic crack problem thermal stress intensity factor (TSIF) is a very important subject of physical

    interest. Literature survey shows good number of papers dealing with thermal stress intensity factors. Among

    them mention may be made of the works 22,23,24,25,26

    etc.

    The present investigation aims to find the elastostatic solution in an infinite layer with a crack in it and

    is under steady state thermal loading as well as mechanical loading. Following the integral transform technique

    the problem has been reduced to a problem of Cauchy type singular integral equation , which has been solved

    numerically. Finally , the stress-intensity factors and the crack opening displacements are determined for various

    thermal and mechanical loading conditions and the associated numerical results have been shown graphically.

    II. NOMENCLATURE ฮป , ฮผ : Lame's constants for isotropic elastic material ฮฝ : Poisson's ratio of elastic material ฮฑt : Thermal expansion coefficient of the material ฯƒx ; ฯ„xy ; ฯƒy : Stress components in cartesian co-ordinate system

    ฮบ : Thermal diffusivity of the material P : Applied load in isothermal problem

    ฮด(:) : Dirac delta function p0 : Internal uniform pressure along crack surface ฮฒ : Non homogeniety parameter for elastic coefficients k(:) : Stress intensity factor in a medium with a crack in it

    T : Absolute temperature

    T0 : Reference temperature T1 ; T2 : Constant temperature supplied to the material in the lower and upper surfaces respectively

    III. FORMULATION OF THE PROBLEM We consider an infinitely long functionally graded layer of thickness 2h weakened by the presence of

    an internal crack. Cartesian system co-ordinates will be used in our analysis. We shall take y-axis along the

    normal to the layer surface. The layer is infinite in a direction perpendicular to y-axis. A line crack of length

    2b is assumed to be present in the middle of the layer. We shall take x-axis along the line of the crack with origin at the center of the crack and investigate the problem as a two dimensional problem in the x-y plane. The

    crack faces are supposed to be acted upon by tensile force p0 and the layer surfaces are acted upon by concentrated forces at points on the layer surfaces at distance 2a , symmetrically positioned with respect to the center of the crack. The concentrated forces are either of compressive in nature or tensile in nature. Fig.1

    displays the geometry of the problem.

    In this figure two sided arrows actually correspond to two distinct problems: the inward drawn arrows

    correspond to compressive loading , while outward drawn arrows correspond to tensile loading. The two

    different types of loading are (i) a pair of concentrated compressive loads each of magnitude P

    2 applied

    symmetrically with respect to the center of the crack at a distance 2a apart , (ii) a pair of concentrated tensile

    loads each of magnitude P

    2 applied symmetrically with respect to the center of the crack at a distance 2a apart.

    The gravitational force has not been taken into consideration. In deriving analytical solution in the present study

    the elastic parameters ฮป and ฮผ have been assumed to vary exponentially in the direction perpendicular to the plane of the crack , following the law

    ฮป = ฮป0eฮฒ y , ฮผ = ฮผ0e

    ฮฒ y , โˆ’h โ‰ค y โ‰ค h, (1) where ฮป0 and ฮผ0 are the elastic parameters in the homogeneous medium and ฮฒ is the non-homogeneity parameter controlling the variation of the elastic parameters in the graded medium.

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 26 | Page

    Fig.1: Geometry of the problem.

    The strain displacement relations , linear stress-strain relations and equations of equilibrium are , respectively ,

    given by

    ฮตx =โˆ‚u

    โˆ‚x , ฮตy =

    โˆ‚v

    โˆ‚y , ฮณ

    xy=

    1

    2

    โˆ‚u

    โˆ‚y+

    โˆ‚v

    โˆ‚x , (2)

    ๐œŽ๐‘ฅ =๐œ‡

    ๐œ…โˆ’1 1 + ๐œ… ๐œ€๐‘ฅ + 3 โˆ’ ๐œ… ๐œ€๐‘ฆ ,

    ๐œŽ๐‘ฆ =๐œ‡

    ๐œ…โˆ’1 3 โˆ’ ๐œ… ๐œ€๐‘ฅ + 1 + ๐œ… ๐œ€๐‘ฆ ,

    ๐œ๐‘ฅ๐‘ฆ = 2๐œ‡๐›พ๐‘ฅ๐‘ฆ . (3)

    ๐œ•๐œŽ๐‘ฅ

    ๐œ•๐‘ฅ+

    ๐œ•๐œ๐‘ฅ๐‘ฆ

    ๐œ•๐‘ฆ= 0, (4)

    ๐œ•๐œ๐‘ฅ๐‘ฆ

    ๐œ•๐‘ฅ+

    ๐œ•๐œŽ๐‘ฆ

    ๐œ•๐‘ฆ= 0, (5)

    where ๐œ… = 3 โˆ’ 4๐œ and ๐œˆ is Poisson's ratio. Before further proceeding it will be convenient to adopt non-dimensional variables by rescaling all length variables by the problem's length scale ๐‘ and the temperature variable by the reference temperature scale ๐‘‡0 :

    ๐‘ขโ€ฒ =๐‘ข

    ๐‘ , ๐‘ฃ โ€ฒ =

    ๐‘ฃ

    ๐‘ , ๐‘ฅ โ€ฒ =

    ๐‘ฅ

    ๐‘ , ๐‘ฆ โ€ฒ =

    ๐‘ฆ

    ๐‘ , โ€ฒ =

    ๐‘,

    ๐‘‡ โ€ฒ =๐‘‡

    ๐‘‡0 , ๐‘‡1

    โ€ฒ =๐‘‡1

    ๐‘‡0 , ๐‘‡2

    โ€ฒ =๐‘‡2

    ๐‘‡0 , ๐›ผ๐‘ก

    โ€ฒ = ๐›ผ๐‘ก๐‘‡0. (6)

    In the analysis below, for notational convenience , we shall use only dimensionless variables and shall

    ignore the dashes on the transformed non-dimensional variables. Mathematically, the problem under

    consideration is reduced to the solution of thermoelasticity equations with thermal expansion coefficient ๐›ผ๐‘ก and the quantity H , the dimensionless thermal conductivity of the crack surface defined

    by Carslaw and Jaeger

    27.

    (๐‘–) Equilibrium equations:

    2 1 โˆ’ ๐œˆ ๐œ•2๐‘ข

    ๐œ•๐‘ฅ2+ 1 โˆ’ 2๐œ

    ๐œ•2๐‘ข

    โˆ‚๐‘ฆ2+

    ๐œ•2๐‘ฃ

    ๐œ•๐‘ฅ๐œ•๐‘ฆ+ ๐›ฝ 1 โˆ’ 2๐œˆ

    ๐œ•๐‘ข

    ๐œ•๐‘ฆ+

    ๐œ•๐‘ฃ

    ๐œ•๐‘ฅ = 2 1 + ๐œˆ ๐›ผ๐‘ก

    ๐œ•๐‘‡

    ๐œ•๐‘ฅ , (7)

    1 โˆ’ 2๐œˆ ๐œ•2๐‘ฃ

    ๐œ•๐‘ฅ2+ 2 1 โˆ’ ๐œ

    ๐œ•2๐‘ฃ

    ๐œ•๐‘ฆ2+

    ๐œ•2๐‘ข

    ๐œ•๐‘ฅ๐œ•๐‘ฆ+ ๐›ฝ 2 1 โˆ’ ๐œˆ

    ๐œ•๐‘ฃ

    ๐œ•๐‘ฆ+ 2๐œˆ

    ๐œ•๐‘ข

    ๐œ•๐‘ฅ = 2 1 + ๐œˆ ๐›ผ๐‘ก

    ๐œ•๐‘‡

    ๐œ•๐‘ฆ , (8)

    (๐‘–๐‘–) Steady state heat conduction equation: ๐œ•2๐‘‡

    ๐œ•๐‘ฅ2+

    ๐œ•2๐‘‡

    ๐œ•๐‘ฆ2= 0, 0 < ๐‘ฅ < โˆž , (9)

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 27 | Page

    and

    (๐‘–๐‘–๐‘–) The boundary conditions: (๐‘Ž) Thermal boundary conditions:

    ๐‘‡ ๐‘ฅ , โˆ’ = ๐‘‡1 , 0 < ๐‘ฅ < โˆž , (10)

    ๐‘‡ ๐‘ฅ , = ๐‘‡2 , 0 < ๐‘ฅ < โˆž , (11)

    ๐œ•

    ๐œ•๐‘ฆ๐‘‡ ๐‘ฅ, 0+ =

    ๐œ•

    ๐œ•๐‘ฆ๐‘‡ ๐‘ฅ, 0โˆ’ = ๐ป ๐‘‡ ๐‘ฅ, 0+ โˆ’ ๐‘‡ ๐‘ฅ, 0โˆ’ , 0 < ๐‘ฅ < 1 , (12)

    ๐‘‡ ๐‘ฅ, 0+ = ๐‘‡ ๐‘ฅ, 0โˆ’ , ๐‘ฅ โ‰ฅ 1 , (13)

    ๐œ•

    ๐œ•๐‘ฆ๐‘‡ ๐‘ฅ, 0+ =

    ๐œ•

    ๐œ•๐‘ฆ๐‘‡ ๐‘ฅ, 0โˆ’ , ๐‘ฅ โ‰ฅ 1 , (14)

    (๐‘) Elastic boundary conditions:

    ๐œ๐‘ฅ๐‘ฆ ๐‘ฅ , 0 = 0, 0 < ๐‘ฅ < โˆž , (15)

    ๐œ๐‘ฅ๐‘ฆ ๐‘ฅ , = 0, 0 < ๐‘ฅ < โˆž , (16)

    ๐œŽ๐‘ฆ ๐‘ฅ , = โˆ“๐‘ƒ

    2๐›ฟ ๐‘ฅ โˆ’ ๐‘Ž , 0 < ๐‘ฅ < โˆž , (17)

    ๐œ•

    ๐œ•๐‘ฅ ๐‘ฃ ๐‘ฅ, 0 =

    ๐‘“ ๐‘ฅ , 0 < ๐‘ฅ < 10 , ๐‘ฅ > 1

    , (18)

    ๐œŽ๐‘ฆ ๐‘ฅ, 0 = โˆ’๐‘0 , 0 โ‰ค ๐‘ฅ โ‰ค 1 , (19)

    where u and v are the x and y components of the displacement vector ; ๐œŽ๐‘ฅ , ๐œŽ๐‘ฆ , ๐œ๐‘ฅ๐‘ฆ are the normal and

    shearing stress components ; ๐‘“(๐‘ฅ) is an unknown function and ๐›ฟ ๐‘ฅ is the Dirac delta function. In Eq. (17) positive sign indicates tensile force while negative sign corresponds to compressive force.

    IV. METHOD OF SOLUTION (๐‘Ž) Thermal part: To determine temperature field ๐‘‡(๐‘ฅ, ๐‘ฆ) from Eq. (9) and boundary conditions (10)-(14) we assume

    ๐‘‡ ๐‘ฅ , ๐‘ฆ = ๐‘ˆ ๐‘ฅ, ๐‘ฆ + ๐‘Š ๐‘ฆ , (20) where ๐‘ˆ(๐‘ฅ, ๐‘ฆ) and ๐‘Š(๐‘ฆ) are two unknown functions satisfying the conditions

    ๐‘ˆ ๐‘ฅ , โˆ’ = ๐‘ˆ ๐‘ฅ, = 0, (21) and

    ๐‘Š โˆ’ = ๐‘‡1 , ๐‘Š = ๐‘‡2 , (22) Under these considerations we get

    ๐‘Š ๐‘ฆ = ๐‘‡2โˆ’๐‘‡1

    2๐‘ฆ +

    ๐‘‡1+๐‘‡2

    2 , (23)

    and

    ๐‘ˆ ๐‘ฅ, ๐‘ฆ = ๐‘’๐œ‚๐‘ฆ โˆ’ ๐‘’๐œ‚ 2โˆ’๐‘ฆ ๐ด1 , ๐‘ฆ โ‰ฅ 0;

    ๐‘’๐œ‚๐‘ฆ โˆ’ ๐‘’โˆ’๐œ‚ 2+y 1+๐‘’2๐œ‚

    1+๐‘’โˆ’2๐œ‚๐ด1 , ๐‘ฆ โ‰ค 0.

    (24)

    for certain constant ๐ด1. The appropriate temperature field satisfying the boundary conditions and regularity condition can be expressed

    as:

    ๐‘‡ ๐‘ฅ , ๐‘ฆ = ๐‘’๐œ‚๐‘ฆ โˆ’ ๐‘’๐œ‚ 2โˆ’๐‘ฆ โˆž

    โˆ’โˆž๐ท ๐œ‚ ๐‘’๐‘–๐‘ฅ๐œ‚๐‘‘๐œ‚ + ๐‘Š ๐‘ฆ , ๐‘ฆ โ‰ฅ 0 , (25)

    ๐‘‡ ๐‘ฅ , ๐‘ฆ = ๐‘’๐œ‚๐‘ฆ โˆ’ ๐‘’โˆ’๐œ‚ 2+๐‘ฆ โˆž

    โˆ’โˆž๐‘Ÿ๐‘Ž๐‘ ๐ท ๐œ‚ ๐‘’

    โˆ’๐‘–๐‘ฅ๐œ‚๐‘‘๐œ‚ + ๐‘Š ๐‘ฆ , ๐‘ฆ โ‰ค 0 , (26)

    where ๐ท ๐œ‚ is an unknown function to be determined and

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 28 | Page

    ๐‘Ÿ๐‘Ž๐‘ =1+๐‘’2๐œ‚

    1+๐‘’โˆ’2๐œ‚ , (27)

    Let us introduce the density function ๐›ฉ ๐‘ฅ , as

    ๐›ฉ ๐‘ฅ =๐œ•

    ๐œ•๐‘ฅ๐‘‡ ๐‘ฅ, 0+ โˆ’

    ๐œ•

    ๐œ•๐‘ฅ๐‘‡ ๐‘ฅ, 0โˆ’ , (28)

    It is clear from the boundary conditions (13) and (14) that

    ๐›ฉ ๐‘  ๐‘‘๐‘ 1

    โˆ’1= 0 , (29)

    and

    ๐›ฉ ๐‘ฅ = 0 , ๐‘ฅ โ‰ฅ 1 , (30)

    Substituting Eqs. (25) and (26) into Eq. (28) and using Fourier inverse transform , we have

    ๐ท ๐œ‚ =๐‘– 1+๐‘’โˆ’2๐œ‚

    4๐œ‹๐œ‚ ๐‘’โˆ’2๐œ‚โˆ’๐‘’2๐œ‚ ๐›ฉ ๐‘  ๐‘’๐‘–๐‘ ๐œ‚ ๐‘‘๐‘ 

    1

    โˆ’1, (31)

    Substituting Eqs. (25) and (26) into Eq. (12) and applying the relation (31) , we get the singular integral

    equation for ๐›ฉ ๐‘ฅ as follows

    1

    ๐œ‹

    1

    ๐‘ โˆ’๐‘ฅ+ ๐‘˜1 ๐‘ฅ, ๐‘  ๐›ฉ ๐‘  ๐‘‘๐‘ 

    1

    โˆ’1=

    ๐‘‡1โˆ’๐‘‡2

    , (32)

    where

    ๐‘˜1 ๐‘ฅ, ๐‘  = 1 โˆ’2๐ป

    ๐œ‚+

    2+๐‘’2๐œ‚ +๐‘’โˆ’2๐œ‚

    ๐‘’โˆ’2๐œ‚โˆ’๐‘’2๐œ‚ ๐‘ ๐‘–๐‘› ๐œ‚ ๐‘ฅ โˆ’ ๐‘  ๐‘‘๐œ‚

    โˆž

    0, (33)

    After determining ๐›ฉ ๐‘  from the singular integral equation (32) we have the temperature field along the axes as

    ๐‘‡ ๐‘ฅ, 0 =

    1

    4 ๐‘ ๐‘–๐‘”๐‘› ๐‘ฅ โˆ’ ๐‘  ๐›ฉ ๐‘  ๐‘‘๐‘  +

    ๐‘‡1+๐‘‡2

    2

    1

    โˆ’1 , ๐‘ฆ โ‰ฅ 0;

    โˆ’ 1

    4 ๐‘ ๐‘–๐‘”๐‘› ๐‘ฅ โˆ’ ๐‘  ๐›ฉ ๐‘  ๐‘‘๐‘  +

    ๐‘‡1+๐‘‡2

    2

    1

    โˆ’1 , ๐‘ฆ โ‰ค 0.

    (34)

    ๐‘‡ 0, ๐‘ฆ = โˆ’

    1

    4๐œ‹

    1+๐‘’โˆ’2๐œ‚

    ๐‘’โˆ’4๐œ‚โˆ’1 ๐‘’โˆ’๐œ‚ 2โˆ’๐‘ฆ โˆ’ ๐‘’โˆ’๐œ‚๐‘ฆ

    ๐‘ ๐‘–๐‘› ๐‘ ๐œ‚

    ๐œ‚๐‘‘๐œ‚ ๐›ฉ ๐‘  ๐‘‘๐‘ 

    1

    โˆ’1+

    ๐‘‡2โˆ’๐‘‡1

    2+

    ๐‘‡1+๐‘‡2

    2

    โˆž

    0 , ๐‘ฆ โ‰ฅ 0;

    โˆ’1

    4๐œ‹

    1+๐‘’โˆ’2๐œ‚

    ๐‘’โˆ’4๐œ‚โˆ’1 ๐‘’๐œ‚๐‘ฆ โˆ’ ๐‘’โˆ’๐œ‚ 2+๐‘ฆ

    ๐‘ ๐‘–๐‘› ๐‘ ๐œ‚

    ๐œ‚๐‘‘๐œ‚ ๐›ฉ ๐‘  ๐‘‘๐‘ 

    1

    โˆ’1+

    ๐‘‡2โˆ’๐‘‡1

    2+

    ๐‘‡1+๐‘‡2

    2

    โˆž

    0 , ๐‘ฆ โ‰ค 0.

    (35)

    (๐‘) Elastic part: First of all we observe that due to symmetry of the crack location with respect to the layer and of the applied

    load with respect to the crack , it is sufficient to consider the solution of the problem in the regions 0 โ‰ค ๐‘ฅ < โˆž and 0 โ‰ค ๐‘ฆ โ‰ค . To solve the partial differential equations (7) and (8), Fourier transform is applied to the equations with respect to the variable x.

    Utilizing the symmetric condition the displacement components ๐‘ข , ๐‘ฃ may be written as

    ๐‘ข ๐‘ฅ , ๐‘ฆ =2

    ๐œ‹ ๐›ท ๐œ‰, ๐‘ฆ ๐‘ ๐‘–๐‘› ๐œ‰๐‘ฅ ๐‘‘๐œ‰

    โˆž

    0

    , (36)

    ๐‘ฃ ๐‘ฅ , ๐‘ฆ =2

    ๐œ‹ ๐›น ๐œ‰, ๐‘ฆ ๐‘๐‘œ๐‘  ๐œ‰๐‘ฅ ๐‘‘๐œ‰

    โˆž

    0

    , (37)

    where ๐›ท ๐œ‰, ๐‘ฆ and ๐›น ๐œ‰, ๐‘ฆ are Fourier transforms of ๐‘ข(๐‘ฅ, ๐‘ฆ) and ๐‘ฃ ๐‘ฅ, ๐‘ฆ , respectively with respect to the coordinate ๐‘ฅ , and ๐œ‰ is the transformed parameter.

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 29 | Page

    Substituting ๐‘ข(๐‘ฅ, ๐‘ฆ) and ๐‘ฃ(๐‘ฅ, ๐‘ฆ) from Eqs. (36) and (37) into the equations of equilibrium (7) and (8) we obtain the differential equation for the determination of ๐›ท ๐œ‰, ๐‘ฆ ,

    ๐น ๐ท1 ๐›ท = ๐›ผ๐‘ก๐œ‰ ๐œ… โˆ’ 1 7 โˆ’ ๐œ…

    ๐œ… + 1 ๐œ•2๐‘‡๐‘

    ๐œ•๐‘ฆ2+

    1

    2๐›ผ๐‘ก๐œ‰ 7 โˆ’ ๐œ… 3 โˆ’ ๐œ… + ๐›ฝ

    7 โˆ’ ๐œ… ๐œ… โˆ’ 1 2

    ๐œ… + 1 ๐œ•๐‘‡๐‘

    ๐œ•๐‘ฆ

    +7 โˆ’ ๐œ…

    4 ๐œ… + 1 ๐›ผ๐‘ก๐œ‰ ๐›ฝ 3 โˆ’ ๐œ… ๐œ… + 1 ๐œ… โˆ’ 1 + ๐›ฝ + 4๐œ‰

    2 ๐‘‡๐‘ , (38)

    where

    ๐น ๐ท1 = ๐ท14 + 2๐›ฝ๐ท1

    3 โˆ’ 2๐œ‰2 โˆ’ ๐›ฝ2 ๐ท12 โˆ’ 2๐œ‰2๐›ฝ๐ท1 + ๐œ‰

    2 ๐œ‰2 โˆ’ ๐œ… โˆ’ 3

    ๐œ… + 1 ๐›ฝ2 , (39)

    and ๐‘‡๐‘ ๐œ‰, ๐‘ฆ is the Fourier Cosine transform of ๐‘‡(๐‘ฅ, ๐‘ฆ) defined by

    ๐‘‡๐‘ ๐œ‰ , ๐‘ฆ = ๐‘‡ ๐‘ฅ, ๐‘ฆ ๐‘๐‘œ๐‘  ๐œ‰๐‘ฅ ๐‘‘๐‘ฅ

    โˆž

    0

    , (40)

    The solution of the Eq. (38) is of the form

    ๐›ท ๐œ‰, ๐‘ฆ = ๐ด๐‘– ๐œ‰ ๐‘’๐‘š ๐‘–๐‘ฆ + ๐‘“๐‘–

    ๐‘— ๐œ‰

    4

    ๐‘–=1

    , ๐‘— = 1,2 (41)

    where ๐ด๐‘– ๐œ‰ , ๐‘– = 1, โ€ฆ . ,4 are constants to be determined from the boundary conditions , ๐‘š๐‘– ๐‘– = 1, โ€ฆ . ,4 are the four complex roots of two biquadratic equation

    ๐‘š4 + 2๐›ฝ๐‘š3 โˆ’ 2๐œ‰2 โˆ’ ๐›ฝ2 ๐‘š2 โˆ’ 2๐œ‰2๐›ฝ๐‘š + ๐œ‰2 ๐œ‰2 โˆ’๐œ… โˆ’ 3

    ๐œ… + 1๐›ฝ2 = 0, (42)

    and

    ๐‘“1 ๐‘— ๐œ‰ =

    1

    ๐น ๐ท1

    7โˆ’๐œ… ๐›ผ๐‘ก๐œ‰

    4 ๐œ…+1 ๐›ฝ 3 โˆ’ ๐œ… ๐œ… + 1 ๐œ… โˆ’ 1 + ๐›ฝ + 4 ๐œ‰2

    โˆž

    โˆ’โˆž

    +๐œ‚

    2 7 โˆ’ ๐œ… 3 โˆ’ ๐œ… ๐›ผ๐‘ก๐œ‰ +

    ๐›ผ๐‘ก๐›ฝ ๐œ…โˆ’1 2 7โˆ’๐œ… ๐œ‰

    ๐œ…+1

    + ๐œ‚2 ๐œ…โˆ’1 7โˆ’๐œ… ๐›ผ๐‘ก๐œ‰

    ๐œ…+1

    ๐‘–๐œ‚

    ๐œ‰2โˆ’๐œ‚2๐ท ๐œ‚ ๐‘Ÿ๐‘Ž๐‘

    2โˆ’๐‘— ๐‘’๐œ‚๐‘ฆ๐‘‘๐œ‚ , ๐‘— = 1,2 (43)

    ๐‘“2 ๐‘— ๐œ‰ =

    1

    ๐น ๐ท1 โˆ’

    7โˆ’๐œ… ๐›ผ๐‘ก๐œ‰

    4 ๐œ…+1 ๐›ฝ 3 โˆ’ ๐œ… ๐œ… + 1 ๐œ… โˆ’ 1 + ๐›ฝ + 4 ๐œ‰2

    โˆž

    โˆ’โˆž

    +๐œ‚

    2 7 โˆ’ ๐œ… 3 โˆ’ ๐œ… ๐›ผ๐‘ก๐œ‰ +

    ๐›ผ๐‘ก๐›ฝ ๐œ…โˆ’1 2 7โˆ’๐œ… ๐œ‰

    ๐œ…+1

    โˆ’ ๐œ‚2 ๐œ…โˆ’1 7โˆ’๐œ… ๐›ผ๐‘ก๐œ‰

    ๐œ…+1

    ๐‘–๐œ‚

    ๐œ‰2โˆ’๐œ‚2๐ท ๐œ‚ ๐‘Ÿ๐‘Ž๐‘

    2โˆ’๐‘— ๐‘’ โˆ’1 ๐‘— .๐œ‚ 2โˆ’๐‘ฆ ๐‘‘๐œ‚ , ๐‘— = 1,2 (44)

    ๐‘“3 ๐‘— ๐œ‰ =

    1

    ๐น ๐ท1

    7โˆ’๐œ… ๐›ผ๐‘ก๐œ‰

    4 ๐œ…+1 ๐›ฝ 3 โˆ’ ๐œ… ๐œ… + 1 ๐œ… โˆ’ 1 + ๐›ฝ + 4๐œ‰2

    ๐‘‡2โˆ’๐‘‡1

    ๐œ‹๐›ฟ ๐œ‰ ๐‘ฆ , ๐‘— = 1,2 (45)

    ๐‘“4 ๐‘— ๐œ‰ =

    1

    ๐น ๐ท1

    1

    2 7 โˆ’ ๐œ… 3 โˆ’ ๐œ… ๐›ผ๐‘ก๐œ‰ +

    ๐›ผ๐‘ก๐›ฝ ๐œ…โˆ’1 2 7โˆ’๐œ… ๐œ‰

    ๐œ…+1

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 30 | Page

    โˆ’ 7โˆ’๐œ… ๐›ผ๐‘ก๐œ‰

    4 ๐œ…+1 ๐›ฝ 3 โˆ’ ๐œ… ๐œ… + 1 ๐œ… โˆ’ 1 + ๐›ฝ + 4๐œ‰2

    ๐‘‡2โˆ’๐‘‡1

    ๐œ‹๐›ฟ ๐œ‰ , ๐‘— = 1,2 (46)

    where ๐‘— = 1, 2 are for the lower and upper region respectively. The function ๐›น ๐œ‰, ๐‘ฆ can then be determined as

    ๐›น ๐œ‰, ๐‘ฆ = ๐‘€๐‘– ๐œ‰ ๐ด๐‘– ๐œ‰ ๐‘’๐‘š ๐‘–๐‘ฆ + ๐‘๐‘–๐‘“๐‘–

    ๐‘— ๐œ‰

    4

    ๐‘–=1

    , ๐‘— = 1,2 (47)

    where

    ๐‘€๐‘– ๐œ‰ = ๐œ…โˆ’1 ๐‘š ๐‘–

    2+๐›ฝ ๐œ…โˆ’1 ๐‘š ๐‘–โˆ’๐œ‰2 ๐œ…+1

    ๐œ‰ 2๐‘š ๐‘–+๐›ฝ ๐œ…โˆ’1 , ๐‘– = 1, โ€ฆ . ,4 , (48)

    ๐‘๐‘– = ๐œ…โˆ’1 ๐ท1

    2+๐›ฝ ๐œ…โˆ’1 ๐ท1โˆ’๐œ‰2 ๐œ…+1

    ๐œ‰ 2๐‘š ๐‘–+๐›ฝ ๐œ…โˆ’1 , ๐‘– = 1, โ€ฆ . ,4 , (49)

    It follows from Eq. (42) that ๐‘š3 = ๐‘š 1 and ๐‘š4 = ๐‘š 2 where

    ๐‘š1 = โˆ’๐›ฝ

    2+ ๐œ‰2 +

    ๐›ฝ2

    4+ ๐‘–๐œ‰๐›ฝ

    3โˆ’๐œ…

    ๐œ…+1 , (50)

    ๐‘š2 = โˆ’๐›ฝ

    2โˆ’ ๐œ‰2 +

    ๐›ฝ2

    4+ ๐‘–๐œ‰๐›ฝ

    3โˆ’๐œ…

    ๐œ…+1 , (51)

    Substituting Eqs. (36) and (37) into Eqs. (2) and (3) and utilizing Eqs. (41) and (47) we obtain

    1

    2๐œ‡๐œŽ๐‘ฅ ๐‘ฅ, ๐‘ฆ =

    2

    ๐œ‹

    1

    2 1 โˆ’ ๐œ… โˆ’ 1 + ๐œ… ๐œ‰ โˆ’ 3 โˆ’ ๐œ… ๐‘š๐‘–๐‘€๐‘– ๐ด๐‘–๐‘’

    ๐‘š ๐‘–๐‘ฆ 4

    ๐‘–=1

    โˆž

    0

    + โˆ’๐œ‰ 1 + ๐œ… ๐‘“๐‘– ๐‘—

    โˆ’ 3 โˆ’ ๐œ… ๐ท1 ๐‘๐‘–๐‘“๐‘– ๐‘—

    ๐‘๐‘œ๐‘  ๐œ‰๐‘ฅ ๐‘‘๐œ‰ , ๐‘— = 1,2 (52)

    1

    2๐œ‡๐œŽ๐‘ฆ ๐‘ฅ, ๐‘ฆ =

    2

    ๐œ‹

    1

    2 1 โˆ’ ๐œ… โˆ’ 1 + ๐œ… ๐‘š๐‘–๐‘€๐‘– โˆ’ 3 โˆ’ ๐œ… ๐œ‰ ๐ด๐‘–๐‘’

    ๐‘š ๐‘–๐‘ฆ 4

    ๐‘–=1

    โˆž

    0

    + โˆ’ 1 + ๐œ… ๐ท1 ๐‘๐‘–๐‘“๐‘– ๐‘—

    โˆ’ 3 โˆ’ ๐œ… ๐œ‰ ๐‘“๐‘– ๐‘—

    ๐‘๐‘œ๐‘  ๐œ‰๐‘ฅ ๐‘‘๐œ‰ , ๐‘— = 1,2 (53)

    1

    2๐œ‡๐œ๐‘ฅ๐‘ฆ ๐‘ฅ, ๐‘ฆ =

    2

    ๐œ‹ โˆ’

    ๐œ‰

    2๐‘€๐‘– +

    ๐‘š๐‘–2

    ๐ด๐‘–๐‘’๐‘š ๐‘–๐‘ฆ

    4

    ๐‘–=1

    โˆž

    0

    + โˆ’๐œ‰

    2๐‘๐‘–๐‘“๐‘–

    ๐‘— +

    1

    2๐ท1 ๐‘“๐‘–

    ๐‘— ๐‘ ๐‘–๐‘› ๐œ‰๐‘ฅ ๐‘‘๐œ‰ , ๐‘— = 1,2 (54)

    From the boundary conditions (15)-(18),the unknown constants ๐ด๐‘– ๐‘– = 1, โ€ฆ ,4 can be found out from the following linear algebraic system of equations expressed in matrix form:

    ๐ฟ๐ด = ๐ต , (55)

    where the matrices ๐ฟ , ๐ด , ๐ต are

    ๐ฟ =

    ๐‘†1๐‘’

    ๐‘š1 ๐‘†2๐‘’๐‘š2 ๐‘†3๐‘’

    ๐‘š3

    ๐บ1๐‘’๐‘š1 ๐บ2๐‘’

    ๐‘š2 ๐บ3๐‘’๐‘š3

    ๐‘š1 โˆ’ ๐บ1 ๐‘š2 โˆ’ ๐บ2 ๐‘š3 โˆ’ ๐บ3

    ๐‘†4๐‘’๐‘š4

    ๐บ4๐‘’๐‘š4

    ๐‘š4 โˆ’ ๐บ4๐บ1 ๐บ2 ๐บ3 ๐บ4

    , ๐ด =

    ๐ด1๐ด2๐ด3๐ด4

    , ๐ต =

    โˆ’๐‘…1 โˆ’ ๐‘ƒ1๐‘ƒ2

    โˆ’๐‘…2 โˆ’ ๐‘ƒ3๐‘ƒ4

    and

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 31 | Page

    ๐‘…1 ๐œ‰ = ยฑ ๐œ… โˆ’ 1

    2๐œ‡๐‘ƒ ๐‘๐‘œ๐‘  ๐‘Ž๐œ‰ + ๐‘๐‘œ๐‘  โˆ’๐‘Ž๐œ‰ , ๐‘ƒ1 = ๐ท4๐‘–

    โ€ฒ ๐‘“๐‘– ๐‘—

    ,

    4

    ๐‘–=1

    ๐‘…2 ๐œ‰ = ๐‘“ ๐‘ฅ ๐‘ ๐‘–๐‘› ๐œ‰๐‘ฅ ๐‘‘๐‘ฅ , ๐‘ƒ2 = ๐ท4๐‘–๐‘“๐‘– ๐‘—

    ,

    4

    ๐‘–=1

    โˆž

    0

    ๐‘ƒ3 = ๐‘๐‘–๐‘“๐‘–0 ๐‘—

    , ๐‘ƒ4 = ๐ท4๐‘–๐‘“๐‘–0 ๐‘—

    , ๐‘— = 1,2,

    4

    ๐‘–=1

    4

    ๐‘–=1

    (56)

    ๐‘†๐‘– = 1 + ๐œ… ๐‘š๐‘–๐‘€๐‘– + 3 โˆ’ ๐œ… ๐œ‰ ,

    ๐บ๐‘– = โˆ’๐œ‰๐‘€๐‘– + ๐‘š๐‘– , ๐‘– = 1, โ€ฆ . . ,4 .

    ๐ท4๐‘– = ๐œ‰ ๐‘๐‘– โˆ’1

    ๐œ‰๐ท1 , ๐‘– = 1, โ€ฆ โ€ฆ ,4 , (57)

    ๐ท4๐‘–โ€ฒ = 1 + ๐œ… ๐ท1๐‘๐‘– + 3 โˆ’ ฮบ ๐œ‰ , ๐‘– = 1, โ€ฆ โ€ฆ ,4 . (58)

    Eq. (55) yields

    ๐ด๐‘– ๐œ‰ = ๐ท1๐‘– ๐œ‰ ๐‘…1 ๐œ‰ + ๐ท2๐‘– ๐œ‰ ๐‘…2 ๐œ‰ + ๐ท3๐‘– ๐œ‰ , ๐‘– = 1, โ€ฆ โ€ฆ . . ,4 , (59)

    where ๐ท๐‘˜๐‘– ๐‘˜ = 1,2,3 ๐‘Ž๐‘›๐‘‘ ๐‘– = 1, โ€ฆ โ€ฆ . . ,4 are shown in Appendix. Substitution of these values into the Eq. (19) will lead to the following singular integral equation:

    1

    ๐œ‹ ๐‘“ ๐‘ก

    1

    ๐‘ก โˆ’ ๐‘ฅ+ ๐‘˜2 ๐‘ฅ, ๐‘ก ๐‘‘๐‘ก =

    ๐œ… โˆ’ 1

    ๐œ‡๐œ’ โˆ’๐‘0 ยฑ

    ๐‘ƒ

    2๐œ‹๐‘˜3 ๐‘ฅ + ๐‘0๐‘˜4 ๐‘ฅ , โˆ’๐‘ < ๐‘ฅ < ๐‘ (60)

    ๐‘

    โˆ’๐‘

    where

    ๐‘˜2 ๐‘ฅ, ๐‘ก =1

    ๐œ’ ๐ท2๐‘–๐‘†๐‘– โˆ’ ๐œ’ ๐‘ ๐‘–๐‘› ๐œ‰ ๐‘ก โˆ’ ๐‘ฅ ๐‘‘ ๐œ‰ , ๐œ’ = ๐‘™๐‘–๐‘š

    ๐œ‰โ†’โˆž ๐ท2๐‘–๐‘†๐‘– = 4๐œˆ , (61)

    4

    ๐‘–=1

    4

    ๐‘–=1

    โˆž

    0

    ๐‘˜3 ๐‘ฅ = โˆ’2 ๐ท1๐‘–๐‘†๐‘– ๐‘๐‘œ๐‘  ๐œ‰ ๐‘Ž + ๐‘ฅ ๐‘‘๐œ‰ , (62)

    4

    ๐‘–=1

    โˆž

    0

    ๐‘˜4 ๐‘ฅ = โˆ’2๐œ‡

    ๐œ‹๐‘0 ๐œ… โˆ’ 1 ๐ท3๐‘–๐‘†๐‘– โˆ’ ๐ท4๐‘–

    โ€ฒ ๐‘“๐‘–0 ๐‘—

    ๐‘๐‘œ๐‘  ๐œ‰๐‘ฅ ๐‘‘๐œ‰ , ๐‘— = 1,2 63

    4

    ๐‘–=1

    โˆž

    0

    The kernels ๐‘˜2(๐‘ฅ , ๐‘ก) and ๐‘˜3 ๐‘ฅ , ๐‘˜4(๐‘ฅ) are bounded and continuous in the closed interval โˆ’๐‘ โ‰ค ๐‘ฅ โ‰ค ๐‘. The integral equation must be solved under the following single-valuedness condition

    ๐‘“ ๐‘ก ๐‘‘๐‘ก = 0 , (64)

    ๐‘

    โˆ’๐‘

    Before further proceeding it will be convenient to introduce non-dimensional variables ๐‘Ÿ and ๐‘  by rescaling all lengths in the problem by length scale ๐‘:

    ๐‘ฅ = ๐‘๐‘Ÿ , ๐‘ก = ๐‘๐‘  , (65)

    ๐‘“ ๐‘ก = ๐‘“ ๐‘๐‘  = ๐‘0 ๐œ… โˆ’ 1

    ๐œ‡๐œ’๐œ™ ๐‘  , ๐œ” = ๐œ‰๐‘ , (66)

    In terms of non-dimensional variables the integral equation (60) and single valuedness condition (64) become

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 32 | Page

    1

    ๐œ‹

    1

    ๐‘  โˆ’ ๐‘Ÿ+ ๐‘˜2

    โˆ— ๐‘Ÿ, ๐‘  ๐œ™ ๐‘  ๐‘‘๐‘  = โˆ’1 ยฑ๐‘„

    ๐œ‹๐‘˜3

    โˆ— ๐‘Ÿ + ๐‘˜4โˆ— ๐‘Ÿ , โˆ’1 < ๐‘Ÿ < 1 , (67)

    1

    โˆ’1

    where

    ๐‘˜2โˆ— ๐‘Ÿ, ๐‘  =

    1

    ๐œ’ ๐ท2๐‘–๐‘†๐‘– โˆ’ ๐œ’

    4

    ๐‘–=1

    ๐‘ ๐‘–๐‘› ๐œ” ๐‘  โˆ’ ๐‘Ÿ ๐‘‘๐œ” , (68)

    โˆž

    0

    ๐‘˜3โˆ— ๐‘Ÿ = โˆ’2 ๐ท1๐‘–๐‘†๐‘– ๐‘๐‘œ๐‘  ๐œ” ๐‘Ÿ + ๐‘Ž

    โˆ— ๐‘‘๐œ” , (69)

    4

    ๐‘–=1

    โˆž

    0

    ๐‘˜4โˆ— ๐‘Ÿ = โˆ’

    2๐œ‡0๐œ‹๐‘0๐‘ ๐œ… โˆ’ 1

    ๐ท3๐‘–๐‘†๐‘– โˆ’ ๐ท4๐‘–โ€ฒ ๐‘“๐‘–0

    ๐‘— ๐‘๐‘œ๐‘  ๐œ”๐‘Ÿ ๐‘‘๐œ” , (70)

    4

    ๐‘–=1

    โˆž

    0

    ๐‘Žโˆ— =๐‘Ž

    ๐‘ and ๐‘„ is the load ratio defined as:

    ๐‘„ =๐‘ƒ

    2๐‘๐‘0 , (71)

    ๐‘“๐‘–0 ๐‘—

    โ‰ก ๐‘“๐‘– ๐‘—

    ๐‘ฆ=0 ,

    ๐‘“๐‘– ๐‘—

    โ‰ก ๐‘“๐‘– ๐‘—

    ๐‘ฆ= ,

    ๐‘– = 1, 2,3 ; ๐‘— = 1, 2 , ๐ท1 โ‰ก๐œ•

    ๐œ•๐‘ฆ . (72)

    V. SOLUTION OF THE INTEGRAL EQUATIONS (๐‘Ž) Thermal part: The singular integral equation (32) is a Cauchy-type singular integral equation for an unknown function ๐›ฉ ๐‘  . For the evaluation of thermal stress it is necessary to solve the integral equation (32). For this purpose we write

    ๐›ฉ ๐‘  =๐›ถ ๐‘ 

    1 โˆ’ ๐‘ 2 , โˆ’1 < ๐‘  < 1 , (73)

    where ๐›ถ ๐‘  is a regular and bounded unknown function. Substituting Eq. (73) into Eq. (32) and using Gauss-Chebyshev formula

    28 , we obtain

    1

    ๐‘

    1

    ๐‘ ๐‘˜ โˆ’ ๐‘ฅ๐‘–+ ๐‘˜1 ๐‘ฅ๐‘– , ๐‘ ๐‘˜ ๐›ถ ๐‘ ๐‘˜

    ๐‘

    ๐‘˜=1

    =๐‘‡1 โˆ’ ๐‘‡2

    , ๐‘– = 1,2, โ€ฆ โ€ฆ โ€ฆ . , ๐‘ โˆ’ 1 , (74)

    and

    ๐œ‹

    ๐‘ ๐›ถ ๐‘ ๐‘˜ = 0 , (75)

    ๐‘

    ๐‘˜=1

    where ๐‘ ๐‘˜ and ๐‘ฅ๐‘– are given by

    ๐‘ ๐‘˜ = ๐‘๐‘œ๐‘  2๐‘˜ โˆ’ 1

    2๐‘๐œ‹ , ๐‘˜ = 1,2,3, โ€ฆ โ€ฆ , ๐‘ (76)

    ๐‘ฅ๐‘– = ๐‘๐‘œ๐‘  ๐œ‹๐‘–

    ๐‘ , ๐‘– = 1,2,3, โ€ฆ โ€ฆ , ๐‘ โˆ’ 1 (77)

    We observe that corresponding to (๐‘ โˆ’ 1) collocation points ๐‘ฅ๐‘– = ๐‘๐‘œ๐‘  ๐‘–๐œ‹

    2 ๐‘+1 , ๐‘– = 1,2, โ€ฆ โ€ฆ โ€ฆ , ๐‘ โˆ’ 1 we

    have a set of ๐‘ linear equations in ๐‘ unknowns ๐›ถ ๐‘ 1 , ๐›ถ ๐‘ 2 , โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . , ๐›ถ ๐‘ ๐‘ . This linear algebraic system of equations is solved numerically by utilizing Gaussian elimination method.

    (๐‘) Elastic part: The singular integral equation (67) is a Cauchy-type singular integral equation for an unknown function ๐œ™ ๐‘  . Expressing now the solution of Eq. (67) in the form

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 33 | Page

    ๐œ™ ๐‘  =๐œ“ ๐‘ 

    1 โˆ’ ๐‘ 2 , โˆ’1 < ๐‘  < 1 , (78)

    where ๐œ“(๐‘ ) is a regular and bounded unknown function and using Gauss-Chebyshev formula28 to evaluate the integral equation (67) , we obtain ,

    1

    ๐‘

    1

    ๐‘ ๐‘˜ โˆ’ ๐‘Ÿ๐‘–+ ๐‘˜2

    โˆ— ๐‘Ÿ๐‘– , ๐‘ ๐‘˜ ๐œ“ ๐‘ ๐‘˜

    ๐‘

    ๐‘˜=1

    = โˆ’1 ยฑ๐‘„

    ๐œ‹๐‘˜3

    โˆ— ๐‘Ÿ๐‘– + ๐‘˜4โˆ— ๐‘Ÿ๐‘– , ๐‘– = 1,2, โ€ฆ โ€ฆ . . , ๐‘ โˆ’ 1 (79)

    ๐œ‹

    ๐‘ ๐œ“ ๐‘ ๐‘˜ = 0 , (80)

    ๐‘

    ๐‘˜=1

    where ๐‘Ÿ๐‘– is given by

    ๐‘Ÿ๐‘– = ๐‘๐‘œ๐‘  ๐‘–๐œ‹

    ๐‘ , ๐‘– = 1,2,3, โ€ฆ โ€ฆ . , ๐‘ โˆ’ 1 (81)

    We observe that corresponding to (๐‘ โˆ’ 1) collocation points ๐‘ฅ๐‘Ÿ = ๐‘๐‘œ๐‘  ๐‘Ÿ๐œ‹

    2 ๐‘+1 , ๐‘Ÿ = 1,2, โ€ฆ โ€ฆ โ€ฆ , ๐‘ โˆ’ 1 the

    Eqs. (79) and (80) represent a set of ๐‘ linear equations in ๐‘ unknowns ๐œ“ ๐‘ 1 , ๐œ“ ๐‘ 2 , โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . , ๐œ“ ๐‘ ๐‘ . This linear algebraic system of equations are solved numerically by utilizing Gaussian elimination method.

    VI. DETERMINATION OF STRESS-INTENSITY FACTOR Presence of a crack in a solid significantly affects the stress distribution compared to the state when

    there is no crack. While the stress distribution in a solid with a crack in the region far away from the crack is not

    much disturbed , the stresses in the neighbourhood of the crack tip assumes a very high magnitude. In order to

    predict whether the crack has a tendency to expand further , the stress intensity factor (SIF) , a quantity of

    physical interest , has been defined in fracture mechanics. In our present problem the solid under consideration

    is acted upon by two types of loading: (๐‘Ž) Thermal loading (๐‘) Mechanical loading (concentrated forces of

    magnitude ๐‘ƒ

    2 applied symmetrically on the crack faces). The stress components ๐œŽ๐‘ฅ , ๐œŽ๐‘ฆ , ๐œ๐‘ฅ๐‘ฆ given by Eqs.

    (52)-(54) do not have closed form expressions. As they are expressed in taking of infinite integrals , they are to

    be evaluated numerically. In our present discussion we shall be interested to determine the SIF when both the

    thermal and mechanical loadings are present (thermomechanical stress intensity factor) and also the stress

    intensity factor when only thermal loading is present (thermal stress intensity factor). The stress intensity factor

    is defined as

    ๐‘˜ ๐‘ = ๐‘™๐‘–๐‘š๐‘Ÿโ†’1

    2๐‘ ๐‘Ÿ โˆ’ 1 ๐œŽ๐‘ฆโˆ— ๐‘Ÿ, 0 .

    The non-dimensional stress intensity factor when both mechanical and thermal load are present (TMSIF) , can

    be obtained interms of the solution of the integral equation (67) as

    ๐‘‡๐‘€๐‘†๐ผ๐น = ๐‘˜โ€ฒ ๐‘ =1

    ๐‘0 ๐‘ ๐‘™๐‘–๐‘š

    ๐‘Ÿโ†’1 2๐‘ ๐‘Ÿ โˆ’ 1 ๐œŽ๐‘ฆ

    โˆ— ๐‘Ÿ, 0 = โˆ’๐œ“ 1 , (82)

    When there is only thermal loading , the TSIF can be extracted following the same procedure as discussed

    above. In this case the Eq.(67) will be modified to

    1

    ๐œ‹

    1

    ๐‘  โˆ’ ๐‘Ÿ+ ๐‘˜2

    โˆ— ๐‘Ÿ, ๐‘  ๐œ™ ๐‘  ๐‘‘๐‘  = โˆ’1 + ๐‘˜4โˆ— ๐‘Ÿ , โˆ’1 < ๐‘Ÿ < 1 , (83)

    1

    โˆ’1

    The TSIF at the crack tip can be expressed in terms of the solution of the integral equation (83) as

    ๐‘‡๐‘†๐ผ๐น =1

    ๐‘0 ๐‘ ๐‘™๐‘–๐‘š

    ๐‘Ÿโ†’1 2๐‘ ๐‘Ÿ โˆ’ 1 ๐œŽ๐‘ฆ

    โˆ— ๐‘Ÿ, 0 = โˆ’๐›บ 1 , (84)

    in this case we assume

    ๐œ™ ๐‘  =๐›บ ๐‘ 

    1 โˆ’ ๐‘ 2 , โˆ’1 < ๐‘  < 1, (85)

    where ๐›บ(๐‘ ) is regular and bounded unknown function and ๐œ“ 1 , ๐›บ(1) can be found out from ๐œ“ ๐‘ ๐‘˜ and ๐›บ ๐‘ ๐‘˜ ๐‘˜ = 1,2,3, โ€ฆ โ€ฆ โ€ฆ . . , ๐‘ using the interpolation formulas given by Krenk

    29 .

    Following the method as in Gupta and Erdogan30

    we obtain the crack surface displacement in the form

    ๐‘ฃโ€ฒ ๐‘Ÿ, 0 = ๐œ“ ๐‘ 

    1 โˆ’ ๐‘ 2๐‘‘๐‘ก , โˆ’1 < ๐‘  < 1 , (86)

    ๐‘Ÿ

    โˆ’1

    where

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 34 | Page

    ๐‘ฃโ€ฒ ๐‘Ÿ, 0 =๐‘ฃ ๐‘Ÿ, 0

    ๐‘

    4๐œ‡๐œˆ

    ๐‘0 ๐œ… โˆ’ 1 , (87)

    which can be obtained numerically , using say , Simpson's 1

    3 integration formula and appropriate interpolation

    formula.

    VII. NUMERICAL RESULTS AND DISCUSSIONS The present study is related to the study of an internal crack problem in an infinite functionally graded

    layer under thermal effect. The main objective of the present discussion is to study the effects of temperature ,

    graded parameter as well as of applied loads on stress intensity factor and crack opening displacement.

    Following the standard numerical method described , the normal displacement component and the stress

    intensity factor are computed and shown graphically.

    Before analyzing our numerical results we denote the regions โˆ’ โ‰ค ๐‘ฆ โ‰ค 0 and 0 โ‰ค ๐‘ฆ โ‰ค below and above the line of crack in the layer by ๐‘…1 and ๐‘…2 respectively. Fig. 2(a) shows the temperature distribution on

    the crack faces for various values of ๐‘

    . As expected , the result shows that the temperature increases with the

    decrease of layer thickness. Fig. 2(b) shows the temperature distribution along ๐‘ฅ = 0 ,taking ๐‘‡1 > ๐‘‡2 . Temperature decreases linearly from the region ๐‘…1 to the region ๐‘…2 . There is one point to note here that the variations of temperature at a particular point on ๐‘ฅ = 0 below and above the line of crack are opposite in

    nature in respect of the values of ๐‘

    .

    Fig.2(a) Temperature distribution on crack face and extension line for different ๐‘

    when ๐œ… = 1.8 , ๐ป = 1.0, ๐›ผ๐‘ก =

    1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0. (b) Temperature distribution on the line ๐‘ฅ = 0 for different ๐‘

    when ๐œ… = 1.8, ๐ป = 1.0,

    ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0.

    The variation of normalized thermo-mechanical stress intensity factor (TMSIF) ๐‘˜โ€ฒ(๐‘) with crack length ๐‘

    are shown in Fig. 3 for both the cases of two symmetric transverse pair of compressive and tensile

    concentrated forces. It is observed from Figs. 3(a , b) that for compressive concentrated forces the TMSIF

    decreases with the increase of the load ratio ๐‘„, and the increase of ๐‘˜โ€ฒ(๐‘) is quite significant for smaller values of ๐‘„. It is also observed from Figs. 3(a,b) that the load ratio ๐‘„ does not have much effect on ๐‘˜โ€ฒ(๐‘) when the crack length is sufficiently small. Contrary to this , where the force is of tensile nature , ๐‘˜โ€ฒ(๐‘) increases with ๐‘„. For small crack length , the behavior of ๐‘˜โ€ฒ(๐‘) is similar to the case of compressive concentrated load. In Fig. 4 , TMSIF experiences the effect of graded parameter ๐›ฝ for fixed load ratio ๐‘„ for both the regions ๐‘…1 and ๐‘…2. It is observed that in both compressive and tensile load conditions ๐‘˜โ€ฒ(๐‘) increases slightly with graded parameter ๐›ฝ upto a certain distance from the center of the crack , while the effect is reversed and significant afterward. Fig. 5 displays the variation of ๐‘˜โ€ฒ(๐‘) for different position of loading. It is noted that in the case of

    compressive concentrated forces , ๐‘˜โ€ฒ(๐‘) increases with increasing ๐‘Ž

    ๐‘ , but it decreases in the case of tensile

    concentrated forces.

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 35 | Page

    Fig.3(a) Variation of TMSIF, ๐‘˜โ€ฒ ๐‘ with ๐‘

    for different loads ๐‘„ in both cases in the region ๐‘…2 when (

    ๐‘Ž

    ๐‘=

    0.0, ๐œ… = 1.8, ๐›ฝ = 0.1, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0). (b) Variation of TMSIF, ๐‘˜โ€ฒ ๐‘ with ๐‘

    for different

    loads ๐‘„ in both cases in the region ๐‘…1 when (๐‘Ž

    ๐‘= 0.0, ๐œ… = 1.8, ๐›ฝ = 0.1, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0).

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 36 | Page

    Fig.4(a) Effect of graded parameter ๐›ฝ on TMSIF, ๐‘˜โ€ฒ ๐‘ for both cases in the region ๐‘…2 (

    ๐‘Ž

    ๐‘= 0.0, ๐‘„ = 12.0, ๐œ… =

    1.8, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0). (b) Effect of graded parameter ๐›ฝ on TMSIF,๐‘˜โ€ฒ ๐‘ for both cases in

    the region ๐‘…1(๐‘Ž

    ๐‘= 0.0, ๐‘„ = 1.0 (Compressive),๐‘„ = 2.0 (Tensile),๐œ… = 1.8, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 =

    1.0).

    Fig.5(a)Variation of TMSIF,๐‘˜โ€ฒ ๐‘ for different values of

    ๐‘Ž

    ๐‘ for both cases in the region ๐‘…2 (๐‘„ = 16.0

    (Compressive), ๐‘„ = 12.0(Tensile),๐›ผ = 1.8, ๐›ฝ = 0.1, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0). (b) Variation of

    TMSIF, ๐‘˜โ€ฒ ๐‘ for different values of ๐‘Ž

    ๐‘ for both cases in the region ๐‘…1(๐‘„ = 2.0, ๐œ… = 1.8, ๐›ฝ = 0.1, ๐ป =

    1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0).

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 37 | Page

    Fig. 6 depicts the variation of normalized crack surface displacement ๐‘ฃโ€ฒ ๐‘Ÿ, 0 with ๐‘Ÿ for diffeerent values of load ratio ๐‘„. It is clear from Figs. 6(a , b) that for compressive nature of forces ๐‘ฃโ€ฒ ๐‘Ÿ, 0 decreases as load ratio ๐‘„ increases, but for tensile nature of loading ๐‘ฃโ€ฒ ๐‘Ÿ, 0 decreases as load ratio ๐‘„ decreases. For both the cases of compressive and tensile concentrated forces the graphs show that the normalized crack surface

    displacement is symmetrical with respect to origin. The effect of graded parameter ๐›ฝ on ๐‘ฃโ€ฒ ๐‘Ÿ, 0 is observed in Fig. 7 for both the cases of compressive and tensile concentrated forces for the both the regions ๐‘…1 and ๐‘…2.

    Fig.6(a) Normalized crack surface displacement ๐‘ฃโ€ฒ ๐‘Ÿ, 0 for various values of ๐‘„ for both cases in the region

    ๐‘…2 (๐‘Ž

    ๐‘= 0.0,

    ๐‘

    = 1.0 , ๐œ… = 1.8, ๐›ฝ = 0.1, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0). (b) Normalized crack surface

    displacement ๐‘ฃโ€ฒ ๐‘Ÿ, 0 for various values of ๐‘„ for both cases in the region ๐‘…1(๐‘Ž

    ๐‘= 0.0,

    ๐‘

    = 1.0, ๐œ… = 1.8, ๐›ฝ =

    0.1, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0).

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 38 | Page

    Fig.7(a) Effect of graded parameter ๐›ฝ on normalized crack surface displacement ๐‘ฃโ€ฒ ๐‘Ÿ, 0 for both cases in the

    region ๐‘…2 ( ๐‘Ž

    ๐‘= 0.0,

    ๐‘

    = 1.0, ๐‘„ = 6 (Compressive), ๐‘„ = 16 (Tensile), ๐œ… = 1.8, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 =

    2.5, ๐‘‡2 = 1.0). (b) Effect of graded parameter ๐›ฝ on normalized crack surface displacement ๐‘ฃโ€ฒ ๐‘Ÿ, 0 for both

    cases in the region ๐‘…1 ( ๐‘Ž

    ๐‘= 0.0,

    ๐‘

    = 1.0, ๐‘„ = 1, ๐œ… = 1.8, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0).

    Fig. 8 illustrates the role of the point of application of loading on the normalized crack surface

    displacement for a particular load ratio ๐‘„ = 6.0 for the compressive forces while ๐‘„ = 12.0 for the tensile forces for the region ๐‘…2 and the load ratio ๐‘„ = 1.0 for both types of compressive and tensile forces for the

    region ๐‘…1 with ๐‘

    = 1.0. It is observed in Figs. 6.8 (a , b) , that for compressive concentrated loading the

    normalized crack surface displacement increases with the increased values of ๐‘Ž

    ๐‘ but behavior is just opposite for

    tensile concentrated loading.

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 39 | Page

    Fig.8(a)Normalized crack surface displacement ๐‘ฃโ€ฒ ๐‘Ÿ, 0 for various values of

    ๐‘Ž

    ๐‘ for both cases in the region

    ๐‘…2 (๐‘„ = 6.0 (Compressive),๐‘„ = 12(Tensile), ๐‘

    = 1.0, ๐œ… = 1.8, ๐›ฝ = 0.1, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5,

    ๐‘‡2 = 1.0). (b) Normalized crack surface displacement ๐‘ฃโ€ฒ ๐‘Ÿ, 0 for various values of ๐‘Ž

    ๐‘ for both cases in the

    region ๐‘…1 (๐‘„ = 1.0,๐‘

    = 1.0, ๐œ… = 1.8, ๐›ฝ = 0.1, ๐ป = 1.0, ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0).

    Fig. 9 displays the comparison of the variation of thermo-mechanical stress intensity factor (TMSIF) and

    thermal stress intensity factor (TSIF) with ๐‘

    for both the regions ๐‘…1 and ๐‘…2 .

    Fig.9 Comparison of TMSIF and TSIF for both the regions ๐‘…1 and ๐‘…2 (

    ๐‘Ž

    ๐‘= 0.0 , ๐œ… = 1.8, ๐›ฝ = 0.1, ๐ป = 1.0,

    ๐›ผ๐‘ก = 1.5, ๐‘‡1 = 2.5, ๐‘‡2 = 1.0).

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 40 | Page

    VIII. CONCLUSION The present discussion relating thermo-mechanical loading on a functionally graded layer with a crack in it

    yielded the following observations:

    (a) The SIF and the crack surface displacement ๐‘ฃ(๐‘ฅ, 0) are very much affected by thermal loading. (b) The position and the magnitude of mechanical loading affects the SIF and ๐‘ฃ(๐‘ฅ, 0). (c) Grading of medium has significant effects on SIF and ๐‘ฃ(๐‘ฅ, 0). Both ๐‘ฃ(๐‘ฅ, 0) and SIF increase with increase of rigidity.

    (d) The crack length to layer thickness ratio also plays important roles on the behavior of SIF and ๐‘ฃ(๐‘ฅ, 0).

    IX. APPENDIX We set ๐›ฅ = ๐ฟ โˆ’1 , then for ๐ท๐‘˜๐‘– (๐‘˜ = 1,2,3 and ๐‘– = 1, โ€ฆ โ€ฆ ,4) we have the following expressions:

    ๐ท11 ๐œ‰ = ๐›ฅ ๐‘š4๐บ2๐บ3 โˆ’ ๐‘š3๐บ2๐บ4 ๐‘’๐‘š2 + ๐‘š2๐บ3๐บ4 โˆ’ ๐‘š4๐บ2๐บ3 ๐‘’

    ๐‘š3 + ๐‘š3๐บ2๐บ4 โˆ’ ๐‘š2๐บ3๐บ4 ๐‘’๐‘š4 ,

    ๐ท12 ๐œ‰ = ๐›ฅ ๐‘š3๐บ1๐บ4 โˆ’ ๐‘š4๐บ1๐บ3 ๐‘’๐‘š1 + ๐‘š4๐บ1๐บ3 โˆ’ ๐‘š1๐บ3๐บ4 ๐‘’

    ๐‘š3 + ๐‘š1๐บ3๐บ4 โˆ’ ๐‘š3๐บ1๐บ4 ๐‘’๐‘š4 ,

    ๐ท13 ๐œ‰ = ๐›ฅ ๐‘š4๐บ1๐บ2 โˆ’ ๐‘š2๐บ1๐บ4 ๐‘’๐‘š1 + ๐‘š1๐บ2๐บ4 โˆ’ ๐‘š4๐บ1๐บ2 ๐‘’

    ๐‘š2 + ๐‘š2๐บ1๐บ4 โˆ’ ๐‘š1๐บ2๐บ4 ๐‘’๐‘š4 ,

    ๐ท14 ๐œ‰ = ๐›ฅ ๐‘š2๐บ1๐บ3 โˆ’ ๐‘š3๐บ1๐บ2 ๐‘’๐‘š1 + ๐‘š3๐บ1๐บ2 โˆ’ ๐‘š1๐บ2๐บ3 ๐‘’

    ๐‘š2 + ๐‘š1๐บ2๐บ3 โˆ’ ๐‘š2๐บ1๐บ3 ๐‘’๐‘š3 ,

    ๐ท21 ๐œ‰ = ๐›ฅ ๐บ3๐บ4๐‘†2 โˆ’ ๐บ2๐บ3๐‘†4 ๐‘’ ๐‘š2+๐‘š4 + ๐บ2๐บ3๐‘†4 โˆ’ ๐บ2๐บ4๐‘†3 ๐‘’

    ๐‘š3+๐‘š4 + ๐บ2๐บ4๐‘†3 โˆ’ ๐บ3๐บ4๐‘†2 ๐‘’

    ๐‘š2+๐‘š3 ,

    ๐ท22 ๐œ‰ = ๐›ฅ ๐บ1๐บ3๐‘†4 โˆ’ ๐บ3๐บ4๐‘†1 ๐‘’ ๐‘š1+๐‘š4 + ๐บ1๐บ4๐‘†3 โˆ’ ๐บ1๐บ3๐‘†4 ๐‘’

    ๐‘š3+๐‘š4 + ๐บ3๐บ4๐‘†1 โˆ’ ๐บ1๐บ4๐‘†3 ๐‘’

    ๐‘š1+๐‘š3 ,

    ๐ท23 ๐œ‰ = ๐›ฅ ๐บ2๐บ4๐‘†1 โˆ’ ๐บ1๐บ2๐‘†4 ๐‘’ ๐‘š1+๐‘š4 + ๐บ1๐บ2๐‘†4 โˆ’ ๐บ1๐บ4๐‘†2 ๐‘’

    ๐‘š2+๐‘š4 + ๐บ1๐บ4๐‘†2 โˆ’ ๐บ2๐บ4๐‘†1 ๐‘’

    ๐‘š1+๐‘š2 ,

    ๐ท24 ๐œ‰ = ๐›ฅ ๐บ1๐บ2๐‘†3 โˆ’ ๐บ2๐บ3๐‘†1 ๐‘’ ๐‘š1+๐‘š3 + ๐บ1๐บ3๐‘†2 โˆ’ ๐บ1๐บ2๐‘†3 ๐‘’

    ๐‘š2+๐‘š3 + ๐บ2๐บ3๐‘†1 โˆ’ ๐บ1๐บ3๐‘†2 ๐‘’

    ๐‘š1+๐‘š2 ,

    ๐ท31 ๐œ‰ = ๐›ฅ ๐‘š4๐‘ƒ2๐‘†2๐บ3 + ๐‘š4๐‘ƒ1๐บ2๐บ3 โˆ’ ๐‘š3๐‘ƒ2๐‘†2๐บ4 โˆ’ ๐‘š3๐‘ƒ1๐บ2๐บ4 ๐‘’๐‘š2

    + ๐‘š2๐‘ƒ2๐‘†3๐บ4 + ๐‘š2๐‘ƒ1๐บ3๐บ4 โˆ’ ๐‘š4๐‘ƒ2๐‘†3๐บ2 โˆ’ ๐‘š4๐‘ƒ1๐บ2๐บ3 ๐‘’๐‘š3

    + ๐‘š3๐‘ƒ2๐‘†4๐บ2 + ๐‘š3๐‘ƒ1๐บ2๐บ4 โˆ’ ๐‘š2๐‘ƒ2๐‘†4๐บ3 โˆ’ ๐‘š2๐‘ƒ1๐บ3๐บ4 ๐‘’๐‘š4

    + ๐‘š4๐‘ƒ4๐‘†3๐บ2 โˆ’ ๐‘š4๐‘ƒ4๐‘†2๐บ3 + ๐‘ƒ3๐‘†3๐บ2๐บ4 โˆ’ ๐‘ƒ4๐‘†3๐บ2๐บ4 โˆ’ ๐‘ƒ3๐‘†2๐บ3๐บ4 + ๐‘ƒ4๐‘†2๐บ3๐บ4 ๐‘’ ๐‘š2+๐‘š3

    + โˆ’๐‘š3๐‘ƒ4๐‘†4๐บ2 โˆ’ ๐‘ƒ3๐‘†4๐บ2๐บ3 + ๐‘ƒ4๐‘†4๐บ2๐บ3 + ๐‘š3๐‘ƒ4๐‘†2๐บ4 + ๐‘ƒ3๐‘†2๐บ3๐บ4 โˆ’ ๐‘ƒ4๐‘†2๐บ3๐บ4 ๐‘’ ๐‘š2+๐‘š3

    + ๐‘š2๐‘ƒ4๐‘†4๐บ3 + ๐‘ƒ3๐‘†4๐บ2๐บ3 โˆ’ ๐‘ƒ4๐‘†4๐บ2๐บ3 โˆ’ ๐‘š2๐‘ƒ4๐‘†3๐บ4 โˆ’ ๐‘ƒ3๐‘†3๐บ2๐บ4 + ๐‘ƒ4๐‘†3๐บ2๐บ4 ๐‘’ ๐‘š3+๐‘š4 ,

    ๐ท32 ๐œ‰ = ๐›ฅ โˆ’๐‘š4๐‘ƒ2S1๐บ3 โˆ’ ๐‘š4๐‘ƒ1๐บ1๐บ3 + ๐‘š3๐‘ƒ2๐‘†1๐บ4 + ๐‘š3๐‘ƒ1๐บ1๐บ4 ๐‘’๐‘š1

    + ๐‘š4๐‘ƒ2๐‘†3๐บ1 + ๐‘š4๐‘ƒ1๐บ1๐บ3 โˆ’ ๐‘š1๐‘ƒ2๐‘†3๐บ4 โˆ’ ๐‘š1๐‘ƒ1๐บ3๐บ4 ๐‘’๐‘š3

    + โˆ’๐‘š3๐‘ƒ2๐‘†4๐บ1 + ๐‘š1๐‘ƒ2๐‘†4๐บ3 โˆ’ ๐‘š3๐‘ƒ1๐บ1๐บ4 + ๐‘š1๐‘ƒ1๐บ3๐บ4 ๐‘’๐‘š4

    + โˆ’๐‘š4๐‘ƒ4๐‘†3๐บ1 + ๐‘š4๐‘ƒ4๐‘†1๐บ3 โˆ’ ๐‘ƒ3๐‘†3๐บ1๐บ4 + ๐‘ƒ4๐‘†3๐บ1๐บ4 + ๐‘ƒ3๐‘†1๐บ3๐บ4 โˆ’ ๐‘ƒ4๐‘†1๐บ3๐บ4 ๐‘’ ๐‘š1+๐‘š3

    + ๐‘š3๐‘ƒ4๐‘†4๐บ1 + ๐‘ƒ3๐‘†4๐บ1๐บ3 โˆ’ ๐‘ƒ4๐‘†4๐บ1๐บ3 โˆ’ ๐‘š3๐‘ƒ4๐‘†1๐บ4 โˆ’ ๐‘ƒ3๐‘†1๐บ3๐บ4 + ๐‘ƒ4๐‘†1๐บ3๐บ4 ๐‘’ ๐‘š1+๐‘š4

    + โˆ’๐‘š4๐‘ƒ4๐‘†4๐บ3 โˆ’ ๐‘ƒ3๐‘†4๐บ1๐บ3 + ๐‘ƒ4๐‘†4๐บ1๐บ3 + ๐‘š1๐‘ƒ4๐‘†3๐บ4 + ๐‘ƒ3๐‘†3๐บ1๐บ4 โˆ’ ๐‘ƒ4๐‘†3๐บ1๐บ4 ๐‘’ ๐‘š3+๐‘š4 ,

    ๐ท33 ๐œ‰ = ๐›ฅ ๐‘š4๐‘ƒ2๐‘†1๐บ2 + ๐‘š4๐‘ƒ1๐บ1๐บ2 โˆ’ ๐‘š2๐‘ƒ2๐‘†1๐บ4 โˆ’ ๐‘š2๐‘ƒ1๐บ1๐บ4 ๐‘’๐‘š1

    + โˆ’๐‘š4๐‘ƒ2๐‘†2๐บ1 โˆ’ ๐‘š4๐‘ƒ1๐บ1๐บ2 + ๐‘š1๐‘ƒ2๐‘†2๐บ4 + ๐‘š1๐‘ƒ1๐บ2๐บ4 ๐‘’๐‘š2

    + ๐‘š2๐‘ƒ2๐‘†4๐บ1 โˆ’ ๐‘š1๐‘ƒ2๐‘†4๐บ2 + ๐‘š2๐‘ƒ1๐บ1๐บ4 โˆ’ ๐‘š1๐‘ƒ1๐บ2๐บ4 ๐‘’๐‘š4

    + ๐‘š4๐‘ƒ4๐‘†2๐บ1 โˆ’ ๐‘š4๐‘ƒ4๐‘†1๐บ2 + ๐‘ƒ3๐‘†2๐บ1๐บ4 โˆ’ ๐‘ƒ4๐‘†2๐บ1๐บ4 โˆ’ ๐‘ƒ3๐‘†1๐บ2๐บ4 + ๐‘ƒ4๐‘†1๐บ2๐บ4 ๐‘’ ๐‘š1+๐‘š2

    + โˆ’๐‘š2๐‘ƒ4๐‘†4๐บ1 โˆ’ ๐‘ƒ3๐‘†4๐บ1๐บ2 + ๐‘ƒ4๐‘†4๐บ1๐บ2 + ๐‘š2๐‘ƒ4๐‘†1๐บ4 + ๐‘ƒ3๐‘†1๐บ2๐บ4 โˆ’ ๐‘ƒ4๐‘†1๐บ2๐บ4 ๐‘’ ๐‘š1+๐‘š4

    + ๐‘š1๐‘ƒ4๐‘†4๐บ2 + ๐‘ƒ3๐‘†4๐บ1๐บ2 โˆ’ ๐‘ƒ4๐‘†4๐บ1๐บ2 โˆ’ ๐‘š1๐‘ƒ4๐‘†2๐บ4 โˆ’ ๐‘ƒ3๐‘†2๐บ1๐บ4 + ๐‘ƒ4๐‘†2๐บ1๐บ4 ๐‘’ ๐‘š2+๐‘š4 ,

    ๐ท34 ๐œ‰ = ๐›ฅ โˆ’๐‘š3๐‘ƒ2๐‘†1๐บ2 โˆ’ ๐‘š3๐‘ƒ1๐บ1๐บ2 + ๐‘š2๐‘ƒ2๐‘†1๐บ3 + ๐‘š2๐‘ƒ1๐บ1๐บ3 ๐‘’๐‘š1

    + ๐‘š3๐‘ƒ2๐‘†2๐บ1 + ๐‘š3๐‘ƒ1๐บ1๐บ2 โˆ’ ๐‘š1๐‘ƒ2๐‘†2๐บ3 โˆ’ ๐‘š1๐‘ƒ1๐บ2๐บ3 ๐‘’๐‘š2

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 41 | Page

    + โˆ’๐‘š2๐‘ƒ2๐‘†3๐บ1 + ๐‘š1๐‘ƒ2๐‘†3๐บ2 โˆ’ ๐‘š2๐‘ƒ1G1G3 + m1P1G2G3 em3h

    + โˆ’m3P4S2G1 + m3P4S1G2 โˆ’ P3S2G1G3 + P4S2G1G3 + P3S1G2G3 โˆ’ P4S1G2G3 e m1+m2 h

    + m2P4S3G1 + P3S3G1G2 โˆ’ P4S3G1G2 โˆ’ m2P4S1G3 โˆ’ P3S1G2G3 + P4S1G2G3 e m1+m3 h

    + โˆ’m1P4S3G2 โˆ’ P3S3G1G2 + P4S3G1G2 + m1P4S2G3 + P3S2G1G3 โˆ’ P4S2G1G3 e m2+m3 h .

    REFERENCES [1]. Nowacki W. Thermoelasticity. Pergamon Press, London.1962. [2]. Nowinski JL. Theory Of Thermoelasticity With Applications. Sijthoff and Noordhoff . International

    Publishers, Alphen Aan Den Rijn. 1978.

    [3]. Chaudhuri PK, Ray S. Sudden twisting of a penny-shaped crack in a nonhomogeneous elastic medium. J. Math. Phys. Sci. 1995; 29:207-221.

    [4]. Dag S, Kadioglu S,Yahsi OS. Circumferential crack problem for an FGM cylinder under thermal stresses. J. Thermal Stress.1999; 22:659-687.

    [5]. Dag S, Erdogan F. A surface crack in a graded medium under general loading conditions. J. Appl. Mech. 2002;69:580-588.

    [6]. Sherief HH, El-Mahraby NM. An internal penny-shaped crack in an infinite thermoelastic solid. J. Thermal Stress. 2003;26:333-352.

    [7]. Patra R, Barik SP, Kundu M,Chaudhuri PK. Plane elastostatic solution in an infinite functionally graded layer weakened by a crack lying in the middle of the layer. Int. J. Comp. Math. 2014;(2014, Article ID

    358617).

    [8]. Patra R, Barik SP, Chaudhuri PK. Steady state thermoelastic problem in an infinite elastic layer weakened by a crack lying in the middle of the layer. Int. J. Engg. Sci. Inv.2016; 5:21-36.

    [9]. Patra R, Barik SP, Chaudhuri PK. An internal crack problem in an infinite transversely isotropic elastic layer. Int. J. Adv. Appl. Math. and Mech.2015;3:62-70.

    [10]. Rokhi MM, Shariati M. Coupled thermoelasticity of a functionally graded cracked layer under thermomechanical shocks. Arch. Mech.2013; 65:71-96, Warszawa.

    [11]. Eskandari H. Edge crack studies in rotating FGM disks. J. Solid Mech.2016;8:530-539. [12]. Lee DS. The problem of internal cracks in an infinite strip having a circular hole. Acta

    Mech.2004;169:101-110.

    [13]. Kanaun SK. Fast solution of the elasticity problem for a planar crack of arbitrary shape in 3D-anisotropic medium. Int. J. Engg. Sci.2009; 47:284-293.

    [14]. Barik SP, Kanoria M, Chaudhuri PK. Steady state thermoelastic problem in an infinite functionally graded solid with a crack. Int. J. Appl. Math. and Mech.2010;6:44-66.

    [15]. Birinci A, Birinci F, Cakiroglu FL, Erdol R. An internal crack problem for an infinite elastic layer. Arch. Appl. Mech.2010;80:997-1005.

    [16]. Rekik M, Neifar M, El-Borgi S. An axisymmetric problem of an embedded crack in a graded layer bonded to a homogeneous half-space. Int. J. Solids and Struct.2010;47:2043-2055.

    [17]. Chen ZT, Hu KQ. Hyperbolic heat conduction in a cracked thermoelastic half-plane bonded to a coating. Int. J. Thermophys.2012; 33:895-912.

    [18]. Chang DM, Wang BL. Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Engg. Fract. Mech.2012;94:29-36.

    [19]. Markov A, Kanaun S. An efficient homogenization method for elastic media with multiple cracks. Int. J. Engg. Sci.2014;82:205-221.

    [20]. Ding SH, Zhou YT, Xing L. Interface crack problem in layered orthotropic materials under thermo-mechanical loading. Int. J. Solids and Struct.2014;51:4221-4229.

    [21]. Wang Xu, Zhou K, Wu MS. Interface cracks with surface elasticity in anisotropic bimaterials. Int. J. Solids and Struct.2015; 59:110-120.

    [22]. Lee KY,Park SJ. Thermal stress intensity factors for partially insulated interface crack under uniform heat flow. Engg. Fract. Mech.1995; 50:475-482.

    [23]. Itou S. Thermal stress intensity factors of an infinite orthotropic layer with a crack. Int. J. Fract.2000;103:279-291.

    [24]. Liu L, Kardomateas GA. Thermal stress intensity factors for a crack in an anisotropic half plane. Int. J. Solids and Struct.2005; 42:5208-5223.

    [25]. Nabavi SM, Shahani AR. Thermal stress intensity factors for a cracked cylinder under transient thermal loading. Int. J. Press. Vess. Pip.2009;86:153-163.

    [26]. Hu KQ, Chen ZT. Thermoelastic analysis of a partially insulated crack in a strip under thermal impact loading using the hyperbolic heat conduction theory. Int. J. Engg. Sci.2012;51:144-160.

    [27]. Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford:Oxford Science Publications, Clarendon Press.1990.

  • Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer

    International organization of Scientific Research 42 | Page

    [28]. Erdogan F, Gupta DS. On the numerical solution of singular integral equations. Quat. Appl. Math.1972; 29:525-534.

    [29]. Krenk S. On the use of the interpolation polynomial for solutions of singular integral equations. Quat. Appl. Math.1975;32:479-484.

    [30]. Gupta GD, Erdogan F. The problem of edge cracks in an infinite strip. J. Appl. Mech.1974;41:1001-1006.

    Rajesh Patra" Thermo-mechanical Analysis of a Crack in an Infinite Functionally Graded

    Elastic Layer" IOSR Journal of Engineering (IOSRJEN), vol. 09, no. 06, 2019, pp. 24-42.