9
Thermal Energy Storage for Medium Temperature Industrial Process Heating Dan Zhou CREST Loughborough University ------Progress

Thermal Energy Storage for Medium Temperature Industrial ... files/Progress MC June 2015/MC...Table 1 Potential molten salt mixture as medium temperature heat storage media Table 2

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Thermal Energy Storage for Medium

    Temperature Industrial Process Heating

    Dan Zhou

    CREST

    Loughborough University

    ------Progress

  • Progress

    • Materials Update

    • System Update

    • System Performance

  • Materials

    Salt Price (per Metric Ton)

    Ca(NO3)2 $250 ~ $280

    NaNO3 $300 ~ $500

    KNO3 $700 ~ $900

    LiNO3 Around $10,000

    NaNO2 $400 ~ $500

    NaCl $50 ~ $100

    ZnCl2 $950 ~ $1000

    KCl $500 ~ $900

    Na2CO3 $180 ~ $250

    Sr(NO3)2 Around $3,000

    NaOH $350 ~ $450

    PCMs

    Melting

    temperature

    (°C)

    Latent heat (kJ/kg)

    Price ($/kg)

    ZnCl2 - NaCl - KCl 203

    NaOH - Na2CO3 210

    KNO3 (54wt%) - NaNO3 (46wt%) 222 161 ~0.62

    NaNO3 - NaNO2 226-233

    Ca(NO3)2 (45wt%) - NaNO3 (55wt%) 230 ~110 ~0.33

    Ca(NO3)2 - NaNO2 200-223

    Ca(NO3)2 - LiNO3 235

    LiNO3(12wt%) - NaNO3(18wt%) - KNO3(70wt%) 200 ~1.84

    LiNO3(57wt%) - NaNO3(43wt%) 193 248 ~5.8

    LiNO3(49wt%) - NaNO3(51wt%) 194 265 ~5.1

    LiNO3(87wt%) - NaCl(13wt%) 208 360 ~8.7

    LiNO3(45wt%) - NaNO3(47wt%) - Sr(NO3)2(8wt%) 200 199 ~4.9

    Table 1 Potential molten salt mixture as medium temperature heat storage media

    Table 2 Market prices of some salts

    Material investigations contain two parts:

    1. Research stage

    1) Binary system with lithium nitrate

    2) Ternary system of LiNO3(12wt%) - NaNO3(18wt%) -

    KNO3(70wt%)

    2. Industrial application stage

    1) KNO3 (54wt%) - NaNO3 (46wt%)

    2) Ca(NO3)2 (45wt%) - NaNO3 (55wt%)

    3) Ternary system of LiNO3(12wt%) - NaNO3(18wt%) -

    KNO3(70wt%)

    4) Other new ternary or quaternary systems

  • Binary system with lithium nitrate (Research stage)

    • LiNO3(87wt%)- NaCl(13wt%)

    • LiNO3(57wt%)-NaNO3(43wt%)

    • Ca(NO3)2-LiNO3 (To be test….)

  • Heat storage system

    Double pipes heat exchanger: heat transfer pipe can

    be smoothed pipe or enhanced pipes

    Outside pipe diameter Do: 50 mm

    Inside pipe diameter Din: 20 mm

    Pipe length: 1 m

    0.4 m0.2 m

    0.14 m

    O.D 0.015 m

    1.5 do

    Helical coiled tube

  • Heat storage system

    • High temperature oil pump

    (Turbine pump)

    • M pumps CM MAG-M series

    magnetically coupled centrifugal

    pump. Differential head: 6m;

    capacity: 2-15 L/min; working

    temperature: up to 300°C .

    • IC-LPM industrial paddle wheel

    series flow meter:

    • 2-20L/min

    • Operating temperature: 350 °C

    • High temperature heat

    exchanger: Exergy tube –in-tube

    heat exchanger ½’’ NPT male

    inner tube connections and 1’’

    NPT female outer tube boss.

    • Highly dynamic

    temperature control

    system: Julabo

  • U-value calculation

    1. Mass of the PCM

    (1) Cross area: (A) Pipe 1: 𝐴1 = 𝜋(𝐷𝑂

    2)2= 1.96 × 10−3𝑚2 ; Pipe 2: 𝐴2 = 𝜋(

    𝐷𝑖𝑛

    2)2= 3.14 × 10−4𝑚2

    (2) Volume of the PCM (VP) 𝑽𝑷 = 𝐴1 − 𝐴2 𝑳 = 1.646 × 10−3𝑚3

    (3) Mass of the PCM (MP) 𝑴𝑷 = 𝝆𝑷 ∙ 𝑽𝑷 = 𝟐𝟑𝟓𝟓 × 1.646 × 10−3𝒌𝒈 = 3.88𝒌𝒈

    (4) Suppose the latent heat of the PCM 𝑯𝑷=300𝒌𝑱

    𝒌𝒈; total latent heat: 𝑳𝒉𝒆𝒂𝒕 = 𝑴𝑷 ∙ 𝑯𝑷= 3.88 × 300 𝒌𝑱 = 1162.9 𝒌𝑱

    2. Suppose the flow rate inside the heat transfer tube is 𝒗𝒇 = 𝟎. 𝟓𝒎/𝒔

    (1) The volume flow rate (𝒗 𝒇) 𝒗 𝒇 = 𝑨𝟐 ∙ 𝒗𝒇 = 3.14 × 10−4 ×

    0.𝟓𝒎𝟑

    𝒔= 𝟏. 𝟓𝟕 × 𝟏𝟎−𝟒𝒎𝟑/𝒔

    (2) The mass flow rate (𝒎 𝒇) 𝒎 𝒇 = 𝒗 𝒇 ∙ 𝝆𝒇 = 𝟏. 𝟓𝟕 × 𝟏𝟎−𝟒 ×

    𝟕𝟒𝟔𝒌𝒈

    𝒔= 𝟎. 𝟏𝟏𝟕𝒌𝒈/𝒔

    (3) Reynolds number at T=250°C 𝑅𝑒 =𝒗𝒇∙𝒅𝒊

    𝜂𝑓=

    0.5×0.02

    1.2×𝟏𝟎−𝟔= 8333.333 So the flow is turbulent flow

    (4) The Prantle number (Pr) 𝑃𝑟 =𝜂𝑓∙𝐶𝑃𝑓∙𝜌𝑓

    𝑘𝑓=

    1.2×𝟏𝟎−𝟔×2.72×713

    0.118×𝟏𝟎−𝟑= 19.722

    (5) The Nusselt number 𝑁𝑢 = 0.023 × 𝑅𝑒0.8 × 𝑃𝑟0.4 = 0.023 × 8333.3330.8 × 19.7220.4 = 103.84

    (6) The heat transfer inside the tube (ℎ𝑖) ℎ𝑖 =𝑁𝑢𝑓×𝑘𝑓

    Din=

    103.84×0.118

    0.02= 612.656 𝑊/𝑚2𝐾

    (7) The minimum overall effective heat transfer coefficient estimation

    𝑈 =1

    1ℎ𝑖𝑐

    +𝜆𝑠𝑘𝑠+𝜆𝑃𝑘𝑃

    =1

    1612.656

    +0.00119 +

    0.0150.7

    = 43.3𝑊/𝑚2𝐾

    Suppose the inlet temperature of the heat transfer oil is 300 °C

    The charging time is around 1 hour. The charging time can be shorten by enhanced pipes, such as finned pipe.

  • Performance calculation

    Figure 1 Heat storage system performance

    Figure 2 Influence of inlet temperature on the performance

    Figure 4 Influence of effective heat transfer rate on the performance

    Figure 3 Influence of heat transfer fluid velocity on the performance