32
EML 4304L Thermal Fluids Lab Thermal Conduction Experiment # 3 Mechanical Engineering Department F AMU/FSU College of Eng ineering

Thermal Conduction4

Embed Size (px)

Citation preview

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 1/32

EML 4304L Thermal Fluids Lab Thermal Conduction

Experiment # 3

Mechanical Engineering DepartmentFAMU/FSU College of Engineering

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 2/32

Outline

•Purpose of the lab•Fundamental Equations

•Unit 3 and Unit 4 Analysis

•Unit 1 and Unit 2 Analysis•Error Analysis

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 3/32

PURPOSE

• Conduct a series of thermal conductionexperiments which examines the effects on heattransfer with varying cross-sectional area anddistance.

 –  Using this thermal conduction information derive Fourier’s law of thermal conduction. 

• Analyze the temperature variance in a series ofmetal rods that are in physical contact.

 –  From this information determine thermal resistanceand contact resistance.

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 4/32

Heat flow

for units

3 and 4

Q conduction=-k A dT / dx

Q coolant=m Cp dT / t

H fl

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 5/32

Heat flow

for units

1 and 2

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 6/32

Fundamental

Equations

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 7/32

 Rate of heat flow at the heat sink

mw = mass of cooling water displaced in time t (kg) 

C  p = Specific heat of water at constant pressure (kJ/kg °C) 

T  = (Tout  - T in ) of cooling water (°C) 

t  = time required to displace a volume V w of water (s)

This equation is used to determine the amount of energy that isbeing absorbed by the coolant. Once this is determined for each

uni t, it is assumed to be the constant rate of conduction through

each mater ial.

T C m

q

  pw

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 8/32

Qcond = KA(ΔT/Δx) 

Rate of heat conduction

 K  = thermal conductivity constant  (W/m °C)

 A = cross-sectional area (m2) 

T  = temperature difference across the material (°C) 

 x = distance between temperature readings (m)

Used to determine rate of heat conduction through

a body based on material properties, area,

temperature difference, and length of material.

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 9/32

Fourier’s law of heat conduction 

-K = thermal conductivity constant (W/m °C)

A = cross-sectional area (m2)

dT  = differential element for temperature (°C)

dx = differential element for distance (m)

Qcond = -KA dT/dx

Used to determine rate of heat conduction through a body

 based on material properties, area, and temperature/distance

gradient.

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 10/32

• Q=KA ΔT/Δx Q=-KA dT/dx

• dT/dx = temperature gradient

x

T

dT/dx

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 11/32

Conservation of EnergyQ in  = Q out  

Q conduction = Q coolant  

Calculations

This equation assumes there is no heat loss

through the system boundary. Though each

unit is insulated, there will sti l l be some heat

loss.

T C mdx

dT  Ak   p    

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 12/32

Thermal Contact Resistance

R t,c

= Thermal contact resistance (ºC/W)

T  = Temperature change (ºC)

q  = Heat flux (W)

 R  T 

qt c,  

 

Calculates thermal contact resistance for a

given temperature discontinuity and a known

 power input.

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 13/32

Heat Conduction

for Units 3 and 4

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 14/32

 

Thermocouple Placement

for Units 3 and 4

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 15/32

UNIT #3Q=KA*ΔT/Δx 

Diameter is a function of x:

D(x)=D0+mx

D(x)=1”+(x/(11+1/16)) 

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 16/32

Unit #3

Area can also be written as

a function of x:

A = (p/4) d2

A(x) = (p/4) d(x)2 

Q=KA*dT/dx

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 17/32

Unit #3

Q = -k A T/x = -k A(x) dT/dx

Q k  A x( )dT

dx

Q x1

A x( )

 

d k  1 

d

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 18/32

Unit #3

Once k is solved for, the temperaturecan be found for any distance, x.

T x( ) T 0Q

1

A x( )

 

d

0

)(

1

T T 

dx x AQk 

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 19/32

UNIT #4

x2 x1

QinQout

Q=KA*ΔT/Δx 

K = coeff. of therm. conductivity NOTE: K is

unknown andmust be

determined

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 20/32

Thermal ContactResistance

Determination Units#1 and #2

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 21/32

Thermal contact resistance(R c) is a discontinuity in

the temperature gradients between two materials in

contact. The value is determined by projecting thetemperature gradients, calculating the temperature

difference, and dividing the temperature difference

 by the power that is transmitted through the

materials.

Factors affecting thermal contact resistance:

1 - Surface Roughness

2 - Type of materials in contact

3 - Temperature materials are at4 - Pressure applied to materials

5 - Type of fluid trapped at interface

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 22/32

elements are enclosed in the insulating jacket. Figure1 illustrates the schematics of the apparatus. The dimensions of the tapered rod are indicated

in Fig. 2.

elements are enclosed in the insulating jacket. Figure1 illustrates the schematics of the apparatus. The dimensions of the tapered rod are indicated

in Fig. 2.

elements are enclosed in the insulating jacket. Figure1 illustrates the schematics of the apparatus. The dimensions of the tapered rod are indicated

in Fig. 2.

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 23/32

Units #1 and #2

Cu

(Al)

Contact Resistance

T1T10

x1x2

Stainless

Steel

Steel

(Mg)

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 24/32

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 25/32

Ideal Thermal Conduction

T1

T2

T3

T4

Material 1 Material 2

T2  = T3

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 26/32

Actual Thermal Conduction 

T1T2

T3

T4

Material 1 Material 2

T2  = T3

Temperature

 profile due to

thermalcontact

resistance

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 27/32

Material 1 Material 2

T2

T3

Projected

Slope T3

Projected

Slope T2

ΔT 

Temperature profile due

to thermal contact

resistance

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 28/32

Temperature vs Distance 

Temperature(ºF)

Distance(inches)

Material 1

Material 2

Material 3

Discontinuities

where ΔT must be determined

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 29/32

Thermal Contact Resistance

Calculation

R t,c = ΔT/Q 

Qwtr =mwC p(ΔT) 

Q = Qwtr

ΔT (determined by projection of slope

and measuring difference in

temperatures)

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 30/32

Errors

• Time

Flow rate

Steady State

• Heat Losses

Not perfectly insulated

• Unit #4 Thermocouples #3 and #5Inconsistent readings

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 31/32

Heat flow

8/10/2019 Thermal Conduction4

http://slidepdf.com/reader/full/thermal-conduction4 32/32

Heat flowfor units

3 and 4