7
[1] FORCES AND MOTION THERE ARE DIFFERENT TYPES OF FORCES..... Some of the forces are more obvious than others and they can be broken down in to two different types: Forces are what make things move, like a push (kicking a football), or a pull (train) ELECTRICAL FORCES - Static electricity is an example of an electrical force. You will all have noticed that when comb your hair repeatedly that the comb attracts stray strands of hair. Static electricity can cause sparks and crackles if you take off a jumper made from man-made fibres (find out what they are). MAGNETIC FORCE - We all have played with magnets and discovered the invisible force that can either attract or repel another magnet or object made of iron or steel. It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people towards the Earth. It pushes things down wherever they are, whatever their size. Gravity is the force that gives us weight.

THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

[1]

FORCES AND MOTION

THERE ARE DIFFERENT TYPES OF FORCES.....Some of the forces are more obvious than others and they can be broken down in to two different types:

Forces are what make things move,

like a push (kicking a football), or a pull

(train)

ELECTRICAL FORCES - Static electricity is an example of an electrical

force. You will all have noticed that when comb your hair repeatedly that the

comb attracts stray strands of hair. Static electricity can cause sparks and

crackles if you take off a jumper made from man-made fibres (find out what

they are).

MAGNETIC FORCE - We all have played with magnets and discovered

the invisible force that can either attract or repel another magnet or

object made of iron or steel. It is the Earth’s magnetic field that we track

on a compass.

NON-CONTACT FORCES

GRAVITY - Gravity is a force that pulls objects and people towards the

Earth. It pushes things down wherever they are, whatever their size.

Gravity is the force that gives us weight.

Page 2: THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

[2]

MASSThe mass of an object is the amount of matter that is in the object, so mass is related to how much stuff there is.

WEIGHTThe weight of an object is the FORCE OF GRAVITY that acts on that object, so weight is related to the pull of the Earth.

MASS AND WEIGHTThe mass of an object (measured in Kg) is the same no matter where it islocated in the universe. The weight of an object (measured in Newtons) will vary depending where in the universe it is located.FO

RCES

AND

MOT

IONCO

NTAC

TFO

RCES FRICTION - This is the force that resists

things rubbing against each other. It helps you walk without sliding - except when you walk on the ice, there is very little friction and therefore you slip.

MASS AND WEIGHT

AIR RESISTANCE - This force slows things down when they are moving. Have you ever put your hand out of a car window when you are travelling along? If so you will have felt air resistance

PULL (TENSION) - Have you ever had to compete in a tug-of-war competition or had to drag a heavy object? Pulling is a force that we come across every day

PUSH (APPLIED FORCE) - Again, this is a force that we are all familiar with. Whether you are pushing a bike up a hill or simply shoving a plate across the table - you should be able to think of lots of examples.

TWIST (SPRING FORCE) - Whether you are screwing the top off a fizzy drink or turning a tap on to brush your teeth, spring forces are ones that you will be familiar with on a daily basis.

UPTHRUST - This is the force that pushes things up in the water. It helps boats float and keeps swimmers from sinking.

(Who am I?)

Page 3: THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

[3]

BALANCED AND UNBALANCED FORCESForces can be described as being balanced or unbalanced.

If the forces on an object are balanced:

• an object that is not moving will remain stillor

• an object that is moving continues to move at the same speed and in the

same direction

If the forces on an object are unbalanced:

• an object that is not moving starts to moveor

• an object that is already moving changes speed or direction

UNBALANCED FORCES CAUSE CHANGES IN SPEED OR DIRECTION

Activity:

Have a look at the images in the panel down the side of the page. Name the

forces illustrated in each image and decide whether the forces are either

balanced or unbalanced.

MEASURING FORCES

Force is measured in Newtons. A force of one Newton will give a mass of one

kilogram, and an acceleration of one metre per second. This means that each

second, its speed will increase by one metre per second. When measuring a

force, you must state its direction, otherwise you do not know what effect it

has.

We can show the forces acting on an object using a force diagram. In a force

diagram, each force is shown as a force arrow. The arrow shows the size of

the force (the longer the arrow the bigger the force) and also the direction in

which the force acts.

BALANCED OR UNBALANCED

Steady

Speed

Standing Still

What is the resultant force?

Page 4: THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

[4]

FORCES AND MOTION ACTIVITIESIf you drop an object it will fall to the floor due to the force of gravity. If you place the same

object on a a table it will not fall because the table produces an equal force upwards. However, if

you place the object on a weak paper support, the support crumples and the object will fall to

the floor because the force created by the paper platform is not as strong as the force of gravity.

So, when the object is on the table, the forces are balanced and when the object is on the paper

platform the forces are unbalanced (therefore the object moves/changes speed in the direction

of the bigger force).

Activity:

Push a model car along a table, so that it slows down and eventually stops. What forces are

acting on the car as it moves and stops? What are the opposing forces acting on the model car?

When are the forces balanced and unbalanced?

By reducing air resistance and friction forces that act on a car (i.e. stream lining), what effects will

these changes have on the speed, the amount of force required to accelerate the car, and fuel

consumption of the car?

Design activity:

Cars which create less friction use less petrol and are therefore less polluting.

Design and draw a car, labeling and describing features you have changed to reduce air

resistance.

FORCES IN ACTIONLook at the images in the 4 boxes at the side of the page and label them appropriately.

Draw your own pictures in these two boxes showing examples of the following forces:

• Gravity

• Air Resistance

• Pull

• Upthrust

• Friction

• Push

WRITE THE NAME OF THE FORCES IN THE BOXES:

DRAW AND LABEL YOUR OWN ARROWS:

SPEED

Speed is calculated by the number of metres

travelled per second.

Speed (metres per second) = distance (metres) x

time (seconds)

1. Calculate the speed of a car which travels

600m in 30 seconds

2. Calculate the distance travelled by a horse

which runs 1 Kilometre in 4 minutes

3. Calculate the time it takes a man running

5m/s to run 450 m

Page 5: THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

[5]

HistoryIsaac Newton (1642-1727) was an English physicist,

mathematician and astronomer who many people consider to be the

greatest scientist of all time. In his book, Principia, published in 1687,

he described his 3 laws of motion which have dominated scientific

study for over 300 years. English poet Alexander Pope wrote

a very famous epitaph for Newton after his death:

“Nature and nature’s laws hid in night; God said ‘let

Newton be’ and all was light.”

Einstein kept a picture of Newton in his study.

Gravity on the MoonGravity is the force that gives us weight. Everything

contains a certain amount of material called its mass. When

you measure your weight you are really measuring the force of the

Earths gravity pulling on your mass. On the Moon your weight would be

about one-sixth of your weight on Earth because the Moon’s gravity is

about one-sixth of the Earth’s.

Apple IncidentIt is said that Newton was inspired to write his theory of gravitation

after an apple fell from a tree and hit him on the head. This incident

made him think about why the apple fell to Earth rather than fly off in

another direction. He concluded that:

‘the earth draws it...’ and that ‘...the sum of the drawing

power must be in the Earth’s centre’.

3 Laws of MotionFIRST LAW OF MOTION

An object continues in its state of rest or uniform

motion in a straight line unless acted upon by a net

external force

SECOND LAW OF MOTION

When a net (or unbalanced) force acts on a body, the body is

accelerated in the direction of the force

THIRD LAW OF MOTION

For every action there is an equal and opposite reaction

FIRST LAW OF MOTION GRAVITY TERMINAL VELOCITY

This law is also known as the law of inertia. If forces acting on an object are balanced, then:- if it is still, it will

stay still- if it is moving, it keeps

moving at a constant speed and in a straight line

When something falls through the air it feels friction due to air resistance. Because of this, the object will reach a terminal velocity (maximum speed). This is the velocity at which the air resistance balances its weight and so it doesn’t speed up but falls at a constant velocity.

NEWTON’S LAWS OF MOTION

FIRST LAW

SECOND LAW

THIRD LAW

Page 6: THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

[6]

30 MINUTE STEM ACTIVITYWHY NOT TRY THIS FUN ROCKET EXPERIMENT IN YOUR SCIENCE LESSON OR STEM CLUB.

TRY THIS AT SCHOOL

Most rockets create thrust, the force that propels them forward, by an exothermic chemicalreaction.

Make sure you launch this rocket outside and wear safety goggles.

It’s very messy and can fly a long way!

WHAT YOU NEED:. One plastic specimen tube with a tight push fit lid

. One soluble ‘Alka-Seltzer’

. Water

. Safety Goggles

. Test tube rack

WHAT TO DO:Set up the equipment outdoors.Wear safety goggles.

1) Break the Alka-Seltzer tablet into 8 pieces

2) Put one piece of the tablet into the plastic test tube

3) Add 1 or 2 teaspoons of water (5-10ml)

DO THE NEXT STEP VERY QUICKLY

4) Put the lid on the test tube

5) Put the test tube into the test tube rack upside down(Lid on the bottom)

6) Stand back 5 METRES.

About 10 seconds later you will hear a large pop and your tube will launch in the air (up to 10 metres)

CAUTIONIf it does not launch, wait at least 1 minute before examining your rocket. Often the lid might not be on tight enough and the CO2 gas has escaped.

HOW DOES IT WORK?The water dissolves the tablet and starts a chemical reaction which produces carbon dioxide.The carbon dioxide starts to build up, which increases the pressure inside the tube, until eventually the cap is forced off and the rocket blasts up. This principle of thrust is exactly how real rockets work, only they use rocket fuel instead of Alka- Seltzer tablets.

FURTHER INVESTIGATIONHow do the following changes affect the time it takes the rocket to fire and the amount of thrust created?

Try using a greater and smaller amount of tablet.

Try breaking the tablet into smaller pieces to increase the surface area.

Try using baking powder and vinegar rather than water and Alka- Seltzer.

See if you can get the rocket to go higher by adding fins to the bottom of the tube to increase stability.

Page 7: THERE ARE DIFFERENT TYPES OF FORCES...It is the Earth’s magnetic field that we track on a compass. NON-CONTACT FORCES GRAVITY - Gravity is a force that pulls objects and people

HOW DOES A JET ENGINE WORK?

Front of a turbofan engine

Remember Newton’s Third Law of Motion?

Jet engines create tremendous thrust and can propel aeroplanes with such force that they can achieve speeds in excess of 1000 MPH

Jet engines (or gas turbine as they are sometimes called) all work in the same way. The engine sucks air into the front with a fan. A compressor raises the pressure and temperature of the air. The compressed air is then sprayed with fuel and an electric spark lights the mixture. The burning gases expand and blast out through the nozzle at the back of the engine, thrusting the aircraft forward.

Not all of the air sucked in at the front of the engine goes through the engine. Some of the air flows around the core. This ‘cold’ air passes through a low pressure compressor and is mixed with the gas generator exhaust to produce a ‘hot’ jet.

The objective of this sort of bypass system is to increase thrust without increasing fuel consumption.Another benefit is that it produces a much quieter jet engine.

FAN - The large fan at the front of the engine sucks in large amounts of air. The air is speeded up and split into 2 parts. One part goes through the core or centre of the engine. The second part goes through ducts which surround the core, to the back of the engine where it produces much of the force that propels the aircraft forward. This cooler air quietens the engine as well as add thrust.

COMPRESSOR - This is the first part of the engine core. The fans in the compressor squeeze the air into smaller areas, resulting in an increase in the air pressure. This squashed air is forced into the combustion chamber.

COMBUSTOR - The squashed air is mixed with fuel then ignited. As many as 20 nozzles spray fuel into the airstream. As the mixture catches fire, this produces a high temperature, high energy airflow. The heat can reach 2700 degrees

TURBINE - The high energy airflow coming out of the combustor goes into the turbine which causes the turbine blades to rotate. These blades are linked to a shaft which drives both the fan at the front of the engine and the compressor immediately behind it.

MIXER - This is where the ‘cold’ air that has flowed around the outside of the core and the ‘hot’ air from inside the core are mixed together before being ducted to the nozzle.

NOZZLE - The nozzle is the exhaust duct of the engine. This is the part of the engine where the thrust is created. The combination of the ‘hot’ and ‘cold’ air are expelled and produce an exhaust, which causes forward thrust.

PARTS OF A TURBOFAN JET ENGINE