26
Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck- Institute FKF Jeroen van den Brink Lorentz Institute Leiden, the Fiona Forte Salerno University

Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Embed Size (px)

Citation preview

Page 1: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Theory of probing orbitonswith RIXS

Luuk AmentLorentz Institute, Leiden, the Netherlands

Giniyat KhaliullinMax-Planck-Institute FKF

Stuttgart, Germany

Jeroen van den BrinkLorentz InstituteLeiden, the Netherlands

Fiona ForteSalerno University

Salerno, Italy

Page 2: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Orbital ordering

Goodenough (1963)

Why do orbitals order?

1. Lattice distortion (Jahn-Teller)

2. Orbital and spin dependent superexchange

Orbital order in plane

LaMnO3

Page 3: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Kugel-Khomskii model

• Superexchange interaction involving spins and orbitals.– Orbitals are degenerate, no coupling to the lattice.– Orbitals determine overlap t J ~ t2/U

3d e2g

x2-y2

3z2-r2

3d e2g

x2-y2

3z2-r2

Page 4: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Jahn-Teller Vs. Superexchange

• Both lead to orbital order, so why is it interesting?– Excitations are very different!

Local crystal field excitations Vs. dispersing orbitons

– Superexchange: spins and orbitals entangle.Jahn-Teller: spins and orbitals decouple, orbitals frozen out at low T.

Page 5: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

YTiO3

A good candidate for orbitons. Why?

• t2g orbitals: directed away from oxygen ions.

• No cooperative JT phase transition seen.

• TiO6 octahedra are tilted, but only slightly deformed.

• Spin wave spectrum is isotropic.• Raman data: temperature dependence.

C. Ulrich et al., PRL 97, 157401 (2006) LA & G. Khaliullin, to be published

Page 6: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

YTiO3

• Ti has 3d t2g1 configuration

• Ferromagnetic Mott insulator atlow temperature: spin and chargedegrees of freedom frozen out

Ti

OY

Two scenario’s:• Lattice distortions split t2g orbitals.

• Orbital fluctuations dominate over Jahn-Teller distortions.Degenerate t2g orbitals with superexchange interactions.

• Both models lead to orbital order, but withvery different orbital excitations.

Page 7: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

–‘In-plane’ hopping: only via one of the two 2p’s allowed.

x

z

Ti

YTiO3 - superexchange

• What are the possible hopping processes via oxygen?– ‘Out-of-plane’ hopping is symmetry forbidden.

Ti TiO

•Expand in t/U: Superexchange interaction, dependent on bond direction. O

y

x

z

Ti O

y

–Result: t2g orbitals are conserved and confined to their plane.

Ti

OY

Page 8: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

YTiO3 - superexchange

3d t2g

Ti Ti

•Superexchange interaction dependent on bond direction.

xzxyyz

Ti

y-direction

Page 9: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

YTiO3 - superexchange• Superexchange Hamiltonian has an orbitally ordered ground

state with 4 sublattices:

Pictures from E. Saitoh et al., Nature 410, 180 (2001)and Khaliullin et al., Phys. Rev. B �68, 205109 (2003).

Condense:

• In analogy to magnons: collective excitations (orbitons) on top of the ordered ground state.

Page 10: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Indirect RIXS off YTiO3

Ti 2p level

Ti 3d eg level

res (~460 eV)

YTiO3

Measure energy and momentum transfer

Core hole couples to valence electrons via core hole potential

Page 11: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

RIXS data on YTiO3

Low energy part for 3 momentum transfers q along [001]-direction:

•Spectral weight increases with larger q.

•Maximum of 250 meV peak shows little dispersion.

•Multi-phonons? Multi-magnons? Orbital excitations?C. Ulrich, G. Ghiringhelli, L. Braicovich et al., PRB 77, 113102 (2008)

C. Ulrich, et al., to be published

Page 12: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

RIXS - mechanismsTwo mechanisms couple RIXS core hole to orbitons.

2p

3d t2g

Core hole

Mechanism 1: core hole potential shakes up t2g electrons

3d eg

S. Ishihara et al., PRB 62, 2338 (2000)

If core hole potential is not of A1g symmetry:

Page 13: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

RIXS - mechanismsTwo mechanisms couple RIXS core hole to orbitons:

Mechanism 2: superexchange bond is modified

2p

3d t2g

3d eg

U

Page 14: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

RIXS - mechanismsTwo mechanisms couple RIXS core hole to orbitons:

Core hole2p

3d t2g

3d eg

Core hole potential effectively lowers Hubbard U:

Mechanism 2: superexchange bond is modified

U-Uc

F. Forte et al., PRL 101, 106406 (2008) S. Ishihara et al., PRB 62, 2338 (2000)

Magnons: J. Hill et al., PRL 100, 097001 (2008) J. Van den Brink, EPL 80, 47003 (2007)

Page 15: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Results

• Calculate effective scattering operator (UCL):

• Two RIXS mechanisms:

1. Coulomb-induced shakeup

Polarization Multiplet structure

for example if = t2g yz:

Transferred momentum

•Mechanism applicable to both J-T and superexchange models.

• can be obtained by cluster calculation. We take all equal.

J. van den Brink & M. van Veenendaal, EPL 73, 121 (2006)L. Ament, F. Forte & J. van den Brink, PRB 75, 115118 (2007)

Page 16: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Results

• Calculate effective scattering operator (UCL):

2. Superexchange bond modification

• Two RIXS mechanisms:

Hamiltonian,two-orbiton onlyEnhanced fluctuations,

create one- and two-orbitons

•Applies only to superexchange model of YTiO3.

J. van den Brink & M. van Veenendaal, EPL 73, 121 (2006)L. Ament, F. Forte & J. van den Brink, PRB 75, 115118 (2007)

Page 17: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

RIXS Mechanism

Ph

ysic

s o

f YT

iO3

Lattice distortions

Super-exchange

Superexchange modification

Local orbital flip

?

??

Results

2-orbitoncontinuum

1-orbitonshoulder

Lattice distortions:(local dd-excitations)

E. Pavarini et al., New J. Phys. 7, 188 (2005)

Orbiton physics:

2-orbitoncontinuum

C. Ulrich et al., to be published

Page 18: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

RIXS data on YTiO3

Temperature dependence

•Low-energy peak is magnon peak (corresponds to 16 meV magnons)

•Large increase of spectral weight in low-T ferromagnetic state

•Peaks sharpen at low temperatureC. Ulrich et al., to be published

Page 19: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

LaMnO3

eg

t2g

Mn

OLa

• Mn 3d4, high-spin configuration:

•Mott insulator, A-type AFM at low temperature (FM layers).

•Kugel-Khomskii model without Hund’s rule coupling:

To first order, orbitals of different layers decouple!

Page 20: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

LaMnO3 - Superexchange

eg

t2g

• eg orbitals order ‘antiferro-orbitally’:

• Excitations: eg orbital waves (orbitons)

E. Saitoh et al., Nature 410, 180 (2001)J. van den Brink, F. Mack, P. Horsch and A. Oles, Phys. Rev. B. 59, 6795 (1999).

Page 21: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

LaMnO3 - Single orbitons

Looks like Heisenberg, but no conservation of Tz. This leads to single orbiton excitations.

J. van den Brink, P. Horsch, F. Mack & A. M. Oles, PRB 59, 6795 (1999)

eg

Initial FinalIntermediate

Page 22: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

F. Forte, LA and J. van den Brink, Phys. Rev. Lett. 101, 106406 (2008).S. Ishihara and S. Maekawa, PRB 62, 2338 (2000)

Orbital Hamiltonian:

H ij0 = 3Ti

zTjz + Ti

xTjx ± 3 Ti

zTjx + Ti

xTjz

( )

Intermediate state Hamiltonianfor superexchange modification:

H int = H 0 + J H ijcore

ij

∑ si si+

with

H ijcore =η1H ij

0 +η 2 Tjz −Ti

x( ) m 3 Tj

z −Tiz

( )[ ]

J. van den Brink, F. Mack, P. Horsch and A. Oles, Phys. Rev. B. 59, 6795 (1999).

Orbitons in indirect RIXS

Page 23: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

One-orbiton peak

Two-orbiton continuum

Orbiton RIXS spectrum for LaMnO3

Results

F. Forte, L. Ament and J. van den Brink, Phys. Rev. Lett. 101, 106406 (2008).

Page 24: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

Conclusion

• RIXS is an excellent probe of orbital excitations, discrimination between Jahn-Teller and superexchange driven order is possible.

• RIXS data for YTiO3 best explained with orbitons. Lattice distortion scenario doesn’t work.

Page 25: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

LaMnO3

Probably Jahn-Teller dominated

• eg orbitals: directed towards oxygen ions leads to higher Jahn-Teller coupling than t2g orbitals.

• Cooperative JT phase transition around T = 800 K.2-sublattice orbital order below 800 K.Magnetic order sets in only below TN = 140 K.

• JT splitting EJT = 0.7 eV.Classical orbitals describe experimental data well.

Page 26: Theory of probing orbitons with RIXS Luuk Ament Lorentz Institute, Leiden, the Netherlands Giniyat Khaliullin Max-Planck-Institute FKF Stuttgart, Germany

2 competing scenario’s

• Local excitations:No dispersion

Superexchange

3d t2g

Jahn-Teller

Vs.

• Collective excitations:Strong dispersion