Theory Maclaurin's

Embed Size (px)

Citation preview

  • 7/28/2019 Theory Maclaurin's

    1/7

    1

    Maclaurins Series :

    f ( x ) = f (0) + x f (o)+!2

    2 x f (0 ) +!3

    3 x f (0 ) + . +!n

    xn f n(o) + .

    1) Series for e x

    Let f ( x ) = ex, so that f (0) = 1

    f ( x ) = ex, f (0) = 1

    f ( x ) = ex, f (0) = 1

    f ( x ) = ex, f (0) = 1

    Substituting these values with Maclaurin s series, i.e

    f ( x ) = f (0) +!1

    )0(' f x +!2

    )0(" f x 2 +!3

    )0("' f x 3 +

    We get ex = 1!1

    x +!2

    2 x +!3

    3 x +

    We can also find the following series using the above series

    a : Replacing x by x in above series

    e x = 1!1

    x +!2

    2 x !3

    3 x

    b : Replacing x by ix in above series

    eix

    = 1 + !1ix

    + !2

    22 xi+ !3

    33 xi+ !4

    44 xi+ !5

    55 xi +

    c : Now ax = ex log a , replacing x by x log a in above series, we get

    a x = 1 +!1

    log a x +!2

    2 x (log a )2 +!3

    3 x (log a )3 +

  • 7/28/2019 Theory Maclaurin's

    2/7

    2

    2) Series for cosh x and sinh x

    cosh x =2

    x x ee

    sinh x =2

    x x ee

    e x = 1 +!1

    x +!2

    2 x +!3

    3 x +!4

    4 x +!5

    5 x +

    e x = 1 !1

    x +!2

    2 x !3

    3 x +!4

    4 x !5

    5 x +

    Adding and subtracting the series for e x and e x

    We get 2 cosh x = e x + e x

    = 2

    ...!4!2

    142 x x

    or cosh x = 1 +!2

    2x

    +!4

    4x

    +

    2 sinh x = e x e x = 2

    ... x x x

    !5!3

    53

    or sinh x = x +!3

    3x

    +!5

    5x

    +

    3) Series for cos x and sin x

    cos x =2

    ixix ee , sin x =2

    ixix ee

    We have seen earlier the series of eix while finding out the series for ex

    eix = 1 +!1

    ix +!2

    22 xi +!3

    33 xi +!4

    44 xi +!5

    55 xi +

  • 7/28/2019 Theory Maclaurin's

    3/7

    3

    But by Eulers formula e ix = cos x + i sin x

    Therefore equation the real and imaginary parts of

    cos x + i sin x =

    ... x x

    !4!21

    42

    + i

    ... x x x

    !5!3

    53

    (Nothing that i 2 = 1, i 3 = 1, i 4 = 1 )

    cos x = 1 !2

    2x

    +!4

    4x

    sin x = x !3

    3x

    +!5

    5x

    4) Series for tan x and tanh x

    Since tan x = x x

    cossin

    tan x =...

    !5!4!21

    ...!7!5!3642

    753

    x x x

    x x x x

    [using the sine and cos series]

    We perform division as follows

  • 7/28/2019 Theory Maclaurin's

    4/7

    4

    1!2

    2 x +!4

    4 x

    ...!6

    6 x x !3

    3 x +!5

    5 x !7

    7 x +

    31

    x x 3+125 x 5+

    31517 x 7+

    x !2

    3 x +!4

    5 x ...!6

    7 x

    +

    31 x 3

    301 x 5 +

    8401 x 7 +

    31 x 3

    6

    5 x +72

    7 x +

    +

    12

    5 x 5

    315

    4 x 7 +

    125 x 5

    245 7 x +

    +

    31517 x 7 +

    Thus tan x = x +3

    1 x 3 +

    152

    x 5 +315

    17 x 7 +

    Similarly, using tanh x = x x

    coshsinh

    We can show that tanh x = x 3

    1 x 3 +

    152 x 5

    315

    17 x 7 +

  • 7/28/2019 Theory Maclaurin's

    5/7

    5

    5) Series for log (1 + x ) and log (1 x )

    Expansion of log (1 + x ).Let f ( x ) = log (1 + x ),

    ,1

    1)('

    x x f 2)1(

    1)("

    x x f , 3)1(

    12)('"

    x x f ,

    . f (0) = 0, f (0) = 1, f (0) = 1.

    f (0) = 2!, f iv (0) = 3! f v (0) = 4!

    Putting these values in below Maclaurins series,

    f ( x ) = f (0) + xf (o)+!2

    2 x f (0 ) +!3

    3 x f (0 ) + . +!n

    xn f n(o) + .

    ....)!3(!4

    !2!3

    )1(!2

    )1log(432 x x x

    x x

    ....5432

    )1log(5432

    x x x x x x

    Expansion of log (1 x ).

    Changing x to x in above expansion, we get,

    ....5432

    )1log(5432

    x x x x x x

    6) Series for tan 1 x and cot 1 x

    Let f ( x ) = tan 1 x

    So that f ( x ) = 211 x

    = (1 + x 2) 1

    = 1 x 2 + x 4 x 6 + (using the binomial theorem)

  • 7/28/2019 Theory Maclaurin's

    6/7

    6

    Integrating both sides, we get

    f ( x ) = x 3

    3 x +5

    5 x 7

    7 x + + c

    To find the value of the constant, put x = 0 in f ( x ) = tan 1 x , so that f (0) = tan 1 0 = 0

    0 = c

    tan 1 x = x 3

    3x

    +5

    5x

    7

    7x

    +

    Now since cot 1 x =2

    tan 1 x , the series for cot 1 x is given by

    cot 1 x =2

    ( x

    3

    3 x +5

    5 x 7

    7 x + .)

    7) Series for sin 1 x and cos 1 x

    Let f ( x ) = sin 1 x

    So that f ( x ) =21

    1

    x= (1 x 2) 1/2

    or f ( x ) = 1 +21 x 2 +

    4231 x 4 +

    642531 x 6 +

    (using binomial theorem)

    Integrating both sides, we get

    f ( x ) = x +21

    3

    3 x +4.231

    5

    5 x +642531

    7

    7 x + + c

    Put x = 0 in f ( x ) = sin 1 x , to get

    f (0) = sin 10 = 0

    0 = c

    sin 1 x = x +2

    1

    3

    3x

    +42

    31

    5

    5x

    +642531

    7

    7x

    + 0

  • 7/28/2019 Theory Maclaurin's

    7/7

    7

    Since we know that

    cos 1 x =2

    sin 1 x

    The series for cos 1 x can be written as

    cos 1 x =2

    ...

    7642531

    54231

    321 753 x x x x

    8) Expansion of (1 + x ) m .

    Since f ( x ) = (1 + x )m f (0) = (1 + x )m f ( x ) = m(1 + x )m 1 f (0) = m

    f ( x ) = m(m 1) (1 + x )m 2, f (0) = m(m 1) f ( x ) = m( m 1) (m 2) (1 + x ) m 3 f (0) = m(m 1) (m 2)

    If x < 1, then by Maclaurins series,

    i.e f ( x ) = f (0) + xf (o)+!2

    2 x f (0 ) +!3

    3 x f (0 ) + . +!n

    xn f n(o) + .

    Hence, ....!3

    )2)(1(!2

    )1(1)1( 32 x

    mmm x

    mmmx x m