12
THEORETICAL-EXPERIMENTAL DETERMINING OF COOLING TIME (t 8/5 ) IN HARD FACING OF STEELS FOR FORGING DIES by Vuki} N. LAZI] a* , Aleksandar S. SEDMAK b , Miroslav M. @IVKOVI] a , Srbislav M. ALEKSANDROVI] a , Rajko D. ^UKI] a , Radomir D. JOVI^I] c , and Ivana B. IVANOVI] c a Faculty of Mechanical Engineering, University of Kragujevac, Kragujevac, Serbia b Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia c Innovation Center of the Faculty of Mechanical Engineering, Belgrade, Serbia Original scientific paper: UDC: 669.14:621.362.1:517.96 DOI: 10.2298/TSCI1001235L This paper investigates the accuracy of analytical, empirical, and numerical ex- pressions, i. e. the most favourable methods for calculating the cooling time from 800 to 500 °C (t 8/5 ). The degree of accuracy of time t 8/5 is very significant, because it determines the cooling rate, and consequently the structural changes in heat af- fected zone for hard faced layers. Based on the presented results, one can conclude that the finite element method provides the best conformity with the experiment and among analytical and empirical formulas the same goes for the expression of Japa- nese authors, for the case of hard facing of plane and prismatic parts. Key words: cooling time (t 8/5 ), temperature cycle, temperature field, hard facing, input heat, empirical formulas, finite elements method Introduction At both welding and hard facing of low-alloyed and constructional steels, especially tempered ones, it is not sufficient to determine the technological parameters only, but also to take into account the influence of heat input on the heat affected zone (HAZ). The influence of temperature cycle on hardness increase is considered firstly, but change of mechanical proper- ties, susceptability to cracking, i. e. the appearance of unfavourable structures, residual stresses and strains should be considered as well, all related with temperature field around the heat source and temperature change rate from 800 to 500 °C. Since the cooling rate is variable and decreases with the temperature decrease, the cooling time from 800 to 500 °C (t 8/5 ) is taken as the parameter, which best characterizes cooling conditions of the HAZ, with respect to the lowest stability of the austenite. Types of structural transformations and properties of the HAZ depend to the greatest extent on the maximum reached temperature (T max. ) at certain zones of the HAZ and time t 8/5 . The layer of the HAZ, which is in the immediate vicinity of the hard faced layer, reaches the highest cooling rate, Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t 8/5 ) in ... THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246 235 * Corresponding author; e-mail: [email protected]

THEORETICAL-EXPERIMENTAL DETERMINING OF COOLING TIME … · 2010. 5. 26. · THEORETICAL-EXPERIMENTAL DETERMINING OF COOLING TIME (t8/5) IN HARD FACING OF STEELS FOR FORGING DIES

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • THEORETICAL-EXPERIMENTAL DETERMINING OF COOLING TIME(t8/5) IN HARD FACING OF STEELS FOR FORGING DIES

    by

    Vuki} N. LAZI] a*, Aleksandar S. SEDMAK b, Miroslav M. @IVKOVI] a,Srbislav M. ALEKSANDROVI] a, Rajko D. ^UKI] a, Radomir D. JOVI^I] c,

    and Ivana B. IVANOVI] c

    a Fac ulty of Me chan i cal En gi neer ing, Uni ver sity of Kragujevac, Kragujevac, Ser biab Fac ulty of Me chan i cal En gi neer ing, Uni ver sity of Bel grade, Bel grade, Ser bia

    c In no va tion Cen ter of the Fac ulty of Me chan i cal En gi neer ing, Bel grade, Ser bia

    Orig i nal sci en tific pa per:UDC: 669.14:621.362.1:517.96DOI: 10.2298/TSCI1001235L

    This pa per in ves ti gates the ac cu racy of an a lyt i cal, em pir i cal, and nu mer i cal ex -pres sions, i. e. the most fa vour able meth ods for cal cu lat ing the cool ing time from800 to 500 °C (t8/5). The de gree of ac cu racy of time t8/5 is very sig nif i cant, be cause itde ter mines the cool ing rate, and con se quently the struc tural changes in heat af -fected zone for hard faced lay ers. Based on the pre sented re sults, one can con cludethat the fi nite el e ment method pro vides the best con for mity with the ex per i ment andamong an a lyt i cal and em pir i cal for mu las the same goes for the ex pres sion of Jap a -nese au thors, for the case of hard fac ing of plane and pris matic parts.

    Key words: cooling time (t8/5), temperature cycle, temperature field, hard facing,input heat, empirical formulas, finite elements method

    In tro duc tion

    At both weld ing and hard fac ing of low-al loyed and con struc tional steels, es pe ciallytem pered ones, it is not suf fi cient to de ter mine the tech no log i cal pa ram e ters only, but also totake into ac count the in flu ence of heat in put on the heat af fected zone (HAZ). The in flu ence oftem per a ture cy cle on hard ness in crease is con sid ered firstly, but change of me chan i cal prop er -ties, susceptability to crack ing, i. e. the ap pear ance of un fa vour able struc tures, re sid ual stressesand strains should be con sid ered as well, all re lated with tem per a ture field around the heatsource and tem per a ture change rate from 800 to 500 °C.

    Since the cool ing rate is vari able and de creases with the tem per a ture de crease, thecool ing time from 800 to 500 °C (t8/5) is taken as the pa ram e ter, which best char ac ter izes cool ing con di tions of the HAZ, with re spect to the low est sta bil ity of the aus ten ite. Types of struc turaltrans for ma tions and prop er ties of the HAZ de pend to the great est ex tent on the max i mumreached tem per a ture (Tmax.) at cer tain zones of the HAZ and time t8/5. The layer of the HAZ,which is in the im me di ate vi cin ity of the hard faced layer, reaches the high est cool ing rate,

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246 235

    * Corresponding author; e-mail: [email protected]

  • which causes the high est hard ness and prone ness to cold cracks, and the low est tough ness. Thatis why the most un fa vour able prop er ties of the HAZ are de ter mined by tak ing into ac count thetem per a ture cy cle be low the hard faced layer.

    In or der to de ter mine the cool ing time from t8/5 dif fer ent meth ods are avail able, in clud -ing an a lyt i cal, nu mer i cal and ex per i men tal ones. In this pa per sev eral an a lyt i cal meth ods havebeen ap plied, the fi nite el e ment anal y sis as the most suit able nu mer i cal method and mea sure -ment of tem per a ture by thermocouples in or der to get the com plete over view of the prob lemhard fac ing of forg ing dies. Start ing point is in any case, the heat con duc tion anal y sis.

    Ba sic equa tions of heat con duc tion

    The prob lem of heat con duc tion is pre sented here briefly. Start ing point is the equi lib -rium equa tion:

    d

    d

    d

    d

    Q

    t

    U

    t= (1)

    where dQ and dU rep re sent changes of heat and in ter nal en ergy in vol ume dV in time in ter val dt. Con duc tion of heat through solid bod ies is de fined by Fou rier’s Law:

    q kT

    xj jj j

    j

    = - =¶

    ¶, , ,1 2 3 no sum on (2)

    where qj is the spe cific heat flux, kj – the con duc tion co ef fi cient, and ¶T/¶xj the tem per a ture gra -di ent at di rec tion xj.

    By sim ple al ge bra one gets the fol low ing dif fer en tial equa tion:

    - +æ

    è

    çç

    ö

    ø

    ÷÷

    + =å=

    rcT

    t xk

    T

    xq

    jj

    jj

    d

    d

    ¶0

    1

    3(3)

    where r is the ma te rial den sity, c – the spe cific heat at con stant pres sure, and q – the vol u met richeat source.

    Gen eral so lu tion of dif fer en tial equa tion of the heat con duc tion con tains un de finedfunc tions and con stants [1, 2]. The so lu tion of tem per a ture field T(x1, x2, x3, t) = T(x, y, z, t), mustsat isfy given ini tial and bound ary con di tions. The ini tial con di tions de fine the dis tri bu tion oftem per a tures at ini tial mo ment, t = 0:

    T = Ts(x, y, z, 0) (4)

    The bound ary con di tions in gen eral case are:– pre scribed tem per a ture on S1

    T = Ts(x, y, z, t)– pre scribed flux on S2

    qn = qn(x, y, z, t)

    – pre scribed con vec tion on S3

    qh = h(T0 – Ts)– pre scribed ra di a tion on S4

    qr = hr(Tr – Ts)

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    236 THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246

  • where S1, S2, S3, and S4 are parts of sur face, Ts is the tem per a ture on the sur face, qn, qh, and qr arefluxes through sur face, T0 is the tem per a ture of the sur round ings, h – the trans fer co ef fi cient, hr – the ra di a tion co ef fi cient, and Tr – the tem per a ture of ra di a tion source.

    An a lyt i cal, em pir i cal, experimantal, and nu mer i cal de ter min ing of the cool ing time (t8/5)

    The cool ing time can most ac cu rately be de ter mined ex per i men tally from the mea -sured tem per a ture cy cle curve, or with some what lesser or greater ac cu racy, based on an a lyt i cal, em pir i cal or nu mer i cal cal cu la tion of tem per a ture cy cles.

    Rikalin’s an a lyt i cal method

    When de ter min ing tem per a ture fields in weld ing, dif fer en tial eq. (3) can be trans formedand ad justed to given con di tions. That re fers to var i ous thick nesses of plates (thin or thick) andheat sources (mov ing or static) [3-9]. In this pa per the hard fac ing is rep re sented by the case of thesemi-in fi nite body and the mov ing heat source with the con stant ve loc ity v (fig. 1).

    The tem per a ture dis tri bu tion in the case of the source which is mov ing with high ve -loc ity v along the co or di nate x = vt, is given as:

    Tq

    kr

    vx

    a

    vr

    ar,x = - -

    æ

    èç

    ö

    ø÷

    2 2 2pexp (5)

    where r = (x2 + y2 + z2)1/2 is the ra dius, a = k/cp –the co ef fi cient of ther mal diffusivity, q – the ef -fec tive power of the arc (q = UIh), and h – theheat ef fi ciency ra tio.

    In the case of a thick plate ex pres sion (5) istrans formed into the fol low ing form:

    Tq

    kvty,z,t

    r

    =-

    2

    2

    4

    pe at (6)

    In the case of a thin plate (fig. 2), the tem per -a ture dis tri bu tion is cal cu lated ac cord ing to:

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246 237

    Figure 1. Basic forms of schematics in the case of the moving heat source

    Figure 2. Hard facing of the thin plate of infinitedimensions

  • Tq

    vs kct

    q

    s kcty,t

    y

    atbt

    y

    atbt

    = =- -

    4 4

    2 2

    4 4

    p pe e (7)

    where q1 = q/v = UIh/v [J/cm], is the in put heat, b = 2h/csr – the con stant which de fines the heattrans ferred to en vi ron ment [3, 6, 8, 9], and h is the co ef fi cient of the heat trans fer.

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    238 THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246

    Fig ure 3. (a) Tem per a ture field around the hard faced layer; (b) Tem per a ture cy cles of points in theHAZ (s = 7.4 mm; ql = 8543 J/cm; Tp = 300 ºC; filler metal – UTOP 38; Ø3.25 mm) [3, 10]

    Fig ure 4. (a) Tem per a ture field aroundthe hard faced layer, (b) Tem per a turedis tri bu tion along the plate cross-sec tion, (c) Tem per a ture cy cles of in di vid ualpoints in the HAZ of the hard facedlayer, (s = 29 mm, ql = 28049 J/cm, fillermetal - UTOP 55, Ø5.0 mm) [3, 10]

  • In cal cu lat ing the tem per a ture fields and tem per a ture cy cles, ac cord ing to Rikalin’sex pres sions [14], the com pu ta tional soft ware was ap plied (Matlab, Statistica), and for pro cess -ing of re sults the pro gram ming lan guages (For tran and Pascal), were used. By ap pli ca tion of theex pres sions (5-7) the tem per a ture cy cles were cal cu lated for the cor re spond ing in put heat andsome points be low the hard faced layer. Re sults are pre sented in figs. 3 and 4. All data used forcal cu la tion is given in figs. 3 and 4.

    Cal cu la tion of cool ing time (t8/5) on the ba sis of em pir i cal for mu las

    Out of many em pir i cal for mu lae for cal cu la tion of cool ing time (t8/5), those based on thelim it ing sheet thick ness and so-called Jap a nese au thors’ for mula [11] are the most fre quently used.

    Cal cu la tion of t8/5 based on lim it ing sheet thick ness, t8/5= f(sgr )

    Lim it ing thick ness, or the tran si tion thick ness be tween the thin and thick sheets wasadopted by chang ing the way of the heat trans fer from two- to three-di men sional. Two-di men -sional heat trans fer is re lated to thin sheets; it is as sumed that the tem per a ture is con stant overthe whole thick ness of the hard faced part (¶T/¶z = 0). On the con trary, for thick sheets the tem -per a ture also var ies over the thick ness (¶T/¶z ¹ 0). The lim it ing thick ness is de ter mined ac cord -ing to ex pres sions:

    sq N

    c T Tgr cm=

    -+

    -

    æ

    èçç

    ö

    ø÷÷

    1 3

    0 02

    1

    500

    1

    800r, (8)

    Ex pres sion (8) shows that, for the given base metal, the lim it ing thick ness de pends onthe in put heat, type of the welded joint and ini tial tem per a ture of the hard faced parts. The time,t8/5, is given by the fol low ing ex pres sion:

    – for thin sheets (s £ sgr)

    tq N

    cs T T8 5

    12

    2

    20

    2

    0

    2

    4

    1

    500

    1

    800/ =

    -

    æ

    èçç

    ö

    ø÷÷ - -

    æ

    èçç

    ö

    ø÷÷plr

    é

    ë

    êê

    ù

    û

    úú, s (9)

    – for thick sheets (s > sgr)

    tq N

    T T8 5

    1 3

    0 02

    1

    500

    1

    800/ ,=

    --

    -

    æ

    èçç

    ö

    ø÷÷pl

    s (10)

    where N2, and N3 are fac tors of the joint shape [7, 11-14] and T0 is the ini tial or the pre heat ingtem per a ture (Tp). Thermo-phys i cal con stants de pend on the ma te rial and vary with tem per a ture.They could be adopted, with suf fi cient ac cu racy, for the av er age value of the tem per a ture in ter -val 800 to 500 °C, i. e., for 650 °C. The fac tors of the joint shape serve for cor rec tion, where theknown em pir i cal fact that cool ing rate of the welded joint de pends on both the thick ness and onthe type of the welded joint, is taken into ac count. For the case of hard fac ing these fac tors arecon sid ered to be equal to 1 (N2 = N3 = 1).

    Cal cu la tion of the cool ing time t8/5 based on the Jap a nese au thors’ for mula •11•

    Ac cord ing to those au thors the fol low ing for mula is used:

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246 239

  • tkq

    T Ts s

    n

    8 51

    02 01

    2/

    )

    ,=

    - +é

    ëêù

    ûú-æ

    èç

    ö

    ø÷b

    a( arctg

    s

    srp

    (11)

    The other data, nec es sary for cal cu la tion of the cool ing time t8/5 are given in [3, 7, 11,13, 14].

    Ex per i men tal de ter mi na tion of tem per a ture cy cles in hard fac ing

    Tem per a ture cy cles in hard fac ing of steels op er at ing at el e vated tem per a tures – ^5742

    In or der to de ter mine the cool ing rate as ac cu rately as pos si ble, the spe cial plates –mod els were pre pared [3]. Plates were tem pered and the cor re spond ing holes for tem per a turemea sure ments were drilled. Tem per a tures were mea sured by thermocouples (from the class ofthe K, NiCr-NiAl type, with di am e ter of 0.24 and 0.4 mm) [3].

    In tabs. 1 and 2 ex per i men tally ob tained re sults are shown, com pared with cal cu latedones, for dif fer ent val ues of in put heat, with and with out pre heat ing. In hard fac ing of thin plates,s = 7.4 mm, the hard fac ing pa ram e ters were within the fol low ing ranges: in put heat, ql == 9663-16911 J/cm, hard fac ing ve loc ity, vz = 0.238-0.136 cm/s, and pre heat ing tem per a ture, Tp = = 20-280 ºC (filler metal - UTOP 38; Ø3.25 mm) [3, 10]. In hard fac ing of thick plates, s = 29 mm,the pa ram e ters were within the fol low ing ranges: ql = 16500-32738J/cm, vz = 0.258-0.130 cm/sand Tp = 20-355 ºC (UTOP 55; Ø5.0 mm) [3, 10].

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    240 THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246

    Ta ble 1. Com par a tive val ues of the cool ing time t8/5 (s = 7.4 mm, I = 115 A, U = 25 V, qef = 2300 W)

    Hard fac ing ve loc ity,vz [cm/s]

    Hard fac ing in put heat,

    ql [J/cm]

    Pre heat ingtem per a ture,

    T0/Tp [ºC]

    Cool ing time, t8/5, [s]

    Eq. (11)(t8/5)

    JEqs. (8) and (9)

    (t8/5)Sgr (t8/5)

    EXP Eqs. (6) and (7)(t8/5)

    R

    0.238 9663 20 8.62 24.00 14.50 16.5-20

    0.220 10560 20 9.85 29.0 17.00 20-21

    0.186 12192 20 13.34 43.63 16.00 24-26

    0.172 13372 273 44.20 273.9 28.00 88-90

    0.169 13609 280 47.35 304.50 34.00 94-98

    0.136 16911 185 39.00 206 23.50 70-76

    0.208 11058 180 20.1 84.9 27.00 42-50

    0.190 12105 178 22.80 100.3 23.00 48-54

    0.183 12568 178 24.05 107.3 19.00 48.5-57

    0.215 10698 169 18.19 73.4 19.50 36-43

    0.150 15333 180 32.90 163.2 24.50 59-68

  • Com par i son of the re sults is also shown in figs. 5 and 6, and the char ac ter is tic form ofthe tem per a ture cy cles, ob tained ex per i men tally, in fig. 7.

    Ta ble 2. Com par a tive val ues of the cool ing time t8/5 (s = 29 mm, I = 190 A, U = 28 V, qef = 4256 W)

    Hard fac ing ve loc ity,vz [cm/s]

    Hard fac ing in put heat,

    ql [J/cm]

    Pre heat ingtem per a ture,

    T0/Tp [ºC]

    Cool ing time t8/5, [s]

    Eq. (11)(t8/5)

    JEqs. (8) and (9)

    (t8/5)Sgr (t8/5)

    EXP Eqs. (6) and (7)(t8/5)

    R

    0.148 28757 20 11.20 14.10 16.0 10.8-12.5

    0.130 32738 355 76.17 287.50 78.0 70.5-74.5

    0.161 26436 231 24.36 47.30 25.0 24-27

    0.152 28049 218 24.80 47.80 22.0 23.2-25.5

    0.258 16500 204 10.43 14.89 12.0 13.5-14.5

    0.167 25414 178 17.60 28.80 16.0 18-20

    0.185 23000 235 20.20 37.10 20.5 21-23.5

    0.257 16912 204 10.83 17.52 12.00 13.60-14.70

    Nu mer i cal method (FEM) of de ter min ing the cool ing time t8/5

    On the ba sis of of equi lib rium equa tion for heat con duc tion (3), the fol low ing can bewrit ten:

    - + åæ

    è

    çç

    ö

    ø

    ÷÷

    +=

    ò òrchT

    tV h

    xk

    T

    xV h q V

    jj

    jjV V

    I I I

    d

    dd d d

    ¶1

    3=ò 0

    V

    (12)

    where hl are in ter po la tion func tions for the fi nite el e ment.

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246 241

    Figure 5. Comparative results of the cooling time (s =7.4 mm, de = 3.25 mm, Tp = 169 ºC, ql = 10698 J/cm)

    Figure 6. Comparative results of the cooling time (s = 29 mm, de = 5 mm, Tp = 204 ºC, ql = 16912 J/cm)

  • Tem per a ture T in el e ment is given as:

    T = HT (13)

    where H is the ma trix of in ter po la tion func tions and T – col umn matrix of tem per a tures in nodes.The fol low ing eq. (14) rep re sents the equa tion of en ergy bal ance of fi nite el e ment in

    the case of 3-D non-sta tion ary heat con duc tion.

    CT KT Q& = = (14)

    where ma tri ces C and K and col umn matrix Q are de ter mined as:

    C H Hd= ò rc VTV

    (15)

    K = Kk + Kh + Kr and (16)

    Q Q Q Q Qq q h rn= + + + (17)

    By us ing the sur face in ter po la tion row ma trix Hs, the proper ma tri ces and col umn ma -tri ces can be writ ten in te fol low ing form in eqs. (16) and (17):

    K B kBdk TV

    V= ò (18)

    K H H dh sT sS

    h S= ò (19)

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    242 THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246

    Figure 7. Temperature cycles of the hard faces layer HAZ(a) thin sheet, (b) thick sheet

  • K H H dr rsT s

    S

    h S= ò (20)

    Q H dq TV

    q S= ò (21)

    Q H dq nsT

    S

    n q S= ò (22)

    Q H dh sTS

    hT S= ò 0 (23)

    Q T H dr r rsT

    S

    h S= ò (24)

    Cal cu la tion of cool ing time t8/5

    For an a lyz ing the cool ing time t8/5, the two space (3-D) mod els were formed (one forthe thin, s = 7.4 mm and the other one for thick the sheet met als, s = 29 mm), which are based onthe ap pli ca tion of fi nite el e ments method (FEM). Since the prob lem is plane-sym met ri cal, it issuf fi cient to con sider only one half of the model.

    For mod el ing of sheet met als, the mesh of eight-node 3-D fi nite el e ments was used.For the thin sheet metal, the mesh of 25476 nodes and 20160 el e ments was de vel oped, while for the thick sheet metal the mesh of 41184 nodes and 35805 el e ments was formed. It should bepointed out that, in an a lyt i cal cal cu la tions, the dif fer ence be tween thin and thick sheet met alsis that for thin sheet met als, two-di rec tional heat con vey ance is pre sumed, i. e. ¶T/¶s = 0 isadopted, while for thick sheet met als, the change of tem per a ture with thick ness is taken intocon sid er ation as well, i. e. ¶T/¶s ¹ 0. In both cases, real pre heat ing tem per a ture is em ployed,and the ther mal prop er ties, namely the con duc tiv ity, k, and the prod uct of spe cific heat, cp, andthe ma te rial den sity, r, are taken as av er age value in the tem per a ture range of 20-700 °C (k == 36 W/m°C, cp r = 4898556 J/m

    3°C) [5, 15]. Heat is con veyed to sheet metal ma te rial ac cord ing to Gauss’ dis tri bu tion and is given as:

    q q mkr

    2 22= -e (25)

    where q2m is the flux at point r = 0, k = 3 is the con stant, and r is the ra dius of heat ef fects [5, 6, 9, 16].For the so lu tion of this prob lem, it was nec es sary to make a spe cial programme which

    would pro vide the given dis tri bu tion of flux perel e ments with main tain ing the pre vi ously men -tioned dis tri bu tion. There fore, the heat quan titycon veyed from elec tric arc must be dis trib utedper el e ments in ra dius r, the di rec tion of whichcor re sponds to pro jec tion of elec trode tip onhard faced part.

    Re sults of cal cu la tion of cool ing time

    The ob tained re sults are pre sented in figs. 8to 11 as tem per a ture cy cles, used to de ter minecool ing time, and in figs. 12 and 13 as tem per a -ture fields.

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246 243

    Figure 8. Temperature cycles of some zones ofhard faced layer (s = 29 mm, ql = 16500 J/cm, vz = 0.258 cm/s, Tp = 204 °C)

  • In two-di men sional figs. 12 and 13 tem per a -ture fields from which tem per a tures can be readoff are given around mov ing source. Theknowl edge about these dis tri bu tions is highlysig nif i cant for de ter min ing ma te rial prop er tiesin those zones which are ex posed to the in flu -ence of heat in put.

    Dis cus sion and conclusions

    Typ i cal re sults for the pa ram e ter t8/5 are shown in tabs. 4 and 5, taken from tabs. 1 and 2 as given for the op ti mal weld ing pa ram e ters, and in clud ing the FEM re sults for the same in put

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    244 THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246

    Fig ure 9. Tem per a ture cy cle of HAZ hard facedlayer (s = 29 mm, ql = 16500 J/cm, vz = 0.258 cm/s,x = 7.13 mm, Tp = 204 °C)

    Fig ure 10. Tem per a ture cy cles of some zones ofhard faced layer (s = 7.4 mm, ql = 11058 J/cm, vz = 0.208 cm/s, Tp = 180 °C)

    Fig ure 11. Tem per a ture cy cle of HAZ hard faced layer (s = 7.4 mm, ql = 11058 J/cm, vz = 0.208 cm/s, x = 4 mm, Tp = 180 °C)

    Fig ure 12. Tem per a ture field, (a) from above, (b) side ways (s = 29 mm, ql = 16500 J/cm, vz = 0.258 cm/s, Tp = 204 °C, at depth of 7.13 mm)

    Figure 13. Temperature field, (a) from above, (b) sideways (s = 7.4 mm, ql = 11058 J/cm, vz = 0.208 cm/s, Tp = 180 °C, at depth of 4 mm)

  • data. By com par ing the re sults shown in tabs. 4 and 5, the ma jor (in tol er a ble) dif fer ences are ob -served be tween the cool ing time cal cu lated ac cord ing to for mula t8/5= f(sgr) and ex per i men tal re -sults. The best con for mity with ex per i men tal re sults is achieved by nu mer i cal method and for -mula of Jap a nese au thors. This con clu sion re fers to hard fac ing of the flat sheets, while otherforms of hard faced sur faces are yet to be an a lyzed.

    Ta ble 4. Com par a tive val ues of cool ing time s = 29 mm

    ql, [Jcm–1] Tp, [°C]

    Cool ing time t 8/5, [s]

    (t8/5)J (t8/5)

    Sgr (t8/5)EXP (t8/5)

    R (t8/5)FEM

    16500 204 10.43 14.89 12 13.5-14.5 11.5

    Ta ble 5. Com par a tive val ues of cool ing time s = 7.4 mm

    ql, [Jcm–1] Tp, [°C]

    Cool ing time t 8/5, [s]

    (t8/5)J (t8/5)

    Sgr (t8/5)EXP (t8/5)

    R (t8/5)FEM

    11058 180 20.1 84.9 27 42-50 31

    Based on the pre sented re sults, one can con clude that the fi nite el e ment method pro -vides the best con for mity with the ex per i ment and among em pir i cal for mu las the same goes forthe ex pres sion of Jap a nese au thors, for the case of hard fac ing of pla nar and pris matic parts. Byap ply ing the spec i fied in for ma tion, the cool ing time in crit i cal tem per a ture in ter val can be de ter -mined with suf fi cient ac cu racy, with out the com plex and ex pen sive ex per i men tal pro ce dure.

    References

    [1] Koji}, M., et al., Fi nite el e ment Method I, Fac ulty of Me chan i cal En gi neer ing, Uni ver sity of Kragujevac,Kragujevac, Ser bia, 1998

    [2] Koji}, M., et al., PAK-T Pro gram for FE Heat Trans fer Anal y sis – User man ual, Kragujevac, Ser bia, 2003[3] Lazi}, V., Op ti mi za tion of the Hard Fac ing Pro ce dures from the As pect of Tribological Char ac ter is tics of

    the Hard Faced Lay ers and Re sid ual Stresses, Ph. D. the sis (in Ser bian), Fac ulty of Me chan i cal En gi neer -ing, Uni ver sity of Kragujevac, Kragujevac, Ser bia, 2001

    [4] Jovanovi}, M., et al., An Es ti mate of Ac cu racy of Em pir i cal For mu lae for Cal cu lat ing the Cool ing Time(t8/5) af ter Hard-Fac ing, Pro ceed ings, 4th In ter na tional Con fer ence Heavy Ma chin ery – HM 2002,Kraljevo, Ser bia, 2002, pp. B.21-B.26

    [5] Lazi}, V., et al., Teoretical-Ex per i men tal De ter min ing of Cool ing Time (t8/5) in Hard Fac ing, Pro ceed -ings, 5th In ter na tional Con fer ence Heavy Ma chin ery – HM 2005, Kraljevo, Ser bia, 2005, pp. II A17-A20

    [6] Rikalin, N. N., Com pu ta tions of the Ther mal Pro cesses in Weld ing, (in Rus sian), Mashgiz, Mos cow, 1951[7] Jovanovi}, M., Adamovi}, D., Lazi}, V., Tech nol ogy of Weld ing – The Hand book, 1st ed., In de pen d ent

    Au thors’ Edi tion, Kragujevac, Ser bia, 1996[8] Milosavljevi}, M., Radojkovi}, M., Kuzmanovi}, B., Fun da men tals of Steel Struc tures (in Ser bian), 7th

    ed., Gradjevinska knjiga, Bel grade, 1986[9] Frolov, V. V., The o ret i cal Fun da men tals of Weld ing (in Rus sian), Pub lish ing “Bysshaya shkola”, Mos -

    cow, 1970[10] ***, Catalague Filler Ma te ri als (in Ser bian), SŽ Fiprom, Jesenice, Slovenia, 1999[11] Ito, Y., Bessyo, K., Weld crackability For mula of High Strenght Steels, J. Iron and Steel Inst., No. 13, 1972

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246 245

  • [12] Lazi},V., Josifovi}, D., Jovanovi}, M., Va lid ity of Some For mu lae for Cal cu la tion of Cool ing Time Dur -ing Weld ing, Zavariva~, 40 (1995), 2, pp. 89-94

    [13] Brozda, J., Pilarczyk, J., Zeman, M., Con tin u ous-Cool ing Trans for ma tion Di a gram of Austentic Changein the Weld ing (in Pol ish), Pub lish ing “Slask”, Katowice, Po land, 1983

    [14] Kuncipal, J., Special Tech nol o gies in Weld ing (in Czech), Pub lish ing Cen ter of VSSE, Plzen, Czech Re -pub lic, 1988

    [15] Raki}, D., Solv ing the Fields Prob lems of Phys i cal Di men sions Us ing Fi nite El e ment Method, Fi nalExam, Kragujevac, Ser bia, 2004

    [16] Ereigin, L. P., Com pu ta tion of Bath Form Pa ram e ters in Arc Weld ing with Melt ing Filler Metal (in Rus -sian), Svarochnoe Proizvodstvo, 474 (1974), 4, pp. 27-29

    Paper submitted: February 8, 2009Paper revised: May 21, 2009Paper accepted: Jun 28, 2009

    Lazi}, V. N., et al.: Theoretical-Experimental Determining of Cooling Time (t8/5) in ...

    246 THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 235-246