The Thermodynamics of Phase Transitions_Perry

Embed Size (px)

Citation preview

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    1/30

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    2/30

    1. Gibbs free energy, equilibrium and chemical potential, Gibbs phase rule

    2. Single component systems1. dG(T)

    2. ClausiusClapeyron equation and the phase diagram of titanium

    !. "inary (t#o component) systems

    1. $deal solutions

    2. %egular solutions

    !. &cti'ity

    . %eal solutions, ordered phases and $ntermediate phases

    . "inary phase diagrams

    1. iscibility gap

    2. *rdered alloys

    !. +utectics and peritectics

    . &dditional useful relationships

    . Ternary diagrams

    . -inetics of hase transformations

    Contents

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    3/30

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    4/30

    Equilibrium 0 the most stable state defined by lo#est possible G

    dG " #

    equilibriummetastable

    +.g. etastable 0 /iamond

    +quilibrium 0 Graphite

    Solid 0 9o# atomic inetic energy or E

    ⇒ lo# T and small $

    9iquid 0 9arge +

    ⇒ high T and large $

    Chemical potential  or partial molar free energy  µ  go'erns ho# the free

    energy changes #ith respect to the addition3subtraction of atoms.

    This is particularly important in alloy or binary systems.

    (particle numbers #ill change)

    2. Gibbs free energy, equilibrium and chemical

    potential, Gibbs phase rule

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    5/30

    2. Gibbs free energy, equilibrium and chemical

    potential, Gibbs phase rule

    Gibbs phase rule for equilibrium phase 0

    +:amples 0

    Single component system ⇒ %41 and & 4 ! − '$f 1 phases in equilibrium (e.g. solid) ⇒ 2 degrees of freedom i.e. can change T and P #ithout changing the phase

    $f 2 phases in equilibrium (e.g. solid and liquid) ⇒ 1 degree of freedom i.e. T is

    dependent on P (or  vice-versa)$f ! phases in equilibrium (e.g. solid, liquid and ) ⇒ ; degrees of freedom. !phases e:ist only at one fi:ed T and P.

    7umber of degrees of freedom < 4 C = - 52

    C, number of components

    -, number of phases in equilibrium

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    6/30

    (. $ingle %omponent $ystems

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    7/30

    Clausius Clapeyron +quation

    )ess

    dense

    more

    dense

    )ess

    dense

    more

    dense

    *intermediate+

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    8/30

    . "inary (t#o component) systems 0 $deal solutions

    T#o species in the mi:ture0 consider mole fractions X  & and X "  X  & 5 X " 4 1

    G1 4 X  &G & 5 X "G"

    T#o contributions to G from mi:ing t#o

    components together0

    ! G1 = #eighted molar a'erage of the t#o

    components

    2.

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    9/30

    . "inary (t#o component) systems 0 $deal solutions

    Simplest case 0 $deal solution 0 ∆" $? 4 ; 

    Some assumptions 0

    1.

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    10/30

    . "inary (t#o component) systems 0 The chemical potential

    Chemical potential 0 go'erns the response of the system to adding component

    T#o component system need to consider partial molar   µ  & and  µ ".

    Total molar Gibbs free energy 4 −#dT  5  µ  & X  & 5  µ " X "  (5' dP )

    Simplified equations for an ideal liquid0

     µ  & X  & 4 G & 5&T ln X  &

     µ " X " 4 G" 5&T ln X "

    (!e!  µ  & is the free

    energy of

    component & in

    the mi:ture

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    11/30

    . "inary (t#o component) systems 0 %egular solutions and atomic bonding

    Generally0 ∆" $?≠; i.e. internal energy of the system must be considered

    $n a binary, ! types of bonds0 &&, "", &" of energies ε &&, ε"", ε &"

    /efine0 ∆" $?4 C  &"ε  #here C &" is the number of &" bonds and   ε4 ε &"− E(ε && 5ε"")

    ∆" $?4 Γ  X  & X " @here Γ 4$ a) ε , )*bonds per atom

    $f Γ F; ⇒ &" bonding preferred

    $f Γ  >; ⇒ &&, "" bonding preferred

    ∆G$? 4 ∆" +(X   &T ( X  &ln X  & 5 X "ln X ")

    oint of note0

    ∆G$? al#ays decreases on addition of solute

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    12/30

    Γ Γ 

    Γ Γ i:ing al#ays

    occurs at high

    Temp. despite

    bonding

    i:ing if & and

    " atoms bond

     & and " atoms

    repel

    hase separation

    in to 2 phases.

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    13/30

    . "inary (t#o component) systems 0  ctivity, a of a component

    &T ln a &

    ; 1?"

    &T ln a"

    µ"

    µ &

    ∆G$?

    µ & 4 G & 5 &T ln a & G &

    G" &cti'ity is simply related to chemical potential by0

    µ" 4 G" 5 &T ln a"

    $t is another means of describing the state

    of the system. 9o# acti'ity means that the

    atoms are reluctant to lea'e the solution(#hich implies, for e:ample, a lo# 'apour

    pressure).

    i.e.

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    14/30

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    15/30

    . "inary phase diagrams 0 The .ever rule

    hase diagrams can be used to get quantitati'e information on the relati'e

    concentrations of phases using the .ever rule 0

     &t temperature, T and molar fraction X ;, the solid and liquid phase #ill coe:ist in

    equilibrium according the ratio0

    Temperature

     & "

    Solid, S

    9iquid, 9

     X ;

    lβlα

    nαlα 4 nβlβ

    i.e. I2J solid and

    IKJ liquid at X ;

    @here nα3nβ is ratio of liquid to solid

    S lid li id h di i & d " l l

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    16/30

    Solid to liquid phase diagram in a t#o component system 0 & and " are completely

    miscible and ideal solutions

    "i h di Th i ibili

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    17/30

    . "inary phase diagrams 0 The iscibility gap

     & "

    T 1G

    liquid

    solid 9

    Common tangent

     & "

    G

    S

    a b c d 

    T 2

    S

     & "

    T !G

    9

    e f 

    ∆" $? > ;

     & " X "

    liquidT 1

    T 2

    T !e f 

    Single phase, mi:ed solid

    2 phase0 (&5δ") and ("5δ &)Compositions e and f  8

    LThe miscibility gapM

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    18/30

    Titanium6anadium re'isited

    (bcc)

    (hcp)

    @hat can #e deduceN

    1. Ti and 6 atoms bond #ealy

    2. There are no ordered phases

    !. (Ti,6) phase 0 mi:ture of Ti and 6 in a fcc structure

    . Ti (hcp) phase does not dissol'e 6 #ell

    "lue 0 single phase

    @hite 0 t#o phase(bcc)

    + ilib i i h t t

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    19/30

    +quilibrium in heterogenous systems

    αe then minimum free energy is Ge

     &nd t#o phases are present

    (ratio gi'en by the .ever rule = see later)

    @hen t#o phases e:ist in equilibrium, the acti'ities of

    the components must be equal in the t#o phases0

    Common tangent

    "i (t t) t / d d h

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    20/30

    . "inary (t#o component) systems 0 /rdered phases

    re'ious model gross o'ersimplification 0 need to consider sie difference bet#een &

    and " (strain effects) and type3strength of chemical bonding bet#een & and ".

    *rdered substitutional

    /rdered phases occur for (close to) integer ratios.

    i.e. 101 or !01 mi:tures.

    "ut entropy of mi:ing is 'ery small so increasing

    temperature can disorder the phase. &t some critical

    temperature, long range order #ill disappear.

    *rdered structures can also tolerate de'iations fromstoichiometry. This gi'es the broad regions on the

    phase diagram

    Systems #ith strong &" bonds can form /rderedand3or intermediate phases

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    21/30

    The CopperGold system%andom mi:ture

    Single phases i:ed phases

    7.". &l#ays read the legendDDD (blue is not al#ays Osinge phaseB)

    (fcc)(fcc)

    &n intermediate phase is a mi:ture that has different structure to that of either

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    22/30

     &n intermediate phase is a mi:ture that has different structure to that of either

    component

    %ange of stability depends on structure and type of bonding ($onic, metallic, co'alentH)

    (ntermetallic  phases are intermediate phase of integer stoichiometry e.g. 7i! &l

    7arro# stability range broad stability range

    "inary phase diagrams 0 *rdered phases

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    23/30

    . "inary phase diagrams 0 *rdered phases∆" $? F ;

    i!e! and 0 attract 

    @ea attraction Strong attraction

    *rdered β phase e:tends to liquid phase

    1 phase, solid

    *rdered phase α

    ea in liquidus line 0 attraction bet#een atoms

    "inary phase diagrams 0 Simple +utectic systems

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    24/30

    . "inary phase diagrams 0 Simple +utectic systems

    ∆" $? ; 8 & and " ha'e different crystal structures8

    α hase is & #ith δ" dissol'ed (crystal structure &)

    β hase is " #ith δ & dissol'ed (crystal structure ")

    Single phase

    T#o phase

    +utectic point

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    25/30

    +:ample 0 http033###.soton.ac.u3Ipasr13inde:.htm

    +utectic systems and phase diagrams

    "inary phase diagrams 0 eritectics and incongruent melting

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    26/30

    . "inary phase diagrams 0 eritectics and incongruent melting

    P Sometimes ordered phases are not stable as a liquid. These compounds

    ha'e peritectic phase diagrams and display incongruent melting.

    P $ncongruent melting is #hen a compound melts and decomposes into its

    components and does not form a liquid phase.

    P These systems present a particular challenge to material scientists to mae in

    a single phase. Techniques lie hot pouring  must be used.

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    27/30

    Solid

    soluti o

    n

    -(5

     δ        7a)

    Solid

    solution

    7a(5

     δ        

    -)

    (bcc)

    (hcp)

    (bcc)

    eritectic line

    (! phase equil.)9 5 -7a2

    9 5 7a(δ-)

    9 5 -(δ7a)

    -(δ7a) 5 -7a2-7a2 5 7a(δ-)

    "inary phase diagrams 0 &dditional equations

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    28/30

    . "inary phase diagrams 0 &dditional equations

     &. +quilibrium 'acancy concentration

    So far #e ha'e assumed that e'ery atomic site in the lattice is occupied. "ut this is not

    al#ays so. 6acancies can e:ist in the lattice.%emo'ing atoms0 increase internal energy (broen bonds) and increases configuration

    entropy (randomness).

    /efine an equilibrium concentration of 'acancies X 6 (that gi'es a minimum free energy)

    ∆G64∆" 6 − T ∆#6

    @here ∆" 6 is the increase in enthalpy per mole of 'acancies added and ∆#6 is the

    change in thermal entropy on adding the 'acancies (changes in 'ibrational frequencies

    etc.).

     X 6 is typically 1;1;! at the melting point of the solid.

    ". Gibbs/uhem relationship

    This relates the change in chemical potential that results from a change in alloy

    composition0

    "inary phase diagrams 0 Ternary phase diagrams

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    29/30

    . "inary phase diagrams 0 Ternary phase diagrams

    These are complicated.

    P ! elements so triangles are at

    fi:ed temperature

    P 6ertical sections as a function

    of T and are often gi'en.

    "lue = single phase

    @hite = t#o phase

    Qello# = three phase

  • 8/18/2019 The Thermodynamics of Phase Transitions_Perry

    30/30