30
The Special Theory of Relativity

The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The Special Theory of Relativity

Page 2: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The Special Theory of Relativity

Chapter I

1. Contradictions in physics ? 2. Galilean Transformations of classical mechanics 3. The effect on Maxwell’s equations – light 4. Michelson-Morley experiment 5. Einstein’s postulates of relativity 6. Concepts of absolute time and simultaneity lost

Page 3: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Definition of an inertial reference frame:

One in which Newton’s first law is valid.

v=constant if F=0

Earth is rotating and therefore not an inertial reference frame, but we can treat it as one for many purposes.

A frame moving with a constant velocity with respect to an inertial reference frame is itself inertial.

Galilean–Newtonian Relativity

Galileo Galilei Isaac Newton

Relativity principle: Laws of physics are the same in all inertial frames of reference

Page 4: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Lengths of objects are invariant as they move.

Time is absolute.

Mass of an object is invariant for inertial systems

Forces acting on a mass are equal for all inertial frames

Velocities are (of course) different in inertial frames (Galileo transformations)

Positions of objects are different in other inertial systems (Galileo coordinate transformation)

Intuitions of Galilean–Newtonian Relativity

What quantities are the same, which ones change ?

Page 5: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Galilean Transformations

A classical (Galilean) transformation between inertial reference frames:

View coordinates of point P in system S’

Note; Inverse transformation ?

vtxx −=' tt ='yy =' zz ='

Page 6: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Galilean Transformations In matrix form

=

''''

100001000010

001

tzyxv

tzyx

=

tzyxv

tzyx

100001000010

001

''''

Page 7: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Relativity principle: The basic laws of physics are the same in all inertial reference frames

20 2

1 tatvs +=

Laws are the same, but paths may be different in reference frames

Page 8: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The domain of electromagnetism Maxwell’s equations

Integral form

∫ =⋅ 0/εQdAE

∫ =⋅ 0dAB

∫ ∂Φ∂

−=⋅t

dE B

Gauss

Faraday

Ampere/ Maxwell ∫ ∂

Φ∂+=⋅

tIdB B

000 εµµ

Differential form

0/ερ=⋅∇ E

0=⋅∇ B

tBE∂∂

−=×∇

tEJB∂∂

+=×∇

000 εµµ

Page 9: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Differential vector analysis

for treating Maxwell’s equations in Cartesian coordinates (can be done in spherical):

zF

yF

xFF zyx

∂∂

+∂∂

+∂∂

=⋅∇

Divergence

Curl zyF

xF

yxF

zFx

zF

yFF xyzxyz ˆˆˆ

∂∂

−∂∂

+

∂∂

−∂∂

+

∂∂

−∂∂

=×∇

Gradient zzVy

yVx

xVV ˆˆˆ

∂∂

+∂∂

+∂∂

=∇

Laplacian

∂∂

+

∂∂

+

∂∂

=∇zV

yV

xVV 2

2

2

2

2

22

Proof theorems on second derivatives

( ) 0=×∇⋅∇ F ( ) ( ) FFF

2∇−⋅∇∇=×∇×∇ ( ) 0=∇⋅∇ f

Product (chain) rules ( ) ( ) ( ) ( ) ( )ABBABAABBA ⋅∇−⋅∇+∇⋅−∇⋅=××∇

Page 10: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Derivation of the wave equations

in vacuum (no charge, no current)

0=⋅∇ E

0=⋅∇ B

tBE∂∂

−=×∇

tEB∂∂

=×∇

00εµ

Calculate:

( ) ( ) ( ) 2

2

002

tEB

ttBEEE

∂∂

−=×∇∂∂

−=

∂∂

−×∇=∇−⋅∇∇=×∇×∇ εµ

2

2

002

tEE

∂∂

=∇ εµ

Similarly derive: 2

2

002

tBB

∂∂

=∇ εµ

Page 11: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Electromagnetic wave equations

2

2

002

tEE

∂∂

=∇ εµ

2

2

22 1

tB

cB

∂∂

=∇

Note that: 2

2

22

22 1

tf

zff

∂∂

=∂∂

=∇ν

is in general a “wave equation”

sm /10107.31 8

00

×=εµ

1855; electric and magnetic measurements

Measurement of the speed of light smc /1014.3 8×= Fizeau 1848

smc /1098.2 8×= Foucault 1858

2

2

22 1

tE

cE

∂∂

=∇Maxwell:

2

2

002

tBB

∂∂

=∇ εµ

History of the speed of light: http://www.speed-light.info/measure/speed_of_light_history.htm

Page 12: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Maxwell’s equations

02

2

002 =

∂∂

−∇tEE εµ

James Clerk Maxwell

2

00

1 c=εµ

with

Light is a wave with transverse polarization and speed c

Problems: In what inertial system has light the exact velocity c What about the other inertial systems Waves are known to propagate in a medium; where is this “ether” How can light propagate in vacuum ? Laws of electrodynamics do not fit the relativity principle ?

Page 13: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Maxwell’s equations do not obey Galilei transform

Consider light pulse emitted at time t=0; at time t>0

22222 zyxtc ++= in frame {x,y,z,t}

In the moving frame

022222 =+++− zyxtcSo:

{x’,y’,z’,t’}

0'''' 22222 =+++− zyxtc

Apply Galilei transform

( ) ( ) 02'''' 2222222222 ≠−=++−+−=+++− xvtvtzyvtxtczyxtc

Simple approach:

Page 14: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Maxwell’s wave equation transformed

vtxx −='

Apply it to the wave equation in (x,t) dimensions – calculate partial differentials:

tt ='1'

=∂∂

xx v

tx

−=∂∂ ' 1'

=∂∂

tt 0'

=∂∂xt

Calculate field derivatives using the “chain rule”:

''

''

' xE

xt

tE

xx

xE

xE

∂∂

=∂∂

∂∂

+∂∂

∂∂

=∂∂

Then also second 2

2

2

2

'xE

xE

∂∂

=∂∂

'''

''

' xEv

tE

tt

tE

tx

xE

tE

∂∂

−∂∂

=∂∂

∂∂

+∂∂

∂∂

=∂∂

Spatial part

Temporal part

tx

xEv

tE

xtt

xEv

tE

txEv

tE

ttE

t ∂∂

∂∂

−∂∂

∂∂

+∂∂

∂∂

−∂∂

∂∂

=

∂∂

−∂∂

∂∂

=

∂∂

∂∂ '

''''

'''''

2

22

2

2

2

'''2

' xEv

txEv

tE

∂∂

+∂∂

∂−

∂∂

=

Page 15: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Maxwell’s wave equation transformed II

2

2

2

2

'xE

xE

∂∂

=∂∂

2

2

22

2 1tE

cxE

∂∂

=∂∂Insert in Maxwell wave equation

2

22

2

2

2

2

2

'''2

' xEv

txEv

tE

tE

∂∂

+∂∂

∂−

∂∂

=∂∂

2

2

2

22

22

2

2 '1

''2

'1

xE

cv

txE

cv

tE

c ∂∂

−=

∂∂∂

−∂∂

This is not an electromagnetic wave equation This is what Einstein meant (see below)

Page 16: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Albert Einstein

Einstein and Maxwell

Page 17: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The Michelson–Morley Experiment

smvEarth /103~ 4⋅

smc /103~ 8⋅

Albert Michelson

Edward Williams Morley

"for his optical precision instruments and the spectroscopic and metrological investigations carried out with their aid"

Nobel 1907

Albert Abraham Michelson

Questions: What is the absolute reference point of the Ether? In which direction does it move ? How fast ? Ether connected to sun (center of the universe) ?

} 410~ −

cv Motion of the Earth

Should produce an Observable effect

Page 18: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The Michelson–Morley Experiment

Along x-axis

vcvct

−+

+= 22

2

Note: we adopt the classical perspective

( )( )22

222

222

22 /1

2)(cvcvc

vcvcvct

−=

−+

+−−

=

Page 19: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The Michelson–Morley Experiment

221

2211

1/1

22'

2cvcvcv

t−

=−

==

Along y-axis

Transversal motion: Always account for the “stream”

Page 20: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The Michelson–Morley Experiment

−−

−==−=∆

222212/1

1/1

12cvcvc

ttt

221

2211

1/1

22'

2cvcvcv

t−

=−

==

( )22222

2 /12

cvcvcvct

−=

−+

+=

Interferometer: 21 ==If v=0, then ∆t=0 no effect on interferometer

If v≠0, then ∆t≠0 a phase-shift introduced But this is not observed (actually difficult to observe)

Page 21: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

The Michelson–Morley Experiment

( )

−−

−+

=∆−∆=∆

222221/1

1/1

12

'

cvcvc

ttT

21 ↔

1<<cv

Rotate the interferometer

Approximate:

Then (Taylor): 2

2

22 1/1

1cv

cv+≈

2

2

22 211

/11

cv

cv+≈

( ) 3

2

21 cvT +=∆

Numbers: v~3x104 m/s v/c~10-4

l1~l2~11 m

sT 16107 −×=∆

Visible light: λ~550 nm f~5 x 1014 Hz

Phase change (in fringes)

4.0105107 1416 =×⋅×=∆⋅ −Tf

Should be observable !

Detectability: 0.01 fringe

Page 22: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Conclusion: The Michelson–Morley Experiment

This interferometer was able to measure interference shifts as small as 0.01 fringe, while the expected shift was 0.4 fringe.

However, no shift was ever observed, no matter how the apparatus was rotated or what time of day or night the measurements were made.

The possibility that the arms of the apparatus became slightly shortened when moving against the ether was considered by Lorentz.

Hendrik A Lorentz Nobel 1902 "in recognition of the extraordinary service rendered by their researches into the influence of magnetism upon radiation phenomena"

Lorentz contraction

Page 23: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Possible solutions for the ether problem

1. The ether is rigidly attached to Earth

2. Rigid bodies contract and clocks slow down when moving through the ether 3. There is no ether

Page 24: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Albert Einstein

A new perspective

Page 25: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Albert Einstein

On relativity

Page 26: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

1. The laws of physics have the same form in all inertial reference frames

2. Light propagates through empty space with speed c independent of the speed of source or observer

This solves the ether problem – (there is no ether)

The speed of light is the same in all inertial reference frames

Postulates of the Special Theory of Relativity

Page 27: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

One of the implications of relativity theory is that time is not absolute. Distant observers do not necessarily agree on time intervals between events, or on whether they are simultaneous or not.

Why not?

In relativity, an “event” is defined as occurring at a specific place and time. Let’s see how different observers would describe a specific event.

Simultaneity

Page 28: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Thought experiment: lightning strikes at two separate places. One observer believes the events are simultaneous – the light has taken the same time to reach her – but another, moving with respect to the first, does not.

Simultaneity

Page 29: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Simultaneity

From the perspective of both O1 and O2 they themselves see both light flashes at the same time

From the perspective of O2 the observer O1

sees the light flashes from the right (B) first.

Who is right ?

Page 30: The Special Theory of Relativity - Vrije Universiteit Amsterdamwimu/EDUC/AUC-Sheets-Relativity-Notes-I.pdfThe Special Theory of Relativity Chapter I 1.Contradictions in physics ? 2.Galilean

Here, it is clear that if one observer sees the events as simultaneous, the other cannot, given that the speed of light is the same for each.

Simultaneity

Conclusions: Simultaneity is not an absolute concept Time is not an absolute concept