13
©Copyright JASSS Erez Hatna and Itzhak Benenson (2012) The Schelling Model of Ethnic Residential Dynamics: Beyond the Integrated - Segregated Dichotomy of Patterns Journal of Artificial Societies and Social Simulation 15 (1) 6 <http://jasss.soc.surrey.ac.uk/15/1/6.html> Received: 25-Dec-2010 Accepted: 31-Aug-2011 Published: 31-Jan-2012 Abstract The Schelling model of segregation is an agent-based model that illustrates how individual tendencies regarding neighbors can lead to segregation. The model is especially useful for the study of residential segregation of ethnic groups where agents represent householders who relocate in the city. In the model, each agent belongs to one of two groups and aims to reside within a neighborhood where the fraction of 'friends' is sufficiently high: above a predefined tolerance threshold value F. It is known that depending on F, for groups of equal size, Schelling's residential pattern converges to either complete integration (a random-like pattern) or segregation. The study of high-resolution ethnic residential patterns of Israeli cities reveals that reality is more complicated than this simple integration- segregation dichotomy: some neighborhoods are ethnically homogeneous while others are populated by both groups in varying ratios. In this study, we explore whether the Schelling model can reproduce such patterns. We investigate the model's dynamics in terms of dependence on group-specific tolerance thresholds and on the ratio of the size of the two groups. We reveal new type of model pattern in which a portion of one group segregates while another portion remains integrated with the second group. We compare the characteristics of these new patterns to the pattern of real cities and discuss the differences. Keywords: Schelling Model, Ethnic Segregation, Minority-Majority Relations Introduction 1.1 The Schelling model of segregation (Schelling 1971, 1978) is one of the earliest agent-based models of social science. The model was introduced by Thomas Schelling to illustrate how individual incentives and individual perceptions of difference can lead collectively to segregation (Schelling 1978 p. 148). While the model is indicative of a variety of phenomena where individuals tend to relocate according to the share of similar neighbors, it was found especially useful for the study of residential segregation. The original model 1.2 In the Schelling model, agents occupy cells of rectangular space. A cell can be occupied by a single agent only. Agents belong to one of two groups and are able to relocate according to the fraction of friends (i.e., agents of their own group) within a neighborhood around their location. The model's basic assumption is as follows: an agent, located in the center of a neighborhood where the fraction of friends f is less than a predefined tolerance threshold F (i.e., f < F), will try to relocate to a neighborhood for which the fraction of friends is at leastf (i.e., f ≥ F) (Schelling 1978 p. 148). Note that a high threshold value of F corresponds to a low agent's tolerance to the presence of strangers within the neighborhood. 1.3 Schelling studied the dynamics generated by this simple relocation rule for the case of two groups of equal size and a common tolerance thresholdF for both groups. The study revealed the existence of a critical tolerance threshold F segr ≈ 1/3 such as, for F < F sgr initially random pattern remains, in time, random-like, while for F ≥ F sgr initially random pattern converges to a segregate pattern (Figure 1). Figure 1. (a) initial condition of one of Schelling's experiments; (b) stable segregated pattern obtained in several iterations (Schelling 1974) 1.4 Two results of Schelling's study are regarded as central: (a) the value ofF sgr is essentially lower than the intuitively expected value of 1/2; (b) the change of the limit pattern from pseudo-random to segregated as F passed the value of F sgr is abrupt, thus the model does not produce intermediate patterns. Schelling model versus real-world residential patterns 1.5 Real-world residential dynamics is mainly governed by economic factors and, thus, Schelling model patterns are usually considered as having greater theoretical than applied importance. However, in some cases direct correspondence between the model patterns and real residential distributions can be established. Our study is motivated by one of these cases: the Jewish-Arab ethnic residential distribution in Israeli cities. Based on the Israeli population census of 1995 (Benenson and Omer 2003), we were able to construct patterns for ethnically mixed Israeli cities at the resolution of individual houses, which is equivalent to the resolution of the Schelling model. 1.6 Empirical evidence supports Schelling-like views of the residential interactions between the Jewish and Arabs families in Israel; both tend to reside in neighborhoods that have sufficient numbers of residents of their ethnic group (Omer 1996). Thus, we can consider residential patterns in the mixed Israeli cities as a "stylized" outcome of the residential choice of Schelling's residential agents. 1.7 We consider the residential pattern of Arab Muslims, Arab Christians and Jews in the cities of Yaffo and Ramle, both of which are located in central Israel. Yaffo is actually the southern part of the city of Tel Aviv-Yaffo while Ramle is located 15 km south-east of Yaffo. The ethnic pattern of Yaffo in 1995 is presented in Figure 2. The city contains segregated Arab and Jewish areas; in Ajami, a neighborhood in the center (Area A), Christians and Muslims live together, and in Yaffo-Daled, a neighborhood in the south (Area B), the population is Jewish. Some of the boundaries between Jewish and Arab areas in Yaffo are sharp (Area D), while some are extended (Area C). http://jasss.soc.surrey.ac.uk/15/1/6.html 1 12/10/2015

The Schelling Model of Ethnic Residential Dynamics

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Schelling Model of Ethnic Residential Dynamics

©CopyrightJASSS

ErezHatnaandItzhakBenenson(2012)

TheSchellingModelofEthnicResidentialDynamics:BeyondtheIntegrated-SegregatedDichotomyofPatterns

JournalofArtificialSocietiesandSocialSimulation 15(1)6<http://jasss.soc.surrey.ac.uk/15/1/6.html>

Received:25-Dec-2010Accepted:31-Aug-2011Published:31-Jan-2012

Abstract

TheSchellingmodelofsegregationisanagent-basedmodelthatillustrateshowindividualtendenciesregardingneighborscanleadtosegregation.Themodelisespeciallyusefulforthestudyofresidentialsegregationofethnicgroupswhereagentsrepresenthouseholderswhorelocateinthecity.Inthemodel,eachagentbelongstooneoftwogroupsandaimstoresidewithinaneighborhoodwherethefractionof'friends'issufficientlyhigh:aboveapredefinedtolerancethresholdvalueF.ItisknownthatdependingonF,forgroupsofequalsize,Schelling'sresidentialpatternconvergestoeithercompleteintegration(arandom-likepattern)orsegregation.Thestudyofhigh-resolutionethnicresidentialpatternsofIsraelicitiesrevealsthatrealityismorecomplicatedthanthissimpleintegration-segregationdichotomy:someneighborhoodsareethnicallyhomogeneouswhileothersarepopulatedbybothgroupsinvaryingratios.Inthisstudy,weexplorewhethertheSchellingmodelcanreproducesuchpatterns.Weinvestigatethemodel'sdynamicsintermsofdependenceongroup-specifictolerancethresholdsandontheratioofthesizeofthetwogroups.Werevealnewtypeofmodelpatterninwhichaportionofonegroupsegregateswhileanotherportionremainsintegratedwiththesecondgroup.Wecomparethecharacteristicsofthesenewpatternstothepatternofrealcitiesanddiscussthedifferences.

Keywords:SchellingModel,EthnicSegregation,Minority-MajorityRelations

Introduction

1.1 TheSchellingmodelofsegregation(Schelling1971,1978)isoneoftheearliestagent-basedmodelsofsocialscience.ThemodelwasintroducedbyThomasSchellingtoillustratehowindividualincentivesandindividualperceptionsofdifferencecanleadcollectivelytosegregation(Schelling1978p.148).Whilethemodelisindicativeofavarietyofphenomenawhereindividualstendtorelocateaccordingtotheshareofsimilarneighbors,itwasfoundespeciallyusefulforthestudyofresidentialsegregation.

Theoriginalmodel

1.2 IntheSchellingmodel,agentsoccupycellsofrectangularspace.Acellcanbeoccupiedbyasingleagentonly.Agentsbelongtooneoftwogroupsandareabletorelocateaccordingtothefractionoffriends(i.e.,agentsoftheirowngroup)withinaneighborhoodaroundtheirlocation.Themodel'sbasicassumptionisasfollows:anagent,locatedinthecenterofaneighborhoodwherethefractionoffriendsfislessthanapredefinedtolerancethresholdF(i.e.,f<F),willtrytorelocatetoaneighborhoodforwhichthefractionoffriendsisatleastf(i.e.,f≥F)(Schelling1978p.148).NotethatahighthresholdvalueofFcorrespondstoalowagent'stolerancetothepresenceofstrangerswithintheneighborhood.

1.3 SchellingstudiedthedynamicsgeneratedbythissimplerelocationruleforthecaseoftwogroupsofequalsizeandacommontolerancethresholdFforbothgroups.ThestudyrevealedtheexistenceofacriticaltolerancethresholdFsegr≈1/3suchas,forF<Fsgrinitiallyrandompatternremains,intime,random-like,whileforF≥Fsgrinitiallyrandompatternconvergestoasegregatepattern(Figure1).

Figure1.(a)initialconditionofoneofSchelling'sexperiments;(b)stablesegregatedpatternobtainedinseveraliterations(Schelling1974)

1.4 TworesultsofSchelling'sstudyareregardedascentral:(a)thevalueofFsgrisessentiallylowerthantheintuitivelyexpectedvalueof1/2;(b)thechangeofthelimitpatternfrompseudo-randomtosegregatedasFpassedthevalueofFsgrisabrupt,thusthemodeldoesnotproduceintermediatepatterns.

Schellingmodelversusreal-worldresidentialpatterns

1.5 Real-worldresidentialdynamicsismainlygovernedbyeconomicfactorsand,thus,Schellingmodelpatternsareusuallyconsideredashavinggreatertheoreticalthanappliedimportance.However,insomecasesdirectcorrespondencebetweenthemodelpatternsandrealresidentialdistributionscanbeestablished.Ourstudyismotivatedbyoneofthesecases:theJewish-ArabethnicresidentialdistributioninIsraelicities.BasedontheIsraelipopulationcensusof1995(BenensonandOmer2003),wewereabletoconstructpatternsforethnicallymixedIsraelicitiesattheresolutionofindividualhouses,whichisequivalenttotheresolutionoftheSchellingmodel.

1.6 EmpiricalevidencesupportsSchelling-likeviewsoftheresidentialinteractionsbetweentheJewishandArabsfamiliesinIsrael;bothtendtoresideinneighborhoodsthathavesufficientnumbersofresidentsoftheirethnicgroup(Omer1996).Thus,wecanconsiderresidentialpatternsinthemixedIsraelicitiesasa"stylized"outcomeoftheresidentialchoiceofSchelling'sresidentialagents.

1.7 WeconsidertheresidentialpatternofArabMuslims,ArabChristiansandJewsinthecitiesofYaffoandRamle,bothofwhicharelocatedincentralIsrael.YaffoisactuallythesouthernpartofthecityofTelAviv-YaffowhileRamleislocated15kmsouth-eastofYaffo.TheethnicpatternofYaffoin1995ispresentedinFigure2.ThecitycontainssegregatedArabandJewishareas;inAjami,aneighborhoodinthecenter(AreaA),ChristiansandMuslimslivetogether,andinYaffo-Daled,aneighborhoodinthesouth(AreaB),thepopulationisJewish.SomeoftheboundariesbetweenJewishandArabareasinYaffoaresharp(AreaD),whilesomeareextended(AreaC).

http://jasss.soc.surrey.ac.uk/15/1/6.html 1 12/10/2015

Page 2: The Schelling Model of Ethnic Residential Dynamics

1.8 TheethnicresidentialpatternofthecityofRamleispresentedinFigure3andismorecomplexthanYaffo.LargeareasofthecityarepopulatedalmostsolelybyJews(AreaA),whilesomearepopulatedalmostexclusivelybyMuslims(AreaB).Thecitycontainsintegratedareas(AreaC),which,unlikeYaffo,areremotefromthesegregatedArabareas.ThecityalsocontainsareaspopulatedbyMuslimsandChristians(AreaD)andanareawhereChristiansandJewscoexist(AreaE).

1.9 YaffoandRamlepatternsarethusessentiallymorevariablethantheintegratedandsegregatedpatternscharacteristicoftheSchellingmodel:thepatterncontainshomogeneouspatchesofArabandJewishpopulationsandseveralintegratedareaswithdifferentfractionsofArabandJewishpopulationsineach.Yaffo'sintegratedpatchesareattheboundarybetweenthesegregatepatches;inRamlesegregatedandaggregatedareasarenotnecessarilyadjacentandcanbeseparatedbythenon-populatedareas.

Figure2.EthnicresidentialdistributionofYaffoin1995

http://jasss.soc.surrey.ac.uk/15/1/6.html 2 12/10/2015

Page 3: The Schelling Model of Ethnic Residential Dynamics

Figure3.EthnicresidentialdistributionofRamlein1995

1.10 SeveralexplanationsforthisqualitativedifferencebetweentheobservedpatternsandSchelling'stheoreticalpatternscanbeproposed.First,ignoringeconomics,YaffoandRamlepatternsarestillinadevelopmentalstage,thussomeofthepatternsmaybetemporary.Second,low-incomeJewsandArabsmaynotbeabletoavoidlivingtogether,whilethericherJewsandArabsareabletosegregate.Third,contrarytothepreviousexplanation,poorJewsandArabsmaybeintolerantofeachotherandthussegregate,whilewealthyhouseholdersmaybetolerantandthusstaytogether.Eachoftheseexplanationscouldbetestedifthedataonmigrationactivityandindividualwealthwereavailable.However,takingYaffoandRamlepatternsasasourceofinspiration,cantheobservedpatternsstillbeexplainedwithinthenon-economicSchellingframework?

1.11 TosimplifyletusconsidertheMuslimandChristianArabsasasinglegroup.Conceptually,intheJewish-ArabresidentialpatternsofYaffoandRamle,wecanspecifythreequalitativelydifferentconfigurations(Figure4):

Figure4.ThreequalitativelydifferentpatternsinYaffoandRamleandthecorrespondingSchelling-likepatterns:(a)twosegregatedpatches;(b)segregatedpatchadjacenttointegratedpatch;(c)integratedpatchesadjacenttotwosegregatedpatches

1.12 Inthefirstpattern(Figure4a),twosegregatedgroupsareseparatedbyanarrowboundaryoftransition.Inthesecondpattern(Figure4b),themajorityofmembersofoneofthegroupsaresegregatedwhilesomeofthemembersareintegratedwiththemembersoftheothergroup.Thethirdandmostcomplexpattern(Figure4c)presentstwosegregatedgroups,eachadjacenttotheintegratedarea.

1.13 Inthispaper,wedemonstratethatthevarietyofSchellingmodelpatternsisgreaterthantherandom-segregateddichotomyandthatthepatternsinFigures4aand4b,canbegeneratedbythemodelifthenumbersoftwogroupsorgrouptolerancethresholdsaredifferent.However,theSchellingmodeldoesnotgeneratepersistentpatternsthatcontainsegregatedpatchesofbothgroupstogetherwithintegratedpatches,asinFigure4c.

1.14 Thestructureofthepaperisasfollows:Section2presentsthestate-of-the-artofSchellingmodelstudiesanddescribesthekindofdynamicsthatgeneratesthepatternsthatareneithersegregatednorintegrated(wecallthemmixed).Section3formallydescribesthemodelandthemethodologyofthestudy.TheresultsofthestudyarepresentedinSection4andarefollowedbythediscussioninSection5.

Schellingmodelstudies

Irregularpartitionofspace

2.1 StudiesoftheSchellingmodelfocusonconditionsenablingsegregationandonthecharacteristicsofthepatternsproducedbythemodel.Ascanbeexpected,themodelresultsarequalitativelyrobusttothestructureofresidentialspace.Irregularpartitionoftheplaneintopolygonalunitsandneighborhooddefinitionbasedonpolygonadjacencydonotchangethemainresultsofthepattern'sdichotomyandtheabrupttransitionfromintegratedtosegregatedlimitpattern(FlacheandHegselmann2001).LaurieandJaggi(2002,2003)supplementedthisfindingbysystematicallyinvestigatingSchellingmodeldynamicsasdependingonthesizeoftheneighborhoodsandrevealed,asshouldbeexpected,thatthesizeofhomogeneouspatchesincreaseswiththegrowthoftheneighborhoodradiuswhilethenumberofhomogeneouspatchesinpatternsdecreases.

Asymmetricrelations,morethantwogroups

2.2 Portugalietal.(1994,1995)showedthatSchellingmodelpatternsconvergetowardsegregationevenifonlyagentsofonegroupreacttothefractionoffriendswhileagentsoftheothergroupareindifferent.However,inthatcasethetolerancethresholdthatseparatessystemsconvergingtowardintegratedasopposedtosegregatedpatternsisessentiallyhigherthanthevalueof1/3,characteristicforthesymmetriccase.Benenson(1998)investigatedtheSchellingmodelforthecaseofseveralgroupsofagentscharacterizedbyseveralbinarycharacteristics.Inadditiontointegratedandsegregatedstablepatterns,herevealedunstablebutpersistentregimesinwhichhomogeneouspatternsoftheagentsofoneormoregroupsarerepeatedlyself-organizingandvanishing.

Accountingforeconomicdifferencesbetweenagents

2.3 Severalstudies(BenardandWiller2007;Benenson1999;Fossett2006b;Portugali2000;BenensonandHatna2009)consideragentscharacterizedbycontinuous"economicstatus,"whichcanbecomparedwiththecells'price.Theagentssearchforneighborhoodsthatareboth"friendly"and"sufficientlywealthy."Asmightbeexpected,systemdynamicsbecomemorevariableinthiscase,dependingonhowtheagents'residentialpreferencesdependontheneighbors'groupidentityandstatus.

Agentsthatexchangeplaces

2.4 Aqualitativelydifferentwayofmodelingagents'relocationistoassumethatunsatisfiedagentsexchangetheirplacesratherthansearchforavacancyoverallunoccupiedcells.Thisviewattractedtheattentionofseveralresearchers(PollicottandWeiss2001;Zhang2004),whoalsoassumethatthepreferencesofagentsarenon-monotonous,andtheymightpreferneighborhoodswithalowfractionofforeignerstothoseoccupiedexclusivelybyfriends.Thedynamicsofthemodelpatternsinthiscasearealsomorecomplexthantheintegrated-segregateddichotomy.However,themathematicalproperties

http://jasss.soc.surrey.ac.uk/15/1/6.html 3 12/10/2015

Page 4: The Schelling Model of Ethnic Residential Dynamics

ofthesemodelsdifferqualitativelyfromthestandardsettingsandwethusconsiderthisformulationasdifferentfromSchelling'soriginalmodel.

The"BoundedNeighborhood"model

2.5 AnothervariantoftheSchellingmodelisthe"BoundedNeighborhood"modelthatwasalsopresentedbySchelling(1978,p.155)butislesspopularthantheversiondiscussedabove.Inthe"BoundedNeighborhood"version,insteadofaregulargrid,thegridisdividedintoblocks,whichareessentiallylargerthantheneighborhoodsofthepopularversionofthemodel.Nomatterwheretheagentislocatedwithintheblock,itreactstothefractionoffriendsalloverit,andleavestheblockifthefractionoffriendsisbelowthetolerancethresholdF.Differentagents,however,canreacttodifferentthresholdfractionsoffriendswithintheblock,andthemainparameterofthe"BoundedNeighborhood"modelisthedistributionoftheagents'F-values.

2.6 TheanalyticinvestigationofthisversionofthemodelwasstartedbySchelling(1978)andcontinuedbyClark(1991,1993,2002,2006).Theyhavedemonstratedthatbothgroupscanpersistinablockincaseagentsofeachtypeessentiallyvaryintheirtolerancetostrangers.However,theequilibriumisnotgloballystableand,dependingoninitialconditions,block'spopulationcanconvergetoasegregatedoraggregatedstateforthesamedistributionsoftolerance.

2.7 Aspatialversionofthe"BoundedNeighborhood"model,inwhichtheagents'populationconsistsofmorethantwoethnicgroupsandresidentialagentsreacttothepopulationstructureandmigrateamongadjacentblocksincaseofunsatisfieddemands,hasbeeninvestigatedindepthinaseriesofrecentsimulationsbyFossett(FossettandWaren2005;Fossett2006a;Fossett2006b),whoalsodirectlyrelatesthemodel'sresultstoresidentialpatternsinthereal-worldcities.FossettaimedatreflectingthesituationintheUnitedStatesandconsideredthreeresidentialgroups—White,BlackandHispanic—whoalsodifferintheireconomicstatus.Theaggregateunitsusedare7×7cellblocksandthecityisrepresentedbythe12×12gridofblocks.Fossett(2006a)investigatedtherelationshipbetweenethnicandstatussegregationandconcludedthatthisinteractionmightlimitourabilitytointegratetheethnicgroups.Specifically,hepointedoutthatreductioninhousingdiscriminationbyracemaynotnecessarilyleadtolargedeclinesinethnicsegregation.

ApplicationoftheSchellingmodelforrealcities

2.8 SeveralattemptstoapplytheSchellingmodeltothereal-worldsituation(Benensonetal.2002;KoehlerandSkvoretz2002;BruchandMare2006)providelikelihoodapproximationsofthesegregatedormorecomplexresidentialdistributionsobservedincities.Inwhatfollowswelimitourselvestoabstractmodelsanddonotdelveintogreaterdetailsoftheseimplementations.

"Liquid"and"Solid"dynamics

2.9 AgeneralinsightintotherelationbetweentherulesandthepatternsengenderedbytheSchellingmodelwassuggestedbyVinkovicandKirman( 2006),whoconsideracontinuousanalogoftheSchellingmodel.Namely,theystartwithrepresentingeightcellsofthe3×3neighborhoodaseightequalsectors,andthenweakenthediscreterepresentationofspacebyconsideringeachsector'sangleasacontinuousvariable.Thecontinuousrepresentationmakesitpossibletodescribethemodeldynamicsbymeansofdifferentialequationsandtofurtherinvestigatethedynamicsoftheboundariesofthehomogeneousclusters.

2.10 TheanalysisofthecontinuousmodelresultsinadifferentiationbetweentwofundamentaltypesofrelocationrulesfortheSchellingmodel:rulesthatspecifySchelling'ssystemasrepresentingsolid-likematterandrulesthatspecifyitasrepresentingliquid-likematter(VinkovicandKirman2006).TheSchellingmodelrepresents"solidmatter"iftherulesenablerelocationtoabetterlocationonly.Inthiscase,thesystemstallswhenconvergingtoapatterninwhichnoneoftheagentscanimprovetheirstate.Usually,thesolidSchellingpatternstallsafterabouttentimesteps,withanessentialfractionofagentswhoaredissatisfiedwiththeirlocationbutunabletofindabetterone.Therulesthatallowrelocationtocellsofthesameutilityresultinliquid-likedynamics.TheliquidSchellingsystemdoesnotstallevenifalltheagentsaresatisfiedwiththeirlocationand,eventually,reachesapersistentstatewherethecharacteristicsofthepattern(suchaslevelofsegregation)donotchange,vastmajorityofagentsaresatisfiedwiththeirlocationandraremigrationsresultinslowandnon-directedevolutionofpatchboundaries.

2.11 VinkovicandKirman(2006)demonstratethatthepersistentpatternsofthemodelthatallowsrelocationtobetterlocationsonlyarenumerousanddependonthedetailsofthemodelrules,whilethepersistentpatternsofthe"liquid"viewofrelocationarejusttwo:integratedandsegregated.Theyalsoclaimthatthemodeldynamicsarerobusttovariationsintherules'detailsinsofarasthesetofrulesresultin"solid"or"liquid"patterndynamics.

2.12 Thesolid-liquiddichotomyisrelativelynewandthestudiesoftheSchellingmodelweareawareofdonotspecifyexplicitlywhetherthemodelrulespermitagentstorelocatebetweencellsofthesameutility.However,whenapplyingSchelling'sviewtotherealworld,itseemsnecessarytoenablerelocationbetweenresidencesofthesameutilityinordertoreflectnumerousreasonsofhouseholdmigrationsthatarenotcapturedbytheneighborhoodandethnicbasedview,say,distancetofacilitiesorjobs.

2.13 FollowingVinkovicandKirman's(2006)view,weinvestigatedasetofrulesthatontheonehanddirectlyinterpretsSchelling'sideaofresident'sreactiontothefractionoffriendsintheneighborhoodasadeterminantoftheresidentialchoice,andontheotherhandenablesmigrationbetweencellsofthesameutility,i.e.,entailsaliquid-likedynamics(BenensonandHatna2011).Thestudyofthemodelrevealsqualitativelynewresults:thevarietyofitspatternsisgreaterthanrandom-segregateddichotomy.Namely,forasufficientlywiderangeofparameters,themodelpatternconvergestoamixedstate,inwhichanessentialportionofonegroupsegregateswhiletherestofitsmembersremainintegratedwiththeothergroup.

Themixedpatterns

2.14 Themixedpatternsarequalitativelydifferentfromthewell-knownsegregatedandintegratedones.Toillustrate,letusconsideracitywitha0.2:0.8ratioofgroupsizes.Inthiscase,forvaluesofFwithintheintervalof˜(0.08,0.17),aninitiallyrandompatternconverges,intime,toastateinwhichpartoftheareaisoccupiedbythemajorityexclusively,whiletherestoftheareaisaggregated(Figure5).Aswehavedemonstratednumericallyandsupportedanalytically(BenensonandHatna2009;BenensonandHatna2011),thevaluesofFthatgeneratemixedpatternsarelowerthanFsgr.

Figure5.(a)integrated(b)mixedand(c)segregatedpersistentpatternsproducedbytheSchellingmodelforthe0.2:0.8Blue-to-Greensizeratio

2.15 MixedpatternsfurtherunderminetheviewoftheSchellingmodelasrobusttovariationsofassumptions.Thequalitativelydifferentpatternsobtainedfortheunequalgroupnumbersmanifestthepossibilitythattheemergenceofreal-worldresidentialpatterns,asthosepresentedinFigures2-4,canstillbequalitativelyexplainedbytheSchellingmodel.Thedeviationfromthe1:1ratioofthegroups'sizesisonlyoneofseveralpossiblealterationsofthe"commonlyaccepted"settings.Thesesettings,however,arejustatraditionandarenotrelatedtothebasicSchellingassumptionofagentswhoaimatresidingwithinfriendlyneighborhoods.Thereareseveralotherunnecessarysettings,suchastheassumptionsofequaltolerancethresholdofmembersofbothgroups,identicalreactionofagentsofagivengrouptoneighborsandagents'identicalviewoftheneighborhoodsizeandform.

2.16 Inthispaper,weinvestigatetwoalterationsofthestandardassumptions:westudySchellingmodeldynamicsinthecaseofnon-equalgroupsandnon-equaltolerancethresholdsofthegroups(whicharestillidenticalforallagentswithinthegroup).Wedemonstratethatthemixedpatternsaretypicalforapopulationofhighlybutnotabsolutelytolerantagentsanddiscusstheextenttowhichthisformalresultcanexplainthereal-worldresidentialpatternsasobservedinYaffoandRamle.

Formalizationofthemodelandthemethodologyofinvestigation

3.1 Inthispaper,weapplythemodelrulesdefinedinBenensonandHatna(2011).

Formalrepresentationofthemodelrules

3.2 Letusdenoteanagentasa,acellashandtheneighborhoodofh,excludinghitself,asU(h).WeconsiderU(h)tobeaMoore'ssquaren×nneighborhood(Moore1970)anddenotethefractionofa's"friends"(i.e.,agentsbelongingtoa'sgroup)amongallagentslocatedwithintheneighborhoodU(h)asfa(h).NotethatweignoreemptycellswithinU(h).

3.3 Cityspace:N×Ngridofcellsonatorus,thelatterusedtoavoidboundaryeffects.Acellcannotbeoccupiedbymorethanasingleagent.Thereisnoemigrationorimmigration.

3.4 Therearetwogroupsofresidentialagents:Blue(B)andGreen(G).

http://jasss.soc.surrey.ac.uk/15/1/6.html 4 12/10/2015

Page 5: The Schelling Model of Ethnic Residential Dynamics

3.5 Time:discretetime,asynchronousupdating(Cornforthetal.2005).WefollowSchelling'sviewofresidentialbehaviorandassumethatagentsobservethesystem'schangesimmediatelyaftertheyoccur.Ateachtimestep,everyagentdecideswhetherandwheretorelocate.Agentsareconsideredinrandomorder,whichisestablishedanewateachtimestep.

3.6 Agent'satolerancethresholdFa:followingSchelling'sview,weassumethatanagentalocatedathissatisfiedifthefractionoffriendswithinU(h)isFaorhigher.AsthetolerancethresholdiscommonforallagentsoftheBlueorGreengroup,wedenoteitasFBorFGrespectively.

3.7 Neighborhood'sU(h)utilityfora:wedefinetheutilityua(h)oftheneighborhoodU(h)foraas:

ua(h)=min(fa(h),Fa)/FaifFa>0 (1)

andassumethatua(h)=1ifFa=0(absolutelytolerantagenta)(Figure6)

Figure6.Theutilityoflocationhforanagentaasafunctionofthefractionoffriends,fa,withinU(h):(a)absolutelytolerantagent(Fa=0),(b)agentseekingfor50%offriends(Fa=0.5),(c)absolutelyintolerantagent(Fa=1)

3.8 Agent'sresidentialbehavior:ateachtimestept,anagentalocatedathdecideswhethertorelocateorremainsath.Whenrelocating,anagentaconsiderswvacantlocationsandcomparestheirutilitytotheutilityofitscurrentlocationh.Theawarenessofaaboutvacanciesdoesnotdependonthevacancies'distancetoh.

3.9 Agentaperformsitsrelocationdecisionintwosteps:

Step1:Decideswhethertorelocate:-Generatesarandomnumberp,uniformlydistributedon(0,1).-If(ua(h)<1or(ua(h)=1andp<m))thentriestorelocate,otherwisestaysath.

Step2:Ifthedecisionis"torelocate,"thensearchesforanewlocationanddecideswhethertomovethere:-Memorizestheutilityua(h)ofthecurrentlocationh.-ConstructsasetV(a)ofrelocationopportunitiesbyrandomlyselectingwvacanciesfromallcellsthatarevacantatthatmoment.-Estimatesutilityua(v)ofeachv∈V(a)fora,andselectsoneofthehighestutilityua(vbest).IfthereareseveralbestvacanciesinV(a),choosesoneofthemrandomly.-Movestovbestifeitherua(h)<1andua(vbest)>ua(h),theutilityofvbestishigherthanthatofh,orua(h)=1andua(vbest)=1,theutilityofhishighandthemovetovbestisunrelatedtothenumberoffriendsintheneighborhood,-Otherwisestaysath.

Form>0,theabovemodelrulesentailliquid-likedynamics.Note,however,thatonlyagentswhoaresatisfiedwiththeirlocationareallowedtorelocatetoavacancyofequalutility;unsatisfiedagentscanmovetohigherutilityvacanciesonly.

3.10 Itisimportanttoemphasizethemannerinwhichagentschoosevacancies.Accordingtothedefinitionofaneighborhood'sutility(Equation1),agentsaresatisficers(Simon1982)whoregardalocationhassatisfactoryaslongasthefractionoffriendsfawithinU(h)isequalorhigherthantheirtolerancethresholdFa.Allsatisfactorylocationsareofthesameutility1,andagentsdonotdistinguishbetweenthem.

Themethodologyofmodelinvestigation

3.11 Weinvestigatethepersistentmodelpatternsbasedona50×50torus,assumingthat2%ofthecellsareempty(d=2%).Weassumethattherateofspontaneousrelocationattemptsis1%periteration(m=0.01)andanagentconsidersatmost30vacancieswhentryingtorelocate(w=30).

3.12 Indiscretecellspace,thenumberofcellsintheneighborhoodexcludingthecentralcelldeterminestheseriesofpossibletolerancethresholdsF.Forfullyoccupied3×3Mooreneighborhoodofeightcells,thisserieswouldbeF=0/8,1/8,…7/8,8/8.Schelling(1971)employeda3×3Mooreneighborhood.However,ninepossiblevaluesofFareinsufficientforunderstandingthemodeldynamics.Wethususea5×5Mooreneighborhood,whichresultsintheseriesof25F-values(0/24,1/24,…,24/24),sufficientforrepresentingthemodelphenomenainfull.

3.13 Inwhatfollows,weinvestigatemodelpatternsasdependingonthe:

FractionβofBlueagents.TolerancethresholdFBofBlueagents.TolerancethresholdFGofGreenagents.

3.15 WeassumethattheBlueagentsareminorityandinvestigatemodelpatternsfortheseriesofβ-values:0.05,0.15,…,0.5.Asexplainedabove,theseriesofvaluesforFBandFGare0/24,1/24,…,24/24.

3.16 Figure7presentsthe3D"half-cube"oftheinvestigatedparameters'space.Webeginthestudyofmodelpatternswiththeparameter'svaluesonthecube'ssurfaceandthencombinetheresultsinordertodescribemodelpatternsforallvaluesofβ,FBandFG.

http://jasss.soc.surrey.ac.uk/15/1/6.html 5 12/10/2015

Page 6: The Schelling Model of Ethnic Residential Dynamics

Figure7.ParameterspaceoftheSchellingmodelasinvestigatedinthispaper

3.17 Toensurethatthemodelpatternsarenotdependentoninitialconditions,allmodelrunsarerepeatedstartingwithtwoinitialpatterns:randomandfullysegregated(Figure8).

Figure8.Modelinitialpatterns(a)random,(b)fullysegregated

Characterizationofmodelpatterns

TheuseofMoran'sIforrecognizingintegratedandsegregatedpatterns

3.18 InwhatfollowswecharacterizetheglobalpropertiesoftheBlueandGreenagents'patternsusingtheMoran'sindexIofspatialassociation(Anselin1995;GetisandOrd1992;ZhangandLinb2007)appliedtobinarydata(Lee2001;Griffith2010).

3.19 TheMoran'sIstatisticiscalculatedforthespatialvariablexhovertheoccupiedcellsaccordingto(2).Thevariablexhisdefinedasfollows:xh=0ifhisoccupiedbyBlueagentandxh=1ifhisoccupiedbyGreenagent.

(2)

wherexi,xjdenotethevaluesofxhincellsi,j;M=Round((1-d)×N2)istheoverallnumberofoccupiedcells,xbaristhemeanvalueofxhovertheoccupiedcells,wij=1ifj∈U(i),andwij=0,otherwise.

3.20 AvalueofMoran'sIcloseto0representsarandom(integrated)patternwhileavaluecloseto1representscompletesegregation(seeZhangandLinb2007forareview).Basedonthepermutationtestforthe50×50toruscity,criticalvaluesofMoran'sIequals0.002atp=0.01.Inwhatfollows,weconsideracitypatternasrandomifMoran'sIisbelow0.002.Werunsimulationsfor50,000timesteps,whicharesufficientforthepatterntoreachapersistentstate,ifexist,orexhibitfluctuations(seebelow).Thecharacteristicsofthepatternswerecalculatedfor10,000timeintervalbetweentheiteration40,000and50,000.

Threepossiblepartsofthemixedpattern

3.21 TheMoran'sIcalculatedovertheentirecityareaisusefulfordistinguishingbetweenfullyintegrated(random)patterns,forwhichMoran'sIisclosetozero,segregatedpatterns,forwhichIiscloseto1andother(mixed)patterns,forwhichMoran'sIishigherthan0butlowerthan1.However,thevalueofMoran'sIcannotdistinguishbetweenthetwotypesofmixedpatternspresentedinFigures4band4c;forbothofthesethevalueofMoran'sIwouldbeintermediate.Todistinguishbetweenthesetypesofpatterns,weemploythefollowingalgorithmthatrecognizesthetwosegregatedandthe"residual"partsofthecityaspresentedinFigures4a-c(thesizeofalltheneighborhoodsbeloware5×5):

1. Identifythesegregated(BlueandGreen)parts:LoopbyalloccupiedcellsandidentifytheBluecellsthathaveonlyBlueneighborsandtheGreencellsthathaveonlyGreenneighbors.DenotethesetwocellsetsasB^andG^respectively.

2. Identifytheboundaryofthesegregatedparts:LoopbyalloccupiedcellsthatdonotbelongtoB^orG^,andidentifythecellswhichneighborhoodshavenon-emptyoverlapwithG^orB^.DenotethissetofcellsasE1^.

3. Identifytheboundaryoftheresidualpartofthecityandcombineitwiththeboundaryofthesegregatedparts:LoopbyalloccupiedcellsthatdonotbelongtoB^,G^orE1^,andidentifythose,neighborhoodswhichhavenon-emptyoverlapwithE1^.DenotethesecellsasE2^anduniteE1^andE2^intoE^.

4. DenotethecellsthatdonotbelongtoB^,G^orE^asM^.

Figure9presentsthealgorithmstepsforthepatternsinFigures4band4c.Asstatedabove,themodelcityisatorus.

http://jasss.soc.surrey.ac.uk/15/1/6.html 6 12/10/2015

Page 7: The Schelling Model of Ethnic Residential Dynamics

Figure9.Thealgorithmforidentifyingsegregated(B^,G^),boundary(E^)andresidual(M^)parts,appliedtothepattern(b)and(c)inFigure4b

3.22 BelowwedistinguishbetweenthepatternsinFigures4band4cbasedonthesizeofthesegregatedBluec(B^),segregatedGreenc(G^)andresidualc(M^)partsinthecity.Namely,wedefinetheC-indexas:

C=min(c(B^),c(G^),c(M^))/N2 (3)

Thereal-worldandabstractpatternsinFigure4containeithertwoorallthreepossibleparts,andtherelativeareaofeachpartishigh.WethusclassifyapatternasoftheFigure4ctypeifthevalueofCisatleast10%(C≥10%).HighC-valuethresholdof10%guaranteesthateachofthethreepartscouldbevisuallyrecognizedinthepattern,ascharacteristicofthereal-worldpatternsinFigure4.

Persistentandfluctuatingpatterns

3.23 OursettingoftheSchellingmodelallowsforspontaneousrelocationand,thus,themodelresidentialpatternneverstalls.However,forthemajorityofβ,FBandFGvaluesthepatternconvergestopersistentstate,inwhichitssegregationcharacteristicsdonotchangesignificantly.Whenitisclearfromthecontext,weuse"modelpattern"whenreferringto"modelpersistentpattern."

3.24 Forsomecombinationsofparametersthepatternsdonotstabilize.AnextremeexampleisthecaseofFG=3/24,FB=7/24,β=0.5.AscanbeseenfromFigure10a,theMoran'sIforthissetofparametersfluctuates,intime,between0.35-0.70andsodoestheC-index,whichfluctuatesbetween0and15%.Figure10bpresentstwoextremepatternsgeneratedforthissetofparameters:onesegregated,qualitativelysimilartothepatternpresentedinFigure4a,andtheothermixed,qualitativelysimilartothepatternpresentedinFigure4c.TheleftpatternischaracterizedbytherelativelyhighvalueofMoran'sIandlowvalueoftheC-indexwhiletherightpatternischaracterizedbytherelativelylowvalueofMoran'sIandhighvalueoftheC-index.

Figure10.ThefluctuatingpatternofFG=3/24,FB=7/24,β=0.5:(a)ThedynamicsofMoran'sIandC-indexforthefirst200,000iterations(b)Typicalmixedandsegregatedpatternsobserved.

Resultsofthemodelinvestigation

4.1 Inwhatfollows,webrieflyrepeattheclassicmodelresults(§4.2)andproceedwithinvestigatingthemodelbehaviorasdependentonallthreeparametersβ,FBandFG.§4.6-§4.11dealwithspecialsubsetsofthe(β,FBandFG)parameterspace.§4.18onwardsconsidersthegeneralsituation.

Basiccase:equalgroupsofequaltolerancethresholds(β=0.5,FG=FB=F)

4.2 ToverifySchelling'sconclusionsregardingthecaseofgroupsofequalsizeandtolerancethresholds(Figure11),weperformed25modelrunsforwhichFG=FB=F=0/24,1/24,…,24/24,and,inaddition,ninerunswithFG=FB=F=0/8,1/8,…,8/8thataimedtoinvestigatetheinfluenceoftheneighborhoodsizeonmodelpatterns.

http://jasss.soc.surrey.ac.uk/15/1/6.html 7 12/10/2015

Page 8: The Schelling Model of Ethnic Residential Dynamics

Figure11.Theinvestigatedsetofparametersβ=0.5,FG=FB

4.3 TheMoran'sIvaluesasdependentonFarepresentedinFigure12.

Figure12.Moran'sIformodelpersistentpatternsasdependentonFfor(a)3×3(b)5×5neighborhoods

4.4 Qualitatively,ourresultsarefullyconsistentwithSchelling'sfindings.Namely,theintervaloftheF-valuesconsistsoftwosubsets:F≤4/24andF≥5/24.ForF≤4/24,thepatternsarerandom(integrated),whileforF≥5/24thepatternsaresegregated.Thetransitionbetweenthetwosubsetsisabrupt.Inthecaseofthe3×3neighborhood,theresultsarequalitativelythesamebutlessprecise:randompatternsarecharacteristicofF≤1/8=3/24,whileforF≥2/8=6/24thepatternsaresegregated.

4.5 Thepatternsforthecaseofthe5×5neighborhoodarepresentedinFigure13.TheunsmoothboundaryofthesegregatedpatternofF=5/24seemstocorrespondtotheconceptualpatternofFigure4a.Forthesegregatedpatterns(F≥5/24),thehigherF,thesmoothertheboundarybetweentheclustersofagentsofthesamecolor.ThisexplainstheslowgrowthofMoran'sIwiththegrowthofFinFigure12.

Figure13.PersistentmodelpatternsforthecaseofequalgroupsasdependingonF

Persistentpatternsforthe2D-subsetsofparameters

4.6 Inwhatfollows,weinvestigatethemodelpersistentpatternsforthecaseofGreenmajorityversusBlueminorityandvaluesofparameterslimitedtothree2Dsubspacesofthe3Dhalf-cube(Figure14):

β∈(0,0.5],FB=FG:equaltoleranceofbothgroups(Figure14a);β∈(0,0.5],FG=0,FB∈[0,1]:absolutelytolerantGreenmajority(Figure14b);β∈(0,0.5],FG∈[0,1],FB=0:absolutelytolerantBlueminority(Figure14c).

Figure14.Threeinvestigated2D-subsetsofparameters(a)β∈(0,0.5],FB=FG,(b)β∈(0,0.5],FG=0,FB∈[0,1],(c)β∈(0,0.5],FG∈[0,1],FB=0

4.7 FollowingBenensonandHatna(2011),wedenote,foragivenβ,Frnd,βasthehighestvalueofFthatgeneratesrandom(integrated)persistentpattern(characterizedbyclosetozerovalueoftheMoran'sI)andFsgr,βasthelowestvalueofFthatentailsasegregatedpattern(characterizedbyclosetounitvalueoftheMoran'sI).Asshownabove,forβ=0.5,thevaluesofFrnd,0.5andFsgr,0.5areadjacent,i.e.,Frnd,0.5=4/24,andFsrg,0.5=5/24.

BlueminorityversusGreenmajority,equaltolerancethresholdinbothgroups(β∈(0,0.5],FB=FG=F)

http://jasss.soc.surrey.ac.uk/15/1/6.html 8 12/10/2015

Page 9: The Schelling Model of Ethnic Residential Dynamics

4.8 Aspresentedin§2.14,thecaseofunequalgroupsexhibitsmixedpatterns.Toillustrate,letusconsiderthecaseofβ=0.2.ThevaluesofMoran'sIforthepersistentpatternasdependentonF=FB=FGandthepatternsforselectedvaluesofFarepresentedinFigure15.

4.9 AscanbeseeninFigure15a,thedependenceofthemodelpatternonFincaseofβ=0.2isdifferentthanforthecaseofβ=0.5.Namely,forF=2/24,3/24and4/24thevaluesofMoran'sIarenon-zero,butyetlowerthanthatcharacteristicofthesegregatedpatterns.AscanbeobservedinFigure15b,thepatternsforthesethreevaluesofFareneitherrandomnorsegregated.AccordingtoFigure15,Frnd,0.2=1/24,whileFsgr,0.2=5/24(notethatthevaluesofFsgr,0.2andFsgr,0.5arethesame,andequalto5/24).ForthevaluesofF∈(Frnd,0.2,Fsgr,0.2),partofthecityareaisoccupiedbytheGreenmajorityexclusivelywhiletherestoftheareaisintegrated.AsitisshowninBenensonandHatna(2009,2011),withthegrowthofF,theintegratedpartoftheintegratedregionbecomesmorecompact,thusentailingagrowthoftheMoran'sI.ThecityabruptlysegregateswhenFincreasesfrom4/24to5/24.ForF≥5/24,theMoran'sIvalueslowlyincreaseswithanincreaseinFandtheboundarybetweentheGreenandBlueclustersbecomessmoother,justasforβ=0.5.

Figure15.(a)Moran'sIand(b)persistentpatternsasdependentonF,forβ=0.2

4.10 ThecompleteviewofMoran'sIdependenceonFandβispresentedinFigure16a.Notethat(a)forβ>0.05thepatternabruptlysegregateswhenFpassesthethresholdvalueofFsgr,β=5/25,whileforβ=0.05,Fsgr,0.05=6/25;(b)thevalueofFrnd,βdecreaseslinearlyandthewidthoftheintervaloftheF-valuesgeneratingthemixedpatternsincreaseswiththedecreaseinβ.ThedependenceoftheC-indexonFandβispresentedinFigure16b.ItindicatesthatforallF≠5/24thepatternsconsistoftwopartsonly,eitherofsegregatedBlueandGreenorofsegregatedGreenandmixedparts.ForF=5/25,themaximalvaluesofCarepositivebutfarbelowthe10%levelweacceptedascharacteristicofthecomplexpatterninFigure4c.Thenon-zeroC-indexobtainedforF=5/24characterizesessentialnon-smoothnessoftheboundarybetweenthesegregatedBlueandGreenareas.Thetypeofpatternasdependentonβ,FB,FG,isshowninFigure16c.Inatheoreticalstudy(BenensonandHatna2009)wehavedemonstratedthatforF∈(Frnd,β,Fsgr,β),incaseofthemixedpattern,thedistributionoftheGreenandBlueagentswithintheintegratedpartisrandom.Itisimportanttonotethatthefractionofminoritywithinthesepatchesisalwayshigherthanβ,growswiththegrowthofβandreaches0.5whenFapproachesFsgr,β.ThelatterexplainstheabruptchangefrommixedtosegregatedpatternwhenFpassesthethresholdvalueofFsgr,β.

Figure16.Thedependenceof(a)Moran'sIand(b)C-indexonFforβ=0.05,0.15,…,0.5andFB=FG=Fand(c)thesetsofparameterscharacteristicoftherandom,mixedandsegregatedpatternsinthehalfcube

Absolutelytolerantgroup(β∈(0,0.5],FG=0orFB=0)

4.11 Inthissection,weexaminethecaseinwhichagentsofonegroupsarecompletelytolerant.Westartbydescribingthecaseofequalsizegroups(β=0.5)andcompletelytolerantGreenagents(FG=0)and

http://jasss.soc.surrey.ac.uk/15/1/6.html 9 12/10/2015

Page 10: The Schelling Model of Ethnic Residential Dynamics

thendescribethecasewherethetolerantgroupiseitheramajorityorminority.

4.12 Thecaseofequalgroups(β=0.5)andcompletelytolerantagentsofoneofthegroupsisbrieflymentionedbyPortugalietal.(1997),whonotedthatdespitetheabsoluteneutralityofmembersofonegroup,theresidentialpatternsegregateswhenthetolerancethresholdoftheothergroupissufficientlyhigh.Oursimulationsessentiallyextendthisresult.Asabove,forgivenβ,wedenoteasFB,rnd,βthehighestvalueofFBthatentailsarandompatternandasFB,sgr,βthelowestvalueofFBthatentailsasegregatedpattern.

4.13 Figure17presentsthedependenceofMoran'sIonFBforthecaseofβ=0.5andFG=0andthepatternsforselectedvaluesofF.AccordingtoFigure17aFB,rnd,0.5=4/24andMoran'sI,valueincreaseslinearlywithfurtherincreaseofFBuntilFBreachesFB,sgr,0.5=13/24.UnlikethecaseofFG=FB,thereisnoabruptchangeinthelevelofsegregationwhenFBapproachesFB,sgr,0.5.ForFB∈[5/24,12/24]thepatternismixed.

4.14 ThecorrespondingpersistentpatternsareshowninFigure17b.PartoftheareaofthemixedpatternsisoccupiedexclusivelybythefullytolerantGreenagents,whilefewGreenagentsresidewithintheintegratedpartofthepatterns.TheBlueagentsavoidneighborhoodswheretheirfractionisbelowFB,and,thusthefractionoffullytolerantGreensresidingwithintheBlue-dominatedareasdecreaseswiththeincreaseinFB.ForFB=10/24,11/24and12/23,thepatternsslightlyfluctuateintime,becauseofthefewGreenagentsthatresidewithintheBluearea.However,theC-indexalwaysremainsbelow3%.

Figure17.CharacteristicsofmodelpersistentpatternforFG=0,β=0.5:(a)Moran'sIasdependentonFB;(b)persistentpatternsforselectedvaluesofFB

4.15 ThedependencesofMoran'sIandConβandFBforthecaseofabsolutelytolerantmajorityorminorityarepresentedinFigure18.Foratolerantmajority(Figure18c),adecreaseinβentailsadecreaseinFB,rnd,βandFB,sgr,β,butatdifferentratesandwiththelengthofthe(FB,rnd,β,FB,sgr,β)intervalthusincreasing.ThedependenceofMoran'sIonFGandβforthecaseofabsolutelytolerantBlueminorityispresentedinFigure18a.Inthiscase,thedecreaseinβresultsinthegrowthofbothFG,rnd,βandFG,sgr,βandareductionoftheintervalofmixedpatternstozerowhenβdecreasesto0.15.ThethreedomainsofparametersforbothcasesarepresentedinFigure18e.TheC-index(Figure18b,18d)isnon-zeroforthevaluesofFjustbelowthethresholdthatguaranteesfullsegregation,namelyFB,FG=10/2411/24and12/23.ThemodelpatternsforthesevaluesofFslightlyfluctuateintime.

Figure18.Moran'sIincaseofabsolutelytolerantmajorityorabsolutelytolerantminority:(a)absolutelytolerantBlueminority(FB=0);(b)absolutelytolerantGreenmajority(FG=0);(c)parameterscharacteristicoftherandom,mixedandsegregatedpatterns

4.16 PersistentpatternsforthecaseofabsolutelytolerantGreenmajorityandβ=0.3arepresentedinFigure19a(FB,rnd,0.2=3/24,FB,sgr,0.2=13/24).Justasforβ=0.5,withthegrowthofFBwithin(FB,rnd,0.2,FB,sgr,0.2),thefractionofabsolutelytolerantGreenagentsresidingwithintheBlue-dominatedareasdecreaseswiththegrowthofF,until,atFB=13/24,completesegregationisreached.Figure19bpresentstheseriesofpersistentpatternsforthecaseofabsolutelytolerantBlueminorityβ=0.3.Justasinthecaseofabsolutelytolerantmajority,thefractionofminoritywithinthemajority-dominatedareadecreaseswithanincreaseinFG,and,inparallel,thesizeoftheminoritypatchesincreases.

http://jasss.soc.surrey.ac.uk/15/1/6.html 10 12/10/2015

Page 11: The Schelling Model of Ethnic Residential Dynamics

Figure19.Model'spersistentpatentsforβ=0.3:(a)completelytolerantGreenmajority(FG=0);(b)completelytolerantBlueminority(FB=0)

4.17 Overall,thepersistentpatternsincaseofabsolutelytolerantminoritydonotdifferfromthoseobtainedforthecaseofabsolutelytolerantmajority.TheintervaloftheF-values,forwhichthesepatternsareproduced,becomesnarrowerandshiftstowardthehighervaluesofFwiththedecreaseinβ.

Generalcase

4.18 Tocompletethedescriptionofthemodelpersistentpatterns,letusconsidertheirdependenceonallthreeparameters:β,FBandFG.Wedothatforfourhorizontalcross-sectionsofthehalf-cubeatβ=0.05,0.2,0.35,and0.5.ThefoursurfacesofMoran'sIandCforFG≤17/24andFB≤17/24andcorresponding3Dillustrationofthefull(FB,FG,β)domainsproducingrandom,mixedandsegregatedpatternsarepresentedinFigure20.

http://jasss.soc.surrey.ac.uk/15/1/6.html 11 12/10/2015

Page 12: The Schelling Model of Ethnic Residential Dynamics

Figure20.(a)Moran'sIand(b)C-indexasdependenton(FG,FB)forFG≤17/24,FB≤17/24(forlargerFGorFBthepatternsarealwayssegregated)andβ=0.05,0.2,0.35and0.5(thecasesofFB=FGaremarked);(c)the3Dpresentationofthe(FB,FG,β)domainsproducingrandom,mixed,andsegregatedpatterns

4.19 Withtheincreaseinβ,thedomainof(FB,FG)valuesproducingmixedpatternsintheleft-topincreases.Thisdomainrepresentsthecaseofatolerantminoritygroupwhichbecomemorenumerousasβincreasesandthuscontributesmoretotheemergenceofmixedpatterns.Correspondingly,withtheincreaseinβthedomainof(FB,FG)valuesproducingmixedpatternsintheright-buttondecreasesasthenumberoftolerantmajorityagentsdecreases.The(FB,FG)domainbecomessymmetricacrosstheFB=FGwhenβreaches0.5.Thedomainofthe(FB,FG)valuesproducingtheintegratedpatternsislargestforβ=0.5andshrinkswiththedecreaseinβ;themixedpatternareagrowsatitsexpense.

4.20 Allthepersistentpatternsproducedinthe(β,FB,FG)domainarecharacterizedbyzeroorverylowvalueoftheC-index(figure20b).Thenon-zerovaluesofCareobtainedforvaluesofparametersthatlieontheboundaryofthedomainthatguaranteessegregation,namely,forthevaluesofFBandFGthatsatisfytheconditionFB+FG=10/24,11/24,12/24.ForthesevaluesofFBandFG,thepatternsfluctuateintime,andtheamplitudeofthefluctuationsoftheMoran'sIandC-indexdoesnotdependonβ.Forfew(FB,FG)pairsonthisboundary,theamplitudeofthefluctuationsreachesthelevelofFG=3/24,FB=7/24,β=0.5(Figure10).Wedeferinvestigationofthisphenomenatofuturework.

Discussion

5.1 OurversionoftheSchellingmodelisbasedontwoqualitativeassumptions:first,agentsaresatisficers,i.e.,theydonotdistinguishbetweenlocationswherethenumberoffriendsisabovetheirtolerancethreshold;second,therelocationrulesallowsatisfiedagentstomigratebetweenvacanciesofthesameutility.ThesatisficingprincipleisconsistentwithSchelling'soriginalformulation(Schelling1978),whiletherelocationrulesentailliquid-likedynamicsthatpreventpatternsfromstallinginastatewheresomeoftheagentsaredissatisfiedbecausenosatisfactoryvacanciesareavailable.

5.2 Wedemonstratedthatsatisficers,whocanrelocatebetweenneighborhoodsofthesameutility,remainrandomlydistributedinspaceiftheirdemandsforhavingfriendswithinneighborhoodsislow,segregateiftheirdemandsarehighandproducemixedpatternswhentheirdemandsforfriendswithintheneighborhoodareintermediate.Inthelattercase,thepopulationpatterndependsontheinvestigatedparameters:thefractionofminorityβandtheleveloftoleranceFBandFGoftheagentsofeachgroup.

5.3 Canwerelatetheseresultstothereal-worldpatternsasobservedinRamleandYaffo(Figures2-4)?Basically,yes:ArabhouseholdersareminoritiesinYaffoandRamleandempiricalevidencesuggeststhatmembersofArabminoritieslivinginmixedcitiesinIsraelaresomewhatindifferenttothepresenceofJewishneighborsintheirbuildingorinneighboringbuildings(Benensonetal.2002).WecanalsoassumethatIsraeliArabsandJewsaresatisficersinregardtotheethnicstructureoftheirresidentialneighborhoodsandprobablyuseadditionalcriteria,besidesethnicityofneighbors,whensearchingforadwelling.Ourresearchdemonstratesthatifthesetendenciescharacterizetheentirepopulationgroups,theresidentialdynamicsentailmixedpatternsthatareindeedobservedoverpartsofYaffoandRamle.

5.4 ThemodelgeneratedpersistentpatternsthatareconsistentwithtwoofthethreepatternspresentedinFigure4:segregatedpatternssuchastheonepresentedinFigure4a,andmixedpatternssuchastheoneinFigure4b.However,YaffoandRamlepatternsaremorecomplexthanthoseobtainedinthemodelscenariosinvestigatedinthispaper:theybothcontainmixedpartssidebysidewithsegregatedones,asisschematicallyrepresentedinFigure4c.Aswehaveshownabove,theSchellingmodeleveninextended,three-dimensional,parameterspacedoesnotproducesuchpersistentpatterns.Statedformally,withinthemodelframeworkthatweinvestigatedinthispaper,nomatterwhatthefractionofminorityortolerancethresholdsofthetwogroups,segregatedandmixedareascannotpermanentlycoexist.

5.5 ThepatternsinwhichsegregatedandmixedareascoexistemergeanddissolveperiodicallyforvaluesofFthatlieontheboundarybetweenthedomainsofparametersthatentailpersistentlysegregatedandpersistentmixedpatterns.Thesefluctuatingpatternsshouldbefurtherinvestigatedinordertoassesstheirrobustnesstothevariationinthemodelrules,especiallyifwefurthergeneralizethemodelandassumethattheleveloftoleranceamongGreenandBlueagentscanvary.

5.6 Apreliminaryinvestigationdemonstratesthatmorecomplexpatternsthanthoseobtainedinthispapercanindeedbeobtainedinthiscase,andthesepatternscontainoneintegratedandtwosegregatedregionsforarangeofparametersthatiswiderthanthatrevealedinthispaper.Webelievethatsuchageneralizationtakesthemodelclosertothereality.Indeed,theassumptionthatmembersofanethnicgroupareidenticalintheirattitudetomembersofanotherethnicgroupseemsartificialnomatterwhichgroupsareunderdiscussion.However,theonlyresultinthisrespectregardingArabsandJewsistheongoingempiricalstudybyOmeretal.(2012),whodemonstratethatJewsandArabsinYaffoessentiallyvaryintheirresidentialtolerancetothemembersoftheothergroup.

Acknowledgements

Theauthorswouldliketothanktheeditorandtwoanonymousreviewersfortheirhelpfulcomments.

References

ANSELIN,L.(1995)LocalIndicatorsofSpatialAssociation-LISA.GeographicalAnalysis27(2):93-115.[doi:10.1111/j.1538-4632.1995.tb00338.x]

BENARD,S.andWiller,R.(2007)AWealthandStatus-BasedModelofResidentialSegregation.TheJournalofMathematicalSociology31(2):149-174.[doi:10.1080/00222500601188486]

BENENSON,I.(1998)Multi-agentsimulationsofresidentialdynamicsinthecity.Computers,EnvironmentandUrbanSystems22:25-42.[doi:10.1016/S0198-9715(98)00017-9]

BENENSON,I.(1999)Modelingpopulationdynamicsinthecity:fromaregionaltoamulti-agentapproach.DiscreteDynamicsinNatureandSociety3(2-3):149-170.[doi:10.1155/S1026022699000187]

BENENSON,I.andOmer,I.(2003)High-resolutionCensusdata:asimplewaytomakethemuseful.DataScienceJournal(SpatialDataUsabilitySpecialSection)2(26):117-127.[doi:10.2481/dsj.2.117]

BENENSON,I.,Omer,I.,Hatna,E.(2002)Entity-basedmodelingofurbanresidentialdynamics-thecaseofYaffo,Tel-Aviv.EnvironmentandPlanningB.29:491-512.[doi:10.1068/b1287]

BENENSON,I.andHatnaE.(2009)TheThirdStateoftheSchellingModelofResidentialDynamics.arXiv:0910.2414v1[physics.soc-ph].

BENENSON,I.andHatna,E.(2011)Minority-MajorityRelationsintheSchellingModelofResidentialDynamics.GeographicalAnalysis.43:287-305.[doi:10.1111/j.1538-4632.2011.00820.x]

BRUCH,E.E.andMare,R.D.(2006)NeighborhoodChoiceandNeighborhoodChange.AmericanJournalofSociology112(3):667-709.[doi:10.1086/507856]

CLARK,W.A.V.(1991)ResidentialPreferencesandNeighborhoodRacialSegregation:ATestoftheSchellingSegregationModel.Demography28(1):1-18.[doi:10.2307/2061333]

CLARK,W.A.V.(1993)Searchandchoiceinurbanhousingmarkets.BehaviorandEnvironment:PsychologicalandGeographicalApproaches.T.GärlingandR.G.Golledge.Amsterdam,Elsevier/NorthHolland:298-316.

http://jasss.soc.surrey.ac.uk/15/1/6.html 12 12/10/2015

Page 13: The Schelling Model of Ethnic Residential Dynamics

CLARK,W.A.V.(2002)Ethnicpreferencesandethnicperceptionsinmulti-ethnicsettings.UrbanGeography23:237-256.[doi:10.2747/0272-3638.23.3.237]

CLARK,W.A.V.(2006)EthnicPreferencesandResidentialSegregation:ACommentaryonOutcomesfromAgent-BasedModeling.TheJournalofMathematicalSociology30(3):319-326.[doi:10.1080/00222500500544128]

CORNFORTH,D.,GreenD.G.andNewth,D..(2005)Orderedasynchronousprocessesinmulti-agentsystems.PhysicaD204:70-82.[doi:10.1016/j.physd.2005.04.005]

FLACHE,A.andHegselmann,R.(2001)DoIrregularGridsmakeaDifference?RelaxingtheSpatialRegularityAssumptioninCellularModelsofSocialDynamics.JournalofArtificialSocietiesandSocialSimulationvol.4,no.44(4)6:http://www.soc.surrey.ac.uk/JASSS/4/4/6.html.

FOSSETT,M.A.(2006a)EthnicPreferences,SocialDistanceDynamics,andResidentialSegregation:TheoreticalExplorationsUsingSimulationAnalysis.MathematicalSociology30(3-4):185-273.[doi:10.1080/00222500500544052]

FOSSETT,M.A.(2006b)Includingpreferenceandsocialdistancedynamicsinmulti-factortheoriesofsegregation.MathematicalSociology30(3-4):289-298.[doi:10.1080/00222500500544151]

FOSSETT,M.A.andWaren,W.(2005)OverlookedImplicationsofEthnicPreferencesforResidentialSegregationinAgent-basedModels.UrbanStudies42(11):1893-1917.[doi:10.1080/00420980500280354]

GETIS,A.,andOrd,J.(1992)Theanalysisofspatialassociationbyuseofdistancestatistics.GeographicalAnalysis24:189-206.[doi:10.1111/j.1538-4632.1992.tb00261.x]

GRIFFITH,D.(2010)TheMoranCoefficientforNon-NormalData.JournalofStatisticalPlanningandInference140,2980-2990.[doi:10.1016/j.jspi.2010.03.045]

KOEHLER,G.andSkvoretz,J.(2002)PreferencesandResidentialSegregation:ACaseStudyofUniversityHousing.http://web1.cas.usf.edu/MAIN/include/0-1201-000/casestudy.pdf.AccessedSeptember13th,2010.

LAURIE,A.J.andJaggi,N.K.(2002)PhysicsandSociology:NeighbourhoodRacialSegregation.SolidStatePhysics(India)45:183-184.

LAURIE,A.andJaggi,J.N.K.(2003)RoleofVisioninNeighbourhoodRacialSegregation:AVariantoftheSchellingSegregationModel.UrbanStudies40(13):2687-2704.[doi:10.1080/0042098032000146849]

LEE,S-I(2001)Developingabivariatespatialassociationmeasure:anintegrationofPearson'srandMoran'sI.JournalofGeographicalSystems3:369-385.[doi:10.1007/s101090100064]

MOORE,E.F.(1970)Machinemodelsofself-reproduction.InA.W.Burks,ed,EssaysonCellularAutomata,pages187-203.UnivofIllinoisPress.

OMER,I.(1996)EthnicResidentialSegregationasaStructurationProcess.UnpublishedPh.DThesis,Tel-AvivUniversity,Tel-Aviv.

OMERI.RomannM.andGoldblattR.(2012)ToleranceandGeographicScaleintheUrbanArea.SubmittedtotheJournalofUrbanAffairs.

POLLICOTT,M.andWeiss,H.(2001)TheDynamicsofSchelling-TypeSegregationModelsandaNonlinearGraphLaplacianVariationalProblem.AdvancesinAppliedMathematics27:17-40.[doi:10.1006/aama.2001.0722]

PORTUGALI,J.(2000)Self-OrganizationandtheCity.Berlin,Springer.[doi:10.1007/978-3-662-04099-7]

PORTUGALI,J.andBenenson,I.(1995)Artificialplanningexperiencebymeansofaheuristicsell-spacemodel:simulatinginternationalmigrationintheurbanprocess.EnvironmentandPlanningB27:1647-1665.[doi:10.1068/a271647]

PORTUGALI,J.,BenensonI.andOmer,I.(1994)Socio-spatialresidentialdynamics:stabilityandinstabilitywithinaself-organizedcity.GeographicalAnalysis26(4):321-340.[doi:10.1111/j.1538-4632.1994.tb00329.x]

PORTUGALI,J.,I.Benenson,Omer,I.(1997)Spatialcognitivedissonanceandsociospatialemergenceinaself-organizingcity. EnvironmentandPlanningB-Planning&Design24(2):263-285.[doi:10.1068/b240263]

SCHELLING,T.C.(1971).Dynamicmodelsofsegregation.JournalofMathematicalSociology1:143-186.[doi:10.1080/0022250X.1971.9989794]

SCHELLING,T.C.(1974)Ontheecologyofmicromotives.TheCorporatesociety.Marris,R.(ed).London:Macmillan:19-64.

SCHELLING,T.C.(1978)MicromotivesandMacrobehavior.NewYork,WWNorton.

SIMON,H.A.(1982)Modelsofboundedrationality.Cambridge,MITPress.

VINKOVIC,D.andKIRMAN,A.(2006)AphysicalanalogueoftheSchellingmodel.PNAS103(51):19261-19265.[doi:10.1073/pnas.0609371103]

ZHANG,J.(2004)Residentialsegregationinanall-integrationistworld.JournalofEconomicBehavior&Organization54:533-550.[doi:10.1016/j.jebo.2003.03.005]

ZHANG,T.andLinb,G.(2007)AdecompositionofMoran'sIforclusteringdetection.ComputationalStatistics&DataAnalysis51:6123-6137.[doi:10.1016/j.csda.2006.12.032]

http://jasss.soc.surrey.ac.uk/15/1/6.html 13 12/10/2015