12
Supporting information Optimizing the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao, a Marco Aurelio Liutheviciene Cordeiro, b Mingxing Gong, a Lili Han, c Jie Wang, a Ce Bian, a Jing Zhu, a Huolin Xin, b and Deli Wang a, * Table S1 The ICP-AES results of Pd 2 FeCo@Pt/C catalyst. Pd 2 FeCo@Pt/C Weight ratio Atom ratio Pt:Pd:Fe:Co-initial 2.7:100:23.0:25.5 1.5:100: 43.7:46.0 Pt:Pd:Fe:Co-ADT 3.1:100:21.7:23.5 1.7:100: 41.2:42.3 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Supporting information

Optimizing the Oxygen Reduction Reaction Activity of Pd Based

Nanocatalyst by Tuning Strain and Particle Size

Weiping Xiao,a Marco Aurelio Liutheviciene Cordeiro,b Mingxing Gong, a Lili Han, c

Jie Wang,a Ce Bian,a Jing Zhu,a Huolin Xin,b and Deli Wang a,*

Table S1 The ICP-AES results of Pd2FeCo@Pt/C catalyst.

Pd2FeCo@Pt/C Weight ratio Atom ratio

Pt:Pd:Fe:Co-initial 2.7:100:23.0:25.5 1.5:100: 43.7:46.0

Pt:Pd:Fe:Co-ADT 3.1:100:21.7:23.5 1.7:100: 41.2:42.3

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2017

Page 2: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Table S2 Comparison of MA at 0.9 V for Pd(Au)M@Pt and Pt/C extracted from

literature.

CatalystsMA at

0.9 VRHE

MA (Pt/C) at

0.9 VRHE

Electrolyte Refs

Pd@Pt2-3L 0.49 A mgPt-1 0.1 A mgPt

-1 0.1 M HClO4 1

Pd(core)-Pt(shell) 0.2 A mgPt-1 0.12 A mgPt

-1 0.1 M HClO4 2

Pd@Pt1L 0.35 A mgPt-1 0.12 A mgPt

-1 0.1 M HClO4 3

Pd@Pt 1.6 A mgPt-1 0.32 A mgPt

-1 0.1 M HClO4 4

[email protected] 0.8 A mgPt-1 0.16 A mgPt

-1 0.1 M HClO4 5

PtML/Pd9Au1 0.31 A mgPt-1 0.1 A mgPt

-1 0.1 M HClO4 6

Pd@Pt 1.56 A mgPt-1 0.081 A mgPt

-1 0.1 M HClO4 7

Pd3Au@Pt 0.94 A mgPt-1 0.203 A mgPt

-1 0.1 M HClO4 8

AuCu@Pt 0.56 A mgPt-1 0.098 A mgPt

-1 0.5 M H2SO4 9

AuCu@Pt 0.57 A mgPt-1 0.11 A mgPt

-1 0.1 M HClO4 10

Pd@Pt-Ni 2.5 A mgPt-1 0.2 A mgPt

-1 0.1 M HClO4 11

Pd8CoZn@Pt 2.18A mgPt-1 0.07 A mgPt

-1 0.1 M HClO4 12

Pd@Pt 0.24 A mgPt-1 0.1 A mgPt

-1 0.1 M KOH 13

AuCu@Pt 0.86A mgPt-1 0.088 A mgPt

-1 0.1 M KOH 14

Pd2FeCo@Pt 2.5 A mgPt-1 0.066 A mgPt

-1 0.1 M HClO4 This work

Pd2FeCo@Pt 5.4 A mgPt-1 0.048 A mgPt

-1 0.1 M KOH This work

Page 3: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Table S3 Comparison of key performance parameters for Zn-air batteries extracted

from literature.

CatalystsLoading(mg cm-2)

Peak power density

Electrolyte Refs

CuPt-NC 2.0 250 mW cm-2 6 M KOH 15 

Pb2Ru2O6.5 — 195 mW cm-26 M KOH + 0.2 M

ZnO16 

P,S-CNS 0.5 198 mW cm-2 6 M KOH 17

S-DGF — 300 mW cm-26 M KOH + 0.2 M

ZnCl218 

C–CoPAN900 1.0 125 mW cm-26 M KOH +0.2 M

ZnCl219

CoO/N-CNT+NiFe LDH/CNT

1.0 265 mW cm-26 M KOH + 0.2 M

zinc acetate20 

Co@NG-acid 1.0 350 mW cm-2 6 M KOH 21

CuFe alloy    212 mW cm-2  6 M KOH  22 

NiCo2S4/N-CNT 1.0 147 mW cm-26 M KOH + 0.2 M

ZnCl223

CoFe@NCNTs 1.0 150 mW cm-26 M KOH + 0.2 M

zinc acetate24  

Pd2FeCo/C 1.0 256 mW cm-26 M KOH + 0.2 M

zinc acetateThiswork

Pd2FeCo@Pt/C 1.0 308 mW cm-26 M KOH + 0.2 M

zinc acetateThiswork

 

Page 4: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Fig. S1 XPS curves of Fe on Pd2FeCo/C nanoparticles.

Fig. S2 Overview STEM image of PdFe/C nanoparticles.

Page 5: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Fig. S3 Overview STEM image of PdCo/C nanoparticles.

Fig. S4 XPS curves of Pd2FeCo/C nanoparticles.

Page 6: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Fig. S5 (a) The rotation-rate-dependent current-potential curves of Pd2FeCo/C. (b)

The Koutecky-Levich plots on Pd2FeCo/C at different potentials.

Fig. S6 (a) Mass activities and (b) specific activities at 0.85 V and 0.9 V, respectively.

Page 7: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Fig. S7 CV curves of Pd/C, PdFe/C, PdCo/C and Pd2FeCo/C in N2-saturated 0.1 M

HClO4 solution, sweep rate, 50 mV s-1.

Fig. S8 ECSA of Pd/C, PdFe/C, PdCo/C and Pd2FeCo/C catalysts.

Page 8: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Fig. S9 The relationship between specific activity and lattice constant (a), binding

energy (b) of Pd.

Fig. S10 ORR polarization curves of Pd2FeCo/C-300 and Pd2FeCo/C-500.

Page 9: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Fig. S11 XRD patterns of Pd2FeCo/C-300 and Pd2FeCo/C-500.

Fig. S12 (a) The rotation-rate-dependent current-potential curves of Pd2FeCo@Pt/C.

(b) The Koutecky-Levich plots on Pd2FeCo@Pt/C at different potentials.

Page 10: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

Fig. S13 CV curves of Pd2FeCo@Pt/C and Pt/C nanoparticles before and after 10,

000 cycles durability test in 0.1 M N2-saturated HClO4, sweep rate, 50 mV s-1.

Fig. S14 Specific capacities of the Zn-air batteries using Pd2FeCo@Pt/C and Pt/C as

ORR catalyst at current densities of 5 and 20 mA cm−2.

Page 11: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

References

1. J. Park, L. Zhang, S. I. Choi, ACS Nano, 2015, 9, 2635-2647.

2. L. Liu, G. Samjeske, S. Nagamatsu, J. Phys. Chem. C, 2012, 116, 23453-

23464.

3. S. Xie, S. I. Choi, N. Lu, Nano Lett., 2014, 14, 3570-3576.

4. X. Wang, M. Vara, M. Luo, J. Am. Chem. Soc., 2015, 137, 15036-15042.

5. X. Zhao, S. Chen, Z. Fang, J. Am. Chem. Soc., 2015, 137, 2804-2807.

6. K. Sasaki, H. Naohara, Y. M. Choi, Nat. Commun., 2012, 3, 1115.

7. H. H. Li, S. Y. Ma, Q. Q. Fu, J. Am. Chem. Soc., 2015, 137, 7862-7868.

8. H. Li, R. Yao, D. Wang, J. Phys. Chem. C, 2015, 119, 4052-4061.

9. G. Wang, B. Huang, L. Xiao, J. Am. Chem. Soc., 2014, 136, 9643-9649.

10. J. Yang, X. Chen, X. Yang, Energy Environ. Sci., 2012, 5, 8976-8981.

11. S. I. Choi, M. Shao, N. Lu, ACS Nano, 2014, 8, 10363-10371.

12. W. Xiao, J. Zhu, L. Han, S. Liu, J. Wang, Nanoscale, 2016, 8, 14793-14802.

13. K. Qi, W. Zheng, X. Cui, Nanoscale, 2016, 8, 1698-1703.

14. G. Wang, J. Guan, L. Xiao, Nano Energy, 2016, 29, 268-274.

15. V. M. Dhavale, S. Kurungot, ACS Catal., 2015, 5, 1445-1452.

16. J. Park, M. Risch, G. Nam, M. Park, T. J. Shin, S. Park, M. G. Kim, Y. Shao-

Horn, J. Cho, Energy Environ. Sci., 2017, 10, 129-136.

17. S. S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S. U. Lee, J.-H. Lee, ACS nano,

2016, 11, 347-357.

18. S. Patra, R. Choudhary, E. Roy, R. Madhuri, P. K. Sharma, Nano Energy,

2016, 30, 118-129.

19. B. Li, X. Ge, F. T. Goh, T. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu,

Y. Zong, Nanoscale, 2015, 7, 1830-1838.

20. Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, H.

Dai, Nat. Commun., 2013, 4, 1805.

21. M. Zeng, Y. Liu, F. Zhao, K. Nie, N. Han, X. Wang, W. Huang, X. Song, J.

Zhong, Y. Li, Adv. Funct. Mater., 2016, 26, 4397.

Page 12: The Royal Society of Chemistry · SupportingOptimizing information the Oxygen Reduction Reaction Activity of Pd Based Nanocatalyst by Tuning Strain and Particle Size Weiping Xiao,a

22. G. Nam, J. Park, M. Choi, P. Oh, S. Park, M. G. Kim, N. Park, J. Cho, J.-S.

Lee, ACS Nano, 2015, 9, 6493-6501.

23. X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, W. Hu, Nano Energy, 2016, 31,

541-550.

24. P. Cai, Y. Hong, S. Ci, Z. Wen, Nanoscale, 2016, 8, 20048-20055.