7
HWAHAK KONGHAK Vol. 39, No. 1, February, 2001, pp. 116-122 (Journal of the Korean Institute of Chemical Engineers) 116 III. * , * (2000 8 31 , 2000 12 13 ) The Removal of Aquacultural Wastes by Foam Separator from Sea Water III. The Effect of Superficial Air Velocity Byong-Jin Kim, Jung-Hoon Lee, Sung-Koo Kim*, Yong-Ha Kim, Gyeongbeom Yi and Kuen-Hack Suh Department of Chemical Engineering, *Department of Biotechnology & Bioengineering, Pukyong National University, Pusan 608-739, Korea (Received 31 August 2000; accepted 13 December 2000) , , , , . . , , stripping . 96% . Abstract - Experimental investigations on the effect of the superficial air velocity(SAV) on the removal of aquacultural waste, such as protein, total suspended solids(TSS), chemical oxygen demand(COD), turbidity and total ammonia nitrogen(TAN) from sea water were carried out by using a foam separator. The foam separator as an aerator was also evaluated for increasing dissolved oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased protein enrichment ratio. The changes of removal rates and efficiencies of TSS, COD and turbidity were similar to proteins. TAN was removed by stripping. Dissolved oxygen(DO) saturation of the effluent from the foam separator was higher than 96.6%. Key words: Foam Separation, Superficial Air Velocity, Aquacultural Waste, Protein, TSS, COD, Turbidity, TAN, DO E-mail: [email protected] 1. - . [1] [2] [3] [4] . [5]. , [6-9] . [10]. [11], [12] . , , , , . 2. 2-1. Fig. 1

The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001, pp. 116-122(Journal of the Korean Institute of Chemical Engineers)

������ �� �� � �� ��� ��III. ������ ��

����������*������ ����†

����� �����, *���(2000� 8� 31 ��, 2000� 12� 13 ��)

The Removal of Aquacultural Wastes by Foam Separator from Sea WaterIII. The Effect of Superficial Air Velocity

Byong-Jin Kim, Jung-Hoon Lee, Sung-Koo Kim*, Yong-Ha Kim, Gyeongbeom Yi and Kuen-Hack Suh†

Department of Chemical Engineering, *Department of Biotechnology & Bioengineering, Pukyong National University, Pusan 608-739, Korea

(Received 31 August 2000; accepted 13 December 2000)

����� ���� �� � �� �� ���, �� ���, ��� �� � !, "#, $%&'( ��) *+ ,

� -��� .� �/012 �3 � �4���#� 5�6 78 ,� -��� �/ 9(2 :; <=> �����

?@�� �A BC2 :; <D. �4���#� EF6 7G ���� �/�#) �/H+ EF <=I JKLM N�

<D. O �� ���, "#, ��� �� � !� �/�#) �/H� 5�M ���P �Q <=> $%&'( ��M

stripping RP6 �� �/STD. U VW6 Q?X ����M 96% Y�� Z+ ?@�� ��H2 I[\TD.

Abstract − Experimental investigations on the effect of the superficial air velocity(SAV) on the removal of aquacultural waste,

such as protein, total suspended solids(TSS), chemical oxygen demand(COD), turbidity and total ammonia nitrogen(TAN) from

sea water were carried out by using a foam separator. The foam separator as an aerator was also evaluated for increasing dissolved

oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased protein

enrichment ratio. The changes of removal rates and efficiencies of TSS, COD and turbidity were similar to proteins. TAN was

removed by stripping. Dissolved oxygen(DO) saturation of the effluent from the foam separator was higher than 96.6%.

Key words: Foam Separation, Superficial Air Velocity, Aquacultural Waste, Protein, TSS, COD, Turbidity, TAN, DO

†E-mail: [email protected]

1. �

������� � � � � ���� ���� ���� ��

��� ���� �-� �� ���� !� "#� "$�% �&

' ()* ���� +� ,-( . ������� ./� 0"#�

12��' 3"#� 4�,%5 67 892(:[1] ; ����� <

= >?@A( BC,D >?( )(,3 <)( 0E, % F��[2]

GH�% �)� +� IJKL[3]- MNO PI�� KL[4] Q9 R

� �S� T)�3 U .

�N� �= VW,% PI� + XY ��� ���Z ���[

\] �^% _@2 `��� a= ��K bc' ,D d#� �

�K[ e�,^ fg# ����[ �hc � U#i =j [5].

([ (),D k�. lm� + �N� M=* ��� n� �X��

o ����p( q( r_, 2)��^3 U�-[6-9] st�� r_%

u�[ sv�� ,3 U�: 7� -w�x yz,% =�[ sv�

� ,% r_% L� {% |�( .

�}��~#% �� ���' �,D ��% �� �� ~#�x �

� ���' �,D ��% ��� �2M~9 ���� X2� <

�o -;O�� [10]. �}��~#% �� ��p�x �. +�*

>? a� +� ,-� ����� �* XY 4�[11], �W� 4�

[12] Q� r_�x# �� >?a�� r_��� .

� r_�x% ��tv� �����[ K�,D =� ~� XY ,

tM 3��, C�2 �� �_�, �#, ���g� �Z R� k� �

��� r~ KL>?' �h,D �}��~#� �� k� ���� K

L ̀ �' ��,��: ������ )��� �� ��' ��,� .

2. �

2-1. ����

� r_�x K�,D �)* ���� |�. % Fig. 1�x �%

116

Page 2: The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

�� ����-���� � 117

l

¡Z R( ��Z )� M��( ¢£,% ���� ¤¥�% separation

column9 XY ' ¦§* ��( ��Z ���3 ¨� L©�x A

@* L©�� "$�% foam riser� ª��a �«� O¬ 5 cm, !

( 50 cm� acrylic pipe[ �),D K�,��: ���� )2� 1 L

� .

Foam riser�t­ M®¯ ��' �°,D ªt% �� ~�� ±l

m²³3 ªt% ´�� �®²³% foam collector% O¬ 5 cm, !(

10 cm� acryl pipe� O¬ 2 cm� µ¶�' �= ��( M¶�#i K

�,� . M¶�9 M®�� 2 cm acrylic pipe[ �),� .

����� ,t�% ��¯ M� D9�(G3, pore size: 3-15µm)[

()* �����[ ¢·²¸ ��� �3 ¹ª,º VW,D ���

�* ��8»( Gs� ¼ � Uº ,� . ��� ��� ��½¾[

(),��:, �� M�� ��½¾� needle valveZ M��� @¿À

Á[ (),D @¿,� .

|��% ��½¾[ (),D � vt�x ª�* M��� ��

,3, n��% ,t�x M®�#i ,��: ��% }� ,t�x

��\��o &N� ¢£' M#,� .

2-2. ���� � �

|��% |K k��Z M�,#i ,� Ã,D =�� t¬s�Ä

t~ lmD9� k�.�x VW* k� ���' ÅƲ¸ |�� �

),� . |�� K@� �)* =�% t�^b ǰ� ���% F

��x XY ��� �®�^ fÈ . |��� � � Table 19 R

�: B#Z pH% ÉÉ 26Ê1 oC, 7.9Ê0.1(Ë .

|�� ���2 �N²Ì' 2.05 min�� 3�,3 ��[ 500, 1,000,

1,500, 2,000, 2,500 mL/min�� ÍC²¸ ��,��: ÉÉ� �} �

�M~� 0.424, 0.85, 1.27, 1.70, 2.12 cm/sec(Ë .

2-3. ��

|�� K@� �)* �� "$�� XY "#� �Æ� Lowry’s

method[13][ (),��: =�+� XY � "# �� UV280

method[14][ (),D �h,� . ΠtM3��� standard method

[15]� �w GF/CD^� D9* Ï I�(B( �®�^ f' ÐÑ^

ÒN�� ÓÔ,D �Æ,� . C�2 �� �_�� ÕÖ�� KMnO4

p[16]� �w ²J ×Ø Ù² �Æ,��: �#� �Æ� �#�

(HACH, 2100AN)[ (),� .

Î ���g� �� �Æ� ���g (B yÚ� ?Û(ORION Re-

search Inc., 9512BN)( tܯ Ion meter(ORION Research Inc., Mode

720A)[ (),D (B yÚ� ?Ûp[15]� �= �Æ,� . )��

�% )��� ���(YSI Inc. Model 52)[ (),D M¶�� "#

[ ��* Ï M®�� "#% 30Ý ÌÞ�� r~ ��,D �vv«

�x� ß¹à' Ø,� . É ²J� ¶# ��% 100µm� aperture[

()* ¶# �Æ�(COULTER Electronics, COULTER MULTISIZER

II)[ �),D ��,� .

2-4. �� ��

XY , tM 3��, C�2 �� �_�, �#, ���g� � Q

� KL~#% M¶�Z M®�� É ��� "#Z �� VW�' �

�,D � (1)[17]' (),D ��,� .

(1)

D�x −ra% É ��� KL~#(g/m3ámin â% NTU/min), Ci,aZ

Co,a% É ��� M¶� ã M®�� "#(g/m3 â% NTU)(: Qi%

M¶�� M�(m3/min)(: Qf% ������x VW�� M®¯ �

�� M�(m3/min)( . V% ������ ��� )2(m3)( .

������ Îä )��� ?å ��% � (2)[ (),D _,� .

(2)

D�x KLa% Îä )��� ?å ��(min−1), τ% ���2 �N²

Ì(min), Ci,DO% M¶�� )��� "#(g/m3), Co,DO% M®�� )�

�� "#(g/m3)(: Cs,DO% )���� �C"#(g/m3)( .

3. �� � ��

3-1. ��� ���� ��

XY � ���Z ���[ �æ �^3 U% _@2 `ç�� a=

�á� �� "$�º �:[18] d#� ��K[ e�,^ f3

# ����[ ��,º =j [7]. =�� k�.�x XY � �N�

�� ̄�J + �N� èØ,^ é* 9ê� �J- ��� �\��

U% �N� �C,^ é* XY ( lm�� )®�� VW* . �

�@� ¬7�% d#� �J% ��,^ f�- �@� �)¯ �N�

x �®�% ��9 �� ë� /� � �= VW* . XY ��

ra

Ci a, Qi⋅ Co a, Qi Qf–( )⋅–V

--------------------------------------------------------=–

KLa 1τ---

Co DO, Ci DO,–( )Cs DO, Co DO,–( )

------------------------------------⋅=

Fig. 1. Schematic diagram for the removal of aquacultural waste fromsea water by using foam separator.1. Separation column 17. Foam outlet2. Foam collector 18. Feeding tank3. Air distributor 19. Mechanical stirrer4. Liquid inlet 10. Peristaltic pump5. Air inlet 11. Air pump6. Bulk outlet 12. Rotameter

Table 1. Water quality of feeding sea water

Component Concentration

Salinity 30.00%Protein 27.61 g/m3

Total suspended solid 57.33 g/m3

Turbidity 26.87 NTUChemical oxygen demand 18.08 g/m3

Total ammonia nitrogen 10.72 g/m3

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001

Page 3: The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

118 �����������������������

� XY � � ��� �W�� �= �N� s* ì�( !� ��

�g� �=�:[19] �� �_�' Ò�²¸ í~* KL� �_¯ .

Fig. 2% �}��~#� XY KL~# ã KL»� � % î&'

-;ï F( . ðñ�x �% ¡Z R( �}��~#� 0.42 cm/sec

�x 2.12 cm/sec� Ò�\� <ò,D XY � KL~#Z KL»�

4.04 g/m3ámin, 30.0%�x 10.43 g/m3ámin, 77.3%� Ò�,� . ð

ó- �}��~#� 5� Ò�\� <= XY KL~#% 2.5�� Ò

�,% F�� �g �}��~#� Ò�ô� KL~#� Ò�ô(

�� F�� -;õ .

�}��~#� Ò�\� �w KL~#Z KL»( ¦§,D Ò�

,% F� �}��~#� Ò�\� �w �á� � 2( Ò�,

3 (� a= öÜ�% XY � k( Ò�,% ÷v[11, 20, 21]� �

* F�� Wɯ .

�}��~#� Ò�ô� <= XY KL~#� Ò�ô( �� F

� ø·2a ùa� �* F�� �}��~#� Ò�� �� �á�

�� Ò�� �w öܼ � U% öÜ�% XY � k( Ò���

)� ~� XY "#� ú��û� (� �w �� �á� 2ü ö

Ü�% XY � k( ú��% ÷v[21]� �* F�� Wɯ . â

�}��~#� Ò�, ��Ì� L�� ýgþ Dó ��( x� ·

 �� ��� ÿ�� �^º �û� ���� Ò�� <= �á� �

� 2( <ò,D Ò�,^ f% ÷v[20]� �* F�� �J¯ .

Fig. 3� �}��~#� ÍC� �� �� W�~#Z M¶�� XY

"#Z ��� XY "#� <a "$<� ÍC[ -;ï F( .

ðñ�x �D^% F9 R( �� W�~#% �}��~#� Ò�\

� �w Ò�,% F�� -;õ�: �� W�~#� Ò�ô� �}

��~#� ��i � �^% F�� -;õ . ðó- "$<% �}

��~#� Ò�\� �w P�� ú��% F�� -;õ .

�}��~#� Ò�� �w ��� W��( Ò�,3 "$<� ú

�,% F� ���% ���� Ò�� �w ��� M® ~#� �w

þx ��( "$t�x ¦§ ��Z ��� ���^ é,D �� ~

� �� ¦§�( Ò�,% ÷v�� (� a= ��� "## ú�,

% F�� �J¯ .

�������x !� KL~## +�,- �}��~#� ��

�* KL~#� Ò�% �®�% ���� Ò�� �* F�� PI

�' 3"#� KLc � {�û� !� "$<[ �% F# +�, .

ðóû� !� KL~#[ �3�,D �}��~#[ Ò�² ¬7

��' ��� "$c � U#i foam collector� �Ì' Ò�²¸S

c F�� Wɯ .

3-2. � �� ��� ���� ��

=��x �N� �= VW,% 3�� + �èØ �J- ��� �

= VW,% Î tM� 3��� ��� g��� ¢2a �Þ' �

L- )���� ?å' �=,D �� s* 0 �' �C² �

U� Ð�� �N� W��� ¢2a î&' �� � U [22]. 3�

�� "#� !' ¬7 W��2 �C . � biofouling' MV,D

���g KL ~#[ ú�² �# U3[19], 3��� st�� M

�� 3��� XY ��' \M,3 U� Ù² KL,^ f3 � 

c ¬7 �W�� �= �N� M=* ���g[ VW²³û�[22] k

�. lm� +� 3��� KL% 67 +�, .

Fig. 4% �}��~#� Î tM 3��� KL~# ã KL»� �

 % î&' -;ï F( . ðñ�x �% ¡Z R( �}��~#�

Ò�� �� KL~#� ÍC% XY KL~#� ÍCZ L� ¦ª

* ¬&' -;OË . �}��~#� 0.42 cm/sec�x 2.12 cm/sec�

Ò�\� �w Î tM 3��� KL~#Z KL»� 16.63 g/m3ámin,

59.4%�x 24.39 g/m3ámin, 87.0%� Ò�,� . Î tM 3��� K

L~#� XY KL~#Z M�,º �}��~#� î&' �% F

� ����[ MV,% ��( XY (3 tM 3��� �á� �

� öܯ XY � (B2�� öÜ�� KL�% ��[23]� rM

* ÷v� �= �á� �� öÜ�% XY � Ò�� <ò,D K

L�% 3��( Ò�,� Ð�a F�� �J¯ .

Fig. 5% �}��~#� ÍC� �� M®� "#Z KL~#� Î

Fig. 2. The changes of protein removal rate and removal efficiency onsuperficial air velocity.

Fig. 3. The changes of foam generation rate and enrichment ratio onsuperficial air velocity.

Fig. 4. The changes of TSS removal rate and removal efficiency onsuperficial air velocity.

���� �39� �1� 2001� 2�

Page 4: The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

�� ����-���� � 119

tM 3��/XY <� ÍC[ -;ï F( . ðñ�x �% ¡Z R

( M®�� Î tM 3��/XY "#<% 1.16-1.47� �Ã� L�

ª�,º -;õ�: KL~#� <% �}��~#� 0.42 cm/sec�x

1.27 cm/sec� Ò�\� �w 4.44�x 2.44� ú�,��- ð (v�

�}��~#� s=x% 2.34-2.51� �Ã�x L� ª�* F�� -

;õ .

M¶�� Î tM 3��/XY "#<% 2.08(Ë�: (� <= M

®�� "#<� � �º -;-% F�� �g �á� �� öÜ K

L�% XY � Xà �ü Î tM 3��� k( � ÿ % F'

Õ � UË . �}��~#� Ò�\� �w Î tM 3��/XY K

L~#� <� ú�,% F� M¶� ~� �±,% 3��( XY

9 �·,D KL¼ � U% k � �gx -;-% ÷v�� XY

KL~#� Ò�c�i (� ¦§,D KL¼ � U% 3��� k(

t�=^� Ð��� WÉ�: � q� 3��( M¶��w# ��

* KL� (�� F�� �J¯ .

3-3. �� ���� ��

�#% �' ��º ,% ��' Î�,% F�� 1 µm (,� tM

3��9 ��� )� � # �æ �\,: �� ��#[ ��,%

Ô#(:[24] k�.�x% 60 g/m3(,� "#[ �.,3 U [25].

Fig. 6� ÉÉ �}��~#� ÍC� �� �# KL~# ã KL»

� ÍC[ -;ï F(: Fig. 7� M®�� �#/XY "#<Z K

L~#� �#/XY <� ÍC[ -;ï F( . ðñ�x �D^%

¡Z R( �}��~#� Ò�� �� �#� KL» ã KL~#�

ÍC% Î tM 3��� KL~# ã KL»� ÍCZ L� M�*

�«� -;õ . ̀ � �}��~#� 0.42 cm/sec�x 2.12 cm/sec�

Ò�\� �w Î tM 3��� KL»( 59.4%�x 87.0%� Ò�

* F9 L� M�,º �#� KL»# 60.2%�x 90.3%� Ò�,

D L� ¦ª* KL»' -;O% F�� -;õ . (F�� �g �

#[ MV,% � + vüt�' Î tM 3��( �^,% F��

Wɯ .

Fig. 7�x �% ¡Z R( M®�� �#/XY "#<% �}��

~#� 0.42 cm/sec�x 2.12 cm/sec� Ò�\� �w 0.55�x 0.41�

ú�,% F�� -;õ�: KL~#<% Î tM 3��� XY K

L~#� s* <Z <Äc Ð 50% �#� � [ -;OË .

3-4. �� ��

Fig. 8� M¶�Z É �}��~#� ÍC |��x ��� M®��

¶¬ ¬d ¶# ��(a) ã �2 ¶# ��(b)Z ¶� ¬d KL»

� ÍC(c)[ -;ï F( . ðñ�x �% ¡Z R( M¶�Z M®�

� ¶# ��% ¶� "#� ¿sà� �(� U�- ð �«% L� ¦

ª,º -;õ�: ¶�% 0-15µm� �Ã�x ��,��: 2.632µm

a ¶�� �^,% �»( �. � F�� -;õ .

¶� ¬� ÍC� �� ¶�� KL»� ÍC% ?�2�� � �

(% {Ë�- 0.84 cm/sec(v� �}��~#� s=x% ¶¬( �

�i, 0.42 cm/sec� �}��~#� s=x% ¶¬( �'�i KL»

( !� F�� -;õ . (ó* ÷v� �}��~#� 0.42 cm/sec

ª ¬7 v ,% ��� �= VW,% t�( +�� �* !"��

�g ¥L> ¶�� KL»( #�^- 0.84 cm/sec(v� �}��

~#� s=x% t�� �* î&( � ÿº �),D ¬( � ¶�

� KL»( Ò�,% F�� Wɯ .

Fig. 9% �}��~#� ÍC� �� �$ ¶�� KL»9 Fig. 8�

x -;% ¶# �� + �. � �»' �^,% 2.632µm� ¬'

�^% ¶�� KL»' #²* F( . ðñ�x �% ¡Z R( �}

��~#� 0.42 cm/sec�x 2.12 cm/sec� Ò�\� �w ¶�� KL

»# 73.1%�x 93.8%� Ò�,��: 2.632µm¶�� KL»� Î

¶�� KL»9 M�2a �([ �(^% fÈ . (F�� �g ?

�[17]�x -;% ¡Z R( 2.632µm� ¬' �^% ¶�[ ¶�

� KL`�� U� ?�¶�� s* së¬�� �)c � U&'

Õ � UË .

Fig. 5. The concentration ratio of TSS to protein of effluent(Co) and theremoval rate ratio of TSS to protein.

Fig. 6. The changes of turbidity removal rate and removal efficiency onsuperficial air velocity.

Fig. 7. The concentration ratio of turbidity to protein of effluent(Co)and the removal rate ratio of turbidity to protein.

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001

Page 5: The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

120 �����������������������

3-5. �!" �# $%& ���� ��

�èØ �J�x )®�L- �� O�x '?� �=�^ fg VW

,% )� M��� "#� !' ¬7 ;�îk� �W�� W.' £

�²¸ )���[ ú�²³3 ;�îk� �W�� ªt% �ù¹�

� �N�º �' MV²³�# * [26].

)� M�� "#� ^ë�x C�2 �� �_�' ��,D �}�

�~#� ÍC� �� �� ���� KL ~# ã KL»' Fig. 10�

#²,� . ðñ�x �D^% ¡Z R( �}��~#� Ò�\� �

� C�2 �� �_�� KL~#Z KL»� ÍC% (x -;% X

Y (- tM 3��� KL ~#Z R( Ò�,% F�� -;õ .

(% XY ( C�2 ���_�' Ò�²³% M��(3 �N� �

= VW,% tM 3��� vü t�( M�� 3��a F[22]� �

* ÷v�� Wɯ .

Fig. 11� �}��~#� ÍC� �� M®�� "#Z KL~#�

C�2 �� �_�/XY <� ÍC[ -;ï F( . ðñ�x �%

¡Z R( M®�� C�2 �� �_�/XY "#<% �}��~#

� 0.42 cm/sec�x 2.12 cm/sec� Ò�\� �w 0.79�x 0.95� Ò�

�Ë�: KL~#� <% 3��� ¬7Z% §s� 0.35�x 0.57�

Ò��Ë .

M¶�� C�2 �� �_�/XY "#<� 0.66a F9 <Äc Ð

M®�� "#<� � !� F�� �g ����� �= KL�% M

��� �»� XY � <= ��:, (% XY 9 3��()� )

� M��� XY � <= öÜ�( �,D �á� �� q( öÜ

�^ é,� Ð��� Wɯ . C�2 �� �_�/XY � KL~

#<� �}��~#� Ò�c�i �^% F� XY � <= öÜ�

( �,D öÜ�^ é* )� M��( �á� �� Ò�� �w X

Y � /M�^ f� �� Ò�� � q( öÜ�Ë� Ð���

�J¯ .

3-6. '()*+ �# ���� ��

�}��~#� ÍC� �� �� ���� ���g� �� KL

~# ã KL»' Fig. 12� -;OË . Fig. 12�x �D^% ¡Z R

( ���g� �� KL~#Z KL»� �}��~#� Ò�\�

Fig. 8. The changes of the differential particle distributions(a), the cumu-lative particle distributions(b) and the particle removal efficiency(c)on superficial air velocity.

Fig. 9. The changes of particle removal efficiency on superficial air velocity.

Fig. 10. The changes of COD removal rate and removal efficiency onsuperficial air velocity.

Fig. 11. The concentration ratio of COD to protein of effluent(Co) andthe removal rate ratio of COD to protein.

���� �39� �1� 2001� 2�

Page 6: The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

�� ����-���� � 121

�w �Þ� Ò�,% F�� -;õ .

�+� ���g% <(B� ���g(NH3)Z (B� ���g(NH4+)

�«� ß�' (�3 U�: B#Z pH� �w �± <»( åw� .

����� �* ���g� KL% <(B� ���g� ¬7 stripping

89� �= KL�3[24] (B� ���g� ¬7 �á� �� ö

ܯ �� � + &(B� � � �?�2�� t�% ��

[23]� �= KL¯ . �?�2 tÜ� �* ���g KL% �� O

&(B� Ò�� ¦§��S KL~#� Ò�,3, stripping� �* �

��g KL% �á� �� 2� <ò,º ¯ [24]. � r_�x

���g� �� � ��*� �}��~#� î&' ÿº �%

F�� �g stripping� �* ���g� KL� �?�2 t� �*

KL� � � F�� �J¯ .

Fig. 14% M®� "#Z KL~#� ���g� �/XY <� Í

C[ -;ï F��x M®�� ���g� �/XY "#<% 0.42

cm/sec�x 2.12 cm/sec� �}��~#� 5� �\� �w 0.036�

x 0.056�� 1.5� �# ���: KL~#� <% 0.004�x 0.017

� 3.5�� � ô�� Ò�,� .

KL~#� ���g� �/XY <� � ��*9% å� � ô

�� Ò��% F� ���g� KL� XY � öÜ� % stripping

� �= ì+2�� KL�% F( � q % F' -;O% ÒLw3

, � U .

3-7. ,-�# ./ 01 ��

�+ W�� W�' M^,� Ã= ��* )���[ -�� ,:

`� =��� ¬7 )���� t�� 67 .ú,3 u�� � �

!� )���[ -�� * [25]. �wx =��� s* )���� �

�� 67 +�,: �� �� . % )��� ���# !� 8»'

-;ï [6, 7, 26].

Fig. 14% �}��~#� ÍC� �� M¶�Z M®�� )���

"# ÍCZ Îä �� ?å �� KLa[ -;ï F( . Îä �� ?

å ��% �/ �-� ¢£. � @A' së,% � �x ð à(

��i ��� ?å8»( !&' -;ï [23].

ðñ�x �% ¡Z R( �}��~#� Ò�� �� Îä �� ?

å��� ÍC% XY KL~#, ���g KL~# Q9 L� M�

* �«� Ò�,% F�� -;õ . (% �}��~#� Ò�\�

�w ���% ��Z �á� �� 2( Ò�,D �� ~� )�

��� ���� � q( ?å�� -;-% ÷v[27]�� Wɯ .

� r_� �9 2.05 min� 0� ���2 �N²Ì�x M¶�� )

��� �C#� 56.5-58.5% �#� �º ��1�# 2_,3 M®�

� 96.6-99.1%� !� )��� �C#[ -;O% F�� �g ��

�� . % XY , tM3��9 R� k� ���' KL\9 ¦²

� �N� 3 -�* )���[ 8»2�� ��c � U% ô�. 

�# �)¼ � U&' Õ � UË .

4. � �

� r_�x% ��tv� �����[ (),D �}��~#� Í

C� �� =� ~� XY , tM 3��, C�2 �� �_�, �#,

���g� �Z R� k� ���� r~ KL>?' �h,D

&9 R� �9[ �Ë .

(1) �}��~#� Ò�\9 <ò,D XY KL~# ã KL»�

�,��: �}��~#� 0.42 cm/sec�x 2.12 cm/sec� �\�

�w XY � KL~#Z KL»� 4.04 g/m3ámin, 30.0%�x 10.43 g/

m3ámin, 77.3%� Ò�,� .

(2) �� W�~#% �}��~#� �\� �w �,% F��

-;õ�- M¶�� XY "#Z ��� XY "#� <a "$

<% ú��% F�� -;õ .

(3) Î tM 3��, �#, C�2 �� �_�� KL~# ã KL»

� ÍC% XY ��9 M�* ¬&�� -;õ .

Fig. 12. The changes of TAN removal rate and removal efficiency onsuperficial air velocity.

Fig. 13. The concentration ratio of TAN to protein of effluent(Co) andthe removal rate ratio of TAN to protein.

Fig. 14. The changes of overall oxygen mass transfer coefficient andsaturation efficiency on superficial air velocity.

HWAHAK KONGHAK Vol. 39, No. 1, February, 2001

Page 7: The Removal of Aquacultural Wastes by Foam Separator from ... · oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein, but, decreased

122 �����������������������

ca-

o,

o,

n

for

,

ey,

.),

an-

M.

sign

cul-

rk

n-

n-

(4) ¶� ¬� ÍC� �� ¶�� KL»� ÍC% 0.84 cm/sec(

v� �}��~#� s=x% ¶¬( ��i, 0.42 cm/sec� �}��

~#� s=x% ¶¬( �'�i KL»( !� F�� -;õ .

2.632µm� ¬' �^% ¶�[ ¶�� KL`�� U� ?�¶��

s* së¬�� �)c � U&' Õ � UË .

(5) ���g� �% stripping� �= KL��: !� �}��

~#�x � q� ���g� KL�Ë .

(6) �}��~#� Ò�� �w Îä �� ?å��� Ò�,��:

96.6%(v� !� �C»' -;OË .

�42�� � r_� �9 =� ~� k� ���� �±,% XY

��' (),% ������� XY , tM3��9 R� k�

���' KL\9 ¦²� )��� ��. �# �)¼ � UË�:

�}��~#� �c�i PI�� KL~#Z )��� ?��

Ò�,� .

����

−r : removal rate [g/m3ámin or NTU/min]

Q : flowrate [L/min]

C : concentration [g/m3 or NTU]

KLa : overall mass transfer coefficient [min−1]

2345 6�

τ : hydraulic residence time [min]

78�

a : component

f : foam state

i : influent

o : effluent

s : saturation state

� �

� r_% =k��5Vù�x ²h* 19996 ���7 5V �8�

�=x �h�Ë�:, (� ��� Dó�] ú�9+� .

����

1. Clarke, A. N. and Wilson, D. J.: “Foam Flotation,” Marcel Dekker,

INC, New York, 53(1972).

2. Rubin, E.: in M. P. Freeman and J. Fitz Patrick(Eds.) “Foam

Fractionation - Some Recent Studies. In Theory, Practice, and Pro-

cess Principles for Physical Separations,” Proceedings of the Engi-

neering Foundation Conference, Engineering Foundation, New York,

USA(1981).

3. Lemlich, R.: in R, Lemlich(Ed.) “Adsorptive Bubble Separation

Techniques: Principles of Foam Fractionation and Drainage,” A

demic Press, New York, 33(1972).

4. Choi, Y. H., Lee, J. D. and Choi, S. J.: HWAHAK KONGHAK, 35, 63

(1997).

5. Cho, D. and Chang, H. N.: Korean J. Chem. Eng., 15, 445(1998).

6. Suh, K. H. and Lee, M. G.: J. Korean. Fish. Soc., 28, 599(1995).

7. Chen, S.: Aquacultural Engineering, 13, 183(1994).

8. Suh, K. H., Lee, H. G., Kim, B. J., Cho, M. C., An, S. H. and Ch

J. Y.: J. Korean Environmental Science, 7, 41(1998).

9. Weeks, N. C., Timmons, M. B. and Chen, S.: Aquacultural Engineer-

ing, 11, 251(1992).

10. Suh, K. H., Lee, M. G., Lee, M. S., Kim, B. J., Kim, E. J. and Ch

M. C.: J. Korean Fish. Soc., 30, 334(1995).

11. Brown, A. K., Kaul, A. and Varley, J.: Biotechnology and Bioengineer-

ing, 62, 278(1999).

12. Suh, K. H., Shim, H. K. and Yun, J. W.: Kor. J. Biotechnology and

Bioengineering, 11, 46(1996).

13. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.:J.

Biotech., 193, 265(1951).

14. Bollag, D. M. and Edelstein, S. J.: “Protein Methods,” Wiley-Liss,

New York, 46(1991).

15. APHA, AWWA and WEF: “Standard Methods for the Examinatio

of Water and Wastewater,” 18th ed., EPS Group(1992).

16. Korean Institute of Industry and Technology: “Standard Methods

the Examination of Environmental Pollution,”(1990).

17. Suh, K. H., Kim, B. J., Bong, S. H., Lim, J. H., Kim, Y. H. and Kim

S. K.: HWAHAK KONGHAK, 38, (2000).

18. Cho, D. and Cornee, M.: Korean J. Chem. Eng., 16, 371(1999).

19. Wheaton, F. W., Hochheimer, J. N., Kaiser, G. E., Klones, M. J., Lib

G. S. and Easter, C. C.: in M. B. Timmons and T. M. Losordo(Eds

“Aquaculture Water Reuse System: Engineering Design and M

agement: Nitrification Filter Principle,” Elsevier, Amsterdam, 101(1996).

20. Urizee, F. and Narsimhan, G.: Biotechnology and Bioengineering, 51,

384(1996).

21. Urizee, F. and Narsimhan, G.: Separation Science and Technology,

30, 847(1995).

22. Chen, S., Stechy, D. and Malone, R. F.: in M. B. Timmons and T.

Losordo(Eds.) “Aquaculture Water Reuse System: Engineering De

and Management: Suspended Solids Control in Recirculating Aqua

ture Systems,” Elsevier, Amsterdam, 61(1996).

23. Chen, S.: Ph. D. Dissertation, Cornell University, Ithaca, New Yo

(1991).

24. Tchobanoglous, G. and Schroeder, E. D.: “Water Quality,” Addiso

Wesley Publishing Company, California, 56(1985).

25. Nigtingale, J. W.: “Technical Report of Karmer,” Chin and Mayo

Inc., Washington(1976).

26. Suh, K. H. and Lee, M. G.: J. Korean. Fish. Soc., 30, 239(1995).

27. Bailey, J. E. and Ollis, D. F.: “Biochemical Engineering Fundame

tals,” 3rd ed., McGraw-Hill, New York, 464(1986).

���� �39� �1� 2001� 2�