94
The predictive power of asymptotically safe gravity Phys. Rev. Lett. 121, no. 15, 151302 (2018) Phys.Lett. B777 (2018) 217-221 Phys.Rev. D96 (2017) no.8, 086025 (with Astrid Eichhorn) and arxiv:1904.TODAY (with Astrid Eichhorn and Roman Gold) Quantum Gravity in Paris April 16th 2019 Aaron Held Institut for Theoretical Physics, Heidelberg University

The predictive power of asymptotically safe gravity

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The predictive power of asymptotically safe gravity

The predictive power ofasymptotically safe gravity

Phys. Rev. Lett. 121, no. 15, 151302 (2018)Phys.Lett. B777 (2018) 217-221

Phys.Rev. D96 (2017) no.8, 086025(with Astrid Eichhorn)

and

arxiv:1904.TODAY (with Astrid Eichhorn and Roman Gold)

Quantum Gravity in ParisApril 16th 2019

Aaron HeldInstitut for Theoretical Physics, Heidelberg University

Page 2: The predictive power of asymptotically safe gravity

Part I:The predictive power of

asymptotic safety

Page 3: The predictive power of asymptotically safe gravity

Asymptotic freedom

UV

gUV

= 0

Scale invariance at a Gaussian fixed point (GFP) ensures a free (perturbatively renormalizable) UV theory

g

Asymptotic freedomcan only make

trivial predictions

Page 4: The predictive power of asymptotically safe gravity

Asymptotic safety

g

UV

gUV

= const

Scale invariance at a non-Gaussian fixed point (NGFP) ensures a safe (non-perturbatively renormalizable) UV theory

Asymptotic freedom

UV

gUV

= 0

Scale invariance at a Gaussian fixed point (GFP) ensures a free (perturbatively renormalizable) UV theory

g

Asymptotic safety offersUV-completions that

predict non-vanishing couplings

Asymptotic freedomcan only make

trivial predictions

Page 5: The predictive power of asymptotically safe gravity

Universal predictions from asymptotic safety

Irrelevant directions: Predictions from asymptotic safety

universality: consequence of a fixed point

Infrared attractive direction

non-fundamentalasymptotic safety

Page 6: The predictive power of asymptotically safe gravity

Free parameters of asymptotic safety

Relevant directions: Free parameters(parameterize deviation from scale invariance)

all IR values reachablefrom fixed point

Infrared repulsive direction

"

Page 7: The predictive power of asymptotically safe gravity

● existence of a UV fixed point for metric field theory

(fundamental theory)

Asymptotic safety conjectureWeinberg ‘76

infinite dimensional

theory space

Page 8: The predictive power of asymptotically safe gravity

● UV-attractive (relevant) direction: needs to be fixed by experiment● UV-repulsive (irrelevant) direction: prediction of asymptotic safety

● existence of a UV fixed point for metric field theory

(fundamental theory)

● finite number of UV-attractive directions (predictivity)

Asymptotic safety conjecture

infinite dimensional

theory space

Weinberg ‘76

Page 9: The predictive power of asymptotically safe gravity

● 1-loop vs 2-loop (higher loop): gauge-Yukawa models

Mechanisms for asymptotic safety

Litim, Sannino ‘14, ...

Page 10: The predictive power of asymptotically safe gravity

● 1-loop vs 2-loop (higher loop): gauge-Yukawa models

● canonical vs quantum scaling:

● Gravity in 2+ε dimensions

Mechanisms for asymptotic safety

Litim, Sannino ‘14, ...

Weinberg ‘76Christensen, Duff ‘78

Gastmans, Kallosh, Duff ‘78...

Page 11: The predictive power of asymptotically safe gravity

Perturbative asymptotic safety near● quantum field with lowest interaction allowed by symmetry

● critical dimension : dimension in which marginal

Page 12: The predictive power of asymptotically safe gravity

Perturbative asymptotic safety near● quantum field with lowest interaction allowed by symmetry

● critical dimension : dimension in which marginal

● quantum fluctuations:

Page 13: The predictive power of asymptotically safe gravity

Perturbative asymptotic safety near● quantum field with lowest interaction allowed by symmetry

● critical dimension : dimension in which marginal

● quantum fluctuations:

● asymptotically free (Landau-pole like) theories exhibit a UV-attractive (IR-attractive) fixed point above (below) the critical dimension

Page 14: The predictive power of asymptotically safe gravity

Perturbative asymptotic safety near● quantum field with lowest interaction allowed by symmetry

● critical dimension : dimension in which marginal

● quantum fluctuations:

● asymptotically free (Landau-pole like) theories exhibit a UV-attractive (IR-attractive) fixed point above (below) the critical dimension

interactioncritical

dimensionquantum

fluctuationsinteractingfixed pointsymmetry

Yang-Mills

Wilson-Fisher

Gross-Neveu

quantum gravity

AF

LP

AF

AF

UV-FP for

IR-FP for

UV-FP for

UV-FP for

Peskin ‘80

Wilson, Fisher ‘71Brézin, Le Gillou, Zinn-Justin ‘74

Gracey ‘90Vasiliev et.Al. ‘93Rosenstein et.Al. ‘93

Hands, Kocic, Kogut ‘92 (lattice)Hofling, Novak, Wetterich ‘02 (fRG)Jannsen, Herbut ‘14 (fRG)

Gastmans, Kallosh, Truffin ‘78Christensen, Duff ‘78Kawai, Ninomiya ‘90

Canet et.Al. ‘03 (fRG)Litim, Zappala ‘10 (fRG)Hasenbusch ‘10 (latticeEichhorn, Mesterházy, Scherer ‘13 (fRG)

Page 15: The predictive power of asymptotically safe gravity

● 1-loop vs 2-loop (higher loop): gauge-Yukawa models

● canonical vs quantum scaling:

● Gravity in 2+ε dimensions

● Gravity in d=4

Mechanisms for asymptotic safety

Litim, Sannino ‘14, ...

Weinberg ‘76Christensen, Duff ‘78

Gastmans, Kallosh, Duff ‘78...

Page 16: The predictive power of asymptotically safe gravity

● 1-loop vs 2-loop (higher loop): gauge-Yukawa models

● canonical vs quantum scaling:

● Gravity in 2+ε dimensions

● Gravity in d=4

● competing degrees of freedom:

● fermions vs bosons: fermionic Higgs-portal

● matter vs gravity: predictive power for gauge (Yukawa) couplings

Mechanisms for asymptotic safety

Eichhorn, Held, Vander Griend, JHEP 1808 (2018)Held, Sondenheimer ‘18

Litim, Sannino ‘14, ...

Weinberg ‘76Christensen, Duff ‘78

Gastmans, Kallosh, Duff ‘78...

Page 17: The predictive power of asymptotically safe gravity

Mechanisms for asymptotic safetyfu

nct

ion

al R

eno

rmal

izat

ion

Gro

up (

fRG

)

● 1-loop vs 2-loop (higher loop): gauge-Yukawa models

● canonical vs quantum scaling:

● Gravity in 2+ε dimensions

● Gravity in d=4

● competing degrees of freedom:

● fermions vs bosons: fermionic Higgs-portal

● matter vs gravity: predictive power for gauge (Yukawa) couplings

Weinberg ‘76Christensen, Duff ‘78

Gastmans, Kallosh, Duff ‘78...

Eichhorn, Held, Vander Griend, JHEP 1808 (2018)Held, Sondenheimer ‘18

Litim, Sannino ‘14, ...

Page 18: The predictive power of asymptotically safe gravity

functional RG

quantum effective action

RG-scale dependent

effective action

microscopic actionprediction of

asymptotic safety

Page 19: The predictive power of asymptotically safe gravity

functional RG

flow equation

microscopic actionprediction of

asymptotic safety

quantum effective action

RG-scale dependent

effective action

RG-scale dependent effective action

Wetterich ‘93Morris ‘94

Page 20: The predictive power of asymptotically safe gravity

functional RG

flow equation

microscopic actionprediction of

asymptotic safety

quantum effective action

RG-scale dependent

effective action

RG-scale dependent effective action

Wetterich ‘93Morris ‘94

Page 21: The predictive power of asymptotically safe gravity

functional RG

flow equation

microscopic actionprediction of

asymptotic safety

quantum effective action

RG-scale dependent

effective action

RG-scale dependent effective action

Wetterich ‘93Morris ‘94

Page 22: The predictive power of asymptotically safe gravity

functional RG

flow equation

microscopic actionprediction of

asymptotic safety

quantum effective action

RG-scale dependent

effective action

RG-scale dependent effective action

allows for

projectionson beta functions

projection

Wetterich ‘93Morris ‘94

Page 23: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravityWeinberg ‘76

infinite dimensional

theory space

infinite dimensional

theory space

Page 24: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravityWeinberg ‘76

infinite dimensional

theory spacetruncated

infinite dimensional

theory space

truncated

Page 25: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravityWeinberg ‘76

infinite dimensional

theory spacetruncated

infinite dimensional

theory space

truncated fixedpoint

symmetry invariants

☒ ☒

☑ ☒

Benedetti, Machado, Saueressig ‘09

Reuter ‘96

...

...

...

Codello, Percacci, Rahmede ’07, ’08Machado, Saueressig ‘07

K. Falls et.Al ‘13K. Falls et.Al ‘18

Reuter, Lauscher ‘02

Gies, Knorr, Lippoldt, Saueressig ‘16

Page 26: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravityWeinberg ‘76

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

Asymptotic safety

: dimfull

: dimless

fixed-point scaling

infinite dimensional

theory spacetruncated

infinite dimensional

theory space

truncated fixedpoint

symmetry invariants

☒ ☒

☑ ☒

Benedetti, Machado, Saueressig ‘09

Reuter ‘96

...

...

...

Codello, Percacci, Rahmede ’07, ’08Machado, Saueressig ‘07

K. Falls et.Al ‘13K. Falls et.Al ‘18

Reuter, Lauscher ‘02

Gies, Knorr, Lippoldt, Saueressig ‘16

Page 27: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravityWeinberg ‘76

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

Asymptotic safety

: dimfull

: dimless

fixed-point scaling

predictedcouplings

freeparameters

Planckscale

electroweakscale

ob

serv

able

s

fixedpoint

symmetry invariants

☒ ☒

☑ ☒

Benedetti, Machado, Saueressig ‘09

Reuter ‘96

...

...

...

Codello, Percacci, Rahmede ’07, ’08Machado, Saueressig ‘07

K. Falls et.Al ‘13K. Falls et.Al ‘18

Reuter, Lauscher ‘02

Gies, Knorr, Lippoldt, Saueressig ‘16

Page 28: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravity

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

Asymptotic safety

: dimfull

: dimless

fixed-point scaling

predictedcouplings

freeparameters

Standard Model 1-loop running, cf. Buttazzo et.Al. ‘13

electroweakscale

Planckscale

ob

serv

able

s

fixedpoint

symmetry invariants

☒ ☒

☑ ☒

Benedetti, Machado, Saueressig ‘09

Reuter ‘96

...

...

...

Codello, Percacci, Rahmede ’07, ’08Machado, Saueressig ‘07

K. Falls et.Al ‘13K. Falls et.Al ‘18

Reuter, Lauscher ‘02

Gies, Knorr, Lippoldt, Saueressig ‘16

Weinberg ‘76

Page 29: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravity

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

Asymptotic safety

: dimfull

: dimless

fixed-point scaling

fixedpoint

symmetry invariants

☒ ☒

☑ ☒

Benedetti, Machado, Saueressig ‘09

Reuter ‘96

predictedcouplings

freeparameters

Standard Model 1-loop running, cf. Buttazzo et.Al. ‘13

electroweakscale

Planckscale

ob

serv

able

s

desert

...

...

...

Codello, Percacci, Rahmede ’07, ’08Machado, Saueressig ‘07

K. Falls et.Al ‘13K. Falls et.Al ‘18

Reuter, Lauscher ‘02

Gies, Knorr, Lippoldt, Saueressig ‘16

Weinberg ‘76

Page 30: The predictive power of asymptotically safe gravity

Asymptotic safety of quantum gravity

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

Asymptotic safety

: dimfull

: dimless

fixed-point scaling

predictedcouplings

freeparameters

Standard Model 1-loop running, cf. Buttazzo et.Al. ‘13

electroweakscale

Planckscale

ob

serv

able

s

desert

no-desert:bSM scenarios

Christiansen, Eichhorn, AH, PRD 96 (2017)Eichhorn, AH, Wetterich, PLB 782 (2018)

Eichhorn, AH, Vander Griend, JHEP 1808 (2018)

fixedpoint

symmetry invariants

☒ ☒

☑ ☒

Benedetti, Machado, Saueressig ‘09

Reuter ‘96

...

...

...

Codello, Percacci, Rahmede ’07, ’08Machado, Saueressig ‘07

K. Falls et.Al ‘13K. Falls et.Al ‘18

Reuter, Lauscher ‘02

Gies, Knorr, Lippoldt, Saueressig ‘16

Weinberg ‘76

Page 31: The predictive power of asymptotically safe gravity

Major open questions (my selection)

Theoretical consistency Phenomenological viability

● AS & unitarity

● Lorentzian signature

● Background independence

● Full momentum dependence & scheme dependence

Benedetti, Machado, Saueressig ‘09Becker, Ripken, Saueressig ‘17Arici, Becker, Ripken, Saueressig, Suijlekom ‘17...

Pawlowski, Donkin ‘12Becker, Reuter ‘14Morris ‘16Percacci, Vacca ‘16Ohta ‘16

Manrique, Rechenberger, Saueressig ‘11

Causal Set RG /Tensor Model RGEichhorn, Koslowski ‘13, ‘14, ‘17Eichhorn, Lumma, Koslowski, Pereira ‘18Eichhorn, Koslowski, Pereira ‘18

Eichhorn ‘17, ‘19

Christiansen, Pawlowski, Rodigast ‘14Gies, Knorr, Lippoldt ‘15Christiansen, Knorr, Meibohm, Pawlowski, Reichert ‘15Denz, Pawlowski, Reichert ‘16Knorr, Lippoldt ‘17...

● Implications for cosmology

● Link to Particle Physics

● Black Holes and Strong Gravity

Bonanno, Contillo, Percacci ‘10Bonenno, Platania ‘15Wetterich ‘17Bonanno, Platania, Saueressig ‘18...

Wetterich, Shaposhnikov ‘09 Daum, Harst, Reuter ‘10 Eichhorn, Held ‘17, ‘17, ‘18Eichhorn, Versteegen ‘17...

Bonanno, Reuter ‘98, ‘00Falls, Litim ‘12Contreras, Koch, Rioseco ‘13Koch, Saueressig ‘13Pawlowski, Stock ‘18Adeifeoba, Eichhorn, Platania ‘18Platania ‘19Held, Gold, Eichhorn ‘19...

Page 32: The predictive power of asymptotically safe gravity

Major open questions (my selection)

Theoretical consistency Phenomenological viability

● AS & unitarity

● Lorentzian signature

● Background independence

● Full momentum dependence & scheme dependence

Benedetti, Machado, Saueressig ‘09Becker, Ripken, Saueressig ‘17Arici, Becker, Ripken, Saueressig, Suijlekom ‘17...

Pawlowski, Donkin ‘12Becker, Reuter ‘14Morris ‘16Percacci, Vacca ‘16Ohta ‘16

Manrique, Rechenberger, Saueressig ‘11

Causal Set RG /Tensor Model RGEichhorn, Koslowski ‘13, ‘14, ‘17Eichhorn, Lumma, Koslowski, Pereira ‘18Eichhorn, Koslowski, Pereira ‘18

Eichhorn ‘17, ‘19

Christiansen, Pawlowski, Rodigast ‘14Gies, Knorr, Lippoldt ‘15Christiansen, Knorr, Meibohm, Pawlowski, Reichert ‘15Denz, Pawlowski, Reichert ‘16Knorr, Lippoldt ‘17...

● Implications for cosmology

● Link to Particle Physics

● Black Holes and Strong Gravity

Bonanno, Contillo, Percacci ‘10Bonenno, Platania ‘15Wetterich ‘17Bonanno, Platania, Saueressig ‘18...

Wetterich, Shaposhnikov ‘09 Daum, Harst, Reuter ‘10 Eichhorn, Held ‘17, ‘17, ‘18Eichhorn, Versteegen ‘17...

Bonanno, Reuter ‘98, ‘00Falls, Litim ‘12Contreras, Koch, Rioseco ‘13Koch, Saueressig ‘13Pawlowski, Stock ‘18Adeifeoba, Eichhorn, Platania ‘18Platania ‘19Held, Gold, Eichhorn ‘19...

Page 33: The predictive power of asymptotically safe gravity

Part II:The status of asymptotically safe

gravity and matter

Eichhorn, Held ‘18

Page 34: The predictive power of asymptotically safe gravity

Persistence of a gravitational scaling regime

scale-invariantregime

Reuter, Saueressig ‘01

● Gravitational scaling regime persists when Standard Model matter is included

no matter with SM matter: NV=12, N

S=4, N

W=45

Donà, Eichhorn, Percacci ‘13Meibohm, Pawlowski, Reichert ‘16Biemans, Platania, Saueressig ‘17

Christiansen, Litim, Pawlowski, Reichert ‘17

Page 35: The predictive power of asymptotically safe gravity

Persistence of a gravitational scaling regime

scale-invariantregime

Reuter, Saueressig ‘01

● Gravitational scaling regime persists when Standard Model matter is included

no matter with SM matter: NV=12, N

S=4, N

W=45

Donà, Eichhorn, Percacci ‘13Meibohm, Pawlowski, Reichert ‘16Biemans, Platania, Saueressig ‘17

Christiansen, Litim, Pawlowski, Reichert ‘17

simplified form: Donà, Eichhorn, Percacci ‘13

● fermionic matter tends toshift gravity to large negative Λ

background-field approximation

Page 36: The predictive power of asymptotically safe gravity

Persistence of a gravitational scaling regime

scale-invariantregime

Reuter, Saueressig ‘01

● Gravitational scaling regime persists when Standard Model matter is included

simplified form: Donà, Eichhorn, Percacci ‘13

no matter with SM matter: NV=12, N

S=4, N

W=45

Donà, Eichhorn, Percacci ‘13Meibohm, Pawlowski, Reichert ‘16Biemans, Platania, Saueressig ‘17

Christiansen, Litim, Pawlowski, Reichert ‘17

● fermionic matter tends toshift gravity to large negative Λ

● generically suppresses contributions to matterbecause Λ acts as an effective mass

Donà, Eichhorn, Percacci ‘13background-field approximation

Newton coupling

cosmologicalconstant

higher curvature

Page 37: The predictive power of asymptotically safe gravity

Persistence of a gravitational scaling regime

scale-invariantregime

Reuter, Saueressig ‘01

● Gravitational scaling regime persists when Standard Model matter is included

simplified form: Donà, Eichhorn, Percacci ‘13

no matter with SM matter: NV=12, N

S=4, N

W=45

Donà, Eichhorn, Percacci ‘13Meibohm, Pawlowski, Reichert ‘16Biemans, Platania, Saueressig ‘17

Christiansen, Litim, Pawlowski, Reichert ‘17

● fermionic matter tends toshift gravity to large negative Λ

● generically suppresses contributions to matterbecause Λ acts as an effective mass

Donà, Eichhorn, Percacci ‘13background-field approximation

● no complete SM-study yet● no such suppression observed

fluctuating fieldsMeibohm, Pawlowski, Reichert ‘16

Christiansen, Litim, Pawlowski, Reichert ‘17

Newton coupling

cosmologicalconstant

higher curvature

Page 38: The predictive power of asymptotically safe gravity

Standard Model fluctuations

quantum gravityfluctuations

Constraints from & Consistency with Standard Model physics

Page 39: The predictive power of asymptotically safe gravity

Standard Model fluctuations

quantum gravityfluctuations

non-Abelian g2,3

:

fixed pointasymptotically safe

phenomenologyparameters

of the SM

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

Constraints from & Consistency with Standard Model physics

Page 40: The predictive power of asymptotically safe gravity

non-Abelian g2,3

:

fixed pointasymptotically safe

phenomenologyparameters

of the SM

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

antiscreeningRobinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert, ‘17

antiscreening

antiscreening

antiscreening

Constraints from & Consistency with Standard Model physics

Page 41: The predictive power of asymptotically safe gravity

antiscreening

non-Abelian gauge couplings

antiscreening

● Reinforces asymptotic freedom

● Non-Abelian gauge couplings remain free parameters

Page 42: The predictive power of asymptotically safe gravity

non-Abelian g2,3

: antiscreening reinforcesasymptotic

freedom

Robinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert, ‘17

antiscreening

fixed pointasymptotically safe

phenomenologyparameters

of the SM

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

antiscreening

antiscreening

Constraints from & Consistency with Standard Model physics

Page 43: The predictive power of asymptotically safe gravity

non-Abelian g2,3

: antiscreening reinforcesasymptotic

freedom

Robinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert, ‘17

antiscreening

fixed point

screening screening

asymptotically safephenomenology

parametersof the SM

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

screening

screening

Griguolo, Percacci ‘95Percacci, Perini ‘03Narain, Percacci ‘09

Constraints from & Consistency with Standard Model physics

Page 44: The predictive power of asymptotically safe gravity

screening

Quartic Higgs coupling

● quartic couplings IR-attractive at transplanckian scales (predictive)

MH

≈ 129 GeVShaposhnikov, Wetterich, ‘09

Griguolo, Percacci ‘95Percacci, Perini ‘03Narain, Percacci ‘09screening

Moch, Reuter, ‘18

Page 45: The predictive power of asymptotically safe gravity

non-Abelian g2,3

: antiscreening reinforcesasymptotic

freedom

Robinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert, ‘17

antiscreening

fixed point

screening screeningShaposhnikov, Wetterich, ‘09

asymptotically safephenomenology

parametersof the SM

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

screening

screening

Griguolo, Percacci ‘95Percacci, Perini ‘03Narain, Percacci ‘09

MH

≈ 129 GeV

Constraints from & Consistency with Standard Model physics

Page 46: The predictive power of asymptotically safe gravity

non-Abelian g2,3

: antiscreening reinforcesasymptotic

freedom

Harst, Reuter, ‘11Eichhorn, Versteegen ‘17

Robinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert, ‘17

screening

antiscreening

screeningShaposhnikov, Wetterich, ‘09

screening antiscreening

fixed pointasymptotically safe

phenomenologyparameters

of the SM

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

Griguolo, Percacci ‘95Percacci, Perini ‘03Narain, Percacci ‘09

antiscreening

screening

Constraints from & Consistency with Standard Model physics

MH

≈ 129 GeV

Page 47: The predictive power of asymptotically safe gravity

antiscreening

screening

running of the couplingbeta-function

free UV-repulsive FP

triviality problem

Asymptotically safe abelian gauge coupling

Page 48: The predictive power of asymptotically safe gravity

antiscreening

screening

running of the couplingbeta-function

free UV-repulsive FP

interacting UV-repulsive FP

Asymptotically safe abelian gauge coupling

Page 49: The predictive power of asymptotically safe gravity

antiscreening

screening

running of the couplingbeta-function

Eichhorn, Versteegen ‘17

free UV-repulsive FP

interacting UV-repulsive FP

Asymptotically safe abelian gauge coupling

Page 50: The predictive power of asymptotically safe gravity

antiscreening

Asymptotically safe abelian gauge coupling

screening

running of the couplingbeta-function

Eichhorn, Versteegen ‘17

free UV-repulsive FP

interacting UV-repulsive FP

● interacting fixed point uniquely fixes fine-structure constant

● UV-completion demands upper bound gY,IR

0.47 (g⪅Y,exp

=0.355)

Eichhorn, Versteegen ‘17Eichhorn, Held, Wetterich ‘17

Eichhorn, Versteegen ‘17 e.g. Buttazzo et.Al, ‘13

Page 51: The predictive power of asymptotically safe gravity

non-Abelian g2,3

: antiscreening reinforcesasymptotic

freedom

Harst, Reuter, ‘11Eichhorn, Versteegen ‘17

Robinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert, ‘17

screening

antiscreening

screening

gY

0.47⪅

Shaposhnikov, Wetterich, ‘09

Eichhorn, Versteegen ‘17screening antiscreening

fixed pointasymptotically safe

phenomenologyparameters

of the SM

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

Griguolo, Percacci ‘95Percacci, Perini ‘03Narain, Percacci ‘09

antiscreening

screening

Constraints from & Consistency with Standard Model physics

MH

≈ 129 GeV

Page 52: The predictive power of asymptotically safe gravity

non-Abelian g2,3

: antiscreening

asymptotically safephenomenology

reinforcesasymptotic

freedom

Harst, Reuter, ‘11Eichhorn, Versteegen ‘17

Robinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert ‘17

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

screening

antiscreening

screening

gY

0.47⪅

Shaposhnikov, Wetterich, ‘09

Eichhorn, Versteegen ‘17

Zanusso, Vacca, Percacci, Zambelli,’10Oda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

screening

screening

antiscreening

antiscreening

fixed pointparameters

of the SM

Griguolo, Percacci ‘95Percacci, Perini ‘03Narain, Percacci ‘09

antiscreening

screening

Constraints from & Consistency with Standard Model physics

MH

≈ 129 GeV

Page 53: The predictive power of asymptotically safe gravity

Asymptotically safe Yukawa couplings

antiscreening

screening

Eichhorn, Held ‘17, 1707.01107

running of the couplingbeta-function

free UV-attractive FP

interacting UV-repulsive FP

perturbatively small

Page 54: The predictive power of asymptotically safe gravity

Asymptotically safe Yukawa couplings

antiscreening

screening

perturbatively smallOda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

Eichhorn and Held ‘17Eichhorn, Held and Pawlowski ‘16Christiansen & Eichhorn, 2017

Page 55: The predictive power of asymptotically safe gravity

Asymptotically safe Yukawa couplings

antiscreening

screening

minimally coupled matter

simplified form: Donà, Eichhorn, Percacci ‘13

NV=12, N

S=4, N

W=0

no fermion family

perturbatively smallOda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

Page 56: The predictive power of asymptotically safe gravity

Asymptotically safe Yukawa couplings

antiscreening

screening

minimally coupled matter

simplified form: Donà, Eichhorn, Percacci ‘13

NV=12, N

S=4, N

W=15

1 fermion family

perturbatively smallOda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

Page 57: The predictive power of asymptotically safe gravity

Asymptotically safe Yukawa couplings

antiscreening

screening

minimally coupled matter

simplified form: Donà, Eichhorn, Percacci ‘13

NV=12, N

S=4, N

W=30

2 fermion family

perturbatively smallOda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

Page 58: The predictive power of asymptotically safe gravity

Asymptotically safe Yukawa couplings

antiscreening

screening

minimally coupled matter

simplified form: Donà, Eichhorn, Percacci ‘13

NV=12, N

S=4, N

W=45

3 fermion family

● Gravitational scaling regime persists with minimally coupled Standard Model

● fermionic matter leads to fy > 0

● generically leads to perturbative regime asΛ acts as an effective mass

Donà, Eichhorn, Percacci ‘13Meibohm, Pawlowski, Reichert ‘16Biemans, Platania, Saueressig ‘17

perturbatively smallOda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

Page 59: The predictive power of asymptotically safe gravity

Asymptotically safe Yukawa couplings

antiscreening

screening

minimally coupled matter

simplified form: Donà, Eichhorn, Percacci ‘13

Eichhorn, Held ‘17

asymptotic safety

within a simple truncationEichhorn, Held ‘17

perturbatively smallOda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

Page 60: The predictive power of asymptotically safe gravity

non-Abelian g2,3

: antiscreening

asymptotically safephenomenology

reinforcesasymptotic

freedom

Harst, Reuter, ‘11Eichhorn, Versteegen ‘17

Robinson, Wilczek, ‘06Daum, Harst, Reuter, ‘10Folkerts, Litim, Pawlowski, ‘12Christiansen, Eichhorn, ‘17Christiansen, Litim, Pawlowski, Reichert ‘17

Higgs quartic λ4 :

U(1) gauge g1 :

Yukawas yt,b

:

screening

antiscreening

screening

Mt

170 GeV⪅

gY

0.47⪅

Shaposhnikov, Wetterich, ‘09

Eichhorn, Versteegen ‘17

Eichhorn, Held ‘17Zanusso, Vacca, Percacci, Zambelli,’10Oda, Yamada, ‘16Eichhorn, Held, Pawlowski, ‘16Eichhorn, Held, ‘17

screening

screening

antiscreening

antiscreening

fixed pointparameters

of the SM

Griguolo, Percacci ‘95Percacci, Perini ‘03Narain, Percacci ‘09

antiscreening

screening

Constraints from & Consistency with Standard Model physics

MH

≈ 129 GeV

Page 61: The predictive power of asymptotically safe gravity

Mass difference for charged quarks

● desert: no new physics at intermediate scales

● UV scaling-regime for quantum gravity (asymptotic safety)

● leading order quantum-gravity effects can be parametrized in

assume:

Eichhorn, Held ‘18

mass differencefrom

charge difference

Page 62: The predictive power of asymptotically safe gravity

Mass difference for charged quarksScale dependence most predictive fixed point

Eichhorn, Held ‘18

Page 63: The predictive power of asymptotically safe gravity

Scale dependence most predictive fixed point

Mass difference for charged quarks

Eichhorn, Held ‘18

Page 64: The predictive power of asymptotically safe gravity

Scale dependence most predictive fixed point

Mass difference for charged quarks

Eichhorn, Held ‘18

Page 65: The predictive power of asymptotically safe gravity

Scale dependence most predictive fixed point

Mass difference for charged quarks

Eichhorn, Held ‘18

Page 66: The predictive power of asymptotically safe gravity

Scale dependence most predictive fixed point

Mass difference for charged quarks

Eichhorn, Held ‘18

Page 67: The predictive power of asymptotically safe gravity

Scale dependence most predictive fixed point

Mass difference for charged quarks

Eichhorn, Held ‘18

Page 68: The predictive power of asymptotically safe gravity

Scale dependence most predictive fixed point

How non-trivial is this relation?

Eichhorn, Held ‘18

Page 69: The predictive power of asymptotically safe gravity

● Links quantum numbers (charges) of top and bottom to their mass difference

How non-trivial is this relation?

Eichhorn, Held ‘18

Eichhorn, Held ‘18

Page 70: The predictive power of asymptotically safe gravity

● Hints towards a universal force (quantum gravity)

How non-trivial is this relation?● Links quantum

numbers (charges) of top and bottom to their mass difference

Eichhorn, Held ‘18

Eichhorn, Held ‘18

Page 71: The predictive power of asymptotically safe gravity

● Hints towards a universal force (quantum gravity)

● points towards the Planck scale (quantum gravity)

How non-trivial is this relation?● Links quantum

numbers (charges) of top and bottom to their mass difference

Eichhorn, Held ‘18

Eichhorn, Held ‘18

Eichhorn, Held ‘18

Page 72: The predictive power of asymptotically safe gravity

● Potentially higher predictive power than the Standard Model

● Standard Model couplings at electroweak scale could constrain Planck-scale physics

● effectively perturbative regime relies on mass-like suppression of gravitational fluctuations

… in a nutshell

Page 73: The predictive power of asymptotically safe gravity

Part III:Asymptotic safety casts its shadow

Page 74: The predictive power of asymptotically safe gravity

Regular spherical spacetime● Singularities: GR predicts its own breakdown

Page 75: The predictive power of asymptotically safe gravity

Regular spherical spacetime● Singularities: GR predicts its own breakdown

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

: dimfull

: dimless

fixed-point scaling

Page 76: The predictive power of asymptotically safe gravity

Regular spherical spacetime● Singularities: GR predicts its own breakdown

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

: dimfull

: dimless

fixed-point scaling

● Dim’less running Newton coupling

Page 77: The predictive power of asymptotically safe gravity

Regular spherical spacetime● Singularities: GR predicts its own breakdown

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

: dimfull

: dimless

fixed-point scaling

● Dim’less running Newton coupling

● RG-scale identification with curvature

Page 78: The predictive power of asymptotically safe gravity

Regular spherical spacetime● Singularities: GR predicts its own breakdown

MPlanck

Mew

canonical scaling

Codello, Percacci, Rahmede ‘08

quantumfluctuations

canonicalscaling

: dimfull

: dimless

fixed-point scaling

● Dim’less running Newton coupling

● RG-scale identification with curvature

Reuter, Bonanno ‘99, ‘00, ...

Page 79: The predictive power of asymptotically safe gravity

Regular axisymmetric spacetime● Singularities: GR predicts its own breakdown

● Dim’less running Newton coupling

● RG-scale identification with curvature

Page 80: The predictive power of asymptotically safe gravity

Regular axisymmetric spacetime● Singularities: GR predicts its own breakdown

● Dim’less running Newton coupling

● RG-scale identification with curvature

qualitatively the same:enveloping function

proper distance of infalling observer

Page 81: The predictive power of asymptotically safe gravity

Regular axisymmetric spacetime● Singularities: GR predicts its own breakdown

● Dim’less running Newton coupling

● RG-scale identification with curvature

HorizonHorizon

Held, Gold, Eichhorn ‘19

qualitatively the same:enveloping function

proper distance of infalling observer

Page 82: The predictive power of asymptotically safe gravity

Where to expect effects?

Planckiansingularity resolution

non-Planckiansingularity resolution

Planckian BHs astrophysical BHs

✔✔ ✔

Page 83: The predictive power of asymptotically safe gravity

Where to expect effects?

Planckiansingularity resolution

non-Planckiansingularity resolution

Planckian BHs astrophysical BHs

✔✔ ✔

a = 0.3, 0.6, 0.9, 0.99 rg

Page 84: The predictive power of asymptotically safe gravity

Where to expect effects?

Planckiansingularity resolution

non-Planckiansingularity resolution

Planckian BHs astrophysical BHs

Younsi et. Al ‘16

retrograde(against frame dragging)

✔✔ ✔

a = 0.3, 0.6, 0.9, 0.99 rg

Page 85: The predictive power of asymptotically safe gravity

Where to expect effects?

Planckiansingularity resolution

non-Planckiansingularity resolution

Planckian BHs astrophysical BHs

✔✔ ✔

a = 0.3, 0.6, 0.9, 0.99 rg

Page 86: The predictive power of asymptotically safe gravity

Where to expect effects?

Planckiansingularity resolution

non-Planckiansingularity resolution

Planckian BHs astrophysical BHs

✔✔ ✔

prograde(frame dragged)

probes horizon scales

a = 0.3, 0.6, 0.9, 0.99 rg

Page 87: The predictive power of asymptotically safe gravity

No degeneracy in the shadow

● Spherically symmetric BHs could be distinguished byweak-field vs. strong-field

mass measurementsAbuter et al. ‘19 EHT-collaboration ‘19

Page 88: The predictive power of asymptotically safe gravity

No degeneracy in the shadow

● Spherically symmetric BHs could be distinguished byweak-field vs. strong-field

mass measurements

● Strongly spinning BHs are very sensitive to horizon-scale modifications

Held, Gold, Eichhorn ‘19

Abuter et al. ‘19 EHT-collaboration ‘19

a = 0.9 rg

Page 89: The predictive power of asymptotically safe gravity

Generic result of (QG) singularity resolution?

Dymnikova ‘92, ‘96Hayward ‘06

...

Singularity-resolving spacetimes with deSitter core

Page 90: The predictive power of asymptotically safe gravity

Dymnikova ‘92, ‘96Hayward ‘06

...

Singularity-resolving spacetimes with deSitter core

Gambini, Pullin ‘08, ‘13

Modesto ‘10

Rovelli, Vidotto ‘14

Loop Quantum Gravity

Generic result of (QG) singularity resolution?

Page 91: The predictive power of asymptotically safe gravity

Dymnikova ‘92, ‘96Hayward ‘06

...

Singularity-resolving spacetimes with deSitter core

Gambini, Pullin ‘08, ‘13

Modesto ‘10

Rovelli, Vidotto ‘14

Loop Quantum Gravity

Nicolini, Spallucci,Wondrak ‘19,...

Stringy Theory

Generic result of (QG) singularity resolution?

Page 92: The predictive power of asymptotically safe gravity

Dymnikova ‘92, ‘96Hayward ‘06

...

Singularity-resolving spacetimes with deSitter core

Gambini, Pullin ‘08, ‘13

Modesto ‘10

Rovelli, Vidotto ‘14

Loop Quantum Gravity

Nicolini, Spallucci,Wondrak ‘19,...

Stringy Theory

Noncommutative spacetime structure

Nicolini, Smailagic,Spallucci ‘05

Generic result of (QG) singularity resolution?

Page 93: The predictive power of asymptotically safe gravity

Kerr (GR)

Kerr (regular / quantum)

Page 94: The predictive power of asymptotically safe gravity

– Thank you for your attention. –