18
PHOTOSYNTHESIS Volume V Chloroplast Development Proceedings of the Fifth International Congress on Photosynthesis September 7-13, 1980, Halkidiki, Greece Editor GEORGE AKOYUNOGLOU 1981 Balaban International Science Services Philadelphia

The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

PHOTOSYNTHESIS Volume V Chloroplast Development

Proceedings of the Fifth International Congress on Photosynthesis September 7-13, 1980, Halkidiki, Greece

Editor

GEORGE AKOYUNOGLOU

1981 Balaban International Science Services Philadelphia

Page 2: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

CONTENTS v i i

VOLUME V- - CHLOROPLAST DEVELOPMENT

P ROTOCHLOROPHYLLIDE PHOTOREDUCTION 1

The p h o t o C h l o r o p h y l l i d e - c h l o r o p h y l l i d e c y c l e as a source of p h o t o s y n t h e t i c a l l y a c t i v e C h l o r o p h y l l s C. S i r o n v a l 3

D i f f e r e n c e a b s o r p t i o n changes i n the v i s i b l e region during and a f t e r photoreduction of p r o t o c h l o r o p h y l l i d e B. Bereza and E. Dujardin 1 5

Fluorescence quenching of p r o t o c h l o r o p h y l l i d e , c h l o r o p h y l l i d e and C h l o r o p h y l l i n e t i o l a t e d , greening and green leaves E. D u j a r d i n 7 M. C o r r e i a and C. S i r o n v a l 21

Long-wavelength-absorbing intermediate pigments of the proto-c h l o r o p h y l l i d e - p r o t e i n System as a c t i v e centres E. Dujardin 31

P r o t o c h l o r o p h y l l ( i d e ) and C h l o r o p h y l l ( i d e ) fluorescence l i f e -time and other p r o p e r t i e s i n e t i o l a t e d and greening leaves J.C. Goedheer and J.C.J.M. van der Cammen 39

Quenching of the c h l o r o p h y l l i d e fluorescence by a s h o r t - l i v e d intermediate i n the photoreduction of p r o t o c h l o r o p h y l l i d e F. Franck 45

Laser induced photoconversion of p r o t o c h l o r o p h y l l i d e to Chloro­p h y l l a Y. Inoue, T. Kobayashi, T. Ogawa and K. Shibata 55

The r o l e of NADPH i n C h l o r o p h y l l s y n t h e s i s by p r o t o c h l o r o p h y l ­l i d e reductase W.T. G r i f f i t h s 65

I d e n t i f i c a t i o n of the Polypeptides of NADPH-protochlorophyllide oxidoreductase R.P. O l i v e r and W.T. G r i f f i t h s 7 3

The i s o l a t i o n and c h a r a c t e r i z a t i o n of the NADPH-protochlorophyl­l i d e oxidoreductase of b a r l e y (Hordeum vulgare L.) H.J. Santel/ T.E. Redlinger, C. Spr i n g w e i l e r and K. Apel 83

A new method f o r the p u r i f i c a t i o n o f p r o t o c h l o r o p h y l l i d e P. Bombart, E. Dujardin and M. Brouers 87

Page 3: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

VÜi PIGMENT AND L I P I D BIOSYNTHESIS 93

A l t e r n a t i v e routes f o r the synthesis of 5-aminolevulinic a c i d i n greening leaves - Double l a b e l l i n g w i t h 15n- a n d 14c-gluta-mate E. H a r e l , P.J. Lea, E. M e i l e r and E. Ne'eman 95

A-Aminolevulinate synthesis i n greening b a r l e y . 1. Regulation S.P. Gough, C. G i r n t h and C. G. Kannangara 107

A-Aminolevulinate s y n t h e s i s i n greening b a r l e y . 2. P u r i f i c a t i o n of enzymes C G . Kannangara, S.P. Gough and C. G i r n t h 117

A-Aminolevulinate s y n t h e s i s i n greening b a r l e y . 3. C h a r a c t e r i -z a t i o n of r e g u l a t o r y mutants C. G i r n t h , S.P. Gough and C. G. Kannangara 129

The i n f l u e n c e of l i g h t and l e v u l i n i c a c i d on the r e g u l a t i o n of enzymes f o r ALA-biosynthesis i n two pigment mutants of Scenedesmus obliquus A. Kah, D. Dörnemann, D. Rühl and H. Senger 137

The e f f e c t s of l e v u l i n i c a c i d and 4,6-dioxoheptanoic a c i d on 5-aminolevulinic a c i d metabolism i n e t i o l a t e d b a r l e y leaves E. M e i l e r and M.L. Gassman 145

C h l o r o p h y l l formation and ALA b i o s y n t h e s i s v i a two d i f f e r e n t pathways during the c e l l c y c l e of w i l d type c e l l s of Scenedesmus K. Humbeck and H. Senger 161

C h l o r o p h y l l b i o s y n t h e s i s : Mg i n s e r t i o n ; O2 and Fe requirements P.A. C a s t e l f r a n c o 171

C h l o r o p h y l l precursors and p l a s t i d u l t r a s t r u c t u r e i n dark-grown wheat leaves t r e a t e d w i t h 8-hydroxyquinoline and 6 - a m i n o l e v u l i n i c a c i d M. Ryberg and H. Ryberg 177

B i o s y n t h e s i s of c h l o r o p h y l l i d e from A L A - p r o t o c h l o r o p h y l l i d e in v i t r o ; r o l e of NADPH and NADP M. Brouers and M.R. Wolwertz 185

B i o s y n t h e s i s and accumulation of novel C h l o r o p h y l l a. and b. chromo-p h o r i c species i n green p l a n t s C A . Rebeiz, F.C. Belanger, S.A. McCarthy, G. F r e v s s i n e t ,

J.X. Duggan, S-M. Wu and J.R. Mattheis 197

C h l o r o p h y l l s y n t h e s i s i n the dark i n angiosperms H. Adamson and R.G. H i l l e r 213

E x t r a c t i o n and c h a r a c t e r i z a t i o n of a chemically new C h l o r o p h y l l , absorbing at longer wavelengths and a t t r i b u t e d to P-700 D. Dörnemann and H. Senger 223

C h l o r o p h y l l b accumulation i n normal and SAN-9789 grown wheat leaves - L i g h t independency? C. M e l i n , L. Axelsson, H. Ryberg and H. V i r g i n 233

Page 4: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

A f f i n i t y Chromatographie p u r i f i c a t i o n of an enzyme of C h l o r o p h y l l s y n t h e s i s W.R. Richards, J.C.-S. Chan and S.B. H i n c h i g e r i

P h o t o a c t i v i t y of the P695-682 c h l o r o p h y l l i d e form M. Jouy

Studies on c a r o t e n o i d b i o s y n t h e s i s i n r e l a t i o n to development of the p h o t o s y n t h e t i c apparatus: use of a d e u t e r i u m - l a b e l l i n g method G. B r i t t o n

L i p i d and c a r o t e n o i d metabolism during p l a s t i d development i n C a p s i c u m annuum f r u i t B. Camara and J . Brangeon

The f u n e t i o n of carotenoids during c h l o r o p l a s t development. I . E f f e c t s o f the h e r b i c i d e SAN-9789 on C h l o r o p h y l l s y n t h e s i s and p l a s t i d u l t r a s t r u c t u r e B. Klockare, L. Axelsson, H. Ryberg, A.S. Sandelius and K-0. W i d e l l

The f u n e t i o n of carotenoids during c h l o r o p l a s t development. I I . P h o t o s t a b i l i t y and Organization of e a r l y forms of C h l o r o p h y l l (ide) L. Axelsson, B. Klockare, H. Ryberg and A.S. Sandelius

The f u n e t i o n o f carotenoids during c h l o r o p l a s t development. I I I . P r o t e c t i o n of the p r o l a m e l l a r body and the enzymes f o r C h l o r o p h y l l s y n t h e s i s from photodestruetion, s e n s i t i z e d by e a r l y forms of C h l o r o p h y l l H. Ryberg, L. Axelsson, B. Klockare and A.S. Sandelius

The f u n e t i o n o f carotenoids during c h l o r o p l a s t development. IV. P r o t e c t i o n of g a l a c t o l i p i d s from photodecomposition, s e n s i t i z e d by e a r l y forms of C h l o r o p h y l l A.S. Sandelius, L. Axelsson, B. Klockare, H. Ryberg and K-0. W i d e l l

The p l a s t i d i c shikimate pathway and i t s r o l e i n the sy n t h e s i s of plastoquinone-9,a-tocopherol and phylloquinone i n spinach c h l o r o p l a s t s G. S c h u l t z , H. B i c k e l , B. Buchholz and J . S o l l A r a p i d Separation method of l e a f pigments by t h i n l a y e r chromatography on s i l i c a g e l GjlP* Evangelatos and G.A. Akoyunoglou

DEVELOPMENT OF THE PHOTOSYNTHETIC ACTIVITY-BIOGENESIS OF THE THYLAKOID STRUCTURE

Thylakoid membrane formation i n the higher p l a n t c h l o r o p l a s t N.K. Boardman

Ch l o r o p l a s t assembly i n development. Chairman's opening address to Symposium X I I I I . S S t l i k

Page 5: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

Assembly of f u n c t i o n a l components i n c h l o r o p l a s t p h o t o s y n t h e t i c membranes G.A. Akoyunoglou

Development of primary photosynthetic processes i n leaves grown under a d i u r n a l l i g h t regime N.R. Baker and.V. Miranda

C o n t r i b u t i o n of manganese to the mechanism of p h o t o a c t i v a t i o n of the oxygen-evolving System i n dark-grown spruce s e e d l i n g s Y. Lemoine

The development of the photosynthetic apparatus of Gnetum : angiosperm or gymnosperm type? C. Jeske and H. Senger

The development of the photosynthetic apparatus during l e a f opening i n s i l v e r b i r c h (Betula p e n d u l a R o t h ) N. Valanne, T. Valanne, H. Niemi and E.-M. Aro

S p e c t r a l d i s t r i b u t i o n of fluorescence a t 77°K of h e a t - t r e a t e d and developing water-stressed c h l o r o p l a s t s R. Bhardwaj and G.S. Singhai

The c h a r a c t e r i z a t i o n of the developing photosynthetic apparatus i n greening b a r l e y leaves by means of (slow) fluorescence k i n e t i c measurements C. Buschmann

E v o l u t i o n of photosynthetic c a r b o x y l a t i o n pathways during wheat ontogenesis F. Ferron and A. Sauvesty

Development of the photosynthetic apparatus i n e u c a r y o t i c algae H. Senqer

Biochemical aspects of regreening of streptomycin-bleached Chlamydomonas reinhardii sr 3 A. B o s c h e t t i

I s o l a t i o n of c h l o r o p l a s t s from Chlamydomonas r e i n h a r d i i CW 15 mutant L. Mendiola-Morgenthaler and A. B o s c h e t t i

Development of t h y l a k o i d s and photosynthetic a c t i v i t y i n thermo-s e n s i t i v e and light-dependent mutants of Chlorella p y r e n o i d o s a G. G a l l i n g

C h l o r o p h y l l a f l u o r e s c e n c e and O2 e v o l u t i o n of synchronized Chlorella fusca D. Mende, A. Heinze and W. Wiessner

The e f f e c t of t r a n s l a t i o n and t r a n s c r i p t i o n I n h i b i t o r s on the development of the photosynthetic apparatus i n c e l l c y c l e s o f Scenedesmus quadricauda I . S g t l i k , E. S e t l i k o v a , J . Masojidek, V. Zachleder, T. K a i i n a , and P. Mader

Page 6: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

Cytochromes i n orange, c h l o r o p h y l l - d e f i c i e n t c e l l s and during the r e g r e e n i n g of the green alga Chlorella fusoa L.H. Grimme and E. Lorenz

PSI and PSII u n i t growth i n stroma and grana t h y l a k o i d s during c h l o r o p l a s t development i n Fhaseoulus v u l g a r i s : a c r i t i c a l reassessmeht o f the PSII u n i t s i z e i n stacked and unstacked reg i o n s A. C a s t o r i n i s and J.H. Ärgyroudi-Akoyounoglou

Formation and growth of photosystem I and I I u n i t s i n developing t h y l a k o i d s of Fhaseoulus vulgaris S. T s a k i r i s and G. Akoyunoglou

xi

491

Independent growth of the photosystem I and I I u n i t s . The r o l e of the l i g h t - h a r v e t i n g pigment-protein complexes G. Akoyunoglou, S. T s a k i r i s and J.H. Argyroudi-Akoyunoglou 5 2 3

A c r i t i c a l reassessment of the photosystem I I content i n bündle sheath c h l o r o p l a s t s of young leaves of Zea mays J.H. Golbeck, I.F. M a r t i n , B.R. Velthuys and R. Radmer

L i n c o c i n e f f e c t on the development of photosystem I I E. S a r v a r i , P. Simon and F. Lang

S t r u c t u r a l O r g a n i z a t i o n and development of the l i g h t - h a r v e s t i n g pigment p r o t e i n s f o r photosystem I and I I J.E. M u l l e t , K. Leto and C.J. Arntzen

Synthesis of c h l o r o p h y l l - p r o t e i n complexes i n i s o l a t e d c h l o r o ­p l a s t s of Hkglena W. O r t i z and E. S t u t z

533

547

557

The formation of the pigment-protein complexes i n t h y l a k o i d s of Ihaseolus vulgaris during c h l o r o p l a s t development K. Kaiosakas, J.H. Argyroudi-Akoyunoglou and G. Akoyunoglou 569

The appearance of a new s o l u b l e Polypeptide and the prevention of t h y l a k o i d assembly during i n h i b i t i o n of C h l o r o p h y l l synthesis i n maize leaves* Y. Konis, E. Harel and S. K l e i n 581

591

Calcium i n h i b i t i o n of amino a c i d i n c o r p o r a t i o n by pea c h l o r o p l a s t s and the question of l o s s of a c t i v i t y w i t h age P-Y. Bouthyette and A.T. Jagendorf 599

Monoclonal a n t i b o d i e s : a novel approach to enzyme and p l a s t i d ontogenesis and phylogenesis. R e s u l t s and prospects W. Liedgens, Hj.A.W. Schneider and R. Grützmann 611

New concepts f o r the formation of photosynthetic membranes i n e t i o p l a s t s C. Lütz 619

Page 7: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

xi i Changes i n the photosynthetic apparatus i n ageing Scenedesmus c e l l s H. Daniel1 and G. Kulandaivelu 631

F u n c t i o n a l and s t r u c t u r a l changes of i s o l a t e d c h l o r o p l a s t s during'ageing N. Laasen and W. Urbach

DEVELOPMENT AND DIFFERENTIATION OF THE PHOTOSYNTHETIC PROCARYOTES 653

Or g a n i z a t i o n , l o c a l i z a t i o n and assembly of the pigment-protein complexes i n membranes of the phototrophic bacterium Rhodopseu-domonas capsulata

G. Drews, A.F. G a r c i a , R. D i e r s t e i n and J . Shiozawa 655

Development of the b a c t e r i a l photosynthetic apparatus R.A. Niederman, C.N. Hunter, G.S. Inamine and D.E. Mallon 663 The d i f f e r e n t i a t i o n of the photosynthetic apparatus i n pro-caryotes J . P e l z e , K. Arnheim, I . K a i s e r and E. Post 675

Genetic engineering i n a photosynthetic bacterium B. Marrs, S. Cohen and D. Taylor 687

C o n t r o l of R h o d o p s e u d o m o n a s sphaeroides Y 5-aminolaevulinic acid-synthetase by reduced t h i o r e d o x i n J.D. Clement-Metrai 695

An increased carotenoid s h i f t on transference of R h o d o p s e u d o m o n a s c a p s u l a t a from darkness to l i g h t e i t h e r a e r o b i c a l l y or anaerobic-a l l y E.H. Evans, J . Manwaring and G. B r i t t o n 7 0 1

Photosynthesis and r e s p i r a t i o n i n blue-green algae: e l e c t r o n -t r a n s p o r t i n g funetions of t h y l a k o i d s and plasmamembrane, and occurrence of cytochrome a.a3, i n A n a c y s t i s nidulans G.A. Peschek, G. Schmetterer, W. Lockau and U.B. S l e y t r 707

Re v e r s i b l e degradation of photosynthetic apparatus and t h y l a k o i d s i n the blue-green a l g a Anacystis nidulans G. Schmetterer' and G.A. Peschek 721

The photosynthetic apparatus of v e g e t a t i v e and heteroeystous c e l l s o f the filamentous eyanobacterium N o s t o c muscorium G.C. Papageorgiou and J . Isaakidou 727

Composition and f u n e t i o n of the photosynthetic apparatus of heteroeysts i s o l a t e d from the blue-green a l g a N o s t o c m u s c o r u m H. Almon and H»-Böhme 737

Page 8: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

GENETIC CONTROL OF CHLOROPLAST DEVELOPMENT

C h l o r o p l a s t development: a p e r s p e c t i v e J.W. Bradbeer

R e g u l a t i o n o f r e p l i c a t i o n and t r a n s c r i p t i o n i n the c h l o r o p l a s t R. Hagemann

M e t a b o l i t e r e g u l a t i o n of c h l o r o p l a s t genome expression and of the a c t i v i t y of the photosynthetic apparatus V.E. Semenenko

Comparative s t u d i e s on c h l o r o p l a s t t r a n s f e r RNAs: tRNA sequences and tRNA gene l o c a l i z a t i o n i n the rDNA u n i t s J.H. W e i l , P. Guillemaut, G. Burkard, J . Canaday, M. Mubumbila, M.L. Osorio, M. K e l l e r , R. G l o e c k l e r , A. Steinmetz, G. K e i t h , D. H e i s e r and E.J. Crouse

The e f f e c t o f a high non-permissive temperature on c h l o r o p l a s t development i n barley D. A l l s o p , Y.E. Atkinson and J.W. Bradbeer

C h l o r o p l a s t development i n normal and mutant l i n e s of b a r l e y Y.E. A t k i n s o n , D. A l l s o p and J.W. Bradbeer

P h o t o r e g u l a t i o n of the synthesis of r i b u l o s e bisphosphate carbo-x y l a s e and l o c a t i o n of the gene f o r i t s l a r g e subunit on a spe­c i f i c Eiglena c h l o r o p l a s t DNA r e s t r i c t i o n fragment G. F r e y s s i n e t , T. Gallagher, R. E i c h h o l z , E.A. Wurtz, M. F r e y s s i n e t and D.E. Buetow

Nuclear gene mutation e f f e c t s on the p l a s t i d s t r u c t u r e and RUBP-Case p r o p e r t i e s i n N i c o t i a n a tabacum (CV XANTHI) A. Nato, J . Brangeon and H. D u l i e u

Evidence f o r p o s t - t r a n s l a t i o n a l processing i n the c h l o r o p l a s t by p r o t e i n s synthesized i n the cytoplasm E. M. Reardon and C A . P r i c e

In v i t r o t r a n s l a t i o n o f exogenous messengers w i t h i s o l a t e d c h l o r o ­p l a s t s of spinach A. Gnanam, T. Mariappan and J.D. Manjula Devi

Biochemical and u l t r a s t r u c t u r a l a n a l y s i s of the e f f e c t of nuclear genome d u p l i c a t i o n on c h l o r o p l a s t development and b i o s y n t h e t i c a c t i v i t y i n e uploid Ricinus c e l l s .. M.P. Timko, R.E. Triemer and A.C. Vasconcelos

Evidence f o r a t r a n s l a t i o n a l c o n t r o l mechanism i n the s y n t h e s i s of the major t h y l a k o i d Polypeptides i n Chlamydomonas r e i n h a r d t i i J.K. Hoober

Page 9: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

Xiv CONTROL OF CHLOROPLAST DEVELOPMENT (PHOTO, ENVIRONMENTAL, ETC.) 8 6 7

C o n t r o l of c h l o r o p l a s t development by l i g h t - Some recent aspects H. Mohr 869

The e f f e c t of blue and red l i g h t on the development of the p h o t o s y n t h e t i c u n i t s during greening of e t i o l a t e d bean leaves H. Anni and G. Akoyunoglou 889

Development of the s t r u c t u r e of dimorphic c h l o r o p l a s t s of Zea mays i n the presence of blue and red l i g h t D. M i l i v o j e v i c 395

E f f e c t s of blue l i g h t on r e s p i r a t i o n and enzyme a c t i v i t y i n a y e l l o w C h l o r e l l a mutant G. Ruyters 905

The e f f e c t of continuous i r r a d i a t i o n on C h l o r o p h y l l accumulation i n s e e d l i n g s of Pinus sylvestris H. . Kasemir and H. Mohr 915

Two steps i n i n i t i a l phytochrome a c t i o n on C h l o r o p h y l l s y n t h e s i s H. Oelze-Karow and H. Mohr 923

Synergism between red l i g h t and yellow-green l i g h t w i t h respect to C h l o r o p h y l l synthesis i n Rtglena L.S. Kaufman and H. Lyman 933

D i f f e r e n c e s i n u l t r a s t r u c t u r e and composition of c h l o r o p l a s t s from r a d i s h seedlings grown i n strong l i g h t , weak l i g h t and under the i n f l u e n c e of bentazon D. Meier and H.K. L i c h t e n t h a l e r 939

L i g h t r e g u l a t i o n of the s y n t h e s i s of two major nuclear-coded c h l o r o p l a s t Polypeptides i n Lenma gibba E. M. Tobin , . ' 949

I n t e r a c t i o n between p l a s t i d s , mitochondria and cytoplasm d u r i n g c h l o r o p l a s t development A.R. Wellburn and R. Hampp 961

Adenylate pools, energy C h a r g e , and phosphorylation p o t e n t i a l of p l a s t i d s , mitochondria and cytoplasm during development of photo­s y n t h e t i c c a p a c i t y R. Hampp and M. R i e h l 9 6 9

C o n t r i b u t i o n of photosynthesis to the growth and d i f f e r e n t i a t i o n o f c u l t u r e d tobacco c e l l s . The r e g u l a t o r y r o l e of i n o r g a n i c phosphate M. Miginiac-Maslow, Y. Mathieu, A. Nato and A. Hoarau 977

Comparison of c h l o r o p l a s t u l t r a s t r u c t u r e and s y n t h e t i c Performance i n A c e t a b u l a r i a t r e a t e d w i t h auxin and w i t h a n t i - a u x i n T. Vanden Driessche, M. Geuskens, M. Glory and E. Cerf 985

Page 10: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

The content of p h y t o l i n the green alga Chlorella f u s c a and the e f f e c t of the pyridazinone h e r b i c i d e SAN H 6706 on p h y t o l b i o s y n t h e s i s M.M. Tantawy and L.H. Grimme

C h l o r o p h y l l b accumulation and grana formation i n normal and SAN-9789 grown wheat see d l i n g s i n low i n t e n s i t i e s of red l i g h t H. V i r g i n , L. Axelsson, H. Ryberg and K-0. W i d e l l

E f f e c t of cadmium on l i g h t r e a c t i o n s of i s o l a t e d p l a s t i d s from greening b a r l e y seedlings F. Roynet, R. Lannoye and J . Barber

INDICES TO VOLUMES I - VI

Author index I - 1 P l a n t index 1-11 Subject index 1-15

Page 11: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

Photosynthesis V. Chloroplast Development Edited by George Akoyunoglou © ]981 Balaban International Science Services, Philadelphia, Pa.

THE PLASTIDIC SHI Kl MATE PATHWAY AND ITS ROLE IN THE SYNTHESIS OF PLASTO-

QUINONE-9, « - T 0 C 0 P H E R 0 L AND PHYLLOQUINONE IN SPINACH CHLOROPLASTS

Schul t z , G., B i c k e l , H. , Buchholz, B. and S o l l , J .

In s t i t u t f ür T i e r e r n ä h r u n g , Arbeitsgruppe f ür Phytochemie und Futtermit­

telkunde, T i e r ä r z t l i c h e Hochschule, D 3000 Hannover 1 (FRG)

ABSTRACT

The p l a s t i d i c SkA pathway is operative in the synthesis of aromatic amino

acids and of the prenylquinones PQ -9, c*T and phyl loquinone. Neither exo-genous Substrates nor coenzymes are needed under photosynthetic c o n d i t i o n s .

However, ad d i t i o n of PEP - and for Trp formation Gin and Ser - enhances

the rates of synthe s i s . The pathway e x h i b i t s a s p e c i f i c feedback: Trp in-

h i b i t s the pathway at the Steps between SkA and chorismate and not at the

KDAHP-step as in some microorganisms, whereas Phe and Tyr only i n h i b i t

t h e i r cwn syn t h e s i s .

The introductory step in PQ-9 and c*T-synthes i s is the oxidation of p-hydro-

xypheny1pyruvate to homogentisate / ! / . It is prenylated to the methyl - 6 -prenylquinol by the corresponding prenyl-PP under simultaneous e l i m i n a t i o n

of the ca rboxy lgroup of homogent i sate. The only s i t e of c*T synthesis is the envelope membrane of the c h l o r o p l a s t , whereas that of PQ-9 synthesis is the envelope and the thylakoid membrane too. The sequence in ocT syn­thesis in spinach is ( F i g . 3 . ) :

Homogentisate Phytyl-PP^ Me-6-PQH2 2,3-Me

2-PQH

2

C

yc l i z a t i o n

.

_ SAM _ _A , . .

u Solanesyl-PP

yj a

T ; for the PQ-9 biosynthesis i t i s : Homogent i sate 1

+~

Me-6-SQH2 PQH

2.

Abbreviations: E^P - erythrose-^-P; GGPP - gerany1gerany1-PP; HPP - p-hydro-xyphenylpyruvate; KDAHP - 2-keto -3"deoxyarabinoheptonic acid - 7-P; Me-6-GGQH - 2-methyl - 6-geranylgeranylquinol; Me-6-PQH and isomers - 2-methyl -6-phy-t y l q u i n o l and isomers; 2,3-Me

2-PQH

2 - 2 , 3-dimethyl - 5-phytylquinol; M e ^ - P Q H «

- t r i m e t h y l p h y t y l q u i n o l ; Me-6-SQH2 - 2-methyl - 6-solanesyIquinol; PGA ^ 3"D-

phosphoglycerate; PQ-9*" plastoquinone - 9 ; PQH« - p l a s t o q u i n o l - 9 ; PEP -

phosphoenolpyruvate; SkA - shikimate; PRPP - 5-P-ribosyl - 1-PP; SAM - S-ade-

nosylmethionine; ocT, ß T , j/T, <5T - e r , ß - , p-, 5-tocopherol.

311

Page 12: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

312 Schultz et al.

From i s o t o p i c studies using CO^ /2/,SkA /3/ and o-benzoy1succinate /k/ i t

has been proved that higher plants are able to synthesize phylloquinone

(2-methyl-3~phytylnaphthoquinone vitamin K1) . The envelope membrane is the

s i t e o f prenylation of 1 .k-d\hydroxy -2-naphthoateto form 2-methyl-naphtho-quinol which is methylated by SAM to y i e l d p h y l l o q u i n o l . Consequent1y, the

sequence in i t s biosynthesis seems to correspond with that in microorgan-

isms / 5 , 6, I I : S k A ( C h o r i smate Succinylsemialdehyde-TPP^ } q

_S u c

.

cinylbenzoate Pr e n

Y^ 2-Preny1naphthoquinol —SAM^ 2-Methy1~3~preny1-naphthoquinol. In plants phytyl-PP is preferred as prenylCompound.

The SkA pathway operates in the synthesis of aromatic amino acids in plants.

It is a l s o involved in the synthesis of prenylquinones by synthesizing the

aromatic moiety. The prenyl sidechain o r i g i n a t e s from the p l a s t i d i c meva-

lonate pathway /8/. These prenylquinones operate in d i f f e r e n t ways in the

photosynthetic t i s s u e : PQ-9 acts in the photosynthetic e l e c t r o n transport

/9/> c*T i n a c t i v a t e s e n e r g e t i s i z e d oxygen species formed by l i g h t (by sca-

venging r a d i c a l s and a l s o by quenching 0^ / 1 0 , 11/). a J is a l s o an im-

portant membrane co n s t i t u e n t . The funetion of phylloquinone in plants is

not yet c l e a r . The f i r s t problem was to study the compartmentation of the

SkA pathway involved in these syntheses.

I d e n t i f i c a t i o n of a p l a s t i d i c SkA pathway

Biosynthesis of aromatic amino acids in spinach c h l o r o p l a s t s under pho­

tosynthetic conditions: The findings that isoenzymes of SkA dehydrogenase

/12, 13/ and enzymes of Tryp synthesis / 1 V are enriched in c h l o r o p l a s t

f r a c t i o n s , strongly indicate the occurence of enzymes of SkA pathway in

t h i s o r g a n e i l e . To prove the funetion of t h i s pathway, p u r i f i e d i n t a c t chlo-

14

roplasts were illuminated under photosynthetic conditions with CO^ and

the label in the expected aromatic amino acids and prenylquinones was de-

termined / 15 , 16, 17/ (see F i g . 1). In a l l experiments c h l o r o p l a s t s suspen-

sions with at least 1 mg chlorophy11/ml were used; t = 30 min; control

expt. disproved microbial contamination / 1 6 / . The p u r i t y of the chloro­

plasts i s o l a t e d acc. to /18/ was tested for marker enzymes / 1 9 , 20/.

PEP PEP GluNH2 PRPP Ser

co2 •

Choris- Y Anthra- Y Indol- V T

nil - ' ' ~ 1

Prephenate

? \ e Ty

PEP v • . ^ c u - f c - J W w l u ' l i _ ^ . n i i m i ' a - m i i i u u i - ^ -r

Photosynthetic^ E 4 p

mate nilate glycerpl-P p

C-f1xation i I i \^ Prephenate

CHLOROPLASTS

E4P SkA Chorismate Anthranilate

F i g . 1. SkA pathway in spinach c h l o r o p l a s t s and Substrates tested 1 2 h l

Page 13: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

Schultz et al. 313

i J, T a b l e 1. C - I n c o r p o r a t i o n from CO^ i n t o amino a c i d s o f i l l u m i n a t e d

i n t a c t s p i n a c h c h l o r o p l a s t s o f d i f f e r e n t p u r i t y /21/.

P u r i f i e d Non p u r i f i e d

c h l o r o p l a s t s c h l o r o p l a s t s

% ~ o f p h o t o s y n t h e t i c a l l y f i x e d CO,,

Sum o f amino a c i d s o . l k O.kk

% o f l a b e l i n amino a c i d s

Asn+ A s p + G i n + G l u 16.6 1.8

Ser + G l y 38.9 79-9

A l a "40.3 12.9

Phe + T y r + T r p 10.2 5-^

Increasing the p u r i t y of the c h l o r o p l a s t s , the label of Gly and Ser decrea-

sed, whereas that of the aromatic amino acids (and of Ala) increased /21/.

Decrease of Gly and Ser synthesis is due to the e l i m i n a t i o n of the peroxy-

somes and mitochondria /21/ (Table 1).

As pointed out by /22/ at the onset of i l l u m i n a t i o n the exchange of d i -

hydroxyacetonephosphate from the ch l o r o p l a s t s versus P. of the Suspension

medium by the phosphate translocator /23/ of the envelope membranes resul t s

in a l a g p h a s e o f photosynthetic carbon f i x a t i o n . This is caused by a lack

of PGA which is needed by the Ca 1 v i n - c y c l e . The same should be v a l i d to

metabolic pathways adjacent to the C a l v i n - c y c l e , e.g. the SkA pathway in-

vestigated here. Experiments with and without P. in the medium proved t h i s

assumption / 1 7 / : Omission of P. of the medium e f f e c t s in a manifold i n -14

1

corporation from CO^ into aromatic acids (Table 2 ) .

Requirement of exogenous Substrates: As shown above, the SkA pathway

operates under conditions of photosynthetic carbon f i x a t i o n by intact

c h l o r o p l a s t s at considerable rates. In additional studies the ~inf1uence

of exogenously added Substrates on the p l a s t i d i c SkA pathway was determi-

ned 1 2 h / . To narrow the study, the metabolic flow of the SkA pathway was

di r e c t e d only to the Trp branch by i n h i b i t i n g the other two branches by

\ k \k

T a b l e 2. C - I n c o r p o r a t i o n from CO- i n t o a r o m a t i c amino a c i d s and p r e n y l ­

q u i n o n e s o f i l l u m i n a t e d i n t a c t Spinaen c h l o r o p l a s t s a d d i n g and o m i t t i n g P.

t o the S u s p e n s i o n medium .

P. added P. o m i t t e d ' « I i .

TO * % o f p h o t o s y n t h e t i c a l l y f i x e d C02

Phe 35 66

T y r 0.*»5

T r p 2.3 h PQ-9 0.^2 1.3

« T 0.73 1.3

Page 14: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

314 Schultz et al.

T a b l e 3. C - l n c o r p o r a t i o n from XO* o r / I , 6 - C/-SkA i n t o a r o m a t i c

amino a c i d s o f i l l u m i n a t e d i n t a c t s p i n a c h c h l o r o p l a s t s i n the p r e s e n c e o f

Phe, T y r and T r p , r e s p e c t i v e l y /25/.

+ Phe + T y r + T r p

- each 5 mM - f

% o f c o n t r o

T y r

T r p

82 386 5 5

163 25

212

18 37 12

+ / i t 6 - 7-SkA

5 1*7 120

152 8A

208

7 10 38

Phe

T y r

T r p

w i t h o u t a d d i t i o n o f a r o m a t i c amino a c i d s

adding Phe and Tyr (see below). An addition of PEP, Gin and Ser increased

14 the incorporation from CO^ into Trp. The optimal concentrations were

(without added Substrate = 1.0): ca 3-5 f o l d increase at 5 x 10 ^ M PEP;

-6 14 ca 2.5 f o l d increase at 10 M Gin and Ser, resp. . Furthermore, /1- C/-

PEP is incorporated into aromatic amino acids of c h l o r o p l a s t s in consider-

able y i e l d s /24/. When E4P, SkA, chorismate and anthrani1ate, r e s p e c t i v e l y ,

14

were applied in C0^ experiments in increasing concentrations, the label

in the aromatic amino acids more or less decreased /24/. This might be cau-

sed by i s o t o p i c d i l u t i o n of endogenous intermediates and/or regulatory phe-

nomena.

14

Feedback control by endproducts: From C ü ^ - e x p e r iments in the presen­

ce of Phe, Tyr or Trp (each 5 mM) i t could be revealed that the SkA path­

way is subject to feedback control by endproducts /25/ (Table 3). Phe and

Tyr exert feedback control over t h e i r own rates of s y n t h e s i s , whereas Trp

co n t r o l s the rate of synthesis of a l l three aromatic amino a c i d s . To deter-

14

mine a point of attack more e x a c t l y , /1.6- C/-SkA was fed as a more d i r e c t

precursor (Table 3) • These r e s u l t s indicate thatTrp attacs a Step between

the synthesis of SkA and chorismate ( F i g . 2) and not the KDAHP Step as in

some microorganisms (for survey see /26/).

Co ^ KDAHP SkA +*• Chorismate 2

V ^Tr p

Prephenate

F i g . 2. Feedback control of SkA pathway by Phe and Tyr and Trp in spinach

c h l o r o p l a s t s /25/.

Page 15: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

Schultz et al. 315

Transfer of aroroatic amino acids across the envelope membranes: Feeding

/ 1 . 6 - C/-SkA to spinach c h l o r o p l a s t s , the main portion of label in the

aromatic amino acids was found in the Suspension medium a f t e r a period of

30 min / 1 6 / . This f i n d i n g as well as the considerable incorporation of

14

/ß- C/-Tyr applied to endosperm, into PQ and flavonoids of leaves of bar­

ley seedlings 1 2 1 / indicates a r e l a t i v e l y rapid transfer of aromatic amino

acids across the envelope membranes in v i t r o and in v i v o .

Oxidation of HPP to homogentisate: This step which is a p r e r e q u i s i t e

for the synthesis of PQ and a l was shown in the thylakoid f r a c t i o n of Lem-14

na gibba / 2 8 / . Furthermore, from the incorporation of C l a b e l l e d CO^,

SkA and Tyr into PQ and oflT, i t could be conclouded that the HPP oxidation

takes place in the c h l o r o p l a s t s / 16 , 17/.

Biosynthesis of <a-tocophero1 and plastoqu 1 none -9

The aromatic moiety of both derives from homogentisate /!/ which is f o r ­

me d by an oxydase System from HPP /28/.

ot-Tocopherol biosynthesis: The only s i t e of c*T biosynthesis in spinach

c h l o r o p l a s t s is the envelope membrane / 2 9 , 3 0 / . Homogentisate is s o l e l y

prenylated with phytyl-PP to form Me-6-PQH2 / 3 0 / . There i.s no Stimulation

by other c h l o r o p l a s t f r a c t i o n s l i k e thylakoid membranes or stroma / 3 0 / . The

prenyltransferase in spinach shows a strong s p e c i f i c i t y for phytyl-PP

(26 pmol/h mg envelope p r o t e i n ) ; GGPP is i n a c t i v e in t h i s System / 3 0 / . From

the possible p o s i t i o n s isomers only Me-6-PQH^ is formed; Neither Me-5" nor

Me-3"PQH2 could be found / 3 0 / .Consequently,the pathway is strongly d i r e c t e d

at this step. A kinase which forms phytyl-PP from phytol plus ATP is loca-

l i z e d in the stroma / 3 0 / . Phytol and i t s pyrophosphate a r i s e s by reduction

from GGPP / 3 1 / which is synthesized by a recombinated System of epvelope

or thylakoid membranes plus stroma protein / 3 2 / .

The following methylation Steps with SAM as methyl-group donor to form

cxT from Me-6-PQH2 are a l s o performed by enzyme Systems l o c a l i z e d in the

envelope membranes / 2 9 / (see F i g . 3 ) . The quinol is the Substrate of the

methylation and not the quinone. Comparison of the methylation rates to

y i e l d the corresponding dimethyl-Compound shows that Me-6-PQH2 is not only

s t r o n g l y preferred to i t s isomers Me -5- and Me-3-PQH^ but a l s o t o i t s chromanol

stage S T ( r a t i o s are 100 : 10 : 5 : 5) / 3 3 / - Thus, the raain product is

2,3-Me2~PQH

2 which undergoes ringclosure to y l and further methylation by

SAM to « T . The chromanol stage is the p r e r e q u i s i t e for the second methyl­

a t i o n , no Me^-PQH2 occurs / 3 3 , 3 4 / . y l is preferred to ßT to y i e l d ocT

(100 : 35) / 3 3 / . In marked contrast to the prenylation enzyme, the t r a n s f e r -

Page 16: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

316 Schultz et al.

ase for the f i r s t methylation step e x h i b i t s a preference for Me-6-GGQH2

(2 nmol/h mg envelope protein) in comparison to Me-6-PQH^ (0.7 nmol mg

envelope protein) / 2 9 , 3 4 / .

The ring closure of the dimethy1prenylquinol to the corresponding chro­

manol (in t h i s case 2.3 M e2~ P Q H

2y T ) takes place only in int a c t chloro­

p l a s t s / 3 3 , 34/ but not in i s o l a t e d envelope membranes. The concentrations

of PQ-9 and o<T in the envelope are: PQ 0.53 ug/mg envelope protein (7.1 x

10_ i* M) , c*T 1.03 ug/mg envelope p r ö t e i n (2.4 x 10~^ M) ( S o l l , Douce unpbl.).

Plastoquinone - 9 biosynthesis: PQ-9 b i o s y n t h e s i s , both prenylation and

methylation, is not only performed by the envelope membranes (1.2 pmol/h mg

protein and 10 pmol/h mg p r o t e i n , respectively) but a l s o at low rates by

the thylakoid membranes (0.013 pmol/h mg protein and 0.35 pmol/h mg protein,

respectively) / 3 0 7 . However, i f one takes into account the rate of t h y l a ­

koid protein to that of envelope protein per mg C h l o r o p h y l l , the y i e l d s in

total are not as d i f f e r e n t as they are ca l c u l a t e d on the basis of prot e i n

i t s e l f . The sequence of reactions involved in PQ-9 biosynthesis is s i m i l a r

to ocT. Solanesyl-PP (Cj^) serves as prenyl Compound in the prenylation re-

action to form Me-6-SQH2 with homogentisate. In the following steps Me -6-

SQH2 is methylated with SAM to y i e l d PQ-9-

Shikimate pathway Prenyl-PP-synthesis

env + str + thyl

Tyr -*^p-riydroxyphenyl pyruvate y

' (HPP)

'ipL

Geranylgeranyl-PP (GGPP)

str

oh Homogentisate

ch 2-cooh Phytyl -PP I Phytol Sol anesyl -PP

thyl

Me-6-Phytylquinol (Me-6-PQH

2)

| SAM env

2,3-Me9-Phytylquinol ^(2,3-Me

2PQH

2)

| Cyclization

y-Tocopherol {yl)

SAM env

a-Tocopherol {al)

~~| env t

Me-6-Solanesylquinol (Me-6-SQH

2)

SAM env thyl

Plastoquinol-9 (PQH

2)

str Stroma

env Envelope

thyl Thylakoids

F i g . 3. Biosynthesis of &1 and PQ in spinach c h l o r o p l a s t s / 2 9 , 30, 33, 34/

Page 17: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

Schultz et al. 317

M III IV

Fig . k. Proposed scheme for the biosynthesis of phylloquinone in spinach

c h l o r o p l a s t s . I - o-succinylbencoic acid; II - 1 ,4-dihydroxy-2-naphthoic

aci d ; III - 2-phytyl-l,4-naphthoquinol; IV - 2-methyl-3-phyty1-1,4-naph-

thoqu i nol

Phylloquinone biosynthesis

As mentioned above, biosynthesis of phylloquinone in plants could be detec-

ted by feeding some S u b s t r a t e s including SkA by the group of T h r e l f a l l /3,

k l . In studies on spinach c h l o r o p l a s t (Schultz and E l l e r b r o c k , unpublished

data), 1 ,4-dihydroxy-2-naphthoateis prenylated by phytol plus ATP to form

2- phytylnaphthoquinol (60 pmol/h mg C h l o r o p h y l l ) . (For the biosynthesis

of phytyl-PP by c h l o r o p l a s t s see /307). The quinol is methylated by SAM to

y i e l d phylloquinol (6 pmol/h mg C h l o r o p h y l l ) . There is a strong s p e c i f i c i t y

of the sequence of both r e a c t i o n s . 2-Phyty1naphthoquinol is preferred to

i t s GG-and f a r n e s y l - homologue. The s i t e of prenylation is the envelope

membrane; thylakoid membranes as well as stroma protein seems to be inac-

t i v e . Both reactions need Mg (2.5 mM); l i g h t i s not required.

CONCLUSIONS

The p l a s t i d i c SkA pathway is involved in the biosynthesis of aromatic amino

acids as well as of prenylquinones of algae and higher plants (for d i s t r i -

bution /35/) but how i t is combined with the generally occuring secon-

dary metabolism of aromatics in plants is not c l e a r /36/.

ACKNOWLEDGEMENTS

Financial support by the Deutsche Forschungsgemeinschaft and the Centre

Nationale de la Recherche S c i e n t i f i q u e (ERA 847 to Prof. Dr. R. Douce, Bio­

lo g i e Vegetale, CENG and USM-G, Grenoble, France) are g r e a t f u l l y acknow-

ledged.

Page 18: The plastidic shikimate pathway and its role in the …H. Daniel1 and G. Kulandaivelu 631 Functional and structural changes of isolated chloroplasts during'ageing N. Laasen and W

318 Schultz et al.

REFERENCES

1 Whistance, G.R. and T h r e l f a l 1 , D.R. (1970) Biochem.J. 117, 593-600 2 Goodwin, T.W. (1965) in Biosynthetic Pathways in Higher Plants ( P r i d -

ham, J.B. and Swain, T., eds.) pp. 57-71 , Academic Press, London

3 Thomas, G. and Th r e l f a 1 1 , D.R. (1974) Phytochemistry 13, 807-813 4 Hutson, K.G. and T h r e l f a l l , D.R. (1980) Phytochemistry 19, 535-537 5 Robins, D.J., Campbell, I.M. and Bentley, R. (1970) Biochem. Biophys.

Res. Commun. 39, 1081 6 Bryant, R.W. and Bentley, R. (1976) Biochemistry 15, 4792-4796 7 Shineberg, B. and Young, I.G. (1976) Biochemistry 15, 2754-2758 8 Rogers, L.J., Shah, S.P.J. and Goodwin, T.W. (1966) Biochem. J . 99,

381-388 9 W i t t , H.T. (1979) Biochem. Biophys. Acta 505, 355-427

10 Foote, C S . , Clough, R.L. and Yee, B.G. (1978) in Tocopherol, Oxygen and

Biomembranes (de Duve, C. and Hayaishi, 0 . , eds.) pp. 13-21, E l s e v i e r ,

Amsterdam

11 Yamauchi, R. and Matsushita, S. (1979) A g r i c . B i o l . Chem. 43 , 2157-2161 12 Feierabend, J . and Brassel,D. (1977) Z. Pf 1anzenphysiol. 82, 334-346 13 G i l c h r i s t , D.G. and Kosuge, T. (1975) Arch. Biochem. Biophys. 171, 36-

42 14 Grosse, W. and E i c k h o f f , F. (1974) Planta 118, 25-34 15 B i c k e l , H. and Sch u l t z , G. (1976) Phytochemistry 15, 1253-1255 16 B i c k e l , H., Palme, L. and Sch u l t z , G. (1978) Phytochemistry 17, 119-

124 17 Schultz, G. and B i c k e l , H. (1977) Proceedings of the 5th Hungarian

Bioflavonoid Symposium, M a t r a f ü r e d /Hungary (Farkas, L. et a l . , eds.)

pp. 271-284, E l s e v i e r , Amsterdam

18 Larsson, C. and Anderson, B. (1979) in Methological Surveys (ß) Bio­

chemistry. (Reid, E., ed.) V o l . 9, pp. 35-46, Horwood, Chichester

19 K e l l y , G.J. and. Gibbs, M. (1973) Plant P h y s i o l . 52, 111-118 20 T o l b e r t , N.E., Yamazak-i , R.K. and Oeser, A. (1970) J . B i o l . Chem. 245,

5129-5136 21 Buchholz, B., Reupke, B., B i c k e l , H. and Sch u l t z , G. (1979) Phytoche-

mistry 18, 1109-1111 22 Heber, U. and Walker, D.A. (1979) Trends Biochem. S e i . 4 , 252-256 23 Heidt, H.W. (1976) in Topics in Photosynthesis (Barber, J . , ed.) V o l .

1, pp. 215-234, E l s e v i e r , Amsterdam

24 Buchholz, B. and Sc h u l t z , G. (1980) Z. P f l a n z e n p h y s i o l . , in press

25 B i c k e l , H. and Sch u l t z , G. (1979) Phytochemistry 18, 498-499 26 Haslam, E. (1974) The Shikimate Pathway, pp. 3-48, Butterworth, London

27 B i c k e l , H. and Schultz, G. (1974) Ber. Deutsch. Bot. Ges. 87, 281-290 28 L ö f f e l h a r d t , W. and K i n d l , H. (1979) FEBS Letters 104, 332-334 29 S o l l , J . , Douce, R. and Schultz, G. (1980) FEBS Letters 112, 243-246 30 S o l l , J . , Kemmerling, M. and Sch u l t z , G. (1980) Arch. Biochem. Bio­

phys. , in press

31 Costes, C. (1966) Phytochemistry 5, 311-324 32 Block, M. and Douce-, R. (1980) Biochim. Biophys. A c t a , in press

33 S o l l , J . and Sch u l t z , G. (1980) Phytochemistry 19, 215-218 34 S o l l , J . and Sch u l t z , G. (1979) Biochem. Biophys. Res. Commun. 91,

715-720

35 T h r e l f a l l , D.R. and Whistance, G.R. (1971) in Aspects of Terpenoid

Chemistry and Biochemistry (Goodwin, T.W., ed.), pp. 357-404, Academic Press, London.

36 For survey on recent development in t h i s topic see Biochemistry of

Plant Phenol ics (1979) (Swain, T., Harborne, J.B. and van Sumere, C.F.,

eds.) (Recent Advances in Phytochemistry, V o l . 12) pp. 221-248