58
“Relativistic Nuclear Physics and Quantum ChromodynamicsXXII International Baldin Seminar on High Energy Physics Problems 15 th - 20 th September 2014 JINR - Dubna (RUSSIA) The PANDA Project @ FAIR Marco Maggiora on behalf of the PANDA Collaboration Department of Physics and INFN Turin, Italy

The PANDA Project @ FAIRrelnp.jinr.ru/ishepp-xxii/presentations/Maggiora2.pdfSilicon MicroVertex Central Tracker GEM Detectors Drift Chambers 15-20 Sep 2014 ISHEPP2014 7 Micro Vertex

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • “Relativistic Nuclear Physics and Quantum Chromodynamics” XXII International Baldin Seminar on High Energy Physics Problems

    15th - 20th September 2014

    JINR - Dubna (RUSSIA)

    The PANDA Project @ FAIR

    Marco Maggiora on behalf of the PANDA Collaboration

    Department of Physics and INFN – Turin, Italy

  • Primary Beams

    •1012/s; 1.5 GeV/u; 238U28+

    •Factor 100-1000 present in intensity

    •2(4)x1013/s 30 GeV protons

    •1010/s 238U73+ up to 25 (- 35) GeV/u

    Secondary Beams

    •Broad range of radioactive beams up to

    1.5 - 2 GeV/u; up to factor 10 000 in

    intensity over present

    •Antiprotons 3 (0) - 30 GeV

    Storage and Cooler Rings

    •Radioactive beams

    •e – A collider

    •1011 stored and cooled 0.8 - 14.5 GeV antiprotons

    •Cooled beams

    •Rapidly cycling superconducting magnets

    Key Technical Features

    Facility for Antiproton

    and Ion Research

    The future FAIR facility

    15-20 Sep 2014 ISHEPP2014 2

  • High luminosity mode

    High resolution mode

    • dp/p ~ 10-5 (electron cooling)

    • Lumin. = 1031 cm-2 s-1

    • Lumin. = 2 x 1032 cm-2 s-1

    • dp/p ~ 10-4 (stochastic cooling)

    • Production rate 2x107/sec

    • Pbeam = 1 - 15 GeV/c

    • Nstored = 5x1010 p

    • Internal Target

    _

    p

    HESR - High Energy Storage Ring

    Internal Target Detector

    2.3 ≤ √s ≤ 5.5 GeV

    15-20 Sep 2014 ISHEPP2014 3

  • AMU Aligarh, Basel, Beijing, BITS Pillani, Bochum, IIT Bombay, Bonn, Brescia, IFIN Bucharest, IIT Chicago, AGH-

    UST Cracow, JGU Cracow, IFJ PAN Cracow, Cracow UT, Edinburgh, Erlangen, Ferrara, Frankfurt, Gauhati,

    Genova, Giessen, Glasgow, GSI, FZ Jülich, JINR Dubna, Katowice, KVIGroningen, Lanzhou, Legnaro, LNF, Lund,

    Mainz, Minsk, ITEP Moscow, MPEI Moscow, TU München, Münster, BARC Mumbai, Northwestern, BINP

    Novosibirsk, IPN Orsay, Pavia, IHEP Protvino, PNPI St.Petersburg, South Gujarat University, SVNIT Surat, Sadar

    Patel University, KTH Stockholm, Stockholm, FH Südwestfalen, Suranaree University of Technology, Sydney, Dep.

    A. Avogadro Torino, Dep. Fis. Sperimentale Torino, Torino Politecnico, Trieste, TSL Uppsala, Tübingen, Uppsala,

    Valencia, NCBJ Warsaw, TU Warsaw, AAS Wien

    At present 520 physicists from 67 institutions in 17 countries

    The Collaboration

    15-20 Sep 2014 ISHEPP2014 4

  • _ P

    pp: Pellet or Cluster target

    pA: wire target

    _ _

    Target Spectrometer

    Solenoid magnet for high pt tracks:

    Superconducting coil & iron return yoke

    (B=2T)

    Forward Spectrometer

    Dipole magnet for forward tracks

    (2T.m)

    PANDA spectrometer

    Physics Performance Report for PANDA arXiv:0903.3905 [hep-ex]

    PANDA Magnet TDR http://www-panda.gsi.de/archive/public/P_magn_TDR.pdf

    15-20 Sep 2014 ISHEPP2014 5

  • • Requirements

    – Proton Target

    – 5 x 1015 cm-2 for

    maximum luminosity

    • Pellet Target

    – Frozen droplets 20m

    – also possible: D2, N2, Ne, ...

    – Status: 5 x 1015

    • Cluster Jet Target

    – Dense gas jet

    – also D2, N2, Ne, ...

    – Status: 8 x 1014

    Cluster beam after nozzle

    -10 0 10 20 -20 transverse position[mm]

    are

    al density [

    a.u

    .]

    N2 H2

    Target system

    15-20 Sep 2014 ISHEPP2014 6

  • Physics Performance Report for PANDA arXiv:0903.3905

    PANDA STT TDR arXiv:1205.5441v1 [physics.ins-det]

    MVD STT

    PANDA spectrometer: Tracking

    Silicon MicroVertex Central Tracker GEM Detectors Drift Chambers

    15-20 Sep 2014 ISHEPP2014 7

  • Micro Vertex Detector

    • 4 barrels and 6 disks

    • Inner layers:

    hybrid pixels (100x100 µm2)

    – 140 module, 12M channels

    • Outer layers:

    silicon strip detectors

    – double sided strips

    – 400 modules, 200k channels

    • Mixed forward disks

    • Continuous readout

    Requirements

    • c(D±) 312 m

    c(Ds±) 147 m

    • Vertex resolution 50 m

    Silicon Microvertex Detector

    15-20 Sep 2014 ISHEPP2014 8

  • • Design figures:

    – σrφ ~ 150µm , σz ~ 1mm

    – δp/p ~ 12% (with MVD)

    – Material budget ~ 2% X0

    2 Alternatives:

    • Time Projection Chamber (phased out)

    – Continuous sampling

    GEMs readout plane

    (Ion feedback suppression)

    Online tracklet finding

    • Straw Tube Tracker (selected!)

    – about 4000 straws

    – 27 µm thin mylar tubes, 1 cm Ø

    – Stability by 1 bar overpressure

    Central Tracker

    15-20 Sep 2014 ISHEPP2014 9

  • Plastic Scintillators

    PANDA spectrometer: Particle IDentification

    Muon Detectors

    Barrel DIRC Barrel TOF Endcap DIRC Endcap TOF

    Forward RICH

    Physics Performance Report for PANDA arXiv:0903.3905 [hep-ex]

    15-20 Sep 2014 ISHEPP2014 10

  • n

    Lens Focussing PANDA DIRC

    • Lens focussing

    • shorter radiator

    • no water tank

    • compact pixel readout

    (CP-PMTs or APDs)

    beam

    DIRC

    15-20 Sep 2014 ISHEPP2014 11

  • Inside the solenoid Barrel: 12 layers inside the yoke + 1 bi-layer

    (“zero” bi-layer) in before iron

    Endcap: 5 layers + “zero” bi-layer before iron

    Muon Filter, outside solenoid

    4 x (60mm/Fe + 30mm/MDT)

    Endcap, inside solenoid

    5 layers of MDT

    Barrel, inside solenoid

    12 layers of MDT + “zero” bi-layer

    beam direction

    Outside the solenoid “Muon Filter”, 4 layers

    Proportional tubes : anode signal and induction signal on 1 cm strips

    Muon detector

    15-20 Sep 2014 ISHEPP2014 12

  • 10 000 crystals

    PANDA spectrometer: Particle IDentification

    PbWO4 EMC

    Forward Shashlyk EMC

    Physics Performance Report for PANDA arXiv:0903.3905 [hep-ex]

    PANDA EMC TDR arXiv:0810.1216v1 [physics.ins-det]

    15-20 Sep 2014 ISHEPP2014 13

  • • PWO is dense and fast

    • Increase light yield:

    – improved PWO II

    – operation at -25°C

    • Challenges:

    – temperature stable to 0.1°C

    – control radiation damage

    – low noise electronics

    • Delivery of crystals started

    Barrel Calorimeter

    • 11000 PWO Crystals

    • LAAPD readout, 2 x 1cm2

    • σ(E)/E1.5%/√E + 1%

    Forward Endcap

    • 4000 PWO crystals

    • High occupancy in center

    • LAAPD readout

    PANDA PWO Calorimeters

    15-20 Sep 2014 ISHEPP2014 14

  • Internal C target to produce

    Active silicon target to stop the and

    detect the hypenuclei decay products

    Germanium array detector, with 15

    clusters of 3 gemanium

    active target

    Germanium array

    Foreseeen 2 KeV energy resolution,

    1.3 MeV p energy resolution

    beam

    Hypernuclear Detector

    15-20 Sep 2014 ISHEPP2014 15

  • • Particle identification essential tool

    • Momentum range 200 MeV/c – 10 GeV/c

    • Different processes for PID needed

    PID Processes

    • Čerenkov radiation:

    Radiators: quartz, aerogel, C4F10

    • Energy loss: p < 1 GeV

    Good accuracy with TPC,

    Stt system dE/dx under study

    • Time of flight:

    needs a start detector

    • Electromagnetic showers:

    EMC for e and γ

    dE/dx of STT

    Forward ToF

    PANDA PID requirements

    15-20 Sep 2014 ISHEPP2014 16

  • Particle IDentification with PANDA

    DIRC MVD

    EMC

    STT

    PANDA PID Requirements:

    particle identification essential for PANDA

    momentum range 200 MeV/c – 10 GeV/c

    Extreme high rates 2·107 Hz

    good particle separation (K-p e-p)

    different detectors needed for PID

    15-20 Sep 2014 ISHEPP2014 17

    Physics Performance Report for PANDA arXiv:0903.3905

  • 0 2 4 6 8 12 15 10

    p Momentum [GeV/c]

    Mass [GeV/c2] 1 2 3 4 5 6

    ΛΛ

    ΣΣ

    ΞΞ

    ΛcΛc ΣcΣc ΞcΞc

    ΩcΩc ΩΩ DD

    DsDs

    qqqq ccqq

    nng,ssg ccg

    ggg,gg

    light qq

    π,ρ,ω,f2,K,K*

    cc

    J/ψ, ηc, χcJ

    nng,ssg ccg

    ggg

    baryon/antybaryon production

    EM processes:

    TL form factos

    Drell-Yan and TMDS

    GPDs

    TDA

    strangeness physics

    hyperatoms

    S=-2 nuclear system

    Ξ− nuclei

    ΛΛ hypernuclei

    meson spectroscopy

    light mesons

    charmonium

    exotics states

    glueballs

    hybrids

    molecules/multiquarks

    open charm

    charm in nuclei

    PANDA scientific program

    15-20 Sep 2014 ISHEPP2014 18

  • E. Tomasi-Gustafsson, M.P. Rekalo, PLB 504 (2001) 291

    Generator:

    |GM| = 22.5 (1 + q2 / 0.71)-2 (1 + q2 / 3.6)-1

    = |GE|/|GM|

    lower sensitivity

    @ higher q2

    Time-Like EM proton form factors in p + p → e- + e+

    M. Sudol et al., EPJ A44 (2010) 373

    L = 2 10 32 cm-2 s-1 → 2 fb-1 in 100 days

    15-20 Sep 2014 ISHEPP2014 19

  • R=|GE|/|GM|

    L = 2 10 32 cm-2 s-1 → 2 fb-1 in 100 days

    PANDA scenario: expected results

    M. Sudol et al., EPJ A44 (2010) 373

    BABAR: B. Aubert et al. PRD 73 (2006) 012005

    PS170: G. Bardin et al., NPB 411 (1994) 3

    pQCD inspired: V. A. Matveev et al., LNC 7 (1973) 719

    S. J. Brodsky et al., PRL 31 (1973) 1153

    VDM: F. Iachello, PLB 43 (1973) 191

    Extended VDM: E.L.Lomon, PRC 66 (2002) 045501

    E. A. Kuraev et al., PLB 712 (2012) 240

    Individual determination of

    |GE| and |GM|

    up to q2 14 (GeV/c)2 !!

    15-20 Sep 2014 ISHEPP2014 20

    A. Dbeyssi, PhD Thesis: PANDA unofficial results

  • PANDA scenario: expected results

    M. Sudol et al., EPJ A44 (2010) 373

    L = 2 10 32 cm-2 s-1 → 2 fb-1 in 100 days

    Absolute accessible

    up to q2 28 (GeV/c)2

    BABAR:

    B. Aubert et al. PRD 73 (2006) 012005

    E835:

    M. Andreotti et al., PLB 559 (2003) 20

    M. Ambrogiani et al., PRD 60 (1999) 032002

    Fenice:

    A. Antonelli et al., NPB 517 (1998) 3

    PS170:

    G. Bardin et al., NPB 411 (1994) 3

    E760:

    T. A. Armstrong et al., PRD 56 (1997) 2509

    CLEO:

    T. K. Pedlar et al. , PRL 95 (2005) 261803

    DM1:

    B. Delcourt et al., PLB 86 (1979) 395

    DM2:

    D. Bisello et al., NPB 224 (1983) 379

    BES:

    M. Ablikim et al., PLB 630 (2005) 14

    15-20 Sep 2014 ISHEPP2014 21

  • PANDA scenario: asymptotic behaviours

    E. Tomasi-Gustafsson, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero,

    Varenna, Italy, 15 - 19 Jun 2009, pp.447, arXiv:0907.4442v1 [nucl-th]

    L = 2 10 32 cm-2 s-1 → 2 fb-1 in 100 days BABAR:

    B. Aubert et al. PRD 73 (2006) 012005

    E835:

    M. Andreotti et al., PLB 559 (2003) 20

    M. Ambrogiani et al., PRD 60 (1999) 032002

    Fenice:

    A. Antonelli et al., NPB 517 (1998) 3

    PS170:

    G. Bardin et al., NPB 411 (1994) 3

    E760:

    T. A. Armstrong et al., PRD 56 (1997) 2509

    CLEO:

    T. K. Pedlar et al. , PRL 95 (2005) 261803

    DM1:

    B. Delcourt et al., PLB 86 (1979) 395

    DM2:

    D. Bisello et al., NPB 224 (1983) 379

    BES:

    M. Ablikim et al., PLB 630 (2005) 14

    Probing the Phragmèn-Lindelöf theorem:

    15-20 Sep 2014 ISHEPP2014 22

  • TMD: κT-dependent Parton Distributions

    Courtesy of Aram Kotzinian

    Twist-2 PDFs:

    )kx,(fkd)x(f T1T2

    1

    15-20 Sep 2014 ISHEPP2014 23

  • Leading-twist correlator depends on

    five more distribution functions:

    TMD: κT-dependent Parton Distributions

  • 2

    1 T 1 Tf (x ) d k f (x,k ) Twist-2 PDFs

    Distribution

    functions Chirality

    even odd

    Twist-2

    U

    L

    T

    f1

    g1

    ,

    h1,

    1h

    1Lh

    1Th

    1Tf

    1Tg

    TMD: κT-dependent Parton Distributions

    Transversity

    Boer-Mulders

    Sivers

  • Kinematics

    q2P

    Mx

    1

    2

    1

    xxx 21F -

    q2P

    Mx

    2

    2

    2

    s

    Mxxτ

    2

    21

    Why Drell Yan? Asymmetries depend on PD only (SIDIS→convolution with QFF)

    Why ?

    Each valence quark can contribuite to the diagram

    p

    plenty of (single) spin effects

    3 planes: plane to polarisation vectors

    plane

    plane

    *γp -

    *γ-

    0QM 22

    Drell-Yan Di-Lepton Production — pp X -

  • Kinematics

    2

    1

    1

    Mx

    2P q

    F 1 2x x x -

    2

    2

    2

    Mx

    2P q

    2

    1 2

    Mτ x x

    s

    Why Drell Yan? Asymmetries depend on PD only (SIDIS→convolution with QFF)

    Why ?

    Each valence quark can contribuite to the diagram

    p

    plenty of (single) spin effects

    3 planes: plane to polarisation vectors

    plane

    plane

    *p γ-

    *γ -

    0QM 22

    Drell-Yan Di-Lepton Production — pp X -

    2 22 a a a a

    a 1 2 1 22 2 aF 1 2

    d σ 4α π 1e f (x )f (x ) f (x )f (x )

    dM dx 9M s x x

    Scaling:

    Full x1,x2 range .

    τ 0,1

    2

    F

    d σ 1

    sd τdx

    Fermilab E866 800 GeV/c

  • Experimental Asymmetries @ PANDA — ( )p p μ μ X -

    0 2

    2 2 1 12

    1 1 2 1 212

    1 2 1 2

    1 cos sin cos2 212

    aa

    a a

    a T T T T

    a

    de f f

    d dx dx d Q M

    h

    M

    h

    -

    T

    h p h p p pk

    F F

    1 1 2 1 2 1 1 1 2 21 1 , , 1 2a aa a

    T T T T T T Tf f d d f x f xd - p p p p k p pF

    Unpolarised:

    Single Spin:

    2

    2

    2

    22 2

    2 22

    1 2 2

    2

    1

    1

    212 2 1

    1 2 2 1 2 1 2 2

    1

    1

    1

    1

    1

    2

    1 cos sin12

    sin sin

    sin sin 3 4 22

    a T S T

    a

    S T

    a a

    TS T T T T T T

    T

    a

    a

    T

    a

    a

    Th h

    fde

    d dx dx d sQ M

    M

    h h

    M M

    f

    -

    -

    - - - -

    T

    S h pk

    h p

    h p h p h p p p h p p

    F

    F

    F

    cos2A

    2sin SA -

    2sin SA

  • [2] 2 1 1 1DY-μμ1

    Eff R 1.5 M 2.5 GeV/c 0.16 s = 0.08 s 200K Ev month 2

    - - -

    [1] 2

    p480K ev with E 15 GeV on fixed target, 1 .5 M 2.5 GeV/c

    Experimental Asymmetries @ PANDA —

    p p μ μ X -

    [1]A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014 [2]Physics Performance Report for PANDA, arXiv: 0903.3905

    s ~ 30 GeV2

    11

    a a

    Tf f

    1 1

    a a

    Th h

    11

    a a

    Tf f

    1 1

    a a

    Th h

    1 1

    a ah h

    1 1

    a ah h

  • The experimental data set available is far from being complete. All

    strange hyperons and single charmed hyperons are energetically

    accessible in pp collisions at PANDA.

    By comparing several reactions

    involving different quark flavours

    the OZI rule and its possible violation, can be tested

    In PANDA pp ΛΛ, ΛΞ, ΛΞ, ΞΞ , ΣΣ, ΩΩ, ΛcΛc, ΣcΣc, ΩcΩc can be produced allowing the study of the dependences on spin

    observables.

    QCD dynamics

    _

    _

    15-20 Sep 2014 ISHEPP2014 30

  • The knowledge of Baryon-Baryon potential is essential for the

    understanding of the composition of nuclear matter.

    Nuclear NN forces are known, YN interaction,

    thanks to hypernuclear physics, is relatively

    known, but YY interaction is completely

    unknown, there are just a few double Λ

    hypernuclear events.

    NAGARA

    ΛΛ-hypernuclei, -atoms, Ω-atoms allow to have an insight to more complex nuclear systems containing strangeness (neutron stars, hyperon-stars, strange-quark stars, …)

    The fraction of baryons and leptons in neutron

    star matter arXiv:0801.3791v1

    Baryon-baryon interaction

    15-20 Sep 2014 ISHEPP2014 31

    http://arxiv.org/abs/0801.3791v1

  • (S=±2) hyperon – antihyperon systems are fully accessible at PANDA

    Double Λ Hypernucleus:

    p

    p

    Λ

    Λ n

    n

    2 Λ‘s replace 2 nucleons in a nucleus

    p

    p

    -

    n

    n

    Doubly Strange Hypernucleus:

    Ξ- occupies a nuclear level

    Exotic hyperatom:

    p

    -

    e-

    n p

    n

    Ξ- occupies an atomic level

    Ξ - -nucleus interaction

    • Atomic orbits overlap nucleus • Strong interaction and Coulomb force interplay • Lowest atomic levels are shifted and broadened • Potential: Coulomb + optical

    Ξ -N interaction: • short range interaction • long range interaction • …..

    ΛΛ strong interaction • only possible in double hypernuclei • YY potential: attractive/repulsive? • hyperfragments probability dependence on YY potential One Boson Exchange features ΛΛ ΛΛ: only non strange, I =0 meson exchange (ω,η...) ΛΛ weak interaction: hyperon induced decay:

    • ΛΛ Λ n: ΓΛn

  • Up to now double strange systems have been produced by K- beams in the reaction:

    K- (N, Ξ-) K+ (N- quasi free or bound in nucleus)

    S=-2 baryon can be produced via:

    Choice of the target:

    free protons (hydrogen target) or protons and neutrons in a nucleus (quasi-free reactions)

    Advantages of nuclear target :

    a) higher cross section (scaling as ~A2/3)

    b) - slowing down in dense (nuclear) matter

    Disadvantages of nuclear target :

    c) high background (annihilation)

    d) high beam consuming (beam losses)

    reaction = 2b at 3GeV/c

    bar /h

    Goal: maximize the “stopped Ξ-” with a suitable set-up

    A new way for double strange systems

    15-20 Sep 2014 ISHEPP2014 33

  • A new way for double strange systems

    N

    p

    p

    K

    K Pbar +N - + bar : = 2 b; pbar (3GeV/c) below p production

    I Target

    bar +N Kbar+ Kbar +p + … [ - production tag]

    Elastic scattering in nucleus:

    strong slowing down (a challenge)

    slowing down in matter

    (with decay)

    - capture into atomic levels and hyperatomic cascade

    Capture into nucleus:

    Strong and Coulomb forces

    Xray

    - N

    conversion + sticking

    p

    N

    2 MeV II Ta r ge t

    decay (MWD,NMWD… )

    15-20 Sep 2014 ISHEPP2014 34

  • Nucleus B(AZ) [MeV] B(

    AZ) [MeV] Reference Reaction

    10Be 17.7± 0.4 4.3±0.4 M.Danysz et al., PRL.11(1963) 29 K- + A K+ + -

    6He 10.9±0.5 4.6±0.5 D.J.Prowse, PRL.17(1966) 782 K- + A K+ + -

    10Be 8.5±0.7 -4.9±0.7 KEK-E176 K- + p K+ + - (q.f)

    13B 27.6±0.7 4.9±0.7 S.Aoki et al., PTP.85(1991) 1287 K- + p K+ + - (q.f)

    12B 4.5±0.5 P.Khaustov et al.,

    PRC.61(2000)027601 (12C)atom

    - 12B n

    6He 7.25±0.19 1.01±0.2 KEK-E373,NAGARA H.Takahashi et

    al., PRL.87(2001)212502-1 K- + p K+ + - (q.f)

    12B ≈ 6-10nb K.Yamamoto et al., PLB.478(2000) 401 K- + 12C K+ + 12B

    +0.18 - 0.11

    +0.18 - 0.11

    Status of the art:

    Up to know these systems have been studied in cosmic rays or using kaon-beams: K−+ p → − + K+ From - to Double Hypernuclei

    KEK, BNL-AGS, have demonstrated that the systems are produced. At JPARC with high intensity kaon-beams the goal is to stop 104 − in a nuclear target.

    At PANDA the same amount of data will be collected, with the possibility to run with different nuclear targets at the same time.

    ΛΛ Hypernuclei

    15-20 Sep 2014 ISHEPP2014 35

  • 3500 3520 MeV 3510 CBall e

    v./

    2 M

    eV

    100

    ECM

    CBall E835

    1000

    E 8

    35 e

    v./

    pb

    cc1

    e+e- → Y’ → c1,2

    → e+e- → J/y

    e+e- interactions:

    - Only 1-- states are formed - Other states only by secondary decays (moderate mass resolution related to the detector)

    - Most states directly formed

    (very good mass resolution; p-beam

    can be efficiently cooled)

    → J/y → e+e-

    p p→ c1,2 _

    pp reactions: _

    Br(e+e- →y ·Br(y → hc) = 2.5 1-5 pp → hc) = 1.2 1

    -3 Br( _

    Antiproton power

    15-20 Sep 2014 ISHEPP2014 36

    _

  • Production

    all JPC available

    There are two mechanisms to access particular final states:

    Formation

    only selected JPC

    Spectroscopy with antiprotons

    15-20 Sep 2014 ISHEPP2014 37

  • p

    p _

    G

    M

    p

    M

    H

    p _

    p

    M

    H

    p _

    There are two mechanisms to access particular final states:

    Even exotic quantum numbers can be reached σ ~100 pb

    Production

    Formation

    only selected JPC

    Spectroscopy with antiprotons

    15-20 Sep 2014 ISHEPP2014 38

  • p

    p _

    p

    p _

    H

    p

    p _

    H G

    All ordinary quantum numbers can be reached σ ~1 μb

    p

    p _

    G

    M

    p

    M

    H

    p _

    p

    M

    H

    p _

    Even exotic quantum numbers can be reached σ ~100 pb

    Production

    Formation

    Spectroscopy with antiprotons

    15-20 Sep 2014 ISHEPP2014 39

  • In the light meson spectrum exotic states overlap with conventional states

    The QCD spectrum is much rich than that of the naive quark model also the gluons can act as hadron components

    The “exotic hadrons” fall in 3 general categories:

    (qq) g Hybrids

    gg

    +

    Glueballs

    (qq)(qq) Multiquarks

    E x o

    t i c l

    i g h

    t q

    q

    E x o

    t i c c

    c

    1 -- 1 -+

    0 2000 4000 MeV/ c 2

    10 -2

    1

    10 2

    Exotic hadrons

    15-20 Sep 2014 ISHEPP2014 40

  • The QCD spectrum is much rich than that of the naive quark model also the gluons can act as hadron components

    The “exotic hadrons” fall in 3 general categories:

    (qq) g Hybrids

    gg

    +

    Glueballs

    (qq)(qq) Multiquarks

    E x o

    t i c l

    i g h

    t q

    q

    E x o

    t i c c

    c

    1 -- 1 -+

    0 2000 4000 MeV/ c 2

    10 -2

    1

    10 2

    In the cc meson spectrum the density of

    states is lower and therefore so the overlap

    Exotic hadrons

    15-20 Sep 2014 ISHEPP2014 41

    _

  • The B-factory experiments have discovered a large number of candidates for charmonium and

    charmonium-like meson states, many of which can not be easily accommodated by theory. State

    parameters are still largely unknown. Few events collected in 10 years of running

    PANDA will detect 100 events per day

    B-meson decay

    cc

    p

    e+

    e−

    p

    J/Y

    Initial State Radiation

    B

    b

    u,d

    c

    c

    s

    u,d

    W−

    Xcc

    K(*)

    X(3872) Belle, Babar, Cleo, CDF, D0

    Y(3940) Belle, Babar

    Y(4140)? CDF

    Z(4430)

    Z1(4050) Belle

    Z2(4250)

    1−− states

    X(4008)? Belle

    Y(4260) BaBar, Belle,CLEO

    Y(4350) BaBar, Belle

    Y(4660) Belle

    e+ e+

    e− e−

    *

    * Xcc

    -collisions X(3915) Belle

    Z(3930) Belle

    Y(4350) Belle

    Associate production

    e+e−⟶J/Ψ Xcc

    X(3940) Belle

    X(4160) Belle e+

    e−

    c

    c

    c

    c g

    D(*)

    D(*)

    J/Ψ C+

    XYZ Mesons

    15-20 Sep 2014 ISHEPP2014 42

  • • masses are barely known; • often widths are just upper limits;

    • few final states have been studied;

    • statistics are poor; • quantum number assignment is possible for few states;

    • some resonances need confirmation…

    Without entering into the details of each state some general consideration can be drawn.

    Arxiv:09010.3409v2 [hep-th]

    There are problems of compatibility Theory - Experiment

    Quantum numbers assignment and structure become clear only with high statistics,

    different final states and very precise energy measurements,.

    XYZ Mesons

    15-20 Sep 2014 ISHEPP2014 43

  • is a convolution of the

    Measured

    rate

    The production rate of a certain final state

    CM Energy

    Resonance

    cross

    section

    BW cross section

    Beam

    and the beam energy distribution function f(E,E):

    bBW EEEdEfL )(),(0

    The resonance mass MR, total width R and product of branching ratios into the initial and final state BinBout can be extracted by measuring the formation rate for that resonance as a function of the cm energy E.

    e+e−: typical mass res. ~ 10 MeV Fermilab: 240 keV

    HESR: ~30 keV

    Antiproton power

    15-20 Sep 2014 ISHEPP2014 44

  • All the details of the PANDA experimental program are reported in the “Physics Performance Report”.

    Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels.

    arXiv:0903.3905v1

    PANDA Physics Performance Report

    15-20 Sep 2014 ISHEPP2014 45

  • on behalf of the PANDA Collaboration

    THANK YOU!

    15-20 Sep 2014 ISHEPP2014 46

  • 2 2 21 dσ 3 1 ν1 λcos θ μsin θcosφ sin θcos2φσ dΩ 4π λ 3 2

    NLO pQCD: λ 1, 0, υ 0

    Lam-Tung sum rule: 1- λ = 2ν

    • reflects the spin-½ nature of the quarks

    • insensitive top QCD-corrections

    Experimental data [1]: υ 30 %

    [1] J.S.Conway et al., Phys. Rev. D39 (1989) 92.

    Di-Lepton Rest Frame

    Drell-Yan Asymmetries — Xμμpp-

  • Remarkable and unexpected violation of Lam-Tung rule

    NA10 @ CERN λ, μ, ν measured in π N→μ+μ – X

    υ involves transverse spin effects at leading twist [2]

    If unpolarised DY σ is kept differential on kT , cos2φ contribution to angular distribution provide:

    [2] D. Boer et al., Phys. Rev. D60 (1999) 014012.

    2 2

    1 2, 1 1h (x κ ) h (x ,κ )

    [1] NA10 coll., Z. Phys. C37 (1988) 545

  • Drell-Yan Asymmetries — Xμμpp-

    [1] L. Zhu et al, PRL 99 (2007) 082301; [12 D. Boer, Phys. Rew. D60 (1999) 014012.

    Boer-Mulders

    T-odd Chiral-odd TMD

    • ν > 0 → valence h 1 has same sign in π and N

    • ν(π-W→μ+μ-X) ~ h 1 (π)valence x h 1

    (p)valence

    • ν(pd→μ+μ-X) ~ h 1 (p)valence x h 1

    (p)sea

    • ν > 0 → valence and sea h 1 has same sign,

    but sea h 1 should be significantly smaller

    [1]

  • # of partons in polarized proton depends on

    Sivers effect

    p pS p k

    PDF

    Transverse Single Spin Asymmetries: correlation functions

    X

    pp

    pS k qp

    X

    pp

    qSk qp

    partons’ polarisation in unpolarized proton depends on

    Boer Mulders effect

    q qS p k

    -

    FF

    X

    pq

    S p

    q

    Polarising Fragmentation Function

    qS p p

    Hadrons’ polarisation coming from

    unpolarised quarks depends on

    X

    pq

    qS ppqfragmentation of polarised quark depends on

    Collins effect

    q qS p p

    / , / 1ˆˆ( , ) ( , ) ( , ) ( )qq p q p T

    kf x f x k f x k

    M

    - S k S p k

    , / / 1

    1 1 ˆˆ( , ) ( , ) ( , ) ( )2 2q

    q

    q p q p q

    kf x f x k h x k

    M

    - s k s p k

    / , / 1ˆ ˆ( , ) ( , ) ( , ) ( )

    qq

    h q h q q q

    h

    pD z D z p H z p

    z M

    s p s p p

    All these effects may may lead to

    Single Spin Asymmetries (SSA):

    d d

    d dNA

    -

  • PDF

    Transverse Single Spin Asymmetries: correlation functions

    X

    pp

    pS k qp# of partons in polarized proton depends on

    Sivers effect

    p pS p k

    X

    pp

    qSk qp

    partons’ polarisation in unpolarized proton depends on

    Boer Mulders effect

    q qS p k

    -

    FF

    X

    pq

    S p

    q

    Polarising Fragmentation Function

    qS p p

    Hadrons’ polarisation coming from

    unpolarised quarks depends on

    X

    pq

    qS ppqfragmentation of polarised quark depends on

    Collins effect

    q qS p p

    / , / 1ˆˆ( , ) ( , ) ( , ) ( )qq p q p T

    kf x f x k f x k

    M

    - S k S p k

    , / / 1

    1 1 ˆˆ( , ) ( , ) ( , ) ( )2 2q

    q

    q p q p q

    kf x f x k h x k

    M

    - s k s p k

    / , / 1ˆ ˆ( , ) ( , ) ( , ) ( )

    qq

    h q h q q q

    h

    pD z D z p H z p

    z M

    s p s p p

  • PDF

    Transverse Single Spin Asymmetries: correlation functions

    X

    pp

    pS k qp# of partons in polarized proton depends on

    Sivers effect

    p pS p k

    X

    pp

    qSk qp

    partons’ polarisation in unpolarized proton depends on

    Boer Mulders effect

    q qS p k

    -

    FF

    X

    pq

    S p

    q

    Polarising Fragmentation Function

    qS p p

    Hadrons’ polarisation coming from

    Unpolarised quarks depends on

    X

    pq

    qS ppqfragmentation of polarised quark depends on

    Collins effect

    q qS p p

  • Transverse Single Spin Asymmetries in Drell-Yan

    d d

    d dNA

    -

    expected[1] to be small but not negligible

    for HESR layout on fixed target

    0 ≤ qT ≤ 1 GeV/c

    √s = 14.14 GeV

    [1] Anselmino et al., Phys. Rev. D72, 094007 (2005).

    2 2 2 2

    /

    2

    /

    /

    2 2 2

    /

    ,

    2 ,

    ,

    ,

    q q q Tq q q p q qq

    N

    q q q T q p q qq q q p q

    N

    q qq

    q

    p

    q

    e d d q f xA

    f x

    e d d q f x f x

    d

    d

    -

    -

    k k k k k

    k k k k k k

    k

    1/2

    , ,N qq q Tq pp

    kf x k f x k

    m

    -

    Originates from the Sivers function[1]:

    Test of Universality

    [2]

    1 1( , ) ( , ) q q

    T SIDIS T DYf x k f x k

    -

    [2] J.C. Collins, Phys. Lett. B536 (2002) 43

  • Transverse Single Spin Asymmetries in Drell-Yan

    d d

    d dNA

    -

    expected[1] to be small but not negligible

    for HESR layout on fixed target

    0 ≤ qT ≤ 1 GeV/c

    √s = 14.14 GeV

    [1] Anselmino et al., Phys. Rev. D72, 094007 (2005).

    2 2 2 2

    /

    2

    /

    /

    2 2 2

    /

    ,

    2 ,

    ,

    ,

    q q q Tq q q p q qq

    N

    q q q T q p q qq q q p q

    N

    q qq

    q

    p

    q

    e d d q f xA

    f x

    e d d q f x f x

    d

    d

    -

    -

    k k k k k

    k k k k k k

    k

    Originates from the Sivers function[1]:

    [2] J.C. Collins, Phys. Lett. B536 (2002) 43

  • Pellet or cluster-jet target

    2T Superconducting solenoid for high pt particles 2Tm Dipole for forward tracks

    15-20 Sep 2014 ISHEPP2014 55

  • Silicon Microvertex detector

    Central Tracker

    Forward Chambers

    15-20 Sep 2014 ISHEPP2014 56

  • Barrel DIRC Barrel TOF

    Endcap DIRC Forward TOF

    Forward RICH

    Muon Detectors

    15-20 Sep 2014 ISHEPP2014 57

  • PWO EMC Forward Shashlyk EMC Hadron Calorimeter

    15-20 Sep 2014 ISHEPP2014 58