36
the On-Shell Effective Field Theory and the Chiral Kinetic Equation Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration with C. Manuel and S. Carignano Phys.Rev.D98 (2018), 976005 NED2019 Symposium, Castiglione della Pescaia, IT June 21, 2019 Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 1

the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

the On-Shell Effective Field Theoryand the Chiral Kinetic Equation

Juan M. Torres-Rincon(Goethe Uni. Frankfurt)

in collaboration withC. Manuel and S. Carignano

Phys.Rev.D98 (2018), 976005

NED2019 Symposium,Castiglione della Pescaia, IT

June 21, 2019

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 1

Page 2: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Motivation: HTLs and Kinetic Theory

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 2

Page 3: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Hard thermal loops

Perturbative QED (and QCD) plasma at finite T

Soft photons, with momenta k ∼ eT

1-loop polarization function (HTLs), same order as bare inversepropagator, iΠµν ∼ e2T 2

Dominated by hard fermion modes p ∼ T in the loop

HTL effective action of QED

S = −m2D

4

∫x,v

Fαµvαvβ

(v · ∂)2 Fµβ , m2D = e2T 2/3

(Braaten, Pisarski 1990) (Frenkel, Taylor 1990)(...)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 3

Page 4: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Fermion kinetic theory

Alternative approach: kinetic theory for fermions (w/o collisions)

On-shell fermion momentum p sets the hard scaleSoft momenta k due to interactions with gauge fields

Separation of scales p � k

At high T the kinetic theory for hard fermions p ∼ T and soft gaugefields k ∼ gT leads to the HTL effective action

(Blaizot, Iancu 1994)(Kelly, Liu, Luchessi, Manuel 1994)

p

k

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 4

Page 5: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

On-shell effective field theory

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 5

Page 6: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Goal

QED with m = 0 fermions + antifermions

(Almost) on-shell fermion

qµ = Evµ + kµ

vµ = (1, v), vµvµ = 0

(Almost) on-shell antifermions

qµ = −Evµ + kµ

vµ = (1,−v), vµvµ = 0

Energy of the on-shell fermion, E

Residual momentum, kµ (� Evµ)

(Manuel and JMT-R, 2014)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 6

Page 7: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Derivation of effective Lagrangian

Dirac field decomposed in

+/- energy components (close to +E and −E)

Particle/antiparticle modes

ψv,v = e−iEv·x(

Pv χv (x) + Pv H(1)v (x)

)+ eiEv·x

(Pv ξv (x) + Pv H(2)

v (x))

Pv =12/v/u , Pv =

12/v/u

are projectors along v and v , with u = (v + v)/2 is the reference frame.

In the QED LagrangianL =

∑E,v

LE,v

we integrate out far off-shell modes: H(1)v and H(2)

v

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 7

Page 8: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Lagrangian in an arbitrary frame (Carignano, Manuel, JMTR 2018)

LE,v + L−E,v = χv (x)

(i v · D + i /D⊥

12E + i v · D i /D⊥

)/u χv (x)

+ ξv (x)

(i v · D + i /D⊥

1−2E + iv · D i /D⊥

)/u ξv (x)

Frame vector in the LRF is uµ = (1, 0, 0, 0).

E = u · p ; pµ = Evµ

Inspired by similar procedure in other EFTs e.g. HQET and HDET

In OSEFT, hard scale is dynamical, no medium (yet)

At finite T it reproduces HTL (plus higher orders in 1/T )(Manuel, Soto, Stetina 2016)

We considered the Abelian version (some similarities with SCET)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 8

Page 9: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

OSEFT in arbitrary frame

After integrating all the modes far from the mass shell,

qµ = Evµ + kµ , E = u · p

withEvµ � kµ

1/E expansion of OSEFT (only for particles)

LE,v = χv (x)

(i v · D + i /D⊥

12E + i v · D i /D⊥

)/u χv (x)

= χv (x)

(iv · D −

/D2⊥

2E− i /D⊥(i v · D)i /D⊥

4E2 + · · ·

)/u χv (x)

Important! Physical energy is Eq = u · q. E dependence must disappear.

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 9

Page 10: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Comment about Lorentz invariance

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 10

Page 11: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Lorentz symmetry

vµ, vµ break 5 Lorentz generators: vµMµν , vµMµν ; M ∈ SO(3, 1).

These transformations encoded in freedom to decompose qµ

qµ = Evµ + kµ

Lorentz invariance→ “reparametrization invariance”(Manohar, Mehen, Pirjol, Stewart 2002)

RI transformations

(I)

{vµ → vµ + λµ

⊥vµ → vµ (II)

{vµ → vµ

vµ → vµ + εµ⊥(III)

{vµ → (1 + α)vµ

vµ → (1− α)vµ

where λµ⊥, εµ⊥, α are 5 infinitesimal parameters such that

v · λ⊥ = v · ε⊥ = v · λ⊥ = v · ε⊥ = 0.

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 11

Page 12: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Reparametrization invariance transformations

Knowing this...

Type I Type II Type IIIvµ vµ + λµ⊥ vµ vµ(1 + α)vµ vµ vµ + εµ⊥ vµ(1− α)E E + 1

2λ⊥ · p E + 1

2 (ε⊥ · p) E(1 + α)− α(v · p)Dµ Dµ + iEλ⊥µ + i

2 (λ⊥ · p)vµ Dµ + i2 (ε⊥ · p)vµ Dµ + 2iαE vµ − iα(v · p)vµ

χv (x)(1 + 1

4/λ⊥ /v

)χv (x)

(1 + 1

2/ε⊥1

2E+i v·D i /D⊥)χv (x) χv (x)

...we can check that

LE,vType I, Type II, Type III−−−−−−−−−−−−−−−−→ LE,v

to ALL orders in 1/E expansion (Carignano, Manuel, JMTR 2018)

The OSEFT Lagrangian is Lorentz invariant,with some transformations realized via RI transformations. Symmetries

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 12

Page 13: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Chiral Kinetic Equation

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 13

Page 14: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Chiral Kinetic equation

Schematic procedure: details in (Kadanoff, Baym 1962) (Elze, Heinz 1989)(Botermans, Malfilet 1990) (Blaizot, Iancu 2002):

1 Real-time formalism in Keldysh-Schwinger basis

2 Focus on vector/axial components of fermions (antifermions analogous)

GE,v (x , y) = 〈χv (y)/v2χv (x)〉

3 Apply Wigner transform and gradient expansion ∂X � ∂s

Wigner function

GE,v (X , k) =

∫d4s eik·s GE,v

(X +

s2,X − s

2

)U(

X − s2,X +

s2

)X =

12

(x + y) , s = x − y , U = P exp[−ie∫γ

dxµAµ(x)]

4 Neglect collision terms→ quasiparticle picture

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 14

Page 15: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Equations of motion

Kadanoff-Baym equations provide 2 sets of equations:

1 “Sum equations” (constraint)

2 “Difference equations” (kinetic equation)

These equations are computed order by order in the expansion in 1/E ofOSEFT Lagrangian

O(0)x = i v · D

/v2

O(1)x = − 1

2E

(D2⊥ +

e2σµν⊥ Fµν

) /v2

O(2)x,LFR =

18E2

[/D⊥ ,

[i v · D , /D⊥

]] /v2

− 18E2

{D2⊥ +

e2σµν⊥ Fµν , (iv · D − i v · D)

} /v2

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 15

Page 16: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Sum equations

Sum equations→ Dispersion relation

In terms of physical variables

Dispersion relation

q2 − eSµνχ Fµν = 0

where spin tensor is

Sµνχ = χεαβµνuβqα

2Eq, χ = ±1 (chirality)

In the LRF

Eq = ±|q|(

1− eχB · q2q2

)(Son, Yamamoto 2012), (Manuel, JMTR 2013), (Chen, Son, Stephanov, Yee,Yin 2014) (...)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 16

Page 17: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Difference equations

Difference equations→ Transport equation

In terms of physical variables

Chiral Kinetic Equation[qµ

Eq− e

2E2q

Sµνχ Fνρ(

2uρ − qρ

Eq

)]∆µ Gχ

E,v (X , q) = 0

whereEq = q · u ; ∆µ ≡ ∂

∂Xµ− eFµν(X )

∂qν

And

GχE,v (X , q) = 2πδ+(Qχ)fχ(X , q) ; δ+(Qχ) = θ(Eq)Eqδ(q2 − eSµνχ Fµν)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 17

Page 18: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

CKE in the Local Rest Frame

In the LRF(∆0 + qi

(1 + eχ

B · q2q2

)∆i + eχ

εijk E j qk − B i⊥,q

4q2 ∆i

)fχv (X ,q) = 0

∆µ ≡ ∂

∂Xµ− eFµν(X )

∂qν

which differs from other authors in subleading terms

(∆0 + qi

(1 + eχ

B · q2q2

)∆i + eχ

εijk E j qk

2q2 ∆i

)fχ(X ,q) = 0

(Hidaka, Pu, Yang 2017)(Son, Yamamoto 2012)

It can be explained due to the different fermion fields (Lin, Shukla 2019)

Gv = 〈χv (y)/v2

U(y , x)χv (x)〉 vs G = 〈ψ(y)U(y , x)ψ(x)〉

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 18

Page 19: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

CKE in the Local Rest Frame

In the LRF(∆0 + qi

(1 + eχ

B · q2q2

)∆i + eχ

εijk E j qk − B i⊥,q

4q2 ∆i

)fχv (X ,q) = 0

∆µ ≡ ∂

∂Xµ− eFµν(X )

∂qν

which differs from other authors in subleading terms

(∆0 + qi

(1 + eχ

B · q2q2

)∆i + eχ

εijk E j qk

2q2 ∆i

)fχ(X ,q) = 0

(Hidaka, Pu, Yang 2017)(Son, Yamamoto 2012)

It can be explained due to the different fermion fields (Lin, Shukla 2019)

Gv = 〈χv (y)/v2

U(y , x)χv (x)〉 vs G = 〈ψ(y)U(y , x)ψ(x)〉

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 18

Page 20: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Chiral anomaly

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 19

Page 21: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Fermion current

The fermion currentjµ(x) = −δSOSEFT

δAµ(x)

is computed up to order 1/E2q in the original variables

jµ(X ) = e∑χ=±

∫d4q

(2π)3 2θ(Eq) δ(q2 − eSµνχ Fµν)

×

{qµ − e

2EqSµνχ Fνρ(2uρ − qρ

Eq) +O

(1

E3q

)}fχ(X , q)

To compute the chiral current we introduce chiral fields Aµ5 ,Fµν5

jµ5 (x) = −δSOSEFT

δA5µ(x)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 20

Page 22: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Chiral anomaly equation

Using the kinetic equation in the LRF and integrating

∂µjµ5 (X ) = e2χE · B2π2

16

lim|q|→0

[f R(|q|)− f L(|q|)]

Summing both fermions and antifermions in a plasma in equilibrium

fχ(|q|) =1

e(|Eq |−µχ)/T + 1, fχ(|q|) =

1e(|Eq |+µχ)/T + 1

we obtain

Consistent axial anomaly

∂µjµ5 (X ) = ∂µ[jµR (X )− jµL (X )] =13

e2

2π2 E · B

The 1/3 is carried by the “consistent” version of the anomaly (asopposed to the “covariant anomaly”) back-up

Expected from the definition of the current as a functional derivative(Landsteiner 2016)(Fujikawa 2017)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 21

Page 23: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Chiral magnetic effect

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 22

Page 24: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Chiral Magnetic Effect

The 3D vector current (after q0 integration) up to O(1/Eq) in the LRF

j i (X ) = e∑χ=±

∫d3q

(2π)3

(q i

Eq+

S ijχ∆j

Eq

)fχ(X , q)

and we use equilibrium distribution

fχeq(Eq) = fχeq(|q|)−eχB · q2|q|2

dfχeq(|q|)d |q|

The current

j i = e2∑χ

χ

∫d3q

(2π)3

[(B j q i q j − B i )

2|q|dfχeq(|q|)

d |q| −B j q j q i

2|q|dfχeq(|q|)

d |q|

]Incorporating particles and antiparticles of both chiralities we integrate

CME in equilibrium

j(X ) = e2(

23

+13

)µ5

4π2 B(X )

(Son, Yamamoto 2012) (Manuel, JMTR 2013) (Kharzeev, Stephanov, Yee2016)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 23

Page 25: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Distribution function under Lorentztransformations

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 24

Page 26: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Lorentz transformation of distribution function

Modified Lorentz transformation for chiral fermions(Chen, Son, Stephanov, Yee, Yin 2014) (Duval, Horvathy 2014)

Transformation implies “side-jump” (displacement in boosted frame)(Stone, Dwivedi, Zhou 2015) (Chen, Son, Stephanov 2015)

(fig. from Chen, Son,Stephanov, Yee, Yin 2014)

Distribution function f is not scalar(Chen, Son, Stephanov 2015) (Hidaka, Pu ,Yang 2016)

Transformations giving “side jump” are contained in RI transformationsHow does the distribution function behave under those?

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 25

Page 27: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

RI transformation of f

How do the RI transformations act on f ≡ fχE,v (X , k) (particle case)?

2 of them have no effect:f Type I−−−−→ f

f Type III−−−−−→ f

But Type II:

f Type II−−−−−→ f − 12Eq

Sµνχ ε⊥ν ∆µf +O(ε2⊥,

1E2

q

)Using εµ⊥/2 = u′µ − uµ

Transformation of f

f Type II−−−−−→ f − χεαβµνu′νuβqα2(q · u′)(q · u)

∆µf +O(ε2⊥,

1E2

q

)which coincides with(Chen,Son, Stephanov 2015)(Hidaka, Pu, Yang 2016)(Gao, Liang,Wang,Wang 2018)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 26

Page 28: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Conclusions and Outlook

OSEFT: systematic approach for the physics of nearly on-shellmassless fermions/antifermions

It can be used to derive a transport equation, anomaly equation,CME...See also (Manuel, Soto, Stetina 2016)(Carignano, Manuel, Soto 2017)

Transparent study of Lorentz transformations e.g. “side jumps”

Outlook: Effects of mass (Weickgennant, Sheng, Speranza, Wang,Rischke 2019)

Outlook: Understanding “side jumps” by computing collision terms

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 27

Page 29: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Conclusions and Outlook

OSEFT: systematic approach for the physics of nearly on-shellmassless fermions/antifermions

It can be used to derive a transport equation, anomaly equation,CME...See also (Manuel, Soto, Stetina 2016)(Carignano, Manuel, Soto 2017)

Transparent study of Lorentz transformations e.g. “side jumps”

Outlook: Effects of mass (Weickgennant, Sheng, Speranza, Wang,Rischke 2019)

Outlook: Understanding “side jumps” by computing collision terms

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 27

Page 30: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

the On-Shell Effective Field Theoryand the Chiral Kinetic Equation

Juan M. Torres-Rincon(Goethe Uni. Frankfurt)

in collaboration withC. Manuel and S. Carignano

Phys.Rev.D98 (2018), 976005

NED2019 Symposium,Castiglione della Pescaia, IT

June 21, 2019

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 28

Page 31: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Reparametrization invariance transformations

The OSEFT Lagrangian is Lorentz invariant,with some transformations realized via RI transformations.

(Carignano, Manuel, JMTR 2018)

For vµ = (1, 0, 0, 1) and vµ = (1, 0, 0,−1):

1 Type I: Q−1 ≡ J1 − K2,Q+2 = J2 + K1

2 Type II:Q+1 ≡ J1 + K2,Q−2 = J2 − K1

3 Type III: K3

Notice that Type I (Type II) leaves invariant vµ (vµ). They are elements of theWigner’s little group associated to vµ (vµ).

1 Wigner’s Little Group of vµ: (Q+1 ,Q

−2 , J3) ∈ SE(2)

2 Wigner’s Little Group of vµ: (Q−1 ,Q+2 , J3) ∈ SE(2)

go back

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 29

Page 32: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Chiral anomaly equation

Apply ∂µ = ∆µ + Fµν∂νq , and make use of the CKE to cancel the first term.For one chirality χ:

∂µjµχ (X) =12

[∂µjµ(X) + χ∂µjµ5 (X)

]= e2

∫d4q(2π)3

{qµ −

e2Eq

Sµνχ Fνρ(

2uρ −qρ

Eq

)}

× Fµλ∂

∂qλ[fχ(X , q) 2θ(Eq) δ(q2 − eSµνχ Fµν)]

In the LRF, only surface terms remain. Integrate around a sphere of radius R,and take the limit R → 0 (Stephanov, Yin 2012)

∂µjµχ (X ) = −e2χ limR→0

(∫dSR

(2π)3 · Eq · B4R2 fχ(|q| = R)

−∫

dSR

(2π)3 ·q

4R2 E · Bfχ(|q| = R)

)= e2χ

E · B2π2

16

fχ(|q| = 0)

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 30

Page 33: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

Anomaly equation

In the presence of chiral gauge fields we have

Chiral current nonconservation

∂µjµ5 (X ) =13

e2

2π2 (E · B + E5 · B5)

Vector current anomaly

∂µjµ(X ) =13

e2

2π2 (E5 · B + E · B5)

To get a conserved current one adds Bardeen counterterms to the quantumaction ∫

d4x εµνρλAµA5ν

(c1Fρλ + c2F 5

ρλ

)with the choice c1 = 1

12π2 and c2 = 0(Landsteiner 2016) Go back

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 31

Page 34: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

References I

C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 90, no. 7, 076007(2014) doi:10.1103/PhysRevD.90.076007 [arXiv:1404.6409 [hep-ph]].

C. Manuel, J. Soto and S. Stetina, Phys. Rev. D 94 (2016) no.2, 025017Erratum: [Phys. Rev. D 96 (2017) no.12, 129901]doi:10.1103/PhysRevD.94.025017, 10.1103/PhysRevD.96.129901[arXiv:1603.05514 [hep-ph]].

D. T. Son and N. Yamamoto, Phys. Rev. D 87, no. 8, 085016 (2013)doi:10.1103/PhysRevD.87.085016 [arXiv:1210.8158 [hep-th]].

M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001 (2012)[arXiv:1207.0747 [hep-th]].

J. -W. Chen, S. Pu, Q. Wang and X. -N. Wang, Phys. Rev. Lett. 110,262301 (2013) [arXiv:1210.8312 [hep-th]].

Y. Hidaka, S. Pu and D. L. Yang, Phys. Rev. D 95, no. 9, 091901 (2017)doi:10.1103/PhysRevD.95.091901 [arXiv:1612.04630 [hep-th]].

Y. Hidaka, S. Pu and D. L. Yang, Phys. Rev. D 97, no. 1, 016004 (2018)doi:10.1103/PhysRevD.97.016004 [arXiv:1710.00278 [hep-th]].

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 32

Page 35: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

References II

J. P. Blaizot and E. Iancu, Phys. Rept. 359, 355 (2002)doi:10.1016/S0370-1573(01)00061-8 [hep-ph/0101103].

P. F. Kelly, Q. Liu, C. Lucchesi and C. Manuel, Phys. Rev. Lett. 72, 3461(1994) doi:10.1103/PhysRevLett.72.3461 [hep-ph/9403403].

J. Y. Chen, D. T. Son, M. A. Stephanov, h. U. Yee and Y. Yin, Phys. Rev.Lett. 113, no. 18, 182302 (2014) doi:10.1103/PhysRevLett.113.182302[arXiv:1404.5963 [hep-th]].

J. Y. Chen, D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 115, no. 2,021601 (2015) doi:10.1103/PhysRevLett.115.021601 [arXiv:1502.06966[hep-th]].

C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63,114020 (2001) doi:10.1103/PhysRevD.63.114020 [hep-ph/0011336].

K. Landsteiner, Acta Phys. Polon. B 47, 2617 (2016)doi:10.5506/APhysPolB.47.2617 [arXiv:1610.04413 [hep-th]].

A. V. Manohar, T. Mehen, D. Pirjol and I. W. Stewart, Phys. Lett. B 539,59 (2002) doi:10.1016/S0370-2693(02)02029-4 [hep-ph/0204229].

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 33

Page 36: the On-Shell Effective Field Theory and the Chiral Kinetic ...theory.gsi.de/.../NeD-2019/talks/Torres-Rincon.pdf · Juan M. Torres-Rincon (Goethe Uni. Frankfurt) in collaboration

References III

M. Stone, V. Dwivedi and T. Zhou, Phys. Rev. Lett. 114, no. 21, 210402(2015) doi:10.1103/PhysRevLett.114.210402 [arXiv:1501.04586[hep-th]].

S. Carignano, C. Manuel and J. Soto, Phys. Lett. B 780, 308 (2018)doi:10.1016/j.physletb.2018.03.012 [arXiv:1712.07949 [hep-ph]].

K. Fujikawa, Phys. Rev. D 97, no. 1, 016018 (2018)doi:10.1103/PhysRevD.97.016018 [arXiv:1709.08181 [hep-th]].

J. H. Gao, Z. T. Liang, Q. Wang and X. N. Wang, Phys. Rev. D 98, no. 3,036019 (2018) doi:10.1103/PhysRevD.98.036019 [arXiv:1802.06216[hep-ph]].

N. Weickgenannt, X. L. Sheng, E. Speranza, Q. Wang andD. H. Rischke, arXiv:1902.06513 [hep-ph].

Juan M. Torres-Rincon (Goethe Uni.) OSEFT and the Chiral Kinetic Equation 34