142
Retrospective eses and Dissertations Iowa State University Capstones, eses and Dissertations 1979 e microwave dielectric properties of chalcogenide glasses John S. Davies Jr. Iowa State University Follow this and additional works at: hps://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons is Dissertation is brought to you for free and open access by the Iowa State University Capstones, eses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective eses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Recommended Citation Davies, John S. Jr., "e microwave dielectric properties of chalcogenide glasses" (1979). Retrospective eses and Dissertations. 7274. hps://lib.dr.iastate.edu/rtd/7274

The microwave dielectric properties of chalcogenide glasses

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The microwave dielectric properties of chalcogenide glasses

Retrospective Theses and Dissertations Iowa State University Capstones, Theses andDissertations

1979

The microwave dielectric properties ofchalcogenide glassesJohn S. Davies Jr.Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State UniversityDigital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State UniversityDigital Repository. For more information, please contact [email protected].

Recommended CitationDavies, John S. Jr., "The microwave dielectric properties of chalcogenide glasses" (1979). Retrospective Theses and Dissertations. 7274.https://lib.dr.iastate.edu/rtd/7274

Page 2: The microwave dielectric properties of chalcogenide glasses

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. Wlien an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo­graphed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistmct print. In all cases we have filmed the best available copy.

Universify Microfilms

International 300 N, ZEEB ROAD, ANN ARBOR, Ml 48106 18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND

Page 3: The microwave dielectric properties of chalcogenide glasses

8010225

DA VIES, JOHN S., JR.

THE MICROWAVE DIELECTRIC PROPERTIES OF CHALCOGENIDE GLASSES

Iowa State University PH.D. 1979

University Microfilms

I n t© rn clt i 0 n â 1 300 N. Zeeb Road, Ann Arbor, MI 48106 18 Bedford Row, London WCIR 4EJ, England

Page 4: The microwave dielectric properties of chalcogenide glasses

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark .

1. Glossy photographs

2. Colored illustrations

3. Photographs with dark background ^

'4, Illustrations are poor copy

5. °rint shows through as there is text on both sides of page

6. Indistinct, broken or small print on several pages throughout

7. Tightly bound copy with print lost in spine

8. Computer printout pages with indistinct print

9. Page(s) lacking when material received, and not available from school or author

10. Page(s) seem to be missing in numbering only as text follows

11. Poor carbon copy

12. Not original copy, several pages with blurred type

13. Appendix pages are poor copy

14. Original copy with light type

15. Curling and wrinkled pages

16. Other

Unlversitv MiciSllms

Intemariona! 300 N Z = S= RD.. ANN AR30B ML UST06'3131 761-4700

Page 5: The microwave dielectric properties of chalcogenide glasses

The microwave dielectric properties

of chalcogenide glasses

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

by

John S. Davies, Jr

Approved:

In Charge of Major Work

Dep rtment

For the Graduate College

Iowa State University Ames, Iowa

1979

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Page 6: The microwave dielectric properties of chalcogenide glasses

il

TABLE OF CONTENTS

Page

ABSTRACT vi

INTRODUCTION 1

HISTORICAL BACKGROUND 6

Chalcogenide Glasses 6

Relative Permittivity Measurements 7

TRANSMISSION METHOD THEORY 10

TRANSMISSION METHOD - EXPERIMENTAL APPROACH 16

ERROR ANALYSIS 29

SAMPLE PREPARATION 33

EXPERIMENTAL RESULTS 39

CONCLUSIONS 65

APPENDIX A: COMPUTER PROGRAM AND TABLE 67

APPENDIX B: EPSILAM-10 DATA 83

APPENDIX C: TABLE FOR 1.30 MM SAMPLE 92

APPENDIX D: VON HIPPEL SHORT-CIRCUIT METHOD 103

APPENDIX E: TABLES FOR AS-TE-GE SAMPLES 106

BIBLIOGRAPHY 127

ACKNOWLEDGMENTS 130

Page 7: The microwave dielectric properties of chalcogenide glasses

ill

LIST OF TABLES

Page

Table 1. Phase shift and amplitude change for Epsilam-10 utilizing least squares 27

Table 2. Epsilam-10 relative permittivity and loss tangent 28

Table 3. Effect of uneveness of sample on relative permittivity 30

Table 4. Effect of minimum resolution on relative permittivity 31

Table 5. Comparison of published and transmission method results 47

Table 6. Comparison of results from the short-circuit and transmission methods 48

Table 7. Phase and amplitude data for the empty case 54

Table 8. Sample 2 phase and amplitude 55

Table 9. Sample 3 phase and amplitude 56

Table 10. Mean and standard deviation of data points shown in Table 2 (t= .4484 cm) 57

Table 11. Mean and standard deviation of data points shown in Table 3 for As-Te-Ge Sample 3 (t= .5003 cm) 58

Table 12. Relative permittivity for (As-Te-Ge) Sample 2 (t=.4484 cm) with least squares fit 59

Table 13. Relative permittivity for (As-Te-Ge) Sample 3 (t = .5003 cm) with least squares fit 60

Table 14. Comparison of the relative permittivity of two samples of As-Te-Ge (transmission method) 61

Table 15. Comparison of the loss tangent of two samples of As-Te-Ge (transmission method) 62

Table 16. Relative permittivity of As-Te-Ge utilizing the short-circuit method 63

Page 8: The microwave dielectric properties of chalcogenide glasses

iv

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

LIST OF FIGURES

The As-Te-Ge phase diagram in atomic percentage (after Hilton)

Von Hippel's transmission method model

Sample placement and fields in an X-Band waveguide

Block diagram of experimental arrangment

Transmission method test set-up

Epsilam-10 sample

Phase versus frequency plot for Epsilam-10, thickness= 0.127 cm

Amplitude versus frequency plot for Epsilam-10, thickness= 0.127 cm

Phase difference versus frequency plot for Epsilam-10

Amplitude difference versus frequency plot for Epsilam-10

A prepared quartz sample

A sealed evacuated ampule filled with arsenic

Dry box used for sample preparation

Ampule ready for furnace

Test samples in their molds

Von Hippel short-circuit method block diagram

Photograph of typical Von Hippel short-circuit method test set-up

Sensitivity of Von Hippel short-circuit measurements to the number of fractional wavelengths in the sample

Short circuit voltage standing-wave pattern relation­ships in an empty waveguide and in a waveguide with dielectric sample in place

Page 9: The microwave dielectric properties of chalcogenide glasses

V

Page

Figure 20. Phase shift versus frequency for As-Te-Ge Sample 2 50

Figure 21, Amplitude change versus frequency for As-Te-Ge Sample 2 51

Figure 22. Phase shift versus frequency for As-Te-Ge Sample 3 52

Figure 23. Amplitude change versus frequency for As-Te-Ge Sample 3 53

Page 10: The microwave dielectric properties of chalcogenide glasses

vl

ABSTRACT

The microwave dielectric properties of the chalcogenide glass

ASggTeggGe^g (by atomic percent) were determined, utilizing the trans­

mission method. The relative permittivity was found to be 15.9 + 0.9 for

the 8.0 to 12.4 GHz frequency band. The loss tangent was found to be less

than or equal to 0.3 throughout the same frequency band. The error in the

relative permittivity measurements was determined to be less than 5%.

Samples were prepared from 99.99%.pure arsenic, tellurium, and germa­

nium. Quartz ampules containing the As^gTe^^Ge^Q were heated to 1000

degrees centigrade for 24 hours and then quenched in liquid nitrogen-

soaked sand. Test samples were produced by placing the quenched

ASg^Teg^Ge^Q in chrome-plated molds, reheating to 600 degrees centigrade,

and requenching, using dry ice.

The transmission method yielded excellent results for low, medium,

or high relative permittivity samples, regardless of sample thickness.

The method is based on the comparison of the dominant Transverse Electric

fields in a rectangular waveguide with and without a sample being present.

The resulting transcendental equation with two unknowns was solved by

generating tables based on the substitution of various values of complex

relative permittivity, and comparing the corresponding phase shift and

amplitude change with the measured values. A unique solution was found

by comparing results of samples of different thicknesses.

Page 11: The microwave dielectric properties of chalcogenide glasses

1

INTRODUCTION

In the mid 1960's, much attention was given to the bistable resistivity

characteristics of As-Te-Ge (Ovshinsky, 1963), one of the chalcogenide (or

sulfur-like) glasses. This bistable resistivity characteristic showed

promise as a computer memory material (Kao, 1972; Ovshinsky, 1963; and

Sie, 1968) because only two distinct stable states are required for such

an application.

The As-Te-Ge system is sulfur-like in that it will form a super-cooled

liquid (or glass) if cooled quickly. This state corresponds to the high

resistance state. If As-Te-Ge is cooled slowly, it becomes crystalline,

which corresponds to the low resistance state. The resistivity is roughly

10^ ohm-cm in the high resistance state and 10^ ohm-cm in the low resis­

tance state (Sie, 1969),

While in the high resistance state, the As-Te-Ge system does not form

a lattice structure (displays no particular order). For that reason, this

state is also called the amorphous state.

This mixture of the various elements in the As-Te-Ge system is very

important. Figure 1 is a ternary diagram which shows the glass forming

regions for the As-Te-Ge system as published by Hilton, et al, 1966. The

composition chosen was As^gTe^^Ge^Q (by atomic percent) because it is in

the center of the larger of the two glass-forming regions. Also, it was

this composition that others had examined extensively.

Uttecht (1969) demonstrated that a low resistance filament could be

grown on the surface of a sample of As^^Te^gGe^Q which was in the high

resistance or amorphous state. This was accomplished by applying a high-

Page 12: The microwave dielectric properties of chalcogenide glasses

2

Ge IV A

Ge Te

CRYSTAL REGION

GLASS REGION

Te As

As

Figure 1. The As-Te-Ge phase diagram in atomic percentage (Hilton, et al. 1966)

Page 13: The microwave dielectric properties of chalcogenide glasses

3

intensity electrical field across the surface. By reversing the polarity

of the field, the filament can be made to disappear. This phenomenon

showed promise for utilization at microwave frequencies. A sample of

As-Te-Ge placed in a waveguide would act as phase shifter because of its

dielectric qualities. As the sample is moved across the waveguide out of

the maximum electric or E field, the phase shift associated with the

sample is reduced. A variable phase shifter could be fabricated, utilizing

this principle.

The maximum E field exists in the center of the guide for the TE^^

or dominant mode in a rectangular waveguide. Since a low resistance fila­

ment can be grown on the surface, the E field can essentially be shorted

out. Hence, the growing and reversing of the low resistance filament will

act as microwave switch. With the existence of the low resistance fila­

ment, the E field will be shorted out and energy will not pass beyond

that section of the rectangular waveguide. The author reported the

successful development of a microwave switch utilizing As-Te-Ge (Davies,

1970). Most microwave switches utilize moving parts which have to be

activated manually or with the aid of a solenoid. The advantage of the

As-Te-Ge switch is that it does not have moving parts .

In order to mathematically evaluate the effect of an As-Te-Ge sample

inserted in a waveguide, it is necessary to determine its relative permit­

tivity and permeability. Once these two characteristics are known, con-

vential analytical techniques can be applied to give an accurate descrip­

tion of the fields present in and around the sample. In the phase shifter

Page 14: The microwave dielectric properties of chalcogenide glasses

4

application, the thickness of the sample necessary to give the desired

maximum phase shift can be determined easily.

Since Uttecht (1969) reported that ASg^Te^^Ge^Q was diamagnetic,.the

relative permeability was approximately equal to unity or the free space

value. The remaining characteristic, relative permittivity, could be

found by reversing the process mentioned in the previous paragraph. By

measuring the effect of a sample of a particular shape and size placed in

a waveguide, the relative permittivity could be determined.

In this dissertation, the historical background of chalcogenide glass

and relative permittivity measurement is presented first (See HISTORICAL

BACKGROUND). The third section (THEORY OF THE TRANSMISSION METHOD) follows

with the mathematical development of the transmission theory used in

determining the relative permittivity of As-Te-Ge.

The fourth section (EXPERIMENTAL APPROACH UTILIZING THE TRANSMISSION

METHOD) presents the mechanics of implementing the theory of measurement.

In this section, a sample of known high relative permittivity is tested

and compared to published results. In addition, the role of the computer

program in determining relative permittivity is discussed.

The fifth section (ERROR ANALYSIS) discusses the accuracy of the

transmission method measurements. The data from the prior section are

changed by the limit of the error and effect on the relative permittivity

results are discussed.

The sixth section (SAMPLE PREPARATION) was developed because the

complexity of sample preparation warranted such a discussion. The prepa­

ration of the As-Te-Ge glass is discussed, along with the process of

forming this glass into a usable sample.

Page 15: The microwave dielectric properties of chalcogenide glasses

5

The transmission method results for low, medium, and high relative

permittivity dielectrics are compared to published and other experimental

results in the seventh section (EXPERIMENTAL RESULTS). Also, the results

for the ASggTe^gGe^Q samples are given and the accuracy of the findings

discussed.

Conclusions are presented in the eighth and final section. Discussed

are relative merits of the transmission method, the suitability of

ASggTe^gGe^Q for use as a dielectric, and recommendations for improving

the test methodology.

Page 16: The microwave dielectric properties of chalcogenide glasses

6

HISTORICAL BACKGROUND

Chalcogenide Glasses

The interest in the chalcogenide glasses was first generated by

Ovshinsky (1963) and Pearson (1962). These glasses attracted interest

because they displayed bulk bistable resistivity similar to that exhibited

by some metal oxides (Cline, 1962).

Hilton, et al. (1966) studied many of the chalcogenide glasses and

determined that certain percentages of each of the elements were necessary

before the composition formed a glass. One of the glass systems studied

by Hilton was As-Te-Ge. The composition studied extensively at Iowa State

University was As^^Te^^Ge^^Q (by atomic percent) because it switched more

consistently (Sie, 1969).

Uttecht (1969) found that a low resistance filament could be formed

on the surface of the As-Te-Ge glass through the application of a high-

intensity electric field. Kao (1972) examined in detail the filament

growth and its application as a computer memory element. He concluded

that it could be used as a memory device and that there are really two

filaments formed at once -- one on the surface, and one inside the

material.

Several authors have examined the switching mechanism in amorphous

glasses (Fritzsche and Ovshinsky, 1970; Uttecht, et al. 1970, and Saji,

et al. 1977). It is fairly well-accepted that the switching is energy-

controlled. The switching mechanism is thought to be thermally controlled

for samples thicker than 10 micrometers, and electronically controlled

for samples thinner than 10 micrometers.

Page 17: The microwave dielectric properties of chalcogenide glasses

7

Others have studied the suitability of the amorphous glasses for use

as a read-only memory (Sie, 1969) and electron beam-accessed memory

(Doctor, 1973). Both authors were optimistic about these possibilities.

Amorphous material is gaining acceptance for use in solar cells

(Wronski, 1977 and Carlson, 1977), as well as in transistors (Peterson,

et al. 1976).

Relative Permittivity Measurements

Relative permittivity can be determined simply by inserting a dielec­

tric between parallel conducting plates and measuring the change in

capacitance. This procedure provides good results at DC and low frequencies.

At microwave frequencies, the task is much more complex because

energy is transferred, preferably by waveguides. Roberts and Von Hippel

(1946) developed the short circuit method for determining relative permit­

tivity at microwave frequencies. The short-circuit approach involved the

measurement of standing waves in a shorted waveguide with and without a

sample present. Dakin and Works (1947) simplified the Von Hippel expres­

sions for low and medium loss cases, Marcuvitz (1951) improved the

accuracy of measurement by developing a correction factor for the slot in

the waveguide. A computer program was written for the short-circuit

method by Nelson, Schlaphoff, and Stetson (1972).

A transmission model was developed by Westphal (1954) and is shown

in Figure 2. The change in attenuation and phase is mathematically re­

lated to the relative permittivity of the sample. As more sophisticated

equipment became available, relative permittivity could be found directly

Page 18: The microwave dielectric properties of chalcogenide glasses

8

(Weir, 1974). The resonant method involves inserting a dielectric in a

cavity and relating the change in resonant frequency to the dielectric

constant. One of the more recent approaches was given by Das Gupta (1974).

The relative permittivity of an amorphous semiconductor system

AsTe/AsSe at microwave frequencies was measured via the short-circuit

method by Wilson, O'Reilly and Kinser (1974). The thermal conductivity

and specific heat of As^^Teg^Ge^Q was determined by Thomas and Savage

(1977). Bishop, et al. (1971) measured the far infrared and microwave con­

ductivity of TlgSe-ASgTCg and semiconducting glass by the use of the short-

11 circuit method (1 to 6 GHz) and interferometric spectroscopy (3 x10 to

12 2.4x10 Hz) methods. The conductivity was found to be very low (approx­

imately 10 ohm-cm). Optical and electrical energy gaps in ASgSe^ were

studied by Fritzsche (1971).

Page 19: The microwave dielectric properties of chalcogenide glasses

9

SAMPLE

NULL DETECTOR INPUT

PHASE

SHIFT 0

ATT.

SAMPLE

NULL DETECTOR NPUT

PHASE

SHIFT +A0

Figure 2. Von Hippel's transmission method model

Page 20: The microwave dielectric properties of chalcogenide glasses

10

TRANSMISSION METHOD THEORY

Various methods of relative permittivity measurement were examined.

The Perturbation Method (Harrington, 1961 and Westphal, 1954) was found

to be too dependent upon sample position and shape for the determination

of the relative permittivity in the range of that of As^^Teg^Ge^Q

(approximately 10). The Von Hippel approach of measuring dielectrics by

standing waves (Von Hippel, 1954) showed the greatest promise. Indeed,

Wilson, O'Reilly and Kinser (1974) had reported results on As-Te/As-Se

system utilizing this method. In addition, Nelson, Schlaphoff, and

Stetson (1972) had developed a computer program for this method. However,

even with the Marcuvitz Correction (1951) for the effect of the slot in

the standing wave measuring section, errors greater than 10% were en­

countered .

The percent error experienced with the standing wave technique is

dependent upon the sample thickness. As^^^^eg^Ge^Q samples of sufficient

thickness are too difficult to manufacture for this approach to be fruit­

ful. Since thin samples with high relative permittivity cause large phase

shifts and amplitude changes when inserted in a waveguide, the trans­

mission method was selected as the best approach.

In the past, the transmission method required taking measurements

that were involved and time-consuming, but with the development of sweep

generators, phase comparators, network analyzers, and phase and amplitude

displays, measurements throughout the frequency range of interest can

easily be accomplished in a matter of seconds. With the aid of a computer

program, the relative permittivity can be found.

Page 21: The microwave dielectric properties of chalcogenide glasses

11

The relative permittivity and loss tangent of a given sample can be

determined by measuring the phase and amplitude of the electromagnetic

wave at a particular point along the transmission medium. The differences

observed between the phases and amplitudes of the empty and sample-present

cases can be related to the relative permittivity and loss tangent of the

sample.

To illustrate this relationship, let us use an X Band (8-12.4 GHz)

waveguide as the transmission medium. The preferred waveguide mode is the

dominant TE^^ (transverse electric) mode. The waveguide is terminated in

its characteristic impedance to prevent reflections. A rectangular-shaped

sample is placed squarely in the guide in order that evanescent modes

will have an appreciable magnitude only in the vicinity of the sample

(Harrington, 1961). The waveguide, sample, arid fields are depicted in

Figure 3. Because the field is the easiest field to measure in the

waveguide, this development will concentrate on comparing this field at

z = c in region III for the case with the sample inserted and the case with

it removed.

. For the TE^^ mode, the x and y components of the wave incident on

the sample in region I are (Stratton, 1941):

Figure 3.

The E , H and H fields exist in all three regions, as shown in

-YiZ sin (ny/b) (1)

where is the propagation constant of the region.

(2)

Page 22: The microwave dielectric properties of chalcogenide glasses

12

TRANSMITTED WAVE

INCIDENT WAVE

Ex

/Hz

REFLECTED WAVE

REGION r REGION n

Y

Figure 3. Sample placement and fields in an X-Band waveguide

Page 23: The microwave dielectric properties of chalcogenide glasses

13

where is characteristic impedence of the region. The resulting re­

flected components are (Stratton, 1941):

, Yi^ E^= (E^/A) e"^ ^ sin(TTy/b) (3)

,Y,z Hy =-(Ei/(AZi))e sin(TTy/b) (4)

Combining the incident and reflected components in region I yields:

-YiZ 4.Y1Z E^ = E^e sin (rry/b) + (Ej^/A) e sin(Try/b) (5)

-YiZ . YiZ Hy=(Ej^/Zi)e sin (ny/b) - (E^/(AZp)e"^ sin (rry/b) (6)

The fields present in the sample (region II) are (Stratton, 1941):

+ -Y2= - +Y2^ +^2® ) sin (rry/b) (7)

, YoZ , Y^s Hy= (l/Z2)(Eje" -E^e"^ ^ ) sin (rry/b) (8)

The X and y components of the transmitted wave in region III are:

_\3(z-d) E^ = E2e sin (rry/b) . (9)

_Y3(z-d) H = (Eg/Zg) e sin(TTy/b) (10)

The boundary conditions dictate that the E^ fields must be equal at

the surface of the sample. Hence, for z=0 (the boundary between regions

I and II), equations (5) and (7) are equated:

(E^ + E^/A) sin (rry/b) = (E^ + Ep sin (rry/b) (11)

Equating the E^ fields at the boundary between regions II and m

(z = d) yields from equations (7) and (9):

Page 24: The microwave dielectric properties of chalcogenide glasses

14

. _ , Ypd Eg sin (rry/b) = (E2 e" fE^e )sin(Try/b) (12)

The boundary conditions also dictate that the fields must be equal

at the surface of the sample. Combining equations (6) and (8) at 2= 0

yields:

((Ej/Zj^ -E^/(AZp) sin (rry/b) = (I/Z2) (E^ - E^) sin (rry/b) (13)

Combining equations (8) and (10) yields for z = d;

y.d yd (Eg/Zg) sin (Try/b) = (l/Zg) (E^ e" ^ - E^ e" ^)sin(TTy/b) (14)

Solving for E^ from equations (11) and (13) yields;

E^ = 0.5CE2C1+ (Z^/Z2)] + E2[1 - (Z^/Z^)']'] (15)

Solving for Eg and Eg from equations (12) and (14) yields:

, . Ymd Eg = 0.5 EgClf (Z2/Z3)]e ^ (16)

Y«d Eg = 0.5 Eg[l- (Z2/Zg)]e'" ^ . (17)

When equations (16) and (17) are substituted into equation (15) , the

ratio of the electric field in region III for the case without the sample

(E^) to the case with the sample (E^) is :

^1 1 ^2 +^2^ ^1 ^2 -^2^ ^ = T C(l + )(l + )e +(1-—)(1-—)e ] (18) 3 2 3 2 3

For our case, regions I and III are filled with air and region II con­

tains dielectric. The resulting propagation constants are (Harrington, 1961);

Page 25: The microwave dielectric properties of chalcogenide glasses

15

where U)= IrrS

Y2 = Arr/b)^ - U?|j,^e^(e'- je") (20)

where e'-je" is the complex relative permittivity.

For our case, the characteristic impedances are (Post, et al. 1973);

Zl = Z3 = JWHQ/YI (21)

h " (22)

because Uttecht (1969) found As^^Te^^Gej^^ to be diamagnetic.

The substitution of equations (21) and (22) into equation (18) yields;

= | [ ( ^ + i ) ( i +

YI YO _(Y2 -YJD + (1 - -i)(l - -^)e ] (23)

2 1

With the aid of a computer program, the complex ratio of to was

determined for various values of e' and e". This program and a repre­

sentative table are given in Appendix A.

Page 26: The microwave dielectric properties of chalcogenide glasses

16

TRANSMISSION METHOD - EXPERIMENTAL APPROACH

As shown In Figure 2, the classical approach to the transmission

method required only a frequency generator, line splitters, a variable

attenuator, a variable phase shifter, and a null detector. With the

present-day advances in test equipment, the phase and amplitude can be

read directly, thus eliminating the need for the null detector, variable

phase shifters and attenuators.

A block diagram of the experimental test arrangement is given in

Figure 4. A photograph of this arrangement is given in Figure 5. The

sweep oscillator generates frequencies from 8.0 to 12.4 Gigahertz (GHz).

The RF from this unit is transmitted to the transmission test unit where

it is split equally between the reference leg and the test leg. The

reference leg is composed of an air line and a 10 dB attenuator. The

attenuator protects the reference channel from excess power absorption.

The test leg is composed of a coaxial line to waveguide adapter, a variable

attenuator, the sample holder, a second variable attenuator, and a wave­

guide to coaxial line adapter. The variable attenuators are used to re­

duce the effect unwanted modes have on the transmission (See ERROR ANALYSIS

section).

The converter section measures the phase and amplitude of reference

and test channels. It also has mechanical and electrical line length

adjustments for the reference channel. These adjustments compensate for

the differences in line lengths between the test and the reference legs.

The network analyzer takes the ratio of the signal in the test channel

to the signal in the reference channel. This power ratio is converted

Page 27: The microwave dielectric properties of chalcogenide glasses

17

HP 8690A HP X-Y PLOTTER HP 8410 A

NETWORK ANALYZER

SWEEP OSCILLATOR

RF SWEEP

OUTPUT

PHASE

AMPL.

_L

SWEEP HP 8412 A PHASE -MAGNITUDE DISPLAY

AIR LINE ATTENUATOR

K\YN1

HP 8740 A TRANSMISSION TEST UNIT

VARIBLE ATTENUATOR

VARIABLE ATTENUATOR

UNKNOWN SAMPLE

REFERENCE CHANNEL

TEST CHANNEL

HP 8411 A CONVERTER

Figure 4. Block diagram of experimental arrangement

Page 28: The microwave dielectric properties of chalcogenide glasses

I

Figure 5. Transmission method test set-up

Figure 6. Epsilam-10 sample

Page 29: The microwave dielectric properties of chalcogenide glasses

qsT

Page 30: The microwave dielectric properties of chalcogenide glasses

19

into a DC voltage, which is directly proportional to the magnitude of the

ratio. This value can be read off of the magnitude portion (calibrated in

decibels) of the phase-magnitude display. Likewise, the phase difference

is converted into a DC voltage proportional to the magnitude of the dif­

ference. This value (calibrated in degrees) can be read off the phase

portion of the phase-magnitude display. The frequency is depicted as the

horizontal axis on the phase-magnitude display. The phase and magnitude

changes are displayed on the vertical axis. Variable, calibrated, offset

controls are built into this display, enabling increments as small as one

degree of phase change per division (cm) and 0.25 dB of magnitude per

division (cm) to be depicted. The X-Y plotter can be used to give a

graphic representation of these values across the spectrum of interest.

In order to determine the relative permittivity of a sample utilizing

the transmission method, only two sets of measurements are required. First,

the phase shift and amplitude change caused by the empty test leg (as

compared to the air line or reference leg) is measured. Then the empty

sample holder is removed from the test leg and replaced with an identical

sample holder containing the dielectric to be measured. The phase shift

and amplitude change attributed to the test leg with the sample present is

measured (again compared to the air line or reference leg). The differences

in the phase shift and amplitude change between the empty and sample present

cases are caused by the sample. This phase shift and amplitude change is

correlated to the complex relative permittivity of the sample in the com­

puter generated table.

Page 31: The microwave dielectric properties of chalcogenide glasses

20

Because the transcendental equation used has an endless number of

solutions, two samples of different thicknesses must be measured to yield

a unique solution.

In order to demonstrate the feasibility of the transmission method, a

standard sample was chosen. Epsilam-10 was selected because it is known

to be well-behaved through the X Band frequency range and is easy to shape

into a regular sample. This sample is shown in Figure 6. The relative

permittivity is given by the manufacturer to be 10.3 + 0.5 with a loss

tangent of 0.001. A specification sheet can be found in Appendix B.

Ten measurements of the phase and amplitude at each frequency (0.5 GHz

intervals) were taken for the sample present cases and also for the empty

waveguide cases (Appendix B, Tables B-1, 2, 3, and 4). The mean and

standard deviation of the ten measurements were calculated (Appendix B,

Tables B-5 and 6). The resulting means are shown in Figures 7 and 8. As

can be seen, the phase and magnitude for the empty case are well-behaved

throughout the frequency range. However, there are a few undesirable

undulations of the phase and magnitude plots àt the higher frequencies,

pointing to possible unwanted resonances in the line. Otherwise, the

data look quite good. The differences in the means between the empty and

sample present (Epsilam-10) cases are shown in Figures 9 and 10.

Normally for high relative permittivity samples, the amplitude change

will be somewhat cyclical throughout the frequency band. This is caused

by the reduction of the reflected wave (hence the loss) as the effective

sample thickness approaches a half-wavelength, or multiples of half-wave­

length. This phenomenon can occur many times throughout the frequency •

Page 32: The microwave dielectric properties of chalcogenide glasses

21-22

PHASE

160

135

90

45 /EMPTY CASE

SAMPLE PRESENT

o -45

-90

-135

-180 8 9 10 II 12

FREQUENCY (GHZ)

Figure 7. Phase versus frequency plot for Epsilam-lO, thickness =

0.127 cm

Page 33: The microwave dielectric properties of chalcogenide glasses

23

AMPLITUDE

EMPTY CASE

u m -3| o w o —4

-5 WITH SAMPLE

8 9 10 I I 12

FREQUENCY (GHZ)

Figure 8. Amplitude versus frequency plot for Epsilam-10, thickness = 0.127 cm

Page 34: The microwave dielectric properties of chalcogenide glasses

24

band. However, there should be a tendency toward increased amplitude

change as the frequency increases because the number of fractional wave­

lengths present in sample increases. This assumes that the sample is not

lossless and the relative permittivity and loss tangent remain unchanged

throughout the frequency band.

Since Epsilam-10 has a relative permittivity that varies somewhat

through the frequency band, the curves shown in Figures 9 and 10 are

acceptable.

Nonetheless, the Method of Least Squares was utilized to effectively

smooth out the curves without destroying the tendencies of the data. The

results of the Least Squares Fit are given in Table 1. The relative per­

mittivity and loss tangent can be determined by finding the phase and

magnitude on the computer-generated table in Appendix A. The results are

shown in Table 2. As can be .seen, the relative permittivity is in the

range of 9.6 to 10.9 and the loss tangent is less than 0.03.for this sample.

The results agree quite well with the manufacturer's published values of

9.8 to 10.8 and 0.001 relative permittivity and loss tangent, respectively.

Page 35: The microwave dielectric properties of chalcogenide glasses

25

PHASE SHIFT

60

70

60

50 Q % 40

S û 30

LEAST SQUARES FIT

20

8 9 10 I I 12

FREQUENCY (GHZ)

Figure 9. Phase difference versus frequency plot for Epsilam-10

Page 36: The microwave dielectric properties of chalcogenide glasses

26

AMPLITUDE CHANGE

LEAST SQUARES

8 10 9 I I 12

FREQUENCY (GHZ )

Figure 10. Amplitude difference versus frequency plot for Epsilam-10

Page 37: The microwave dielectric properties of chalcogenide glasses

27

Table 1. Phase shift and amplitude change for E.psilam-10 utilizing least squares

Frequency Phase Shift Amplitude Change (GHz) (Degrees) (Decibels)

8.0 57.45 5.73

8.5 57.35 5.60

9.0 57.22 5.47

9.5 57.10 5.34

10.0 56.98 5.21

10.5 56.86 5.08

11.0 56.74 4.95

11.5 56.62 4.82

12.0 56.50 4.69

12.4 56.40 4.58

Page 38: The microwave dielectric properties of chalcogenide glasses

28

Table 2. Epsilam-10 relative permittivity and loss tangent

Frequency Relative Loss Factor Loss Tangent Permittivity

8.0 10.4 0.30 0.03

8.5 10.8 0.25 0.02

9.0 10.9 0.20 0.02

9.5 10.7 0.15 0.01

10.0 10.7 0.15 0.01

10.5 10.5 0.05 less than 0.01

11.0 10.3 less than 0.05 less than 0.01

11.5 10.0 less than 0.05 less than 0.01

12.0 9.6 less than 0.05 less than 0.01

12.4 9.6 less than 0.05 less than 0.01

Page 39: The microwave dielectric properties of chalcogenide glasses

29

ERROR ANALYSIS

As can be seen from the previous section, large changes in the phase

and amplitude of the ratio of signals in the two paths were experienced

while measuring the complex dielectric constant by the transmission

method. Since the thickness of the sample is relatively small, it is

appropriate to examine possible errors caused by unevenness of the sample.

Although the Epsilam-10 sample was not uneven, other samples tested

had thickness variations up to 3%. The sample thickness of the Epsilam-10

sample was arbitrarily increased by 3% in the computer program. The

resulting table for a sample thickness of 1.30 mm is found in Appendix C.

The results from the 1.30 mm table were compared with the results from

the 1.27 mm table (Appendix A).

A summary of the resulting relative permittivity for sample thickness

of 1.27 and 1.3 mm is given in Table 3. An error of 1% to 2% was found

for an unevenness of 2.36%.

Another area of concern is the accuracy with which the system can

measure the raw data, that is, phase shift and attenuation. According to

the manufacturer, and based on the experience gained in taking many

measurements, the minimum resolution is one degree and 0.1 decibels. In

order to test the system, the relatively thin sample of 1.27 mm was chosen

and the results were changed by subtracting one degree and 0.1 dB from

the phase shift and attenuation given in the third section of this work,

respectively. Table 4 contains the results of the original and altered

case.

Page 40: The microwave dielectric properties of chalcogenide glasses

30

Table 3. Effect of uneveness of sample on relative permittivity

Frequency Thickness Relative % (GHz) (mm) Permittivity Error

8.0 1.27 10.4

8.0 1.30 10.2 2

8.5 1.27 10.8

8.5 1.30 10.6 2

9.0 1.27 10.9

9.0 1.30 10.7 2

9.5 1.27 10.7

9.5 1.30 10.7 0

10.0 1.27 10.7

10.0 1.30 10.6 1

10.5 1.27 10.5

10.5 1.30 10.4 1

11.0 1.27 10.3

11.0 1.30 10.2 1

11.5 1.27 10.0

11.5 1.30 9.9 1

12.0 1.27 9.6

12.0 1.30 9.6 0

12.4 1.27 9.6

12.4 1.30 9.6 0

Page 41: The microwave dielectric properties of chalcogenide glasses

31

Table 4. Effect of minimum resolution on relative permittivity

Frequency , (GHz)

Phase Shift (Degrees)

Amplitude change (Decibels)

Relative Permittivity

% Error

8.0 57.45 5.73 10.4

8.0 56.45* 5.63^ 10.2 2

• 8.5 57.34 5.60 10.8

8.5 56.34* 5.50^ 10.6 2

9.0 57.22 5.47 10.9

9.0 56.22* 5.37^ 10.7 2

9.5 57.10 5.34 10.7

9.5 56.10* 5.24^ 10.6 1

10.0 56.98 5.21 10.7

10.0 55.98* 5.11^ 10.5 2

10.5 56.86 5.08 10.5

10.5 55.86* 4.98^ 10.3 2

11.0 56.74 4.95

4.85^

10.3

11.0 55.74*

4.95

4.85^ 10.0 3

11.5 56.62 4.82 10.0

11.5 55.62* 4.72^ 9.8 2

12.0 56.50 4.69 9.6

12.0 55.50* 4.59^ 9.6 -

12.4 56.40 4.58 9.6

12.4 55.40* 4.48^ 9.5 1

^Altered Case (subtracted one degree)

^Altered Case (subtracted 0.1 decibel)

Page 42: The microwave dielectric properties of chalcogenide glasses

32

The conclusion is that an error of 1% to 3% is attributable to the

minimum resolution of the system.

Another area of concern is the case of unwanted modes present in the

waveguide. Because there are many transitions in the system (e.g., from

coaxial line to waveguide), mismatches can occur, causing standing waves

to exist. This phenomenon is frequency-dependent. The effect of these

modes was minimized by the insertion of variable attenuator sections on

both sides of the sample. These attenuators reduced the Q or quality

factor of the cavity formed by the discontinuities so that no dips in the

frequency response were recognizable.

Unwanted modes can be generated by discontinuities caused by putting

a dielectric slab in the guide. If the discontinuity is regular and the

sample is placed squarely in the waveguide, the modes will be evanescent

in nature and no energy is lost (Harrington, 1961). That is why care was

taken to make sure that the sample was placed in a mold and a tight-fitting

plunger was used to form the sample into a regular parallelepiped.

In summation, the worst error is estimated to be 5%. This would be

the case of a relatively thin uneven sample of relative permittivity

greater than 10. As the thickness of the sample increases and the permit­

tivity decreases, the accuracy of the relative permittivity measurement

Improves,

Page 43: The microwave dielectric properties of chalcogenide glasses

33

SAMPLE PREPARATION

The preparation of As-Te-Ge samples is fairly involved and for this

reason, a whole section is devoted to it.

In order for measurements to be made in an X-band waveguide, the

sample must be at least 0.4" by 0.9" by 0.1" thick. It is important that

the sample be homogeneous and have a uniform thickness (See ERROR

ANALYSIS section).

The first step is the fabrication of ampules that will hold the

As-Te-Ge in powder form. The ampules must be quartz because of the high

temperature used in the preparation. The recommended size of the bulb end

is 4" long and an inside diameter of 18 mm. The next step is to attach a

stem to the bulb. The recommended length of the stem is 5" with an inside

diameter of 11 mm. The stem is necessary in order to evacuate the ampule.

Figure 11 shows a prepared quartz ampule.

The purity of the As-Te-Ge is important for the following reasons:

(1) Oxygen can readily be trapped in various amounts by the arsenic,

resulting in different measurement data.

(2) Impurities can cause the As-Te-Ge glass to lose its bistable

resistivity characteristics.

The purity determined for our application was .9999 for each element.

In addition, the arsenic used must be oxygen-free. Arsenic can be received

and kept in a sealed, evaculated ampule as shown in Figure 12. Because of

the affinity of arsenic for oxygen, it is recommended that a dry box be

used when measuring and filling the ampules. The dry box used for our

work is shown in Figure 13.

Page 44: The microwave dielectric properties of chalcogenide glasses

Figure 11. A prepared quartz sample

Figure 12. A sealed evacuated ampule filled with arsenic

Page 45: The microwave dielectric properties of chalcogenide glasses

qi/E

Page 46: The microwave dielectric properties of chalcogenide glasses

35

First, the sealed arsenic ampule, along with the balance and other

necessary equipment, is placed into the dry box, Desiccant is also placed

in the box to absorb any moisture that might get in. A slight vacuum is

created in the dry box, after which it is backfilled with argon for an

hour before starting. Next, the following steps were accomplished:

(1) The tellurium and germanium are ground up in their respective

crocks ;

(2) The arsenic ampule is broken up and the needed arsenic is ground

up in its own crock;

(3) The remaining arsenic is placed in a separate ampule;

(4) The elements are weighted out and put in the other ampules;

(5) A partial vacuum is again created in the dry box;

(6) The ampules are sealed with a rubber cork and vacuum grease; the

vacuum released in the dry box; and the ampules removed;

(7) The ampules are then evacuated further for an hour by a vacuum

pump and sealed. Figure 14 shows the ampule after sealing and

removal of the stem..

The sealed ampules are placed in a rocking furnace or a furnace where

turning of the ampules can be accomplished without lowering the temperature.

The furnace should be kept under a hood at all times during the heating

cycle of 24 hours at 1000° C, because the ampules may fracture and leak

poisonous gases.

Care must be exercised when removing the ampules from the furnace.

Face protection and asbestos gloves must be used. When the ampule is re­

moved from the furnace, it is placed in a bed of sand that has been im-

Page 47: The microwave dielectric properties of chalcogenide glasses

Figure 13. Dry box used for sample preparation

Page 48: The microwave dielectric properties of chalcogenide glasses

36b

Page 49: The microwave dielectric properties of chalcogenide glasses

Figure 14. Ampule ready for furnace

Figure 15. Test samples in their molds

Page 50: The microwave dielectric properties of chalcogenide glasses

37b

#$##

Page 51: The microwave dielectric properties of chalcogenide glasses

38

prégnated with liquid nitrogen. This procedure is followed to ensure that

the As-Te-Ge glass samples will cool quickly and remain homogeneous.

Cooling of the sample quickly also guarantees that the sample will be in

the necessary high resistance state. If the sample is allowed to cool

slowly, it will end up in the low resistance state or be inhomogeneous.

The samples can be prepared for measurement by using a diamond saw

for cutting and standard glass polishing techniques for shaping. Because

the sample in the high resistance state is fragile, the yield from this

process is very low - typically, 1 in 20. In order to achieve a higher

yield and a uniform sample, the following technique was used. The ampule

was broken and pieces of the sample were placed in an X-band mold. The

mold is fabricated from chrome-plated brass. The plating is necessary to

prevent contamination of the As-Te-Ge when reheating is accomplished.

Since it was difficult to cool the mold fast enough to prevent the As-Te-Ge

from switching into the low resistance state, holes were drilled in the

mold to reduce the amount of metal that had to be cooled.

When the As-Te-Ge is heated to 600° C for 15 minutes, it flows into

the comers of the mold. The mold is removed and a chrome-plated plunger

is inserted to eliminate a meniscus in the sample. The mold is quickly

cooled by bringing it in contact with dry ice. The test samples are

shown in Figure 15.

Page 52: The microwave dielectric properties of chalcogenide glasses

39-40

EXPERIMENTAL RESULTS

The objective of this experimental effort is to determine the complex

relative permittivity of the chalcogenide glass compound As-Te-Ge at micro­

wave frequencies. The amorphous glass system As-Te-Ge was chosen because

certain compounds exhibited bistable resistivity (Sie, 1969). The

particular compound As^^Te^gGe^g (by atomic percent) was also diamagnetic

(Uttecht, 1969).

These two properties made As^^Te^^Ge^^^ particularly attractive for use

in a waveguide at microwave frequencies. It could be used as a dielectric

in its high resistance state and allow the passage of electromagnetic waves

through the sample. These waves will be greatly attenuated by the As-Te-Ge

sample when it is in the low resistance state.

The frequency range chosen was 8.0 to 12.4 GHz. The waveguide used

at this frequency range was readily available and had a sufficiently small

cross-sectional area to make sample preparation feasible.

The Von Hippel Short-Circuit Method of measuring complex relative

permittivity was initially accepted as the most promising and accurate

technique. A block diagram of this test set-up is shown in Figure 16.

A photograph of a typical Von Hippel short-circuit test set-up is

shown in Figure 17, and a detailed description of the Von Hippel Short-

Circuit Method is given in Appendix D. This method works quite well for

thick samples of medium permittivity, the accuracy of the method is re­

duced unless the sample has a thickness that is very nearly an odd number

of quarter wavelengths (See Figure 18).

Page 53: The microwave dielectric properties of chalcogenide glasses

41

HP 5342 A HP 415 MICROWAVE FREQUENCY STANDING WAVE COUNTER INDICATOR

1000 Hz

DETECTOR

ISOLATOR

10 dB DIRECTIONAL SHORT

SLOTTED LINE

WITH CARRIAGE AND MOVEABLE PROBE ASSEMBLY

HP 8690 A RF OSCILLATOR

WITH 1000 Hz SQ WAVE

MODULATOR

Figure 16. Von Hippel short-circuit -method block diagram

Page 54: The microwave dielectric properties of chalcogenide glasses

Figure 17. Photograph of typical Von Hippel short-circuit method test set-up

Page 55: The microwave dielectric properties of chalcogenide glasses

42b

Page 56: The microwave dielectric properties of chalcogenide glasses

43

0.5 1000

JOOO 100

2,6 0,4

0.3

3. A

0.2

0.6 0.4 WAVELENGTHS IN SAMPLE

0.7 0.3 0.9 02

0.1

0,01

0.001

0.0001

O.OOOOl 0.7 0 8 0.6 0.4 0.5

WAVELENGTHS IN SAMPLE 0 9 0.2

Zo/A AND INVERSE STANDING-WAVE RATIO V8 LENGTH OF SAMPLE, TAN 0 = 0.0001. SAMPLE AT END OF LINE.

Figure 18. Sensitivity of Von Hippel short-circuit measurements to the number of fractional wavelengths in the sample

Page 57: The microwave dielectric properties of chalcogenide glasses

44

The reasons are two-fold: (1) The error associated with determination

of the distance from the sample to the first node, z^. Figure 19, causes

increased uncertainty in the relative permittivity as the sample becomes

thinner; (2) The sensitivity of the measurement increases as the rela­

tive permittivity increases (See-Figure 18). Because the relative permit­

tivity of ASg^Te^gGe^Q is high (greater than 10), many samples of various

thickness might have to be manufactured before one would be suitable for

the frequency range of interest (have a thickness corresponding to an odd

number of quarter wavelengths).

Little success had been achieved in making relatively thick As-Te-Ge

samples (See sample preparation section for details). Many refinements

were made in the sample preparation process before acceptable samples were

manufactured. Some of these refinements were: (1) Use of a section of

waveguide as the sample mold; (2) Drilling additional holes in the sample

mold flanges to facilitate quicker cooling (quick cooling or quenching is

necessary for switching the As-Te-Ge sample to the high resistance state);

and (3) The use of dry ice (a more efficient cooling agent than liquid

nitrogen-soaked sand). Even with those refinements, the sample designated

as Sample 1 did not switch completely to the high resistance state. The

mold temperature (prior to quenching) was raised to 600° C from 400° C,

and samples 2 and 3 were prepared. Both of these samples were found to

be acceptable.

As the sample preparation procedure was being refined, so was the

transmission method. The transition from coaxial to rectangular waveguide

creates undesirable resonances in the transmission medium. The resonances

Page 58: The microwave dielectric properties of chalcogenide glasses

45

5 iSf

I I I I I

Figure 19. Short-circuit voltage standing-wave pattern relationships in an empty waveguide and in a waveguide with dielectric sample in place

Page 59: The microwave dielectric properties of chalcogenide glasses

46

are exhibited as undulations in the phase and amplitude versus frequency

plots (for details see the ERROR ANALYSIS section). As the relative

permittivity of a sample increases, these undulations became more pro­

nounced. These resonances were systematically removed or their effect

minimized by altering the test leg of the test set-up (Figure 4) and

applying the Method of Least Squares to the data.

Care was taken to- prove that the transmission method yielded correct

results for low, medium, and high relative permittivities.

First, a sample of paraffin (low relative permittivity) was tested

by the transmission method and compared to published results. The Epsilam-

10 sample (high relative permittivity) has already been compared with

published results (See TRANSMISSION METHOD - EXPERIMENTAL APPROACH section).

Table 5 shows that the transmission method agrees with published results

for both low and high relative-permittivity samples.

Medium relative-permittivity pyrite samples, along with Epsilam-lO,

were measured, using both the short circuit and transmission methods.

These results are compared in Table 6. Both methods agree fairly well for

medium relative-permittivity (pyrite). However, for the high relative-

permittivity sample (Epsilam-lO), the short-circuit method yields results

that differ somewhat from those published, while the transmission method

does not.

Accordingly, both methods were applied to Samples 2 and 3 of the

ASggTeggGe^Q. First, the transmission method was used. Five sets of

phase and amplitude versus frequency plots were generated for each sample,

using the transmission method. Next, one set of phase and amplitude

Page 60: The microwave dielectric properties of chalcogenide glasses

47

Table 5. Comparison of published and transmission method results

Sample Relative Permittivity Material Thickness Frequency Published Transmission

Paraffin Wax 0.63cm 10 GHz 2.22* 2.21

Epsilam-10 0.127 cm 8-12.4 GHz 10.3 + 0.5^ 10.25+.65

^on Hippel, 1954

^Manufacturer

Page 61: The microwave dielectric properties of chalcogenide glasses

48

Table 6. Comparison of results from the short-circuit and transmission methods

Relative Permittivity

Sample Frequency Short Circuit Transmission Material Thickness (GHz) e ' c" e ' e"

(cm)

Pyrite 3.57 9.789 5.85 1.097

Pyrite 3.57 9.789 5.62 1.093

Pyrite 2.54 9.789 5.14 0.952

Pyrite 2.45 9.789 5.10 1.018

Pyrite 1.42 9.789 5.05 0.949

Pyrite .625 9.5 5.05 1.0

Pyrite 2.34 9.5 5.15 0.9

Epsilam-10 .127 8.0 11.5 1.7 10.4 .3

Epsilam-10 .127 8.5 16.7 .9 10.8 .2

Epsilam-10 .127 9.0 15.5 3.8 10.9 .2

Epsilam-10 .127 9.5 14.5 1.4 10.7 .1

Epsilam-10 .127 10.0 13.2 .1 10.7 .1

Epsilam-10 .127 10.5 13.3 .2 10.5 .1

Epsilam-10 .127 11.0 11.8 1.1 10.3 .1

Epsilam-10 .127 11.5 12.3 .4 10.1 .1

Epsilam-10 .127 12.0 13.2 .2 9.9 .1

Epsilam-10 .127 12.4 13.5 .1 9.8 .1

Page 62: The microwave dielectric properties of chalcogenide glasses

49

versus frequency plots was generated for the empty case. Data were taken

from the plots for the empty case and Samples 2 and 3 at selected frequen­

cies and put in tabular form in Tables 7, 8, and 9, respectively. The

mean and standard deviation of each of the five data point sets were cal­

culated and put into tabular form (Tables 10 and 11). The mean phase

shifts and amplitude changes attributed to Samples 2 and 3 are plotted in

Figures 20-23. A least-squares fit of the data was then accomplished to

minimize the effect of unwanted resonances. The results of the least-

squares fit are shown in Tables 12 and 13. The complex relative-permit-

tivity for both samples is given in Table 14. The two samples have rela­

tive permittivity which agree within 2% throughout the frequency range

in question. The relative permittivity of Sample 2 was found to be

15.9 + 0.7. Sample 3 exhibited a measured relative permittivity of

15.9 + 0.9. The loss tangents (e"/e') for As-Te-Ge Samples 2 and 3 are

shown in Table 15.

The short-circuit method was applied to the samples and results are

shown in Table 16. As can be seen, the transmission method yields the

more consistent results.

It should be noted that values of imaginary and real relative-permit­

tivity for Sample 2 could not be read directly from the computer-generated

program for the 12.0 and 12.4 GHz point. The values for 12.4 GHz were

read from the table utilizing the mean phase shift and amplitude change

values versus the least-square calculated values. The values for the

12.0 GHz reading were the result of interpolating the 11.5 and 12.4 GHz

values.

Page 63: The microwave dielectric properties of chalcogenide glasses

50

PHASE SHIFT

240

220

LEAST SQUARES FIT 200

180

o 140

120

100

V\ \K

20

FREQUENCY (GHZ)

20. Phase shift versus frequency for As-Te-Ge Sample 2.

Page 64: The microwave dielectric properties of chalcogenide glasses

51

AMPLITUDE CHANGE

12

11

t o

M _1 111 m o ui o

.

—e

k

( ) y / ( ) ^ )

( ) y

/ c ) r

, X X

r ( )

\

V

LEAST SQUARES FIT

8 9 10 II 12

FREQUENCY (GHZ)

Figure 21. Amplitude change versus frequency for As-Te-Ge Sample 2

Page 65: The microwave dielectric properties of chalcogenide glasses

52

PHASE SHIFT

240

220

•LEAST SQUARES FIT 200

160

« Ul Ul

a 140 Ul Û

120

100

ON

20

FREQUENCY(GHZ)

Figure 22. Phase shift versus frequency for As-Te-Ge Sample 3

Page 66: The microwave dielectric properties of chalcogenide glasses

53

AMPLITUDE CHANGE

LEAST SQUARES FIT

.00

FREQUENCY(GHZ)

Figure 23. Amplitude change versus frequency for As-Te-Ge Sample 3

Page 67: The microwave dielectric properties of chalcogenide glasses

54

Table 7. Phase and amplitude data for the empty case

Frequency Phase Amplitude (GHz) (Degrees) (Decibels)

8.0 -6.0 +2.5

8.5 -80.0 +2.00

9.0 -120.5 +1.90

9.5 -137.5 +1.60

10.0 -139.0 +1.10

10.5 -123.0 +0.10

11.0 -100.0 -0.50

11.5 -60.0 -1.30

12.0 -21.0 -0.80

12.4 0.0 -0.40

Page 68: The microwave dielectric properties of chalcogenide glasses

Table 8. Sample 2 phase and amplitude

Frequency Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5 0 Â 0 Â 0 À 0 A 0 - Â

8 -140 -2.9 -143 -3.0 -147 -2.7 -142 -2.5 -145 -2.2

8.5 -232 -5.2 -234 -5.3 -235.5 -4.9 -234.5 -4.7 -234 -4.3

9 -271.5 ^4.8 -272.5 -5.0 -273.5 -4.65 -273 -4.4 -272 -4.2

9.5 -300 -4.3 -300 -4.45 -301.5 -4.0 -302.5 -3.7 -300.5 -3.6

10 -317.5 -3.75 -317.5 -3.85 -318.5 -3.65 -320 -3.4 -311 -3.2

10.5 -318 -5.75 -319.5 -5.75 -320.5 -5.55 -321.5 -5.25 -318 -5.15

11 -301 -7.25 -303 -7.4 -303 -7.25 -306 -6.95 -300 -6.8

11.5 -262 -8.3 -264 -8.4 -266 -8.1 -269.5 -7.7 -263 -7.55

12 -237.5 -8.85 -239 -9.1 -240 -9.2 -244.5 -9.0 -236 -8.5

12.4 -207.5" -10.3 -208.5 -10.3 -212 -10.25 -216 -10.2 -209.5 -9.5

Page 69: The microwave dielectric properties of chalcogenide glasses

Table 9. Sançle 3 phase and amplitude

Frequency Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5 0 A 0 A ( ^ A 0 - A

8 -138 -9.7 -136.5 -9.35 -135 -9.35 -138.5 -9.05 -137 -9.0

8.5 -257.5 -5.5 -264.5 -4.4 -262 -4.35 -260 -4.0 -260 -3.95

9 ^ -327.5 -7.65 -326 -6.85 -323 -6.85 -321 -6.4 -323 -6.2

9.5 -345 -11.45 -347 -10.2 -344.5 -10.2 -343 -9.6 -345 -9.5

10 -327.5 -12.1 -333 -10.55 -329 -10.55 -328 rlO.25 -331.5 -10.2

10.5 -307 -10.75 -316 -11.3 -312 -11.4 -314 -11.0 -314.5 -11.2

11 -302 -7.8 -297.5 -10 -293 -10.15 -293 -9.95 -292.5 -9.7

11.5 -281.5 -9.1 -260.5 -9.15 -255.5 -9.3 -259 -9.15 -259 -8.6

12 -257 -9.6 -249 -8.6 -244 -9 -243 -8.2 -243.5 -8.2

12.4 -228 • -9.7 -224 -9.4 -221 -9.55 -221 -8.75 -222 -8.6

Page 70: The microwave dielectric properties of chalcogenide glasses

Table 10. Mean and standard deviation of data points shown in Table 2 for As-Te-Ge- Sample 2 (t = .4484 cm)

Frequency S.D. àé • 4* S.D. aA

8 -143.4 2.7 136.9 (-223.10)

-2.66 .32 4.91

8.5 -234 1.27 154 (-206)

-4.88 .40 6.88

9 -272.5 .79 152 (-208)

-4.61 .32 6.21

9.5 -300.9 1.08 163.4 (-196.6)

-4.01 .37 5.61

10 -318.5 1.06 179.5 (-180.50)

-3.57 .27 4.67

10.5 -319.5 1.54 196.5 (-163.5)

-5.49 .28 5.59

11 -302.6 2.3 202.6 (-157.4)

-7.13 .25 6.63

11.5 -264.9 2.97 204.9 (-155.1)

-8.01 .37 6.71

12 -239.4 3.23 218.4 (-141.6)

-8.93 .27 8.13

12.4 -210.7 3.4 210.7 (-149.3)

-10.11 .34 9.71

Page 71: The microwave dielectric properties of chalcogenide glasses

Table 11. Mean and standard deviation of data points shown in Table 3 for As-Te-Ge Sanglë 3 (t=.5003 cm)

Frequency ^ S.D. A0 A S.D. && (GHz) (in degrees) (in decibels)

8 -137 1.37 130.5 9.29 .28 11.54 (-220.5)

8.5 -262.8 3.21 182.8 4.44 .63 6.44 (-177.2)

9 -324.1 2.61 203.6 6.79 .56 8.69 (-156.4)

9.5 -344.9 1.43 207.4 10.19 .78 11.79 (-152.6)

10 -329.8 2.36 190.8 10.73 .78 11.83 (-169.2)

10.5 -312.7 3.49 189.7 11.13 .26 11.23 (-170.3)

11 -295.6 4.11 195.6 9.52 .98 9.02 (-164.4)

11.5 -263.1 10.45 603.1 9.06 .27 7.76 (-156.90)

12 -247.30 5.93 226.3 8.72 .59 7.92 (-133.7)

12.4 -223.2 2.95 223.2 9.20 .49 8.8 (-136.8)

Page 72: The microwave dielectric properties of chalcogenide glasses

59

Table 12. Relative permittivity for (As-Te-Ge) Sample 2 (t = .4484 cm) with least squares fit

Frequency *ADJ. \DJ. €' e" (GHz) (degrees) (decibels)

8.0 139.69 4.9 16.8 2.10

8.5 149.11 5.26 16.0 2.45

9.0 158.53 or (-201.47) 5.62 15.4 2.50

9.5 167.95 or (-192.05) 5.98 15.1 2.40

10.0 177.37 or (-182.63) 6.34 15.0 2.15

10.5 186.79 or (-173.21) 6.70 15.0 1.75

11.0 196.21 or (-163.79) 7.06 15.3 1.15

11.5 205.63 or (-154.37) 7.42 15.7 0.4

12.0 215.05 or (-144.95) 7.78 16.3® 1.5*

12.4 222.54 or (-137.41) 8.07 16.7^ 2.6^

^Interpolated

^Based on mean value of phase and amplitude shift

Page 73: The microwave dielectric properties of chalcogenide glasses

60

Table 13. Relative permittivity for (As-Te-Ge) Sample 3 (t= .5003 cm) with least squares fit

Frequency (GHz)

^ADJ. (degrees)

*ADJ. (decibels)

c ' e"

8 164.72 or -195.28) 10.28 16.3 5.10

8.5 171.55 or -188.45) 10.11 15.8 4.75

9 178.38 or -181.62) 9.93 15.5 4.25

9.5 185.21 or -174.79) 9.76 15.2 3.75

10 192.04 or -167.95) 9.58 15.1 3.15

10.5 198.87 or -161.13) 9.41 15.1 2.55

11 205.70 or -154.3) 9.24 15.4 2.00

11.5 212.53 or -147.47) 9.06 15.9 1.65

12 219.36 or -140.64) 8.89 16.4 1.85

12.4 226.19 or -133.81) 8.71 16.7 2.20

Page 74: The microwave dielectric properties of chalcogenide glasses

61

Table 14. Comparison of the relative permittivity of two samples of As!-Te-Ge (transmission method)

Frequency (GHz)

Sample 2 e ' e"

Sample 3

e' e" I>

A

8.0 16.8 2.1 16.4 5.0 2

8.5 16.0 2.4 15.8 4.5 1

9.0 15.4 2.5 15.5 4.0 1

9.5 15.2 2.4 15.2 3.5 -

10.0 15.0 2.2 15.2 3.0 1

10.5 15.1 1.8 15.2 2.5 1

11.0 15.4 1.2 15.4 2.0 -

11.5 15.7 0.4 15.8 2.0 1

12.0 16.3* 1.5* 16.4 2.0 1

12.4 16.7^ 2.6^ 16.6 2.25 1

^Interpolated

Based on mean value of phase and amplitude shift

Page 75: The microwave dielectric properties of chalcogenide glasses

62

Table 15. Comparison of the loss tangent of two samples of As-Te-Ge (transmission method)

Frequency Loss Tangent (GHz) Sample 2 Sample 3

8.0 0.13 0.30

8.5 0.15 0.28

9.0 0.16 0.26

9.5 0.16 0.23

10.0 0.15 0.20

10.5 0.12 0.16

11.0 0.08 0.13

11.5 0.03 0.13

12.0 0.09* 0.12

12.4 0.16^ 0.14

^Interpolated from data at 11.5 and 12.4

^Utilizing mean phase and amplitude from Table 5

Page 76: The microwave dielectric properties of chalcogenide glasses

63

Table 16. Relative permittivity of AsrTe-Ge utilizing the short-circuit method

Frequency Sample 2. Sample 3

8.0 29.7 - 28.2 -

8.5 31.4 - 25.6 -

9.0 27.7 - 23.3 -

9.5 25.7 - 21.2 -

10.0 23.6 - 16.3 -

10.5 21,6 - 17.5 .2

11.0 19.-9 .05 16.3 .7

11.5 18.3 - 14.4 .9

12.0 17.2 .03 12.5 .3

12.4 16.4 .2 12.1 .3

Page 77: The microwave dielectric properties of chalcogenide glasses

64

In order for the table to have been used directly, the amplitude

change needed to be greater. If the least-squares fit had yielded a

greater amplitude change, the loss tangent would also differ less between

Samples 2 and 3.

There is a possible explanation for the least-squares fit yielding

too low an amplitude change for Sample 2, There were two very low ampli­

tude change readings - one at 8.0 GHz and another at 10.0 GHz (See Table

10). The 8.0 GHz value was approximately 2 dB less than the 8.5 GHz value.

The 10.0 GHz value was approximately 1 dB less than adjacent values. Low

values can result when an undesired mode is generated in the transmission

line.

The error in determining the real portion relative-permittivity for

As^gTe^gGe^Q was estimated at 5%. However, the error in determining the

imaginary portion of the relative-permittivity could be greater than 50%

because of the inherently low loss of the samples. The loss was so low

that many of the points were not determinable by the short-circuit test

set-up used. However, the short-circuit method showed Sample 2 to have a

lower loss than Sample 3,,as was the case for the transmission method

(See Tables 15 and 16).

The high estimated error in determining the loss factor results from

the sample attributing less loss to the system than does the transmission

line.

As the loss of a sample increases, so does the accuracy of the trans­

mission method in determining the loss factor (the imaginary relative-

permittivity) . This accuracy could approach that of the real relative-

permittivity measurements.

Page 78: The microwave dielectric properties of chalcogenide glasses

65

CONCLUSIONS

ASggTe^gGe^Q is a low-loss, high relative-permittivity dielectric

material. Measurements based on the transmission method yielded real

relative-permittivity values of 15.9 + 0.7 and 15.9 + 0.9 for Samples 2 and

3, respectively, for the frequency range of 8.0 to 12.4 GHz. The corre­

sponding loss tangents were 0.095+.065 and 0.21 + 0.09 for Samples 2 arid

3, respectively.

Although the real relative-permittivity values agreed within 2% at

each sampled point throughout the frequency range, the accuracy of the

transmission method is estimated at 5% (See ERROR ANALYSIS section).

ASggTCggGe^Q would make an excellent dielectric for use at microwave

frequencies if the samples were easier to make and the elements were not

poisonous.

The possible application of the bistable resistivity characteristic

of ASggTe^gGe^Q as a microwave switch is regarded as feasible, but not

too practical. An electric field strength in the order of 1000 volts/cm

would be necessary to grow the desired low-resistance filament on the

surface of the As^^Te^gGe^Q sample.

Because the As-Te-Ge glass does have a high relative-permittivity,

and relatively low loss, it would be useful as a microwave substrate

material. However, other materials exist with high relative-permittivities

which do not have the disadvantages of the As-Te-Ge glass.

Two methods were considered for use in measuring the relative-permit­

tivity of ASggTCggGe^Q. The first method attempted was the Von Hippel

short-circuit method.

Page 79: The microwave dielectric properties of chalcogenide glasses

66

The Von Hippel short-circuit method was found to have a serious de­

ficiency when measuring high relative-permittivity. The accuracy of the

method is reduced considerably unless the sample thickness is very nearly

equal to an odd multiple of quarter-wavelengths. Because As^^Te^gGe^Q

sample preparation is difficult and the relative-permittivity of the sample

was unknown, samples of the desired thickness were not obtained.

The next method attempted was the transmission method. This method

was developed in a fundamental form at least two decades ago (Westphal,

1954). The measurement techniques were revised and refined over the last

six years by the author. The main disadvantage of the transmission method

was found to be the existence of unwanted modes in the transmission line.

Although their effect was minimized, the accuracy of the method was

judged to be limited to 5%.

In practice, the transmission method was judged to be more accurate

overall in determining high real relative-permittivities than the Von

Hippel short-circuit method and was judged to be as accurate as the short-

circuit method in determining loss factors.

It is recommended that future transmission method computer-generated

tables utilize increments of real relative-permittivity equal to 0.05

instead of 0.1. This will improve the correlation between the measured

parameters (phase shift and amplitude change) and the relative-permittivity

(real and imaginary). It is also recommended that a microwave frequency

counter be utilized to improve the accuracy and repeatability of the data.

Page 80: The microwave dielectric properties of chalcogenide glasses

67

APPENDIX A:

COMPUTER PROGRAM AND TABLE

Page 81: The microwave dielectric properties of chalcogenide glasses

1 2

3

4 5 6

7 8 9

1 0 11 1 2 13 14 15 16

17 1 8 19 20 21 22 23 24 25

26 27 28 29 30 3! 32 33 34 35 36

37 38 39 40

68

WR1TE(6«1005) 1005 FORMAT** FREQ AMPL-DB PHASE-DG ER PRIME

C THIS PROGRAM IS GOOU FOR X BAND GUIDE ONLY. €=29.97925

C F IS IN GIGAHERTZ C D IS IN CM

0=0.4484

A=1.88863 I 78 1 DO 10 1=1,10

READ(5.1001)F 1001 FORMAKF 10.5)

8=0.0439 25651«(F)**2 GI=B-A GI=SORT{GI) GID=GI*D DO 11 J=1.15 ERP=15.5 E1=J ERP=ERP+El*0.1 AR=B*ERP-A DO 12 K= 1 .50

ERPP=0.3

F1=K-1 ERPP=ERPP+F1*0.05 AI=-(B*ERPP)

T1=0.5»ATAN2(AI,AR)+1.570 79632 7 AR1=(AI*AI+AR*AR)**.25 GMR= AR1*C0S( T1 ) GMRO=GMR*D

GMI = ARI*SIN( T1 ) GMID=GMI*D Z0MR=GMI/GI Z0MI=-GMR/GI AR1=GMR*GMR + GMI *GMI ZM0I=GI*GMR/AR1 ZM0R=GI*GMI/AR1 ZR=ZOMR+ZMOR ZI=ZOMI+ZMOI E4=EXP{GMRD) E5=-GMRD E1N=EXPCE5) E6=C0S(GM10) EGMRP=E4*E6

Page 82: The microwave dielectric properties of chalcogenide glasses

41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56

57 58 59 60 61

69

E7=SIN(GMIDÎ EGMIP=E4*E7 EGMRK=E1N*E6 EGMIN=-E1N*E7 ET1R=.5*<EGMRP+EGMRN)

ETH =«5«(EGM IP+EGMIN> ET2R=(EGMRP-EGMRN)/4. ET2I=(EGMIP-EGMIN>/4«

AMAGR=ET1H+ET2R*ZK-ET2I*ZI AMAGI=ET:I+ET2R«ZI+ET2I*ZR AM=ANAGR*AMAGR+AMAGr*AMAGI AMAG = SQR T( AM ) AMAGCB=20.*AL0G10(AMAG) THETA=57.2957795*(ATAN2(AMAGI#AMAGR)-GID)

WRITE(6.1004)F,AMAGOB.THETAtERP.ERPP.D 1004 F0RMAT(1X,6F9«4)

12 CONTINUE 11 CONTINUE 10 CONTINUE

STOP END

Page 83: The microwave dielectric properties of chalcogenide glasses

70

$ENTRY

FREQ AMPL-D0 PH AS E-DG ER PRIME ER PP THICKNESS

8.0000 5.0893 56. 4156 9. 6000 0 .0000 0.1270

8.0000 5.1113 56. 2017 9. 6000 0 .0500 0.1270

8.0000 5.1334 55. 9889 9. 6000 0 .1000 0.127 0

8.0000 5. 1557 55. 7773 9. 6000 0 • 1500 0 .1270

8.0000 5.1780 55. 5669 9. 6000 0 .2000 0.1270

8.0000 5.2004 55. 3578 9. 6000 0 .2500 0.1270

8.0000 5.2229 55. 1498 9. 6000 0 .3000 0.1270

8.0000 5.2455 54. 9429 9. 6000 0 .3500 0 .1270

8.0000 5.2681 54. 7 373 9. 6000 0 .4000 0.1270

8.0000 5.2909 54. 5328 9. 6000 0 .4500 0.1270

8.0000 5. 1541 56. 7036 9. 7000 0 .0000 0.1270

8.0000 5.1758 56. 4909 9. 7000 0 .0500 0.127 0

8.0000 5.1976 56. 2 793 9. 7000 0 .1000 0.1270

8.0000 5.2195 56. 0689 9. 7000 0 .1500 0.1270

8.0000 5.2414 55. 8596 9. 7000 0 .2000 0.1270

8.0000 5.2635 55. 6516 9. 7000 0 .2500 0. 1270

8.0000 5.2856 55. 4447 9. 7000 0 .3000 0. 1270

8.0000 5.3079 55. 2309 9. 7000 0 .3500 0.1270

8.0000 5.3301 55. 0344 9. 7000 0 .4000 0.1270

8.0000 5.3525 54. 8309 9. 7000 0 .4500 0.1270

8.0000 5.2186 56. 9869 9. 8000 0 .0000 0.1270

8.0000 5.2399 56 . 7754 9. 3000 0 .0500 0.1270

6.0000 5.2614 56. 5650 9. 8000 0 .1000 0 . 1270

8.0000 5.2029 56. 3559 9. 8000 0 .1500 0.127 0

8.0000 5.3045 56. 1477 9. 3000 0 .2000 0 .1270

8.0000 5.3262 55. 94 08 9. 8000 0 .2500 0.1270

8.0000 5.3480 55. 7350 9. 8000 0 .3000 0.1270

8.0000 5.3699 55. 5303 9. 8000 0 .3500 0. 1270

8.0000 5.3919 55. 3268 9. 8000 0 .4000 0.1270

8.0000 5.4139 55. 1244 9. 8000 0 .4500 0.1270

8.0000 5.2827 57. 2657 9. 9000 0 .0000 0.1270

6.0000 5.3037 57. 0554 9. 9000 0 .0500 0.1270

8.0000 5.3248 56. 8463 9. 9000 0 .1000 0.1270

8.0000 5.3460 56. 6382 9. 9000 0 . 1500 0.1270

8.0000 5.3673 56. 4313 9. 9000 0 .2000 0. 1270

8.0000 5.3886 56. 2254 9. 9000 0 .2500 0.1270

8.0000 5.4101 56. 0 20 8 9. 9000 0 .3000 0.1270

8.0000 5.4316 55. 81 72 9. 9000 0 .3500 0.1270

8.0000 5.4532 55. 6147 9. 9000 0 .4000 0. 1270

8.0000 5.4749 55. 4133 9. 9000 0 .4500 0.1270

Page 84: The microwave dielectric properties of chalcogenide glasses

71

6 . 0 0 0 0 5.3465 57. 5399

8 . 0000 5.3671 57. 3309

8 . 0000 5-3879 57. 1230

8 . 0000 5.4087 56. 9161

8 . 0000 5.4297 56. 71 03

8 . 0000 5.4507 56. 5 056

8 . 0000 5.471 8 56. 3020

8 . 0000 5.4930 56. 0995

8 . 0000 5.5143 55. 8982

8 . 0000 5.5357 55. 6978

8 . 0000 5.4098 57. 8 098

8 . 0000 5.4302 57. 6019

8 . 0000 5.4506 57. 3952

8 . 0000 5.471i 57. 1896

8 . 0000 5. 4917 56. 9850

8 . 0000 5.5124 56. 7815

8 . 0000 5.5332 56. 5790

8 * 0000 5.554 1 56. 3776

8 . 0000 5.5750 56. 1773

8 . 0000 5.596 1 55. 9780

8 . 0000 5.4728 58. 0754

8 . 0000 5.4928 57. 8689

8 . 0000 5.5129 57. 6633

8 . 0000 5.533 1 57. 4588

8 . 0000 5.5534 57. 2554

8 . 0 0 00 5.5738 57. 0530

8 . 0 0 00 5.5943 56. 8517

8 , 0000 5.6148 56. 65 14

8 . 0000 5.6354 56. 4521

8 . 0000 5.6562 56. 2539

8 . 0000 5.5354 58. 3368

8 . 0000 5.5551 58. 1314

8 . 0000 5.5749 57. 9272

8 . 0000 5.5948 57. 7238

8 . 0000 5.6148 57. 5215

8 . 0000 5.6348 5 7. 3204

8 . 0000 5. 6550 57. 1201

8 . 0000 5.6752 56. 92 10

8 . 0000 5.6955 56. 7228

8 . 0 0 0 0 5.7159 56. 5257

0. 0000 0 .0000 0 .1270

0. 0000 0 .0500 0.1270 0. 0000 0 .1000 0.127 0

0. 0000 0 .1500 0 . 1270

0. 0000 0 .2000 0.1270

0. 0000 0 .2500 0.1270

0. 0000 0 .3000 0.1270

0. 0000 0 .3500 0.1270

0. 0000 0 .4000 0.1270

0. 0000 0 .4500 0.1270

0. 1000 0 • 0000 0.1270

0. 1000 0 .0500 0.1270 0. 1000 0 . 1 000 0.1270

0. 1000 0 .1500 0.1270

0. 1000 0 . 2000 0.1270

0. 1000 0 .2500 0.1270

0. 10 00 0 .3000 0. 1270

0. 1 000 0 .3500 0 .1270

0. 1000 0 .4000 0.1270

0. I 000 0 .4500 0.1270

0. 2000 0 .0000 0 . 1270

0. 2000 0 .0500 0.1270

0. 2000 0 .1000 0. 1270

0. 2000 0 .1500 0.1270

0. 2000 0 .2000 0.1270

0. 2000 0 .2500 0.1270

0. 2000 0 . 3000 0.1270

0. 2000 0 .3500 0.1270

0. 2000 0 .4000 0.1270

0. 2000 0 .4500 0.1270

0. 3000 0 .0000 0.1270

0. 3000 0 . 0500 0.1270

0. 3000 0 .1000 0.1270

0. 3000 0 . 1500 0.1270

0. 3000 0 .2000 0.1270

0. 3000 0 .2500 0.1270

0. 3000 0 .3000 0.1270

0. 3000 0 .3500 0.1270

0. 3000 0 .4000 0.1270

0. 3000 0 .4500 0.1270

1 1 1 1 1 1 I 1 1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1

1 1 1

1 I 1 1 1

Page 85: The microwave dielectric properties of chalcogenide glasses

72

8.0000 5. 5976 58. 5941

8*0000 5. 61 70 58* 3899

8.0000 5. 636 5 58. 1 869

8.0000 5. 6561 57. 9 847

8.0000 5. 6757 57. 7837

8.0000 5. 6955 57. 5835

8.0000 5. 71 54 57. 3 845

8.0000 5. 7353 57. 1864

8.0000 5. 7553 56. 9893

8.0000 5. 7754 56. 7933

8.0000 5. 6595 58. 8474

8.0000 5. 6786 58. 6445

8.0000 5. 6978 58. 4426

8.0000 5. 71 70 58. 2417

8.0000 5. 7364 58. 0417

8.0000 5. 7559 57. 8428

8.0000 5. 7754 57. 6448

8.0000 5. 7950 57. 4479

8.0000 5. 6147 57. 2519

8.0000 5. 8345 57. 0569

8.0000 5. 7209 59. 0967

8.0000 5. 7397 58. 8950

8.0000 5. 7586 58. 6943

8.0000 5. 7776 58. 4946

8.0000 5. 796 7 58. 2959

8.0000 5. 81 59 58. 0981

8.0000 5. 8351 57. 9013

8.0000 5. 8544 57. 7054

8.0000 5. 8738 57. 5105

8.0000 5. 8933 57. 3165

8.0000 5. 7820 59. 3422

8.0000 5. 8006 59. 1418

0* 4000 0 .0000 0.1270

0. 4000 0 .0500 0.1270

0. 4000 0 .1000 0.1270

0. 4000 0 .1500 0.1270

0. 4000 0 .2000 0.1270

0. 4000 0 .2500 0.1270 0. 4000 0 .3000 0.1270

0. 4000 0 .3500 0.1270

0. 4000 0 .4000 0.1270

0. 4000 0 .4500 0.1270

0. 5000 0 .0000 0.1270

0. 5000 0 .0500 0.1270

0. 5000 0 .1000 0 .1270

0. 5000 0 .1500 0.1270

0. 5000 0 .2000 0.1270

0. 5000 0 .2500 0. 1270

0. 5000 0 .3000 0.1270

0. 5000 0 .3500 0.1270

0. 5000 0 .4000 0.1270

0. 5000 0 .4500 0 .1270

0. 6000 0 .0000 0.1270

0. 6000 0 .0500 0.1270

0. 6000 0 .1000 0.1270

0. 6000 0 .1500 0 .1270

0. 6000 0 .2000 0. 1270

0. 6000 0 .2500 0.1270

0. 6000 0 .3000 0.1270

0. 6000 0 .3500 0.1270

0. 6000 0 .4000 0.1270

0. 6000 0 .4500 0.1270

0. 7000 0 .0000 0.1270

0. 7000 0 .0500 0. 1270

1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1

1 1 1

1 1 1 1

Page 86: The microwave dielectric properties of chalcogenide glasses

o o o o o o o o o o o o o o o o o o o o o o o o o o o o

cvicvjNC\j(\JcvjwcvicMfvjcvjc\jcvjcvi(\jrgcvj(\jpjwf\jc\j(Vj(\;cvif\jc\icvi ^ W ^ #"4 W #W ••4 p>4 ^ Wm4 M #-* ^

o o o o • • • • o o o o

» » # * # * # * *

o o o o o o o o o o o o o • * o o o o

• • • o o o

o o o o o o o o o o o o o o o o o o o i n o m o i n o m o

* * * # » « * # * O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O i n o i n o m o i n o i n o ow.wNNmm-d-'fo • • • • • • • • • • O O O O O O O O O O

o o o o o o o o o O O O O O O O O O tfioifioinoinow

o o o o o o o o o

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ' O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O •<i-'«i''!t<t<j--4''^-!finif)inminini.0tnininv0^O'.0Ov0\0v0<0<0 * * # # # * * # « # * # # * » # # # * * # # # * # # # «

O O O O O O O O O O O O O O O O O O O O O O O O O O O O

« n r>. iOvooi«H»nNc>NN*£)-iincof\jinNor)cO'a-o^<}-opoNo*cu^

O vo PO W N N CO Oi (0 V3 • • I

vO vO «0

•H -4 N m aO M O

cu O -"H 0

N m w N n N m m n •« • • • • •

o m m m N N N iflininininioinmininm

N IT) n if 01 N * * * * * * * * voovo'ooinins

tfiinicc7>c\i-ia5in<}-rn-4-inN-<(i> Noco>o,-iwnifivo innwocooifcvio # # # # # # # # # NNNNvOsOOsCvO inininLOinminifjin

in *0 N to o m ro « 0* 00

N -I O w (\j p. N N N N N rn lo h" Ok

(\i n n n n n <t # * » « * * *

i n i n i n i n i n i n

o o\ tn (\) o\ m N \o m IT in '» ro n in N o « 4" m m n n m -» • • • • • • • m m t n i n i n

N \D \0 N O rn -d' 4" >0 in <1*

n LO N o> N 0» •d' -sf <}• ro n • « • • • • • i n i n i n m i n i n i n

»o 0» 4- »o N o (f) CVI (V n m N 0* -< fo in sf sf -e m m m • • • • • * • m m m tn m m m

o o o o o o o o o o o o o o o o o o o o o m m m m m A m • • • • • ! •

0 0 C O 0 0 0 0 C D C O c e

o o o o o o o o o o o o o o o o o o o o o m m m m m m m • • • • • • • CO CO CO CO (O 00 CO

o o o o o o o o o o o o o o o o o o o o o m (A m m m m m • • • • • « • CO CO 00 00 <0 00 00

o o o o o o o o o o o o o o o o o o o o o m m m m m m m • • • • # • • CO 0 0 CO CO CO CO < 0

Page 87: The microwave dielectric properties of chalcogenide glasses

Q}(J}Q)ODOD009(XIODO>0309Q)0>OBO> • • • • • • • • • • • • • • • • y i o i o i y i u i y i u i u i y i u i t n u i u i o i u i o i o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O O O o o o o o o o o o o o o o o o o

Oa<X>003(9000300}0303CB030!09 • • • • « • • • • • • • • • a * yiyioiuiuitftwuioioiuiyiuioioioi o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

uicnuiuioiuiuioiuioioiuioiuiuiui • • • • • * • • • • • • • • • • o«av-jc<o>c>c>0'c'uiu'(j!0>o*c>o* MO>-\OCCt?-P>NO<BC^tnC'i>'WO o*a>o3\ûo<-(jj4s-u; N>ûorv}U->yi ^UMwyiso^o-froaoooicn-f-

oiuiyiuiuioicnoiuiaiuicnyuioitfi • • • • • • • • • • • • • • • a

a30^-ti-w>-\OocD04i-ro>-vCNOJU o-gœo'-roNNOJOOo — rou^ tno*030.P'CB»-oNajo*^uc»j'^0'

muimmuiuimuiuimmuiuiuiuiuiuiuimmuiuiuiuitjiuiuiuiuiuiuiin 00 O 0 < N

• • • o OJ w

• tn o o

•>J -J • • •

s 03 OJ

vD ro ui 05

C D 0 3 C D C > 0 \

-J vO CO G<

^ - û i r f o K-oro»-vûtno^>œ

•- CJ 01 Cfl CJ N •- o O K-

05 0\ O

a

«0 •p-cs VO ui

u ro oj yi 0» CD

O <3 00

O 00 0» 0» Ô\

o

O CT w w

0>- s -g • • • D O l\} N Umooorvf-

ONO^ÛCDC^Ulf' -j'P'Ocnwoo3"j

N CD

0» CD O u tu w CD C O u 0>

4>

• • O O O O o o o c

O O O O O O O O O O O O O O O O O O O O • • • * • • • « • • • • • • • * • • • » C\a»ooC\o\o«c\c,ooa)DO)oocDmoocco ' ^ O O O O O O O O O O O O O O O ' " ' * ^ ^ ' ^

O C O O O O O O O O O O O C O O O O O O O O O O O O

O O O o o o o

O O O O O o

o o o o O o

o o o o o c o o o o * • • • • • • • • •

o o o o o o o o c o o o o o o o o o o o o o o o o c o o o o

o o o o o o o o o o o * * * * * * * # * * * oo.p-^>uurofvj — o cnouiouiouioCTtotn o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o • • • • • • » • • • • 0f'f-UCjl\)t\)^'-"00 o u r o c p o i n o u i o i n o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o • • • • • • • • • « f-f-UWN(V"'"'00 (jiov^iouiouiowo o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o • • • • • • • • • •

O O O O O O O O O O O O O O O O O O O O o o • • • • • • « • • • • • • • • • • • • • • a

r— " '— «— '— • »— •— *— '— •— '— r— »— r— # • r—— r— r— #— i r,)r\)f\)NrcNNN[\)l\)t\)f\)Nf\)Nr\JrVN(UtUMNMr\)NMNNNI\)NN

O O O O C C O O O O O O O O O O O O O O O O O O O O O C O O O O

Page 88: The microwave dielectric properties of chalcogenide glasses

75

9. 0 0 0 0 5 - 3 0 0 2 5 7 . 0 2 1 7

9. 0 0 0 0 5 . 3 1 9 3 5 6 . 8 3 6 7

9. 0 0 0 0 5 . 3 3 8 5 5 6 . 6 5 2 6

9. 0 0 0 0 5 . 3 5 7 7 5 6 . 4 6 9 3

9. 0 0 0 0 5 . 3 7 7 0 5 6 . 2 8 7 0

9. 0 0 0 0 5 . 3 9 6 4 5 6 . 1 0 5 7

9. 0 0 0 0 5 . 4 1 5 9 5 5 . 9 2 5 3

9. 0 0 0 0 5 . 4 3 5 4 5 5 . 7 4 5 8

9. 0 0 0 0 5 . 3 1 9 0 5 7 . 6 4 1 3

9* 0 0 0 0 5 . 3 3 7 6 5 7 . 4 5 6 0

9. 0 0 0 0 5 . 3 5 6 3 5 7 . 2 7 1 1

9. 0 0 0 0 5 . 3 7 5 1 5 7 . 0 8 7 1

9. 0 0 0 0 5 . 3 9 4 0 5 6 . 9 0 4 0

9. 0 0 0 0 5 . 4 1 3 0 5 6 . 7 2 1 8

9. 0 0 0 0 5 . 4 3 2 0 5 6 . 5 4 0 5

9. 0 0 0 0 5 . 4 5 1 1 5 6 . 3 6 0 2

9. 0 0 0 0 5 . 4 7 0 3 5 6 . 1 8 0 7

9. 0 0 0 0 5 . 4 8 9 6 5 6 . 0 0 2 2

9. 0 0 0 0 5 . 3 7 5 3 5 7 . 8 8 5 4

9. 0 0 0 0 5 . 3 9 3 7 5 7 . 7 0 0 7

9. 0 0 0 0 5 . 4 1 2 1 5 7 . 5 1 6 8

9. 0 0 0 0 5 . 4 3 0 6 5 7 . 3 3 3 9

9. 0 0 0 0 5 . 4 4 9 2 5 7 . 1 5 1 9

9. 0 0 0 0 5 . 4 6 7 9 5 6 . 9 7 0 7

9. 0 0 0 0 5 . 4 8 6 7 5 6 . 7 9 0 4

9. 0 0 0 0 5 . 5 0 5 5 5 6 . 6 1 1 1

9. 0 0 0 0 5 . 5 2 4 4 5 6 . 4 3 2 6

9. 0 0 0 0 5 . 5 4 3 4 5 6 . 2 5 4 9

0 . 7 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

0 . 7 0 P 0 0 . 2 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

0 . 0 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 4 0 0 0 0 • 1 2 7 0

0 . 8 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

0 . 9 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1

1 1 1

1 1 1

1 1

Page 89: The microwave dielectric properties of chalcogenide glasses

76

9 . 5 0 0 0 5 . 0 7 1 4 5 6 . 6 6 4 6

9 . 5 0 0 0 5 . 0 9 0 9 5 6 . 4 7 9 3

9 . 5 0 0 0 5 . I 1 0 4 5 6 . 2 9 4 9

9 . 5 0 0 0 5 . 1 3 0 0 5 6 . 1 1 1 6

9 . 5 0 0 0 5 . 1 4 9 7 5 5 . 9 2 9 2

9 . 5 0 0 0 5 . 1 6 9 5 5 5 . 7 4 7 7

9 . 5 0 0 0 5 . 1 8 9 3 5 5 . 5 6 7 3

9 . 5 0 0 0 5 . 2 0 9 2 6 5 . 3 8 7 7

9 . 5 0 0 0 5 . 2 2 9 2 5 5 . 2 0 9 2

9 . 5 0 0 0 5 . 2 4 9 3 5 5 . 0 3 1 4

9 . 5 0 0 0 5 . 1 2 7 6 5 6 . 9 1 8 7

9 . 5 0 0 0 5 . 1 4 6 8 5 6 . 7 3 4 4

9 . 5 0 0 0 5 . 1 6 6 0 5 6 . 5 5 1 2

9 . 5 0 0 0 5 . 1 8 5 3 5 6 . 3 6 8 9

9 . 5 0 0 0 5 . 2 0 4 7 5 6 . 1 8 7 5

9 . 5 0 0 0 5 . 2 2 4 2 5 6 . 0 0 7 1

9 . 5 0 0 0 5 . 2 4 3 7 5 5 . 8 2 7 6

9 . 5 0 0 0 5 . 2 6 3 4 5 5 . 6 4 9 1

9 . 5 0 0 0 5 . 2 8 3 1 5 5 . 4 7 1 4

9 . 5 0 0 0 5 . 3 0 2 8 5 5 . 2 9 4 8

9 . 5 0 0 0 5 . 1 8 3 4 5 7 . 1 6 9 0

9 . 5 0 0 0 5 . 2 0 2 3 5 6 . 9 8 5 9

9 . 5 0 0 0 5 . 2 2 1 2 5 6 . 8 0 3 7

9 . 5 0 0 0 5 . 2 4 0 3 5 6 . 6 2 2 5

9 . 5 0 0 0 5 . 2 5 9 4 5 6 . 4 4 2 1

9 . 5 0 0 0 5 . 2 7 8 6 5 6 . 2 6 2 7

9 . 5 0 0 0 5 . 2 9 7 9 5 6 . 0 8 4 3

9 . 5 0 0 0 5 . 3 1 7 2 5 5 . 9 0 6 7

9 . 5 0 0 0 5 . 3 3 6 6 5 5 . 7 3 0 0

9 . 5 0 0 0 5 . 3 5 6 1 5 5 . 5 5 4 3

9 . 5 0 0 0 5 . 2 3 8 9 5 7 . 4 1 5 5

9 . 5 0 0 0 5 . 2 5 7 5 5 7 . 2 3 3 6

9 . 5 0 0 0 5 . 2 7 6 2 5 7 . 0 5 2 5

9 . 5 0 0 0 5 . 2 9 4 9 5 6 . 8 7 2 4

9 . 5 0 0 0 5 . 3 1 3 8 5 6 . 6 9 3 0

9 . 5 0 0 0 5 . 3 3 2 7 5 6 . 5 1 4 7

9 . 5 0 0 0 5 . 3 5 1 7 5 6 . 3 3 7 2

9 . 5 0 0 0 5 . 3 7 0 8 5 6 . 1 6 0 6

9 . 5 0 0 0 5 . 3 8 9 9 5 5 . 9 8 4 9

9 . 5 0 0 0 5 . 4 0 9 1 5 5 . 8 1 0 2

0 . 5 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

0 . 5 0 Ô 0 0 . 4 0 0 0 0 . 1 2 7 0

0 . 5 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 0 5 0 0 • 0 . 1 2 7 0

0 . 6 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

0 . 6 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

0 » 7 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

0 . 7 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

0 . 0 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

0 . 8 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 I 1 1 1 1

Page 90: The microwave dielectric properties of chalcogenide glasses

77

1 0 * 0 0 0 0 10.0000 10.0000 10.0000 1 0 . 0 0 0 0 10.0000 10 .0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 I 0 .0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

5 . 1 0 3 5 5 . 1 2 2 6 5 . 1 4 1 7 5 . 1 6 0 9 5 . 1 8 0 2 5 . 1 9 9 6 5 . 2 1 9 0 5 . 2 3 8 5 5 . 2 5 8 1 5 . 2 7 7 8 5 . 1 5 8 4

5 . 1 7 7 2

5 . 1 9 6 0

5 . 2 1 5 0

5 . 2 3 4 0

5 . 2 5 3 1 5 . 2 7 2 2 5 . 2 9 1 5

5 . 3 1 0 8

5 . 3 3 0 2 5 . 2 1 3 0 5 . 2 3 1 5 5 . 2 5 0 1 5 . 2 6 8 7 5 . 2 8 7 5 5 . 3 0 6 3 5 . 3 2 5 2 5 . 3 4 4 2 5 . 3 6 3 2

5 . 3 8 2 3

5 6 . 9 4 1 1 5 6 . 7 5 9 9 5 6 . 5 7 9 6

5 6 . 4 0 0 3

5 6 . 2 2 1 8

5 6 . 0 4 4 3

5 5 . 8 6 7 8 5 5 . 6 9 2 2 5 5 . 5 1 7 5 5 5 . 3 4 3 7 5 7 . 1 8 9 9 5 7 . 0 0 9 8 5 6 . 8 3 0 6 5 6 . 6 5 2 3 5 6 . 4 7 5 0 5 6 . 2 9 8 6 5 6 . 1 2 3 0 5 5 . 9 4 8 5 5 5 . 7 7 4 7 5 5 . 6 0 2 0 5 7 . 4 3 5 1 5 7 . 2 5 6 1 5 7 . 0 7 8 0

5 6 . 9 0 0 8

5 6 . 7 2 4 5 5 6 . 5 4 9 2 5 6 . 3 7 4 7 5 6 . 2 0 1 1 5 6 . 0 2 8 4 5 5 . 8 5 5 6

10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 I 0.6000 10.7000 10.7000 10.7000 10.7000 10.70 00 10.7000 10.7000 10.7000 10.7000 10.7000 10.8000 10.8000 10.8000 10.8000 10.8000 10.8000 10.8000 10.8000 10.8000 10.8000

0 .0000 0 . 0 5 0 0

0 . 1 0 0 0

0 . 1 5 0 0

0 . 2 0 0 0 0 . 2 5 0 0 0 . 3 0 0 0

0 . 3 5 0 0

0 . 4 0 0 0

0 . 4 5 0 0 0.0000 0 . 0 5 0 0

0 . 1 0 0 0

0 . 1 5 0 0 0 . 2 0 0 0 0 . 2 5 0 0 0 . 3 0 0 0 0 . 3 5 0 0 0 . 4 0 0 0 0 . 4 5 0 0 0.0000 0 . 0 5 0 0 0 . 1 0 0 0 0 . 1 5 0 0 0.2000 0 . 2 5 0 0 0 . 3 0 0 0

0 . 3 5 0 0 0 . 4 0 0 0 0 . 4 5 0 0

0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 O . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0

0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 « 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0

Page 91: The microwave dielectric properties of chalcogenide glasses

O O O O O O O O O O O O O O O O O O Q O O O O O O O O O O O O O O O O O O O O O • • • • • • • • • • • • * • • • • • • • • • • # « • • • # • • • # • • • • • • • oiyitnoitnuiuiuitnuiyioiwyjoiwtnuiciuioioîinoiuiuiuiuioiuiui uiyioiuiuiuiuicnoi O O O O O O O O O O O O O C C O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O Q O O O

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o

o o o o o o

oioimyimyiuiuiuitnu'tnuioiuiuiuiy» uiuiuiaiyioiuitnui • • • • • • • • • • • £ • • • • • • • • • • • • • # * •L« % . - _ _ . . . . /—» « - . « . . .

lU'^O-jOlU'-vO'^ 0>— •-•-•«-•h-OOO cncoo*-!>-fuocj)0>-p'

ruuoju-tï-js-oioio-jocoo o 05

O O w o

^ o o o M O 05 C> -P-

•" »- ro CD S -J •P- O f- (? OJ o

o o M O

{? C> ff» o* vO CD ->J 03

> • • • <0 *0 <0 0 3 C \ ^

• • • • • • • • • • OOOOvOvO«0<OiOOB suio;»-<osuiw»*o u; u u f\3 rc (\j •-s N

o ro M 01 IÛ tj 05 CD -g ©>

OIOIOIOIOIOIOIOIOIOIOIUIOIOIOIOIOIOI OtOlOIOIOlOiO^OO'O^OIUlOIUIOlOlO^O* • • • • • • • • • • • • • • • • • • Nf-Oo^C — UOlOiOOwWinNOlON OoO)Uo050]U-'ONf\)(00\.>;\)*ONOi W'-'Ol 0^03>-0i*-'S-P'î\)'-Ot\301<û01'-0B0^01 01 0< f-NOi&icoro»-»-o<o^oiso^w-P'<>uio^w

01 D 0> * • •p- a-

oioiuioioioioioioioioioioioioioioiy.otoiy» f^4^0l01010101010^0\f-'^f-• • • • « • • • • • • • • •^iÛ'-M-P'0>03VC>-CAJ-f>COOO oirooa)Oicj"->ûNoiaoioi*-

01 01 01 O) U1 01 o

C5WO-^0)^01C>0st\)>l-(> ^Ooc'-Ui-C'-P-S'-ui a •-

— W 01 CD Oi *" vO O ifi s o u

* o vO 0> u

O O O O C O O O O O O O O C O O O O O O O O O C O O O O O O O C O O O O O O O O

(;i010lOlOIOlOlOI010:f-f'f'f>4»-f'f-f^4>f-WWUUwWwWUUNNNI\]NNI\)(\)NN o o o o o o o o o o O O O O O O O O O O O O C O O O O O O O O O O O C O O O O O o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o c o o o o o o o o o o o c o o o b o o . o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o

CO

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o # * « » # » # * » * # * « * * * » # * * « * # # * * * * * # « * « * * « # # # $ ^•^Oji»Jtv}ro»-»-oo-f>-i>OjCijroro^'>-'oo^ip'CJ(jjrow>-^oo-P'^uwi\)W>-"-oo O l O U I C O l O O l O O l O O i O O i O O i O O l O t / I O O l O O l O O l C U l O U I C O l O U t O U l O O l O O l O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O

O o O O O O O O O O O O O O O O O O # # » # # # # # # # # # # # # # # #

O O O O O O O O O o o o o o o o o o o o o o

f\]NI\)NI\)NtVNNNNNNNNI\)rul\)NNI\)r\)|vrol\)NNNfvNI\)MNNr\)NI\)NI\)N

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

Page 92: The microwave dielectric properties of chalcogenide glasses

#— m * *— «» M In* H . M * M » H . M » t-» »» •» p » •» 1 » f » • • • • • • • • é • # # • é • « • • • • • » • • » • • • # • • • • • • • • » • # o o o o o o o o O o o O o o o O o O o o O O o O o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o - o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

e n 0 ) 0 1 0 1 0 1 0 1 0 1 0 1 <>• •p- 0 1 0 1 U I 0 1 0 1 0 1 <>• 0 1 0 1 0 1 f - > •> *- *>• • f * » » • • • • • • • • • • t » • • • • • • e • • • » • * • • t — »- •» o o o o o \ D v O o o o o o \ 0 v D v D ( 0 o o o < o o 0 i O < 0 a > 0 3 - Û • o « c < o 4 ] c a Œ C D 0 3 0 0 C l w o U 1 w v O N o C D c r 4!- r o o a !7> 4 > f o o ; u • X 0 3 o *- t u o 0 ) 0 > < û - 4 0 1 w M » o 0 1 w >— 0 > 0 ' c - U 1 U ' o o a O N f w u r o r\3 w r o r o r o t o •- o o C e s œ s s o C B X 0 ^ 0 1 u u r o <—

0 1 M o < 0 v O o o s "" u - J t u C o 0 1 u "" t u c » o $- o u r o C D V O o C D N 0 » 0 3 C D u

i n w i 0 1 U I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 O l 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 O l 0 1 0 1 0 1 0 1 0 1 0 1 U I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 U I U I 0 1 0 1 0 1 0 1 0 \ o » *!• *- 0 1 0 1 0 ) 0 1 0 1 0 * 0 > •p- JS- 0 1 0 1 0 1 0 1 0 1 0 1 o f - 4S- • p 0 1 0 1 0 1 0 1 0 1 • • • • • • • * * * » • • • • » • » * • • • • • • a * • • • # • • • • o ( W 0 1 s o M f - o N M e u • 0 o o r o u 0 1 0 < a o N •IS- 0 1 < v O w t u 0 1 > 1 > û u 0 » 0 0 o u o û s 0 1 u e s 0 - 6 V C c ? •p' M c s N o 0 3 r o o c \ r o o 0 3 0 > t o t — , 0 s • o r u c o N 0 1 f » o o u o f - v û C D 0 3 •P- N C h M o C 3 N 0 5 o -> v O c > u o t u 0 1 r o > 1 v Û v û v c u s o •» r o w •p- 0 1 0 * 0 1 0 1 u 0 1 > 1 O M •p- » 0 9 r o 0 1 C o o u S o U I u » o w N c r o N u

•— •- M M* M K# I— t-» w l " w m* >— t— M» M» »» o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • • • » • * • « • • • « « « • • • • • • • • • • • • • • • * • • • • * • * • w w w w U i w u w u C J r o t u ( U ( 0 t u r o l u l u t o r o 1-# •— f m* w M# o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o c o c o o o o o o c o o o o o o c c o o o o o o o o o o o o o o o o o o o o

o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • * • • • • é • • * • • • • • • • • • • • • • • • • « • • • • * « •

•p- u u r o r o »— »- o o *- •p- u w r o t u o o f - w u r o t u h - o o •p- w U i t u r o •-* o o 0 1 o O l o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o O l o O l o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o 0 1 o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o c c o o o o o o o o o o o o o o o c o o o o c o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • • • • • • • • • • • • • • • * • • • • « • • • • • • • $ • • • • • « • •

M * M * H - K-> •—* t — *— H* M» w »— t — M# w# f o r o r u f u t u t u t u r u t u r o t u l u t u r o r o t u t o r o t u r o t u r o t u w r u r o t u t u r o f u t u t u t u r u t u r o r u r o t u t u s N N N s N N N " 4 N N N s s -Vj • s s s •«J s » N N N N Xj N s N s N s s s o o c o o o o c o o o o o o o o o o o o o o o c o o o c o o o o o o c o o o o o

Page 93: The microwave dielectric properties of chalcogenide glasses

o o o o o o O o o o o o o Q o o Q o o o o o o o o o o o o o o o o o o o o o o O N N N s N N N N N s s N N N N . N N N N N N N N % N N N N N N N N N N N N N s N N CVJ CM w CM CM CM CM CM CM CM CM CM CM CM CM CM fV CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

#-4 #-4 —< rW •—* #"4 p-i «y #—4 •H —4 ^4 •S -4 —* P4 • • * t • . e • • • • • • * • • • 1 « • # • • # • • # • « e * • • * # # * « « • o O o O o O o o O o o O O O o o o O O o o O O O O O O O O O O O o O o O O O O O

o o o o o o o o o o o o o o o o o O o o o o O O O o o O o o o o o O o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o m o in o in o m o in o in o in 3 m o in o in o tn o m o m o m o m o m o m o 'Si o tn o m o o N Ol n n -» •It o o CM CM n n <t St o o -4 CM CM m ro •«t •It o o CM CM m n •It •* • t • t • • • • • * • • • • • • • • • • • • • • • • e • « • • • o o o o o o o o o o o o o o o o o o o O o o o o O o o o o o o o o o O O o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o "o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 3 o o o o o o o CO CO CO CO CO CO CO CO CO CO o 0* o 0\ 0» o o o o 0» o o o o o o o o o o m# «H t • • • • • • • • • • • # • • t • t t • • • • # • • * • # t • •

0> c> » 0* o o o » 0* 0» » 0> o> 3 0> a> c* o o o o o o o o o o o o o o O o o o o o »»é W #4 •4 '* —1 W4

m m <*- N tn o » o <t N CM in w vO CM v O o m o m P J CO m #4 •st o N • CM » v û n o o vO n w o o N CM n o CO to o CM -0 o o m -4 m m 0* n 0* \0 CO CO O o n N •* CM CO o w n in N 0> n vO in N CO o CM m N 0> CM •4" CM •* vO oo o CM -* N CM 00 o CM m N 0\ CM <t N O vO <" m c N m CM O 0» N in CM o CO o in m CM o 00 o m ro (T s O 4 n 0» N m CM o 0* • • • • • « • • • • • « • * • * • * s « • • • • • • • • • in in tn in 4- •it •d- in in m m in in •» •e <t <0 o m m in m m •d" <t <0 o v O m m il) m m m -t (fl in m in in m in in in in m in in m in in in m m in m in m m m m m m m m m m m m m m m tn tn m

n n n in N o •t a in CM CO in tn CM CM n in N o o o\ n CO n o CO v O o >0 o o s o m o m to m •9 m «0 N 0» o ## n m a> 3 o t» CM n •ît m O CO •?f- •d' m m vO N N CO o> o o (T< o o o M CM CM

o CO o N N ro o rM vO 00 o CM <t *0 CO in N o m m K 0» <t o CM •«t vO c n m N o N N s CO CO CO CO CO o » N CO 00 00 00 0» » 0\ CO 03 00 0\ <> o> 0» Ct o o o c (T- 0» o O o o O o * • • • « • • • • ( t • • • * * • • • • • • • • # • • • • • < <• •e •St -c 4- 4- •?J- •it <- •d" St •5t •» •d- •ct •<t • 4t <t <t m m <t st •» st m m m m m

O o o o o O o o o o O o o o o o O o o o o O o o O o o o o o o o O O O o o o Q o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o O o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o in in in in in m in in in in in tn tn m in m m in m in in m m m m tn m m m m m m m m m m m m m m • • • • • • • • • • • • • • • • • « * • • • • • « • * • • • • • • • • • # • «

#4 #4 •*4 —4 *>4 m* «•1 mI «w M

Page 94: The microwave dielectric properties of chalcogenide glasses

81

1 2 . 0 0 0 0 4 . 6 8 2 5 5 5 . 5 4 1 6 9 . 6 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 0 3 9 5 5 . 3 5 6 8 9 . 6 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 2 5 4 5 5 . 1 7 3 0 9 . 6 0 0 0 0 • 1 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 4 7 0 5 4 . 9 9 0 5 9 . 6 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 6 8 7 5 4 . 8 0 9 0 9 . 6 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 9 0 5 5 4 . 6 2 8 6 9 . 6 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 1 2 4 5 4 . 4 4 9 4 9 . 6 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 3 4 4 5 4 . 2 7 1 3 9 . 6 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 5 6 5 5 4 , 0 9 4 4 9 . 6 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 7 8 6 5 3 . 9 1 8 5 9 . 6 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 3 8 5 5 5 . 8 2 1 2 9 . 7 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 5 9 5 5 5 . 6 3 7 7 9 . 7 0 0 0 0 . 0 5 0 0 " 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 8 0 7 5 5 . 4 5 5 3 9 . 7 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 0 2 0 5 5 . 2 7 4 0 9 . 7 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 2 3 4 5 5 . 0 9 3 8 9 . 7 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 4 4 8 5 4 . 9 1 4 6 9 . 7 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 6 6 4 5 4 . 7 3 6 6 9 . 7 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 8 8 0 5 4 . 5 5 9 8 9 . 7 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 0 9 8 5 4 . 3 8 4 0 9 . 7 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 3 1 6 5 4 . 2 0 9 3 9 . 7 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 7 9 4 1 5 6 . 0 9 6 4 9 . 8 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 « 8 1 4 8 5 5 . 9 1 4 3 9 . 8 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 3 5 7 5 5 . 7 3 3 1 9 . 8 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 5 6 6 5 5 . 5 5 3 2 9 . 8 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 7 7 7 5 5 . 3 7 4 1 9 . 8 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 9 8 8 5 5 . 1 9 6 3 9 . 8 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 2 0 0 5 5 . 0 1 9 5 9 . 8 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 4 1 3 5 4 . 8 4 3 8 9 . 8 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 6 2 7 5 4 . 6 6 9 2 9 . a o o o 0 . 4 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 8 4 2 5 4 . 4 9 5 6 9 . 8 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 4 9 3 5 6 . 3 6 7 3 9 . 9 0 0 0 0 . 0 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 6 9 7 5 6 . 1 8 6 5 9 . 9 0 0 0 0 . 0 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 8 9 0 2 5 6 . 0 0 6 7 9 . 9 0 0 0 0 . 1 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 1 0 8 5 5 . 8 2 8 0 9 . 9 0 0 0 0 . 1 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 3 1 5 5 5 . 6 5 0 2 9 . 9 0 0 0 0 . 2 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 5 2 4 5 5 . 4 7 3 7 9 . 9 0 0 0 0 . 2 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 7 3 3 5 5 . 2 9 8 1 9 . 9 0 0 0 0 . 3 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 4 . 9 9 4 3 5 5 . 1 2 3 5 9 . 9 0 0 0 0 . 3 5 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 5 * 0 1 5 4 5 4 . 9 5 0 1 9 . 9 0 0 0 0 . 4 0 0 0 0 . 1 2 7 0

1 2 . 0 0 0 0 5 . 0 3 6 5 5 4 . 7 7 7 7 9 . 9 0 0 0 0 . 4 5 0 0 0 . 1 2 7 0

Page 95: The microwave dielectric properties of chalcogenide glasses

82

1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0

1 2 . 4 0 0 0

1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0

1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0

1 2 . 4 0 0 0

1 2 . 4 0 0 0 1 2 . 4 0 0 0 1 2 . 4 0 0 0

1 2 . 4 0 0 0

1 2 . 4 0 0 0 1 2 . 4 0 0 0

4 . 7 2 6 1 4 . 7 4 7 3 4 . 7 6 8 7 4 . 7 9 0 2 4 . 6 1 1 7 4 . 6 3 3 4 4 . 8 5 5 1 4 . 8 7 7 0 4 . 8 9 8 9 4 . 9 2 0 9

4 . 7 8 1 6 4 . 8 0 2 5 4 . 8 2 3 6 4 . 8 4 4 7 4 . 8 6 5 9

4 . 8 8 7 2

4 . 9 0 8 6

4 . 9 3 0 1 4 . 9 5 1 8 4 . 9 7 3 4 4 . 8 3 6 7 4 . 8 5 7 3

5 5 . 9 0 0 4 5 5 . 7 1 7 1

5 5 . 5 3 5 0 5 5 . 3 5 4 0 5 5 . 1 7 4 0 5 4 . 9 9 5 3

5 4 . 8 1 7 6 5 4 . 6 4 1 1 5 4 . 4 6 5 7 5 4 . 2 9 1 3 5 6 . 1 7 7 9 5 5 . 9 9 6 0

5 5 . 8 1 5 2 5 5 . 6 3 5 4 5 5 . 4 5 6 9 5 5 . 2 7 9 4 5 5 . 1 0 3 0 5 4 . 9 2 7 7 5 4 . 7 5 3 5 5 4 . 5 8 0 4

5 6 . 4 5 0 9 5 6 . 2 7 0 4

9.6000 9 . 6 0 0 0 9 . 6 0 0 0 9 . 6 0 0 0 9 . 6 0 0 0 9 . 6 0 . 0 0 9 . 6 0 0 0 9 . 6 0 0 0 9 . 6 0 0 0 9.6000 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 7 0 0 0 9 . 8 0 0 0 9 . 8 0 0 0

0.0000 0 . 0 5 0 0 0 . 1 0 0 0 0 . 1 5 0 0 0.2000 0 . 2 5 0 0 0 . 3 0 0 0 0 . 3 5 0 0 0 .4000 0 . 4 5 0 0 0 . 0 0 0 0 0 . 0 5 0 0 0 . 1 0 0 0 0 . 1 5 0 0 0.2000 0 . 2 5 0 0 0 . 3 0 0 0 0 . 3 5 0 0 0 . 4 0 0 0 0 . 4 5 0 0 0 . 0 0 0 0 0 . 0 5 0 0

0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0 0 . 1 2 7 0 0 • 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 7 0

0 . 1 2 7 0

0 . 1 2 7 0

Page 96: The microwave dielectric properties of chalcogenide glasses

83

APPENDIX B:

EPSILAM-10 DATA

Page 97: The microwave dielectric properties of chalcogenide glasses

84

March, 1975

j NU.V'C »' $

Copper Clad Laminate and

Confrotlcd Dielectric

303 GpsHoRi-IO HIGH DIELECTRIC CONSTANT MICROWAVE SUBSTRATE

A now Microwave Substrate Is now available from 3M Company wtiich offers the de­signer new freedom in microwave stripline and microstrip circuit design and fabrication.

CPSILAM-10 is a ceramic filled TeflotPcompound that has the flexible, mechanical properties of a plastic, and electrical properties similar to alumina.

6PSILAM-10 is supplied with 1 oz. copper two sides. It can be processed like a con­ventional printed circuit board. The 9" x 9" sheet size allows for multiple circuit layout and processing using typical resists and etchonts. The substrate is easily machined, drilled, punched or routed. Supplied .025 and .050 mil thicknesses, it can bo cut with a shear or razor.

CPSILAM-10 is an excellent substrate for stripline designs at L, S, C, and X-band frequencies. The dielectric constant of 10.3 allows for reductions in package size and weight and Increased circuit density.

&PSILAM-10 has a coefficient of expansion close to that of aluminum and a low modulus of elasticity, making it an excellent choice for microstrip designs that are soldered or clamped into place.

For applications where ceramic is required, GPSILAM-10 serves as an excellent prototype substrate. It has electrical properties similar to alumina, and will not break or crack when stressed.

This new microwave substrate material has shown itself to combine many of the desirable mechanical properties of polymeric substrates with the high dielectric constant of alumina.

Page 98: The microwave dielectric properties of chalcogenide glasses

85

TYPICAL PROPERTIES Dielcctric Constant (L and X Bands)

Z — direction XY — directions

103+0.5 Approximately 15

Dissipation Factor .001

Temperature Coefficient of Er (ppm/°C) <500

Coefficient of Ttiermai Expansion (ppm/^C) 20 - 25 (est.)

Tensile Strengtli (psi) 1400

Elongation at Break >6%

Tensile tvloduius (psi) 35,000

Shore Hardness D-65

Cladding t oz, copper both sides (other cladding possible)

Copper Adiiesion (Ibs./in.) 8 (ED Copper)

Bonding Process Direct — no interlayer

Processing Standard printed circuit methods

Solderabiiitv At least 520°F — stands red hot hand soldering

Thermal Stability Probably SOCC for short intervals such as TO bonding if gold plated. Dielectric constant appears stable at 150°C after conditioning.

Fabrication Can be machined, drilled, sheared, and punched - the limitation on bonding and forming is the elongation of the copper.

Substrate Color Grey

Substrate Thickness .025" and .050"

Sheet Size

at X

cn

IMPORTANT NOTICE TO PURCHASER

An tutements. technical information and recommendations contained herein are based on tests we believe to be rflliabte, but the accuracy or completeness thereof is not guaranteed, and the following is made in hcu of all warranties, expressed or implied.

Seller's and manufacturer's only obligation shall be to replace such quantity of the product Droved to be ^defective. Neither seller nor /nonufacturer shall be liable for any mtury. loss or damage, direct or cnnsenucntial. arising out of the use of or the injbihty (o use ihe orwjucts. Before using, user shall determine the suitability of the product for his intended me. and user assumes all risk and liability whatsoever in connection therewith. No Statement or recommeniiJtion not contained herein shall have any force or effect unless in an agreement signed by officers of seller and manufacturer.

Electronic Products Division 3 M C E N T E R • S A I N T P A U L . M I N N E S O T A b b l O l

Page 99: The microwave dielectric properties of chalcogenide glasses

Table B-1. Phase, in degrees, for sample of Epsilam-lO

Frequency (GHz)

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.4

110 47 7 -27 -48 -68 -89 -87 -97 -112

114 50 12 -20 -42 -79 -100 -95 ' -100 -116

115 50 10 -24 -45 -66 -83 -79 -86 -108

110 47 8 -26 -48 -67 -91 -93 -99 -115

113 48 7 -28 -50 -71 -92.5 -91 -98 -112

114 50 10 -24 -45.5 -66.5 -84.5 -80 -87 -96

113 49 9 -25 • -47 -69 -91 -91 -98 -113

115 51 10 -22 -44 -64 -81 -78.5 -91 -119

113 49 8.5 -25 -47 -68 -88 -90 -100 -115

115 47 1.0 -30 -52 -73 -92 -90 -98 -112

Page 100: The microwave dielectric properties of chalcogenide glasses

Table B-2. Amplitude, in decibels, for sample of Epsilam-10

8.0 8.5 9.0 9.5 10.0

Frequency (GHz)

10.5 11.0 11.5 12.0 12.4

-6.6 -7.0 -5.2 -5.9 -5.0 -4.1 -6.2 -5.2 -3.9 -4.8

-6.6 -6.9 -4.9 -5.2 -2.6 -2.6 -6.0 -5.8 -4.2 -5.1

-6.6 -7.0 -5.0 -5.7 -4.8 -4.1 -6.2 -4.6 -2.4 -1.3

-6.6 -6.7 -5.1 -5.8 -4.8 -3.9 -5.6 -5.1 -3.9 -4.8

-6.55 -6.9 -4.8 -5.6 -4.7 -4.0 -6.3 -5.6 -4.3 -5.2

-6.5 -6.9 -5.0 -5.7 -4.7 -4.0 -6.2 -4.95 -3.6 -3.4

-6.55 -6.9 -5.0 -5.6 -4.6 -3.6 -5.9 -5.1 -3.9 -5.0

-6.5 -6.9 -4.9 -5.6 -4.6 -3.8 -5.5 -4.0 -1.4 -1.3

-6.5 -7.0 -5.1 -5.8 -4.7 -3.9 -5.8 -4.4 -3.7 -5.0

-5.9 -5.9 -4.5 -5.7 -4.7 -4.0 -6.5 -5.5 -4.2 -5.3

00

Page 101: The microwave dielectric properties of chalcogenide glasses

Table B-3. Phase, in degrees, for empty case

8.0 8.5 9.0 9.5

Frequency (GHz)

10.0 10.5 11.0 11.5 12.0 12.4

170 109 62 26.5 2 -15.5 -25 -34 -41 -50

173- 112 67 35 12 -18 -35 -40 -43 -50

174 112 66 32 9 -7 -15 -49 -48 -54

170 109 63 28.5 3 -15.5 -25 -33 -39 -48

169 108 62 27 3 -16 -25 -33.5 -40.5 -50

171 109 63 29 4 -15 -25 -33.5 -40 -48

173 110 63.5 29 4 -14 -24.5 -33.5 -39.5 -48

173.5 110 63 29 3.5 -14 -24 -33 -40 -49

173 110 63 28.5 4 -14 -23 -32 -39.5 -48

173 112 66 32.5 10 -5 -25.5 -48 -47 -53

Page 102: The microwave dielectric properties of chalcogenide glasses

Table B-4. Amplitude, in decibels, for empty case

Frequency (GHz)

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.4

-1.0 • -0.6 0.0 +0.2 +0.2 -0.3 -0.3 +0.25 +0.4 +0.35

-1.0 -0.6 -0.1 +0.6 +1.4 +2,3 +0.4 -0.1 +0.1 40.1

-1.0 -0.6 -0.2 +0.2 +0.3 +0.2 +2.0 +2.3 +0.5 +0.5

-1.0 -0.7 -0.3 0.0 +0.1 -0.4 -0.6 -0.1 +0.1 +0.1

-1.0 -0.7 -0.4 0.0 +0.1 -0.4 -0.45 +0.15 +0.4 +0.35

-0.9 -0.55 -0.2 -H).2 +0.35 -0.1, -0.2 +0.25 +0.4 +0.4

-1.0 -0.55 -0.2 +0.2 +0.3 -0.1 -0.2 +0.3 +0.5 +0.45

-1.0 -0.6 -0.2 +0.2 +0.3 -0.3 -0.2 +0.3 +0.5 +0.4

—0.9 -0.5 -0.2 +0.1 +0.2 -0.3 -0.2 +0.4 +0.6 +0.5

-0.8 -0.5 -0.05 +0.4 +0.7 +0.9 +2.7 +1.1 +0.6 +0.5

Page 103: The microwave dielectric properties of chalcogenide glasses

90

Table B-5. .Mean and standard deviation of the phase and amplitude for a sample of Epsilam-10

Phase (Degrees) Amplitude (Decibels) Frequency Mean Standard Mean Standard (GHz) Phase Deviation Phase Deviation

8.0 113.20 1.87 -6.49 0.21

8.5 48.80 1.48 -6.79 0.39

9.0 8.25 2.97 • -4.95 0.20

9.5 -25.10 2.89 -5.66 0.19

10.0 -46.85 2.91 -4.52 0.68

10.5 -69.15 4.30 -3.80 0.45

11.0 -89.20 5.49 -6.02 0.32

11.5 -87.45 6.09 -5.03 0.56

12.0 -95.40 5.34 -3.55 0.93

12.4 -111.80 6.29 -4.12 1.58

Page 104: The microwave dielectric properties of chalcogenide glasses

91

Table B-6. Mean and standard deviation of the phase and amplitude for the. empty case

Phase (Degrees) Amplitude (Decibels) Frequency Mean Standard Mean Standard (GHz) Deviation Deviation

8.0 171.95 1.77 -0.96 0.07

8.5 110.10 1.45 -0.59 0.07

9.0 63.85 1.80 -0.19 0.12

9.5 29.70 2.65 +0.21 0.18

10.0 5.45 3.50 +0.40 0.39

10.5 -13.40 4.11 +0.15 0.85

11.0 -24.70 4.77 +0.30 1.13

11.5 -36.90 6.50 +0.49 0.72

12.0 -41.75 3.23 +0.41 0.18

12.4 -49.80 2.15 +0.35 0.15

Page 105: The microwave dielectric properties of chalcogenide glasses

92

APPENDIX C:

TABLE FOR 1.30 MM SAMPLE

Page 106: The microwave dielectric properties of chalcogenide glasses

93

F R E O A M P L - O B P H A S E - O G

8 * 0 0 0 0 5 . 5 7 3 6 5 7 * 9 2 3 2

8 * 0 0 0 0 5 . 5 9 3 9 5 7 . 7 1 6 0

8 . 0 0 0 0 5 . 6 1 4 3 5 7 . 5 0 9 9

8 * 0 0 0 0 5 . 6 3 4 8 5 7 * 3 0 4 7

8 . 0 0 0 0 5 . 6 5 5 3 5 7 * 1 0 0 7

8 * 0 0 0 0 5 . 6 7 6 0 5 6 . 8 9 7 8

8 * 0 0 0 0 5 . 6 9 6 7 5 6 . 6 9 5 9

8 . 0 0 0 0 5 . 7 1 7 6 5 6 * 4 9 5 1

8 . 0 0 0 0 5 . 5 9 6 7 5 8 . 6 0 3 5

8 * 0 0 0 0 5 . 6 1 6 5 5 8 . 3 9 5 4

8 . 0 0 0 0 5 . 6 3 6 4 5 8 * 1 8 8 4

8 . 0 0 0 0 5 . 6 5 6 3 5 7 * 9 8 2 3

8 . 0 0 0 0 5 . 6 7 6 4 5 7 * 7 7 7 4

8 . 0 0 0 0 5 . 6 9 6 6 5 7 * 5 7 3 5

8 . 0 0 0 0 5 . 7 1 6 8 5 7 . 3 7 0 7

8 . 0 0 0 0 5 . 7 3 7 2 5 7 . 1 6 8 9

8 . 0 0 0 0 5 . 7 5 7 6 5 6 . 9 6 8 1

8 . 0 0 0 0 5 . 7 7 8 2 5 6 » 7 6 8 4

8 . 0 0 0 0 5 . 6 5 9 7 5 8 . 8 6 1 8

8 . 0 0 0 0 5 . 6 7 9 2 5 8 . 6 5 5 0

8 . 0 0 0 0 5 . 6 9 8 8 5 8 . 4 4 9 3

8 . 0 0 0 0 5 . 7 1 8 5 5 8 * 2 4 4 5

8 * 0 0 0 0 5 . 7 3 8 2 5 8 * 0 4 0 8

8 . 0 0 0 0 5 . 7 5 3 1 5 7 * 8 3 8 2

8 * 0 0 0 0 5 . 7 7 8 0 5 7 . 6 3 6 4

8 . 0 0 0 0 5 . 7 9 8 0 5 7 . 4 3 5 8

8 . 0 0 0 0 5 . 8 1 8 2 5 7 . 2 3 6 2

8 . 0 0 0 0 5 . 8 3 8 4 5 7 . 0 3 7 6

8 . 0 0 0 0 5 . 7 2 2 4 5 9 . 1 1 6 1

8 . 0 0 0 0 5 . 7 4 1 6 5 8 . 9 1 0 6

8 . 0 0 0 0 5 . 7 6 0 8 5 8 . 7 0 6 1

8 . 0 0 0 0 5 . 7 8 0 2 5 8 . 5 0 2 6

8 . 0 0 0 0 5 . 7 9 9 6 5 8 . 3 0 0 1

8 . 0 0 0 0 5 . 8 1 9 2 5 8 . 0 9 8 6

8 . 0 0 0 0 5 . 8 3 8 8 5 7 . 8 9 8 1

8 * 0 0 0 0 5 . 8 5 8 6 5 7 . 6 9 8 6

8 . 0 0 0 0 5 . 8 7 8 4 5 7 . 5 0 0 1

8 * 0 0 0 0 5 . 8 9 8 3 5 7 . 3 0 2 7

P R I M E E R P P T H I C K N E S S

0 . 1 0 0 0 0 1 0 0 0 0 * 1 3 0 0

0 . 1 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 2 0 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 2 5 0 0 0 , 1 3 0 0

0 . 1 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 * 1 0 0 0 0 3 5 0 0 0 . 1 3 0 0

0 * 1 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 4 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 0 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 0 5 0 0 . 0 . 1 3 0 0

0 . 2 0 0 0 0 1 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 2 0 0 0 0 . I 3 0 0

0 . 2 0 0 0 0 2 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 3 5 0 0 0 . 1 3 0 0

0 * 2 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 4 5 0 0 0 . 1 3 0 0

0 * 3 0 0 0 0 0 0 0 0 0 . 1 3 0 0

0 * 3 0 0 0 0 0 5 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 1 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 * 3 0 0 0 0 2 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 2 5 0 0 0 , 1 3 0 0

0 . 3 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 . 0 3 5 0 0 0 . 1 3 0 0

0 * 3 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 4 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 0 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 0 5 0 0 0 . 1 3 0 0

0 * 4 0 0 0 0 1 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 2 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 2 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 3 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 * 4 0 0 0 0 4 5 0 0 0 . 1 3 0 0

E R

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 I 1 1

1 1 1 1 1 1 1 1

Page 107: The microwave dielectric properties of chalcogenide glasses

94

8 . 5 0 0 0 5 . 4 3 5 2 5 8 . 0 4 2 7

8 . 5 0 0 0 5 . 4 5 4 4 5 7 . 8 4 6 8

8 . 5 0 0 0 5 . 4 7 3 7 5 7 . 6 5 2 0

8 . 5 0 0 0 5 . 4 9 3 0 5 7 . 4 5 8 1

8 . 5 0 0 0 5 . 5 1 2 5 5 7 . 2 6 5 2

8 . 5 0 0 0 5 . 5 3 2 0 5 7 . 0 7 3 3

8 . 5 0 0 0 5 . 5 5 1 7 5 6 . 8 8 2 3

6 . 5 0 0 0 5 . 5 7 1 4 5 6 . 6 9 2 3

8 . 5 0 0 0 5 . 5 9 1 2 5 6 . 5 0 3 3

8 . 5 0 0 0 5 . 6 1 1 1 5 6 . 3 1 5 3

8 . 5 0 0 0 5 . 4 9 4 5 5 8 . 2 9 3 5

8 . 5 0 0 0 5 . 5 1 3 4 5 8 . 0 9 8 8

8 . 5 0 0 0 5 . 5 3 2 4 5 7 . 9 0 5 1

8 . 5 0 0 0 5 . 5 5 1 5 5 7 . 7 1 2 4

8 . 5 0 0 0 5 . 5 7 0 7 5 7 . 5 2 0 6

8 . 5 0 0 0 5 . 5 8 9 9 5 7 . 3 2 9 8

8 . 5 0 0 0 5 . 6 0 9 3 5 7 . 1 3 9 9

8 . 5 0 0 0 5 . 6 2 3 7 5 6 . 9 5 1 0

8 . 5 0 0 0 5 . 6 4 8 2 5 6 . 7 6 3 1

8 . 5 0 0 0 5 . 6 6 7 8 5 6 . 5 7 6 0

8 . 5 0 0 0 5 . 5 5 3 5 5 8 . 5 4 0 5

8 . 5 0 0 0 5 . 5 7 2 1 5 8 . 3 4 7 0

8 . 5 0 0 0 5 . 5 9 0 8 5 8 . 1 5 4 5

8 . 5 0 0 0 5 . 6 0 9 6 5 7 . 9 6 2 9

8 . 5 0 0 0 5 . 6 2 8 5 5 7 . 7 7 2 1

8 . 5 0 0 0 5 . 6 4 7 5 5 7 . 5 0 2 4

8 . 5 0 0 0 5 . 6 6 6 5 5 7 . 3 9 3 7

8 . 5 0 0 0 5 . 6 8 5 7 5 7 . 2 0 5 8

8 . 5 0 0 0 5 . 7 0 4 9 5 7 . 0 1 8 9

8 . 5 0 0 0 5 . 7 2 4 2 5 6 . 8 3 2 9

8 . 5 0 0 0 5 . 6 1 2 1 5 8 . 7 8 3 7

8 . 5 0 0 0 5 . 6 3 0 4 5 8 . 5 9 1 4

8 . 5 0 0 0 5 . 6 4 8 9 5 8 . 4 0 0 0

8 . 5 0 0 0 5 . 6 6 7 4 5 8 . 2 0 9 6

8 . 5 0 0 0 5 . 6 8 6 0 5 8 . 0 2 0 1

8 . 5 0 0 0 5 . 7 0 4 7 5 7 . 3 3 1 4

8 . 5 0 0 0 5 . 7 2 3 5 5 7 . 6 4 3 7

8 . 5 0 0 0 5 . 7 4 2 3 5 7 . 4 5 6 9

8 . 5 0 0 0 5 . 7 6 1 3 5 7 . 2 7 1 1

8 . 5 0 0 0 5 . 7 8 0 3 5 7 . 0 8 6 2

0 . 5 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 5 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 0 5 0 0 . 0 . 1 3 0 0

0 . 6 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 4 5 0 0 0 . I 3 0 0

0 . 8 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 I 1 I 1 1 1

1 1

1 1 1 1 1

1 1 1

I 1

1

Page 108: The microwave dielectric properties of chalcogenide glasses

95

9 « 0 0 0 0 5 . 4 1 3 3 5 7 . 5 3 7 3

9 « 0 0 0 0 5 . 4 3 2 2 5 7 . 3 5 1 2

9 . 0 0 0 0 5 . 4 5 1 2 5 7 . 1 6 6 1

9 . 0 0 0 0 5 . 4 7 0 2 5 6 . 9 8 1 8

9 . 0 0 0 0 5 . 4 8 9 3 5 6 . 7 9 8 5

9 . 0 0 0 0 5 . 5 0 8 6 5 6 . 6 1 6 1

9 . 0 0 0 0 5 . 5 2 7 8 5 6 . 4 3 4 7

9 . 0 0 0 0 5 . 5 4 7 2 5 6 . 2 5 4 1

9 . 0 0 0 0 5 . 4 3 2 8 5 8 . 1 5 6 7

9 . 0 0 0 0 5 . 4 5 1 2 5 7 . 9 6 9 9

9 . 0 0 0 0 5 . 4 6 9 7 5 7 . 7 8 4 0

9 . 0 0 0 0 5 . 4 8 8 3 5 7 . 5 9 9 0

9 . 0 0 0 0 5 . 5 0 7 0 5 7 . 4 1 4 9

9 . 0 0 0 0 5 . 5 2 5 8 5 7 . 2 3 1 8

9 . 0 0 0 0 5 . 5 4 4 6 5 7 . 0 4 9 6

9 . 0 0 0 0 5 . 5 6 3 6 5 6 . 8 6 8 2

9 . 0 0 0 0 5 . 5 8 2 6 5 6 . 6 8 7 7

9 . 0 0 0 0 5 . 6 0 1 6 5 6 . 5 0 8 2

9 . 0 0 0 0 5 . 4 8 9 4 5 3 . 3 9 7 6

9 . 0 0 0 0 5 . 5 0 7 5 5 8 . 2 1 1 9

9 . 0 0 0 0 5 . 5 2 5 8 5 8 . 0 2 7 1

9 . 0 0 0 0 5 . 5 4 4 1 5 7 . 8 4 3 2

9 . 0 0 0 0 5 . 5 6 2 5 5 7 . 6 6 0 2

9 . 0 0 0 0 5 . 5 8 1 0 5 7 . 4 7 8 2

9 . 0 0 0 0 5 . 5 9 9 6 5 7 . 2 9 6 9

9 . 0 0 0 0 5 . 6 1 8 2 5 7 . 1 1 6 7

9 . 0 0 0 0 5 . 6 3 7 0 5 6 . 9 3 7 2

9 . 0 0 0 0 5 . 6 5 5 8 5 6 . 7 5 8 6

9 . 0 0 0 0 5 . 5 4 5 6 5 8 . 6 3 4 8

9 . 0 0 0 0 5 . 5 6 3 5 5 8 . 4 5 0 3

9 . 0 0 0 0 5 . 5 8 1 5 5 8 . 2 6 6 6

9 . 0 0 0 0 5 . 5 9 9 6 5 8 . 0 8 3 8

9 . 0 0 0 0 5 . 6 1 7 7 5 7 . 9 0 1 9

9 . 0 0 0 0 5 . 6 3 5 9 5 7 . 7 2 0 9

9 . 0 0 0 0 5 . 6 5 4 2 5 7 . 5 4 0 7

9 . 0 0 0 0 5 . 6 7 2 6 5 7 . 3 6 1 5

9 . 0 0 0 0 5 . 6 9 1 1 5 7 . 1 8 3 2

9 . 0 0 0 0 5 . 7 0 9 6 5 7 . 0 0 5 6

0 . 7 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

l . 0 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . * 0 0 0 0 . 1 3 0 0

1 . 0 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1

Page 109: The microwave dielectric properties of chalcogenide glasses

96

9 * 5 0 0 0 5 . 2 3 6 2 5 7 . 4 3 4 5

9 . 5 0 0 0 5 . 2 5 5 2 5 7 . 2 4 9 4

9 . 5 0 0 0 5 . 2 7 4 2 5 7 . 0 6 5 3

9 . 5 0 0 0 5 . 2 9 3 3 5 6 . 8 8 2 1

9 . 5 0 0 0 5 . 3 1 2 5 5 6 . 6 9 9 8

9 . 5 0 0 0 5 . 3 3 1 8 5 6 . 5 1 8 5

9 . 5 0 0 0 5 . 3 5 1 2 5 6 . 3 3 8 1

9 . 5 0 0 0 5 . 3 7 0 6 5 6 . 1 5 8 7

9 . 5 0 0 0 5 . 3 9 0 2 5 5 . 9 8 0 1

9 . 5 0 0 0 5 . 4 0 9 8 5 5 . 8 0 2 6

9 . 5 0 0 0 5 . 2 9 2 3 5 7 . 6 8 2 1

9 . 5 0 0 0 5 . 3 1 1 0 5 7 . 4 9 8 2

9 . 5 0 0 0 5 . 3 2 9 7 5 7 . 3 1 5 2

9 . 5 0 0 0 5 . 3 4 8 6 5 7 . 1 3 3 1

9 . 5 0 0 0 5 . 3 6 7 5 5 6 . 9 5 2 0

9 . 5 0 0 0 5 . 3 8 6 5 5 6 . 7 7 1 7

9 . 5 0 0 0 5 . 4 0 5 6 5 6 . 5 9 2 4

9 . 5 0 0 0 5 . 4 2 4 8 5 6 . 4 1 4 0

9 . 5 0 0 0 5 . 4 4 4 0 5 6 . 2 3 6 5

9 . 5 0 0 0 5 . 4 6 3 3 5 6 . 0 5 9 9

9 . 5 0 0 0 5 . 3 4 8 0 5 7 . 9 2 6 1

9 . 5 0 0 0 5 . 3 6 6 4 5 7 . 7 4 3 3

9 . 5 0 0 0 5 « 3 8 4 9 5 7 . 5 6 1 4

9 . 5 0 0 0 5 . 4 0 3 5 5 7 , 3 8 0 5

9 . 5 0 0 0 5 . 4 2 2 1 5 7 . 2 0 0 4

9 . 5 0 0 0 5 . 4 4 0 8 5 7 . 0 2 1 2

9 . 5 0 0 0 5 . 4 5 9 7 5 6 . 8 4 2 9

9 . 5 0 0 0 5 . 4 7 8 6 5 6 . 6 6 5 6

9 . 5 0 0 0 5 . 4 9 7 5 5 6 . 4 8 9 1

9 . 5 0 0 0 5 . 5 1 6 6 5 6 . 3 1 3 5

9 . 5 0 0 0 5 . 4 0 3 4 5 8 . 1 6 6 4

9 . 5 0 0 0 5 . 4 2 1 5 5 7 . 9 8 4 8

9 . 5 0 0 0 5 . 4 3 9 7 5 7 . 8 0 4 0

9 . 5 0 0 0 5 . 4 5 8 0 5 7 . 6 2 4 2

9 . 5 0 0 0 5 . 4 7 6 4 5 7 . 4 4 5 2

9 . 5 0 0 0 5 . 4 9 4 9 5 7 . 2 6 7 1

9 . 5 0 0 0 5 . 5 1 3 4 5 7 . 0 8 9 9

9 . 5 0 0 0 5 . 5 3 2 0 5 6 . 9 1 3 5

9 . 5 0 0 0 5 . 5 5 0 7 5 6 . 7 3 8 1

9 . 5 0 0 0 5 . 5 6 9 5 5 6 . 5 6 3 5

0 . 6 0 0 0 0 0 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 0 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 1 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 2 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 2 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 3 5 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 . 6 0 0 0 0 4 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 0 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 0 5 0 0 . 0 . 1 3 0 0

0 . 7 0 0 0 0 1 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 2 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 2 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 3 5 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 . 7 0 0 0 0 4 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 0 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 0 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 1 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 2 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 2 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 . 8 0 0 Q 0 3 5 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 . 8 0 0 0 0 4 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 0 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 0 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 1 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 1 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 2 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 2 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 3 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 3 5 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 4 0 0 0 0 . 1 3 0 0

0 . 9 0 0 0 0 4 5 0 0 0 . 1 3 0 0

1 1 1 I 1 I 1 1 1

1 t 1 1 1 1 1 1 1 1 1

1 1 1 1

1

1 1 1 1 1 1 1 1 I 1 i

1 1 1 1

Page 110: The microwave dielectric properties of chalcogenide glasses

o o o o o o o o o o o • * • • • • • • • • • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • • • • • •

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

cnoitnuioTtnmuiuiyiy^uiuiui $ # # # # # # # $ # # # * * M N U U U W U N N N N N W U a)0>oi}C^^rooa)0^^>fuoi\Jo u o N (jj u; ui c o s s a«-c^>^NWocDS->jcso-go

uimu\uiinojuiciuiuitnoiui • • • • • • • • • • • • •

i\}C*om>-'CDO\uioi^^uio^

oiuiuiuiuiuiuiuiuitnuiCJiyiuiyi * * » * * « * # * * # » # * *

-JUlCJ'-vOWOCJO^Ul'-OCDOi.P' ^ ( J I U I C O * — O O O ' O ' O O C O O 'ofoo^'-woo'oj'-vovooowyi

uicjicr.uiuiuiuiyiuiuiLncnuioitnmyiuiyiyiuioicnuiOitnuiuioiyitnoioiui'jioitntnuiaiuiui # # # $ # # # # # # # # # # # # # # # # # # * # # # # # # # * # # * # # # $ # # # # cno»ODO>-win-<j>ûoro<>uiN>û^M4»o*oiot\jwyio^c»owuc'i-g(ûotv}'^oiNvO'-WKJiO* ^>û^fuvû*jyiMo0}0*ui®c>u«v0Sm0j'-'or0oN0iw»-<0N0»-tc;i0J — <û"«jtnU'-''oœ 0>o>N'"*<iWOOaOC)®OSO'SCJ»ÛO>Ul.P'-P'UlSO-PO'>)O^UlO<NvOUl'>jC^iPWMWCJO*0'P'<0 N«owm^uio»iooo,aa)0^ouim^ucn(B'ù»Doin\ou*^»-'4>souu)«-moui\c4>c%)Ns

o o * •

s N o o O o o G

o o • •

o o o o • • • •

Cji Cl 0 . 0\ 0* o o o o o o o o c o o o c c

o • C' o

o o c o o o

o o o o o o c o

0^ o o Ul c. Ul <J> U! iT' o o o o o o o o o o o o o o o o o o O c O O O O O O O

o o o o • • • • ui ui ui tn

o o o o c o o o

o o o

*- f-o o

o o • * •f> *-o o o o o o

o o • *

o o o

o o o c

o o o c

U U U U W W U W W W o o o o o o o o o o

o c

o o o o o o o o o o o o o o

y i o y i o u i o u i o o i o y i o t n o O O O O O O O O O O O O O O o o o o o o o o o o o o o o

o o o o o o o o o o o o o # * # # # # # # # # # # # WUNI\)i-p-OO.f>^UUN o i o u i o u i o o i o y i o o i o w O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O • • • • • • • • • • • • • • • fj^-(-OO-P^-^CJUMP0'-»-OO O U f O U l O U i O U I O U I O U I O U l O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

o O • •

o o o o o o o o o o o o • • • • • • • • • • • •

o o o o o o o o o o o o o o o o o o o • • • • • • • • • • • • • • • • • • • • • • •

o o o o o o o o o

u w u w u u w w u w w u u u o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o

UUGJUUUCJUCiiOJUIOJU'UUCiJUCJUUUUUUlUUUU - - O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O o c o o o o o

Page 111: The microwave dielectric properties of chalcogenide glasses

05 01 yi 01 01

oioioioioicnoiuiuiuioioioioi • • • • • • • • • • • • • •

MOMomo^NOcac^f'SOi •- tv3 c> ui 01 01 01 0" c> c> u ro C D 0 1 W > - v 0 0 3 ( » \ û » - ' L > J > J " ' t > l C 3

O l O l O l O l O l O l O l O O I O l O l O l O l U l • • • • • • • • • • • • • • • - ^ O O O O O v O ' - O O O O O

Oi>0<Ji-fî'WMtO-f>'0>-WC\0

• • • • • • • • • • • • • • «Û^0>0\0OOOO>OI0\0\0C30D

c^oioioio^oif-wro^oxooo) cS't^uuif-oo'-Noioroa)

O l O l O l O l O l O l O l O l O l O l O l O i O l O l O l O l O i O l O I O l O l O l O l O l O l O l O l O I O l O l O i y i O l O l O l O I O l O l O l O l O l O » c>Noioioioioio*c>co>(ï>-f>oioioioioiû»o*o>o»-»'->oioioioioioio>o^'«S'-fr-^<>oioioioiyio» • • • • • • « • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • « ,om.r\)4>o\N\0»-cjoia<oc\o^uoio\Q)oruf>o»Na)Of\),^o\'^»OM«wf'0*NO""WO)NOBO <P'rooiut-C30-^MocDO>>ûo*^r\3*û"^o^-fS'Mo»-^û->ioit>j»-\o-Ni(j>>ùi^o>joiuroo'û-<j cj^O'f>'ONOitiJw-P'<7'Oooiroo*ovûo!\:oioc*u^oo>-»wo'oo»®o*oioi->j*owc*roD '-ai«^0if-i\]o\00)C^W'-'o\0B)a)0>NSNs(7'ur\)Wf>f'0i0^00\ct'^0;0^N0)o^*''^M0i \o

00

c o o • • • *> u o o o c o o o o o

O O o • • • u u u o o o c o o o o o

o o o o o o o o o o • • • • • • • • • ,

uiwoJoJUUMMwrowrurororoM»-»-»-»-»-»-.-' ^ ' ^ ' ^ " • • O O O O O O O O O O O O O O O O O O O O O O O C O O O O O

O O O O O C O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O C O

O O o o • *

O o o o o o o o o o o o

o o

o o o c O O

O O O O O O O O O O O O O O O O O O O • • • • • • • • • • • * • • • • •

• - • • - > 0 0 0 0 0 0 0 0 0 0

O O O O O O O O O O O O O O • • > • • • • • • • • • • • 004>f>UWf\)l\)*'.w004>f' 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O • • • • • • • • * • • • • • CJUt\)l\)w#.oO*'-P-UWI\)N O l O O l O O l O O l O O I O O l O O i O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O • • • • • • • • • • • • • • »-*»004>'>WUI\)M^»'-'00 O l O O l O O l O O l O O I O O l O O i O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O • • • • • • •

O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O

UUU'UUUUUICJOJUUlOJOJUJCJUU'aJOJUOJUOJCJUUUlOJOJCUUOiUUOJOJUUUUU O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O O

o o o o

o o o o

o o o o

o o o o o o

o o o o o o o o

Page 112: The microwave dielectric properties of chalcogenide glasses

99

1 • 0 0 0 0 5 . 0 0 2 8 5 6 ^ 2 6 9 1

1 • 0 0 0 0 5 . 0 2 3 0 5 6 - 0 8 8 3

1 • 0 0 0 0 5 . 0 4 3 3 5 5 ^ 9 0 8 5

1 • 0 0 0 0 5 . 0 6 3 6 5 5 . 7 2 9 8

1 • 0 0 0 0 s . 0 8 4 1 5 5 . 5 5 2 1

1 • 0 0 0 0 5 . 1 0 4 6 5 5 . 3 7 5 4

1 • 0 0 0 0 5 . 1 2 5 2 5 5 ^ 1 9 9 7

1 • 0 0 0 0 5 . 1 4 5 9 5 5 . 0 2 5 1

1 • 0 0 0 0 5 . 0 1 0 1 5 6 . 8 9 4 8

1 • 0 0 0 0 5 . 0 3 7 8 5 6 . 7 1 3 2

1 • 0 0 0 0 5 » 0 5 7 6 5 6 . 5 3 2 7

1 • 0 0 0 0 5 . 0 7 7 5 5 6 . 3 5 3 1

1 • 0 0 0 0 5 . 0 9 7 4 5 6 . 1 7 4 5

1 • 0 0 0 0 5 . 1 1 7 5 5 5 . 9 9 7 1

1 • 0 0 0 0 5 . 1 3 7 6 5 5 . 8 2 0 4

1 • 0 0 0 0 5 . 1 5 7 9 5 5 . 6 4 4 9

1 • 0 0 0 0 5 . 1 7 8 2 5 5 . 4 7 0 4

1 • 0 0 0 0 5 . I 9 8 6 5 5 . 2 9 6 8

1 . 0 0 0 0 5 . 0 7 3 1 5 7 . 1 5 1 9

1 • 0 0 0 0 5 . 0 9 2 5 5 6 . 9 7 1 6

1 • 0 0 0 0 5 . 1 1 2 0 5 6 . 7 9 2 3

1 • 0 0 0 0 5 . 1 3 1 6 5 6 . 6 1 3 9

1 • 0 0 0 0 5 . 1 5 1 2 5 6 . 4 3 6 6

1 • 0 0 0 0 5 . 1 7 1 0 5 6 . 2 6 0 2

1 • 0 0 0 0 5 « 1 9 0 8 5 6 . 0 8 4 8

1 • 0 0 0 0 5 . 2 1 0 8 5 5 . 9 1 0 4

1 • 0 0 0 0 5 . 2 3 0 8 5 5 . 7 3 7 0

1 • 0 0 0 0 5 . 2 5 0 9 5 5 . 5 6 4 5

1 • 0 0 0 0 5 . 1 2 7 8 5 7 . 4 0 5 1

1 • 0 0 0 0 5 . 1 4 6 6 5 7 . 2 2 6 0

1 • 0 0 0 0 5 . 1 6 6 0 5 7 . 0 4 8 0

1 • 0 0 0 0 5 . 1 8 5 3 5 6 . 8 7 0 9

1 • 0 0 0 0 5 . 2 0 4 7 5 6 . 6 9 4 7

1 • 0 0 0 0 5 . 2 2 4 1 5 6 . 5 1 9 5

1 • 0 0 0 0 5 . 2 4 3 7 5 6 . 3 4 5 3

1 • 0 0 0 0 5 . 2 6 3 3 5 6 . 1 7 2 0

1 • 0 0 0 0 5 . 2 0 3 1 5 5 . 9 9 9 7

1 • 0 0 0 0 5 . 3 0 2 9 5 5 . 8 2 8 3

0 . 1 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 1 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 2 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

V ) . 3 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 3 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 0 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 0 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 1 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 1 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 2 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 2 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 3 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 3 5 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 4 0 0 0 0 . 1 3 0 0

0 . 4 0 0 0 0 . 4 5 0 0 0 . 1 3 0 0

1 1 1 1 1 1

1 1

1 1 1 1

1 1 1

i 1 1 I 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

Page 113: The microwave dielectric properties of chalcogenide glasses

oiciuiyiyiyioio'cntnoiotuimuiyioiyiuioiui • • • • • • • • • • » • • • • • uioiuioicnuiyimyiyiyiyjuiyioioi

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

( j i y i y i u i c n m o i u i u i • • • • • • • • •

C0O4>NO0:0\->t\)

•-o>»-ouiwf\3rooj

ciuiuiyiyiuiyiyio^ • • • • • • • • • • Ok->-00000>0<0 ow^o3o\4>tooa)0^ •- o o -O a 02 >1 » 0 0 tny5oroc>0(;i>-S(;i

• • • • • • • • • vc0000>0tj0t0<0 •P'-^UIUI^-OSOIU croDso^yi-is-WM"' •P-W>*00>-U(JlvC

• • • * • * • • • • vocDooiOvOicoajo) "•voroocDO>u>-»o>j

uioiuiuiuiyiuiwoiuioitnuioiuiuiuiuiaicJicnuitncnuitntntncnoiinmuiuiyiuiwyi Ul Ul U1 01 01

o o c o o • • • • •

o o • •

o o o o o o o o o O O o o o o o O O C O O

o o « •

o o c o o o

o o o O C o # * # # # # » - o o c o o o c o o o o o o o o o o o o o o o o

o o o

o o o o o o o o

vCO<C>0\0<JOO<OvOiOtOvOiO<C«C * • •

o o

\ û \ û ^ > £ l ' û \ û \ C ^ O O O O O O O O

o o o o

(X CXt 0: 03 09 03 o o o o o o o o o o

«0 0 0 • • •

O D O S o c o o o o

o o

o o o o o o o o o

^•^uuirow^-t-o o i o u > o o i o u i o o \ o o o o o o o o o o o o o o o o o o

o o o o o o o o o o • • • • • • • • • • o-P'-P'WwroN'-^-o o o i o u i o u i o o i o m o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o • • * • • • • • * o^-p-ojuruw"-'^ ooiooicoioyio o o o o o o o o o o o o o o o o o o

o o o o o o o o o o • • • • • • • • • •

o i o o i o o i o o i o y i o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o • * • • • • • • • « •

O O O O O O O O O O O O O O O O O O O O O O # # # # # # # # # # # # # # # # # # # # # #

o o o o o

W U U W U W U U W U U U U U U W U U W U W W W W U W W W W U W W W W W W W W O O O O O O O O C O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O C C O O O O C O O O O O O O O O O O O O O O O O O

Page 114: The microwave dielectric properties of chalcogenide glasses

101

12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 1 2 . 0 0 0 0 12.0000 12.0000 12 .0000 12 .0000 12 .0000 12.0000 1 2 . 0 0 0 0 12.0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000 12 .0000

4 .7703

4 .7915

4 .8128

4 .8343

4 .8558

4 .8774

4 .8991

4 .9210

4 .9429

4 .9649

4 .8263

4 .8472

4 .8682

4 .8893

4 .9105

4 .9318

4 .9532

4 .9747

4 .9962

5 .0179

4 .8819

4 .9025

4 .9232

4 .9439

4 .9648

4 .9857

5 .0068 5 . 0280 5 .0492 5 .0706

4 .9371

4 .9574 4 .9777 4 .9981

5 .0187

5 .0393 5 .0601 5 . 0809

5 .1018

5 .1228

56 .0490

55 .8640

55 .6801

55 . 4975

55 .3158

55 .1354

54 .9560

54 .7778

54 .6 007 54 . 4248

56 .3260

56 .1424 55 .9599 55 .7786

55 . 5983

55 .4191

55 .2410

55 .0641

54 .3882

54 . 7135

56 . 5987

56 .4165

56 .2354

56 .0553

55 . 8763 55 . 6985

55 .5217

55 . 3460 55 .1714 54 .9978 56 .8670

56 .6863

56 . 5065 56 .3278 56 .1501

55 . 9736

55 . 7981

55 .6236

55 .4501

55 .2778

9 .6000 9 .6000 9 .6000 9 .6000

9 .6000

9 .6000

9 .6000

9 .6000

9 .6000 9 .6000

9 .7000

9 .7000

9 .7000 9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .8000

9 .8000 9 .3000 9 . 8 0 0 0 9 .8000

9 .8000 9 .8000

9 .8000

9 .8000

9 .8000 9 .9000

9 .9000

9 .9000

9 .9000

9 .9000

9 .9000

9 .9000

9 .9000 9 .9000 9 .9000

0.0000 0 .0500

0 . 1 0 0 0 0 .1500

0 . 2 0 0 0 0 .2500 0 .3000

0 .3500

0 .4000

0 .4500

0 . 0 0 0 0 0 .0500

0 . 1 0 0 0 0 .1500

0 . 2 0 0 0 0 .2500

0 .3000

0 .35 0 0 0 . 4000

0 .4500

0 . 0 0 0 0 0 .0500 0 . 1 0 0 0 0 . 1500

0.2000 0 .2500

0 .3000

0 .3500

0 .4000

0 .4500

0.0000 0 .0500

0 . 1 0 0 0 0 .1500

0 .2000 0 .2500

0 .3000

0 .3500

0 .4000

0 .4500

0 .1300 0 .1300 0 .1300 0 .1300

0 .1300

b . 1300 0 .1300 0 .1300 0 .1300 0 .1300

0 . 1300

0 .1300

0 .1300

0 . 1300

0 .1300

0 . 1300

0 .1300

0 .1300

0 . 1300

0 .1300

0 .1300

0 .1300

0 .1300

0 . 1300

0 . 1300 0 .1300 0 . 130 0

0 .1300

O . 1300

0 . 1300

0 .130 0

0 .1300

0 .1300

0 . 1300

0 . 1300

0 . 1300

0 . 1300

0 . 1300 0 .1300 0 .1300

Page 115: The microwave dielectric properties of chalcogenide glasses

102

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

12 .4000

4 .8106

4 .8319

4 .8U30

4 .8743

4 .8957

4 .9172

4 .9388

4 .9605

4 .9823

5 .0041

4 .8663

4 .8870

4 .9079

4 .9288

4 .9498

4 .9710

4 .9922

5 .0136

5 . 0350

5 . 0566

4 .9213

4 .9417

56 .4026

56 .2194

56 .0374

55 . 8565 55 . 6767

55 .4980 55 . 3205

55 .1441

54 .9688

54 .7946

56 .6775

56 .4957

56 .3152

56 . 1356

55 . 95 73 55 .7799 55 . 6038

55 . 42 87

55 .2547

55 .0817

56 . 94 80

56 . 7677

9 .6000

9 .6000

9 .6000

9 .6000

9 .6000

9 .6000

9 .6000

9 .6000

9 .6000

9 .6000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .7000

9 .8000

9 .8000

0.0000 0 .050 0

0 .1000 0 .1500 0.2000 0 .2500 0 .3000

0 .350 0

0 .4000

0 .4500

0 . 0 0 0 0 0 .0500

0 .1000 0 .1500

0.2000 0 .2500

0 .3000

0 .3500

0 .4000

0 .4500 0.0000 0 .0500

0 .1300

0 .1300

0 .1300

0 .1300

0 .1300

0 .1300

0 .1300 0 .1300 0 .1300

0 .1300

0 .1300

0 .1300

0 . 1300

0 .1300

0 .1300

0 .1300

0 . 1300

0 . 1300

0 .1300

0 .1300

0 .1300

0 .1300

Page 116: The microwave dielectric properties of chalcogenide glasses

103-104

APPENDIX D;

VON HIPPEL SHORT-CIRCUIT METHOD

The technique of deriving relative permittivity from Voltage Standing

Wave Ratio (VSWR) measurements was first reported by Von Hippel (1954).

Standing waves are established in a waveguide whenever a mismatch occurs.

For our purposes, a short was placed at the end of the waveguide. Figure

19 shows the standing wave pattern for the shorted waveguide. By inserting

a regular shaped dielectric sample in front of the short, the standing wave

pattern is altered as shown in Figure 19.

Once the null location and width is determined for the empty and sample

present cases, the relative permittivity can be determined from equations

(D-1) and (D-2).

(D-1) c

tanh Y/ -IX 1= - J £_ = —a (D-2)

1 - J ISS

where = free space wavelength

= cutoff wavelength of waveguide

= guide wavelength

d = thickness of sample

Page 117: The microwave dielectric properties of chalcogenide glasses

105

^2 = +

» complex propagation constant of the sample

Emin Emax '

= inverse standing wave ratio

2^ = distance from sample to first null

Note that equation (d-2) is a transcendental equation and has an

infinite number of solutions. Prior knowledge of the approximate dielectric

constant and the use of two samples of different thicknesses but like

material will yield a unique solution.

If the dielectric to be measured has an anticipated loss tangent less

than 0.1, the real portion of the propagation constant can be disregarded

and the equations simplified to;

(P-3) c

tan p„d "^g X )

-o

2 2TT2

2 l + tanTfy--

loss tangent = •^ [l - —][ ^ ] (D-5) X e' „ tan P d

l + t a r f p g d .

These equations can be solved by a computer program. Such a program

was developed by Nelson, et al. (1972).

Page 118: The microwave dielectric properties of chalcogenide glasses

106

APPENDIX E:

TABLES FOR AS-TE-GE SAMPLES

Page 119: The microwave dielectric properties of chalcogenide glasses

107

F R E O A M P L - 0 8 P H A S E - O G E R P R I M E E R P P T H I C K N E S

8 * 0 0 0 0 Z s 8 0 0 0 1 3 6 , 2 8 6 8 1 6 * 8 0 0 0 1 . 0 0 0 0 C . 4 4 8 4

a „ 0 0 0 0 9 7 9 4 1 3 6 . 4 5 7 9 1 6 . S O O O 1 . 0 5 0 0 G . 4 * 3 4

8 . 0 0 0 0 0 7 8 0 1 , 3 6 r 6 2 4 4 Î . 5 - 8 0 0 0 1 - 1 0 0 0 0 . 4 4 8 4

8 - 0 0 0 0 3 . I 7 5 9 1 3 6 , 7 8 6 4 1 6 . 8 0 0 0 1 , 1 5 0 0 0 f 4 4 8 A -

8 » 0 0 0 0 3 r 2 7 3 0 1 3 6 - 9 4 4 1 1 6 » 8 0 0 0 1 - 2 0 0 0 0 , & 4 8 &

8 . 0 0 0 0 3 . 3 6 9 3 1 3 7 , 0 9 7 4 1 6 r 3 0 0 0 1 . 2 5 0 0 0 * 4 4 8 4

8 . 0 0 0 0 3 - 4 6 4 8 1 3 7 . 2 4 6 7 J . e . 8 0 0 0 1 r 3 0 0 0 0

8 . 0 0 0 0 3 . 5 5 0 6 1 3 7 . 3 9 2 2 1 6 . 8 0 0 0 1 . 3 5 0 0 0 . A A R A

8 . 0 0 0 0 3 . 6 5 3 7 1 3 7 . 5 3 3 7 1 6 . 8 0 0 0 1 . 4 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 3 . 7 4 7 1 1 3 7 . 6 7 1 5 1 6 . 8 0 0 0 1 . 4 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 3 . 8 3 9 8 1 3 7 . 8 0 5 7 1 6 . 8 0 0 0 1 . 5 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 3 . 9 3 1 7 1 3 7 . 9 3 6 4 1 6 . 8 0 0 0 1 . 5 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 0 2 3 1 1 3 8 . 0 6 3 9 1 6 . 8 0 0 0 1 . 6 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . I 1 3 7 1 3 8 . 1 8 8 0 1 6 . 8 0 0 0 1 . 6 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 2 0 3 7 1 3 8 . 3 0 8 9 1 6 . 8 0 0 0 1 . 7 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 2 9 3 1 1 3 8 . 4 2 6 6 1 6 . 8 0 0 0 1 . 7 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 3 8 1 8 1 3 8 . 5 4 1 5 1 6 . 8 0 0 0 1 . 8 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 4 6 9 9 1 3 8 . 6 5 3 5 1 6 . 8 0 0 0 I . 8 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 5 5 7 3 1 3 8 . 7 6 2 6 1 6 . 8 0 0 0 1 . 9 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 6 4 4 2 1 3 8 . 8 6 9 0 1 6 . 8 0 0 0 1 . 9 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 7 3 0 5 1 3 8 . 9 7 2 8 1 6 . 8 0 0 0 2 . 0 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 8 1 6 2 1 3 9 . 0 7 4 0 1 6 . 8 0 0 0 2 . 0 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 4 . 9 0 1 4 1 3 9 . 1 7 2 6 1 6 . 8 0 0 0 2 . 1 0 0 0 0 . 4 4 3 4

8 . 0 0 0 0 4 . 9 8 5 9 1 3 9 . 2 6 9 0 1 6 . 8 0 0 0 2 . 1 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 0 6 9 9 1 3 9 . 3 6 2 8 1 6 . 8 0 0 0 2 . 2 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 1 5 3 4 1 3 9 . 4 5 4 5 1 6 . 8 0 0 0 2 . 2 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 2 3 6 4 1 3 9 . 5 4 4 0 1 6 . 8 0 0 0 2 . 3 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 3 1 8 8 1 3 9 . 6 3 1 2 1 6 . 8 0 0 0 2 . 3 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 4 0 0 7 1 3 9 . 7 1 6 4 1 6 . 8 0 0 0 2 . 4 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 4 8 2 0 1 3 9 . 7 9 9 5 1 6 . 8 0 0 0 2 . 4 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 5 6 2 9 1 3 9 . 8 8 0 7 1 6 . 8 0 0 0 2 . 5 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 6 4 3 3 1 3 9 . 9 6 0 0 1 6 . 8 0 0 0 2 . 5 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 7 2 3 2 1 4 0 . 0 3 7 3 1 6 . 3 0 0 0 2 . 6 0 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 8 0 2 6 1 4 0 . 1 1 3 0 1 6 . 8 0 0 0 2 . 6 5 0 0 0 . 4 4 8 4

8 . 0 0 0 0 5 . 8 8 1 6 1 4 0 . 1 8 6 8 1 6 . 8 0 0 0 2 . 7 0 0 0 0 . 4 4 8 4

Page 120: The microwave dielectric properties of chalcogenide glasses

108

8 . 5 0 0 0 5 . 0 7 4 8 1 4 9 . 4 2 4 0 1 6 . 0 0 0 0 2 . 3 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 5 . 1 6 1 1 1 4 9 . 4 0 7 0 1 6 . 0 0 0 0 2 . 4 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 5 . 2 4 6 8 1 4 9 . 3 8 9 8 1 6 . G O O D 2 . 4 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 5 . 3 3 1 0 1 4 9 . 3 7 2 7 1 6 . 0 0 0 0 2 . 5 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 5 . 4 1 6 4 1 4 9 . 3 5 5 4 1 6 . 0 0 0 0 2 . 5 5 0 0 Q . 4 4 8 4

8 . 5 0 0 0 5 . 5 0 0 3 1 4 9 . 3 3 8 0 1 6 . 0 0 0 0 2 . 6 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 5 . 5 8 3 7 1 6 9 . 3 2 0 7 1 6 . 0 0 0 0 2 - 6 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 5 . 6 6 6 6 1 4 9 . 3 0 3 2 1 6 . 0 0 0 0 2 . 7 0 0 0 0 , 4 4 8 4

8 . 5 0 0 0 0 . 6 7 6 4 - 2 0 8 . 4 9 0 2 1 6 . 1 0 0 0 0 . 2 5 0 0 0 . 4 4 3 4

8 . 5 0 0 0 0 . 3 0 6 2 - 2 0 8 . 5 0 5 1 1 6 . 1 0 0 0 0 . 3 0 0 0 0 , 4 A S A

8 . 5 0 0 0 0 . 9 3 4 2 - 2 0 8 - 5 2 0 6 1 6 - 1 0 0 0 0 . 3 5 0 0 0 . 6 6 8 4

8 . 5 0 0 0 1 . 0 6 0 7 - 2 0 8 . 5 3 6 9 1 6 . 1 0 0 0 0 . 4 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 1 . 1 8 5 5 -2 0 8 . 5 5 3 8 1 6 . 1 0 0 0 0 . 4 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 1 . 3 0 0 8 -2 0 8 . 5 7 1 4 1 6 . 1 0 0 0 0 . 5 0 0 0 0 .4. A 34

8 . 5 0 0 0 1 . 4 3 0 5 - 2 0 8 . 5 0 9 5 1 6 . 1 0 0 0 0 . 5 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 1 . 5 5 0 9 -2 0 8 . 6 0 8 1 1 6 . 1 0 0 0 0 . 6 0 0 0 o . 4 4 8 4

8 . 5 0 0 0 1 . 6 6 9 8 - 2 0 6 . 6 2 7 3 1 6 . 1 0 0 0 0 . 6 5 0 0 0 , 4 < 1 8 4

8 . 5 0 0 0 1 . 7 8 7 3 - 2 0 8 . 6 4 6 9 1 6 . 1 0 0 0 0 . 7 0 0 0 0 . 6 4 8 4

8 . 5 0 0 0 1 . 9 0 3 5 - 2 0 3 . 6 6 7 0 1 6 . 1 0 0 0 0 . 7 5 0 0 0 . 4686

8 . 5 0 0 0 2 . 0 1 8 4 - 2 0 8 . 6 8 7 7 1 6 . 1 0 0 0 0 . 8 0 0 0 0 o 4 ' 4 8

8 . 5 0 0 0 2 . 1 3 2 1 - 2 0 8 . 7 0 8 5 1 6 . 1 0 0 0 0 . 8 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 . 2 4 4 4 - 2 0 8 . 7 2 9 8 1 6 . 1 0 0 0 0 . 9 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 . 3 5 5 6 - 2 0 8 . 7 5 1 6 1 6 . 1 0 0 0 0 . 9 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 # 4 6 5 6 — 2 0 8 . 7 7 3 7 1 6 . 1 0 0 0 1 . 0 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 . 5 7 4 5 - 2 0 8 . 7 9 5 9 1 6 . 1 0 0 0 1 . 0 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 . 6 8 2 3 - 2 0 8 . 8 1 8 5 1 6 . 1 0 0 0 1 . 1 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 . 7 8 8 9 -2 0 8 . 8 4 1 5 1 6 . loop 1 . 1 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 . 8 9 4 5 - 2 0 8 . 8 6 4 6 1 6 . 1 0 0 0 1 . 2 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 2 . 9 9 9 1 - 2 0 8 . 8 8 8 0 1 6 . 1 0 0 0 1 . 2 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 1 0 2 7 - 2 0 8 . 9 1 1 6 1 6 . 1 0 0 0 1 . 3 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 2 0 5 2 - 2 0 8 . 9 3 5 5 1 6 . 1 0 0 0 1 . 3 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 3 0 6 9 -2 0 8 . 9 5 9 6 1 6 . 1 0 0 0 1 . 4 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 4 0 7 6 - 2 0 8 . 9 8 3 8 1 6 . 1 0 0 0 1 . 4 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 5 0 7 3 - 2 0 9 . 0 0 8 0 1 6 . 1 0 0 0 1 . 5 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 6 0 6 2 — 2 0 9 . 0 3 2 5 1 6 . 1 0 0 0 1 . 5 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 7 0 4 2 - 2 0 9 . 0 5 7 2 1 6 . 1 0 0 0 1 . 6 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 8 0 1 3 -2 0 9 . 0 8 1 9 1 6 . 1 0 0 0 1 . 6 5 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 8 9 7 6 -2 0 9 . 1 0 6 6 1 6 . 1 0 0 0 1 . 7 0 0 0 0 . 4 4 8 4

8 . 5 0 0 0 3. 9 9 3 1 1 5 0 . 8 6 8 3 1 6 . 1 0 0 0 1 . 7 5 0 0 0 . 4 4 8 4

Page 121: The microwave dielectric properties of chalcogenide glasses

109

9.0000 2.7594- 198. 0851 15. 4000 1 .0000 0 .4484

9.0000 2.863 7- 198. 2507 15. 40 00 1 • 0500 0 .4434

9.0000 2.9671- 198. 4129 1 5. 4000 1 .1000 0 .4484

9.0000 3•0696— 19 8. 5722 1 5. 4000 1 . 1500 0 .4484

9.0000 3.1711-198. 7285 15. 4000 1 .2000 0 .4484

9. 0000 3. 271 8- 198. 8818 1 5. 4000 1 .2500 0 .4484

9.0000 3.3716-199. 0322 15. 40 00 1 .3000 0 .4434

9.0000 3.470 6- 199. 1799 1 5. 4000 1 .350 0 0 . 4484

9.0000 3.5687- 199. 3251 15. 4000 1 .4000 0 .4434

9.0000 3.6661— 199. 4676 1 5. 4000 1 .4500 0 .4484

9.0000 3.7627-199. 6076 15. 4000 1 .5000 0 .4484

9.0000 3.8585-199. 7451 15. 4000 1 .5500 0 .4484

9.0000 3.9535- 199. 8801 1 5. 4000 1 .6000 0 .4434

9.0000 4. 0478- 200- 0128 15. 4000 1 .6500 0 .4464

9.0000 4,1414- 20 0. 1433 1 5. 4000 1 .7000 0 -44S4

9,0000 4.2343-200. 2715 15. 40 00 1 .7500 0 . 4484

9.0000 4, 3264- 200. 3 976 15. 4000 1 . BO 0 0 0 u4 4 84

9 .0000 4.4179- 200. 5216 15. 4000 1 .8500 0 .4434

9.0000 4.5087- 20 0- 6434 1 5 - 4000 1 .9000 0 .4484

9.000U 4-598 9- 20CU 7632 IS-» 4-000 1. .9500 0 .4&84

9.0000 4 o 6884— 20 0 . 8812 Î.5 o 40 00 2 ,0000 0 « 44Ô4

9.0000 4. 77 73- 2 0 Or 9970 I 5 r 4000 2 < 050 0 0 , 4. e /J.

9 .0000 4 « 8656— 20 I . 1111 1 5 - , tOOJ 2 -,1000 0 n 4484

9,0000 4.9532- 201. 2232 1 40 00 2 . i s c o 0 .44 a*

9.0000 5.0 403- 20 1. 3336 1 5« 40 00 2 .2000 0 . 4 8

9.0000 5. 1 26 8-20 I- 4423 f. 5 • 40 00 2 .2530 0

9.0000 5.2128- 201. 5491 15. 4000 2 .3000 0 .4484

9.0000 5. 2981- 201. 6542 15. 4000 2 .3500 0 .443 4

9.0000 5.3830- 201. 7578 1 5. 4000 2 .4000 0 .4484

9.0000 5. 4672- 201. 3595 15. 4000 2 .4500 0 .4484

9.0000 5.5509- 201. 9598 1 5. 4000 2 .5000 0 .4484

9.0000 5.6342-202. 0585 15. 4000 2 .5500 0 .4484

9.0000 5.7169-202. 1556 15. 4000 2 .6000 0 .4484

9.0000 5.7991- 202. 2512 t 5. 4000 2 .6500 0 .4484

9.0000 5.8808-202. 3454 15. 4000 2 .7000 0 .4484

Page 122: The microwave dielectric properties of chalcogenide glasses

110

9.5000 5. 6636-192. 3527 15. 1000 2 .35 00 0 «4484

9.5000 5- 942 1- 1.92- 5232 1 5. 1 0 0 0 2 .4000 0 4 84

9,5000 6. 0203- 192. 691 1 15. 1 0 0 0 2 .4500 0 .4484

9.5000 6. 0981-192. 8559 15. 1 0 0 0 2 .5000 0 .4484

9.5000 6. 1755- 193. 0182 15. 1000 2 .5500 0 .4484

9.5000 6. 2526-193. 1778 15. 1000 2 .6000 0 .4484

9.5000 6. 3294- 193. 3348 15. 1000 2 .650C 0 .4484

9.5000 6. 4058- 193. 4890 15. 10 00 2 .70c0 0 .4484

9.5000 3. 6732- 185. 2390 1 5. 2000 1 .0000 0 .4484

9.5000 3. 761 8- 185. 5206 15. 2000 1 .0500 0 .4484

9.5000 3. 8500- 185. 7970 1 5. 2000 1 .1000 • 0 .4484

9.5000 3. 9377- 186. 0683 15. 2000 1 .1500 0 .4484

9.5000 4. 0250- 186. 3345 15. 2000 1 .2000 0 .4484

9.5000 4. 1118-186. 5962 1 5. 2000 1 .2500 0 .4434

9.5000 4. 1982-186. 8529 15. 2000 1 .3000 0 .4484

9.5000 4. 2841- 187. 1 052 1 5. 200J 1 .3500 0 .4484

9.5000 4. 3696-187. 3527 15. 2000 1 .4000 0 .4484

9.5000 4. 4547- 187. 5959 15. 20 00 1 .4500 0 .4484

9.5000 4. 5393-187. 8349 15. 2000 1 .5000 0 .4484

9.5000 4. 623 5-188. 0695 15. 2000 1 .5500 0 .4484

9.5000 4. 7073- 188. 3001 15. 2000 1 .6000 0 .4484

9.5000 4. 7906-188. 5266 15. 2000 1 .6500 Q .4484

9.5000 4. 873 6- 1 88. 7493 1 5. 2000 1 .7000 0 .4484

9.5000 4. 9561- 188. 9680 15. 2000 1 .7500 0 .4484

9.5000 5. 03 33- 189. 1830 15. 2000 1 .8000 0 .4484

9.5000 5. 1201- 189. 3944 15. 2000 1 .8500 0 .4484

9.5000 5. 2014-189. 6021 15. 2000 1 .9000 0 .4484

9.5000 5. 2 82 3-189. 8061 15. 2000 1 .9500 0 • 4 4 8 4

9.5000 5. 362 9- 190. 0067 15. 2000 2 .0000 0 .4484

9.5000 5. 443 1-190. 2043 15. 2000 2 .0500 0 .4484

9.5000 5. 5229-190. 3980 15. 2000 2 .1000 0 .4484

9.5000 5. 6024- 190. 5888 15. 2000 2 .1500 0 .4484

9.5000 5. 6814-190. 7762 15. 2000 2 .2000 0 . 4 4 8 4

9.5000 5« 7602- 190. 96 06 15. 2000 2 .2500 0 .4484

9.5000 5. 8385-191. 1419 15. 2000 2 . 3 0 0 0 0 . 4 4 8 4

9.5000 5. 91 65-191 . 3202 a s . 2000 2 .3500 0 . 4 4 8 4

9.5000 5. 994 2- 191. 4955 15. 2000 2 .4000 0 . 4 4 8 4

9.5000 6« 071 4-19 t . 6678 15, 2000 2 ,4500 0 . 4 4 8 4

9.5000 6. 14 34- 191. 8374 1 5. 2000 2 .5000 0 . 4 4 8 4

Page 123: The microwave dielectric properties of chalcogenide glasses

\

»- #» «A M# 1— H- M r-* w w M" rm r— MA !— t-» w » 1 >-* »-» t— M o o O o o O o o o o o o o o o o o o o o o o o o o o o o o o ô o o o o o o o • • • • • • • • • « • • • • • • * • • • • • t 9 s « • • • c • • • o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

N o> o » » o 9 9

» o 0 o Ov Ok Ul Ul s s

Ul m 01 on Ul Ul Ul 01 Ul Ul 4> •p- 4> 6 6 7 • « * • • # • • • * • • • • • • • • « • • 1 a & « * « * * • O o o o s s 0> Ul u w N o o \0 03 s s 0\ Ul •p- > u M ro w o o \0 c -4 0\ o VÛ \0 *- s — N o w 0> o tv Ul 03 3 «0 N Ul 00 <-• •f» 0> \0 ro Ul -J o CJ C-- CO k> •p- 0* vO c o

s m *0 o N w M ro M ro M »— o vO 00 0\ Ul OJ ro o a o OJ m- o Ul w o -si w o < w ro fo *-1 r

C3 1 N 1

Ul 1 1 T

0» 1 0 1 f s 1 w 1

QB 1 1

u 1 u 1

ro 1 f

-p-1

OJ 1 1

ro 1 M o -J

1

p.-

c\ 1 f 1

o 03 1

01 1 1

cr» 1 D 1 0 1 1

H» «— K> 1— M» f» !-> M t-* l- m p- w œ CD m (S 09 0) CD 03 CD CD CD CD CO 00 C9 03 00 o œ CD 00 03 (fl -\l N s >1 >1 -J >1 •>i s 03 00 CD Ul •P- *- •f» w w u u OJ M M w M *— r" o o o o vO vO o vO ? c o s s s c;\ çn en en • é * • • • • • • • • • • • • A • i *

<0 >1 en u 9 <û N Ul u o 00 c 4> ro o f' M vO s ro vO p. •p- CD en r\j NO cr. OJ o >1 o CE' c\ o ro u w u fu vo -J Ul u o 0> u vO f- >0 f- CD iO VÛ r- •p- Ul < < CO 03 o f u m o Ul o 01 w Ul u s 0) o M s o 01 s 4» •< s

2.

M o ta o w Ul 00 w •p-s p en o o o\ 05 0» 0 1— vo o s (J< o ro

" >0 N w 0 CP oc OJ vO s 4> en o en

M M H» M f >— V, «-» w K- k— M Ul U) w 01 01 01 Ul Ul 01 Ul Ul Ul Ul Ul Ul 01 Ul 01 Ul Ul 01 Ul J1 Ul en Ul Ul Ul Ul Ul Ul Ul Uî U! Ul <>• :4> •p-* • « » • » * • • • • • # • * • • • • • é i 3 » * » o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o Cl 'Û VÛ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CJ o c c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o u o o o o c o o o o o o

(U N l\) M N M t\> N M M N N M 1 M" h— t—* fO ro tu • • # • • • • • • • • • • • • * • * • • • • , « 1 » t • , * * s 0> o U) 01 •P' •P- u u M f\J o o *0 >o 0> œ N s O' 7' Ul Ul f- •p- w w ro ro o o N 0» D o yi o 01 o Ul O U! o Ul o Ul o 01 o Ul o Ul o Ul o Ul o Ul o Ul o Ul o Ul o Ul o 01 o o 01 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c. o o c o c o c o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • o o Q o • • • • • • * • • • • • • • • • » • * * • à * e • ( * (

•e» •o •p- •p- •p- 4S- *- •p- *- •p- *- •p- 4> •p- •p- > 4» •p- f- 4> f' •p- 4' •p 4»- •p- p-•p- 45- *- f- f- f- •p- 4> •p- •p- •p' -P" f- •p' -p- f- 4» •p> f- f- •p- r> * f' f- f- 4» •p- •>

CD o CD os 00 03 00 03 00 00 03 03 03 c 03 0) CD 03 0) 03 00 03 ce 00 03 00 ce o CD a- Qj 03 0) 03 03 CO 00 •> f- 4> > 4» •p- •p- •p- •P' •p- •p •p- 4» •p- -p- •f» •p- -p •p f- is- > f- 4 f- •p> •> •p- •p- •p- •Ç> f f-

Page 124: The microwave dielectric properties of chalcogenide glasses

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

o i m o i t n y i u i o i o i u î t n o i o i u i u i o i m u i u i o i o i o i u i o i u i u j o i ' j i y i c n u i y i u i c n y i y i c n y i u i u i O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

N N -J s s • • • • • • • Oi Oï U W t\>

m <0 i\) o\ o o U W • - > 0 0 5 - 4 0 ^ ui w o m CI w o 1 I I I I I I

s s s 0* 0 0> C> 0 0* • • • • « •

> - I - o o 00 ro o< o u fo (-

CD U1 <aJ tu 1 I I I

VÛ OB 00 r -

CD -J «C GO I I

•<4 C* 0> Ul \0 Ul 0 » 0 1 >

r rr

0> (Ji 0> • • • y i u )

0> 0> C* '3> P* • •

- . W W N N <-

u u ' w ^ o o o ' û œ o r o c i œ r o s - p -I I I I I I I I

o > o * cr> o> C' u i i n i n

O 00 CP <û «0 vO <0 O i Q i ^

ro o CD o> ui »-

o • -g \ o *

m 0» u » û f -

f -

f' C

CD o N O W f -U1 U CD o CO U

m ui i\) CP m «

N N N 4 > U U Û W N I \ ) t \ ) N

r o \ O S - > ! \ J « 3 C < 4 > ' -

• > j c s u i > o < c ( 7 > a « j i n m c D c m — m u i c n u i m

-4 N "4 "<

C D 0 1 O J -< <0 — r\) u o

o M C O

?

r ? o

'vJ

u u 00 o

01 01 yi 01 * > * *

•45 00 o -o-

^ a w • 0 • - œ

"4 -4

O * 0 > 0 1 01

f- rvj vo OJ <ji y)

- J , OJ CO o

3 T ' - < xO O CO « s s

01 0> OJ M O 01 03 01

Ch l\)

I f- i-i ~J -x)

CO CO C)

I I

^ N N * * • > » U S \ 0 N 0 \ 0 05 01 O J > - ( Û 1 I I

S

01 CJ o o o c j w

N f 01 00

-J 01 W M M M O

01 0» o

u i u i 0 1 0 1 0 1 0 1 0 1 0 i m 0 i u i 0 i u i u i 0 1 0 1 0 1 0 ) 0 l 0 1 0 1 0 1 0 ) 0 l 0 1 0 l m 0 1 0 1 0 1 0 1 4 > f ' 4 > - > f - ^ f . f .

O O O O O O O O O O O O O O O O O O C O O O O O O O O C > C > O O V O O \ O N O > £ ) « D V L > V O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O U O O O

to

• • • • • • * • • § • • • • • • • • • • • • • • • • • O l ^ f ' W U N r O ' - ' ' - O O O w 3 O O 0 S ^ O \ O O l O 1 4 > 4 > U W M N ' - » - O O S 3 O \ O 1 O l ' > ' > O J ooiouiouiouiooiooiooiooiooiooioyiouio'jiooiooioooioyioo'ooi O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O

o o o o o o o o o o • • # • • • • • • •

o o c o c o œ o D O c c D O D C c œ

o o o o o o o o o o • • • * • • • • • •

0 9 ( 0 0 ) 0 5 0 5 0 ) 0 ) 0 5 0 5 0 0

o o o o o o o o o * # « * * * # * 3

C3 03 œ 05 œ 0) 00 CO œ

o o o o o o o o o o

c c o o j C E o ^ a o o j O O o

Page 125: The microwave dielectric properties of chalcogenide glasses

113

11 • 0000 7. 0197- 163. 1347

11 .0000 7. 0677-163. 3928

11 .0000 7. 1 159- 162U 64 78

11 • 0000 7 » 1643- 163. 8999

11 .0000 7. 2130-164. 1489

11 • 0000 7 » 2619- 164. 3952

11 • 0000 7 » 311 1-164. 6383

11 . 0000 7 » 3604-164. 8784

11 • 0000 7. 4100- 165. 1 156

11 • 0000 7. 4598-165. 3499

11 • 0000 7. 5098-165. 5814

11 • 0000 7. 5599- 165. 81 00

11 • 0000 ?• 6103- \e>€>. 0357

11 • 0000 ?• 6609- 166. 25 85

11 .0000 7. 7116- 166. 4786

11 • 0000 7. 7625- 166. 6953

11 • 0000 7. 8136- 166. 9103

11 • 0000 7. 8648-167. 1220

11 • 0000 7. 9162- 167. 331 I

11 .0000 7. 967 8-167. 5372

11 • 0000 8. 019 5- 16 7. 74 08

11 .0000 6. 07 13- 167. 9415

11 • 0000 8. 1233- 168. 1397

11 . 0000 8. 1755-108. 3352

11 .0000 8. 227 7- 168. 5281

11 .0000 R. 280 1-168. 7185

11 .0000 8. 332 7-16 8- 9062

11 .0000 8. 3853- 1 69. 0914

11 . 0000 8. 438 1- 169. 2739

11 .0000 8. 491 0- 159* 454 0

1 i .0000 8. 5439- 6316

11 . 00 00 8» 5970-169. 8067

11 .0000 8. 6503- 169. 9794

5. 3000 1 • 1000 0 • 4484

5. 3000 1 • 1500 0 • 4484

5. 3000 1 • 2000 0 • 4484

Sm 3000 1 • 2500 0 • 4484

5^ 3000 1 • 3000 0 • 4484

5^ 3000 1 • 3500 0 • 4484

5. 3000 1 • 4000 0 • 4484

5. 3000 1 • 4500 0 .4484

5^ 3000 1 • 5000 0 • 4484

5 • 3000 1 • 5500 0 • 4484

5. 3000 1 • 6000 0 .4484

5. 3000 1 • 6500 0 .44 84

5. 3000 1 • 7000 0 .4484

5 . 3000 1 • 7500 0 .4484

5. 3000 1 .8000 0 .4484

5. 3000 1 .8500 0 .4484

5. 3000 1 • 9000 0 .4484

5. 3000 1 • 9500 0 .4484

5. 3000 2 .00 00 0 .4484

5. 3000 2 .0500 0 . 44S4

5. 3000 P. .1000 0 .4484

5. 3000 2 .1500 0 . 4484

5. 3000 2 .200 0 0 . 4434

5 . 3000 2 .2500 0 .4484

5. 30 00 2 .3000 0 .6484

5. 3000 2 .3500 0 .4484

5 . 3000 2 .4000 0 ,4434

5. 3000 2 .4500 0 . 4484

5 . 3000 2 .5000 0 .4424

5. 3000 2 . 55 0 0 0 4 84

5. 3000 2 .6000 0 . 448 A

5. 3000 2 .6500 0 .443 4

5. 3 0 00 2 .7000 0 .4484

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

1

1 1

1 1

1 I I i

Page 126: The microwave dielectric properties of chalcogenide glasses

114

11 .5000 0.0687- 159. 1256

11 .5000 8.1110-159. 3148

11 . 5000 8.1535- 159. 5016

11 .5000 8.1963- 159. 6863

11 .5000 8.2394- 159. 8689

11 .5000 8.2827-160. 0494

11 .5000 8.3263-160. 2277

11 .5000 8.3702- 160. 4039

11 .5000 8.4143- 160. 5780

11 .5000 8.4586-160. 7498

11 .5000 8.5032-160. 9197

11 .5000 8.5479- 161. 0873

11 .5000 8.5930-161. 2530

11 .5000 8.6382- 161. 4164

11 .5000 3.6837- 161. 5778

11 .5000 8.7294-161. 7372

11 .5000 8.7752- 161. 8945

11 .5000 8.0213-162. 0498

11 .5000 3.8677- 162. 2030

11 .5000 8.914 1-162. 3541

11 .5000 8.9608-162. 5033

11 .5000 9.0077- 162. 6503

11.5000 9.0548-162. 7954

11 .5000 9.102 1-162. 9384

11 . 5000 9.1495- 163. 0795

1 1 .5000 9.1971-163. 2 I 88

11 .5000 9. 24 4 9-163. 3559

1 1 .5000 7.2552-153. 7257

11 . 5000 7.2891-153. 9596

1 1 .5000 7.3235- 154. 1915

1 1 .5000 7.3582- 154. 4212

11 • 5000 7.3933-154. 6489

11 .5000 7.4288- 154. 8745

11 .5000 7.4646-155. 09 79

11 .5000 7.5009- 155. 3193

t l .5000 7.5375- 155. 5387

1 1 .5000 7.5744-155. 7558

11 .5000 7.6117- 155. 9709

11 .5000 7.6493-156. 1839

5. 6000 1 • 4000 0 .4484

5. 6000 1 .4500 0 .4484

5. 6000 1 .5000 0 .4484

5. 6000 1 .5500 0 .4484

5. 6000 1 • 6000 0 .4484

5. 6000 1 .6500 0 .4484

5. 6000 1 .7000 0 .4484

5. 6000 1 .7500 0 .4484

5. 6000 1 .8000 0 .4484

5. 6000 1 .8500 0 .4484

5. 6000 1 .9000 0 .4484

5. 6000 1 .9500 0 .4484

5 . 6000 2 .0000 0 .4484

5. 6000 2 .0500 0 .4484

5. 6000 2 .1000 0 .4484

5. 6000 2 .1500 0 .4484

5. 6000 2 .2000 0 .4484

5. 6000 2 .2500 0 .4484

5. 6000 2 .3000 0 .4484

5 . 6000 2 .3500 0 .4484

5. 6000 2 .4000 0 .4484

5. 6000 2 .4500 0 .4484

5. 6000 2 .5000 0 • 4484

5. 6000 2 .5500 0 .4484

5. 6000 2 .6000 0 .4484

5. 6000 2 .6500 0 .4484

5. 6000 2 .7000 0 .4484

5. 7000 0 .2500 0 .4484

5 . 70 00 0 .3000 0 .4484

5. 7000 0 .3500 0 .4484

5 . 7000 0 .4000 0 .4484

5. 70 00 0 .4500 0 .4484

5. 7000 0 .5000 0 . 44 84

5. 7000 0 .5500 0 .4484

5. 7000 0 .6000 0 .4484

5. 70 00 0 .6500 0 .4484

5. 7000 0 .7000 o .4484

5. 7000 0 • 7500 0 .4404

5. 7000 0 .8000 0 .4484

1 1 1 1

1

1 1 1

1 1 1 1 I

1 1 1 1 1 I I 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

1 1 1

Page 127: The microwave dielectric properties of chalcogenide glasses

115

12. 0000 7.9515- 149. 6732 16. 3000 0 .3000 0 .4484

12. 0000 7.9805-149.8155 16. 3000 0 .3500 0 .4484

12. 0000 8.0099- 149. 9565 16. 3000 0 .4000 0 .4484

12. 0000 8.0396-150. 0965 16. 3000 0 .4500 0 .4484

12. 0000 8. 0698- 150. 2350 16. 3000 0 .5000 0 .4484

12. 0000 8. 1003- 150. 3723 16. 3000 0 .5500 0 .4484

12. 0000 8.1312- 150. 5 084 16. 3000 0 .6000 0 .4484

12. 0000 8.1624- 150. 6432 16. 3000 0 .6500 0 .4484

12. 0000 8. 194 0- 150. 7767 16. 3000 0 .7000 0 .4484

12. 0000 8. 2260- 150. 9089 1 6. 3000 0 .7500 0 • 4484

12. 0000 8.2583-151. 0398 16. 3000 0 .8000 0 .4484

12. 0000 8. 291 0-151. 1694 16. 3000 0 .8500 0 .4484

12. 0000 8.32 4 0- 151. 2978 16. 3000 0 .9000 0 .4484

12. 0000 8.3574- 151. 4249 16. 3000 0 .9500 0 .4484

12. 0000 8.391 1-151. 5505 16. 3000 1 .0000 0 .4484

12. 0000 8.425 l-151. 6748 16. 3000 1 .0500 0 .4484

12. 0000 8. 4595-151. 7979 16. 3000 1 .1000 0 .4484

12. 0000 8.4942-151. 9196 16. 3000 1 .1500 0 .4484

12. 0000 8.529 2-152. 0401 1 6. 3000 1 .2000 0 .4484

12. 0000 8.5645-152. 1592 16. 3000 1 .2500 0 .4484

12. 0000 8.6002- 152. 2768 16. 3000 1 .3000 0 .4484

12. 0000 8.636 2-152. 3933 16. 3000 1 .3500 0 .4484

12. 0000 8.6724-152. 5 083 16. 3000 1 .4000 0 .4484

12. 0000 8.7090-152. 6219 16. 3000 1 .4500 0 .4484

12. 0000 8.7459-152. 7343 16. 3000 1 .5000 0 .4484

12. 0000 8.783 1-152. 8454 1 6. 3000 1 .5500 0 .4484

12. 0000 8.8206-152. 9551 16. 3000 1 .6000 0 .4484

12. 0000 8.8584- 153. 0633 16. 3000 1 .6500 0 .4484

12. 0000 8.8964-153. 1703 1 6. 3000 1 .7000 0 .4484

12. 0000 8.9348- 153. 2759 16. 3000 1 .7500 0 .4484

12. 0000 8.9734- X53. 3801 16. 3000 1 .8000 0 .4484

12. 0000 9.0 123-153. 4831 16. 3000 1 .8500 0 .4484

Page 128: The microwave dielectric properties of chalcogenide glasses

116

12.4000 9. 5463- 149. 2135 16. 7 0 0 0 2 .4000 0 .4484

12.4000 9.5875- 149. 2505 16. 7000 2 .4500 0 .4484

12.4000 9.6290-149. 2867 16. 7000 2 .5000 0 .4484

12.4000 9.670 7- 149. 3220 16. 7000 2 .5500 0 .4484

12.4000 9.7127-149. 3565 16. 7000 2 .6000 0 .4484

12.4000 9. 754 9-149. 3901 16. 7000 2 .6500 0 .4484

12.4000 9.7974- 149. 4228 16. 7000 2 . 7000 0 .4484

12.4000 9.8402- 149. 4546 16. 7000 2 .7500 0 .4484

12.4000 8. 1087-146. 5314 16. 8000 0 .3000 0 .4484

12.4000 8.1361- 146. 5981 1 6. 8000 0 .3500 . 0 . 4484

12.4000 8. 1639-146. 6641 16. 8000 0 .4000 0 .4484

12.4000 8.1921-146. 7294 16. 8000 0 .4500 0 .4484

12.4000 8.2206- 146. 7940 1 6. 8000 0 .5000 0 .4484

12.4000 8.2496-146. 8579 16. 8000 0 .5500 0 .4484

12.4000 8.2789- 146. 9210 1 6. 8000 0 .6000 0 .4484

12.4000 8.3 08 6— 1 46. 9834 16. 8000 0 .6500 0 .4484

12.4000 8.338 6-147. 0451 16. 8000 . 0 .7000 0 .4484

12.4000 8.3690- 147. 1060 16. 8000 0 .7500 0 .4484

12.4000 8.3998-147. 1661 16. 8000 0 .8000 0 .4484

12.4000 8.4309- 147. 2255 16. 8000 0 .8500 0 .4484

12.4000 8.462 4-147. 2842 16. 8000 0 .9000 0 .4484

12.4000 8.4942- 147. 3421 16. 8000 0 .9500 0 .4484

12.4000 8.5264- 147. 3991 16. 8000 1 • 0000 0 .4484

12.4000 8.5590-147. 4555 16. 8000 1 .0500 0 .4484

12.4000 8.5918-147. 51 10 16. 8000 1 .1000 0 .4484

12.4000 8.6251-14 7. 5658 16. 8000 1 .1500 0 .4484

12.4000 8.6586-147. 6198 16. 8000 1 .2000 0 .4484

12.4000 8.6925- 147. 6730 16. 8000 1 .2500 0 .4484

12.4000 8. 726 7-147. 7254 16. 8000 1 .3000 0 .4484

12.4000 8.7613-147. 7770 16. 8000 1 .3500 0 .4484

12.4000 8.7962-147. 82 78 16. 8000 1 .4000 0 .4484

12.4000 8.8314-147. 8779 16. 8000 1 .4500 0 .4484

12.4000 8.8669- 147. 9270 16. 8000 1 .5000 0 .4484

12.4000 8.9027- I 47. 9754 1 6. 8000 1 .5500 0 .4484

12.4000 8. 9389-148. 0230 16. 8000 1 .6000 0 .4484

12.4000 8.9753- 148. 0697 16. 8000 1 .6500 0 .4484

Page 129: The microwave dielectric properties of chalcogenide glasses

O O O Q } 0 3 0 B O ) O D 0 3 0 9 0 D • * • » • • • • • • O O O O O O O O O O o o o o o o o o o o O O O O O O O O O O o o o o o o o o o o

m m m w c D m o o m m o o O ) • • • • • • • • • • • • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o D o c o a c D C i c s w C D • • • • • • • • • • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o a o j o o D C o C B a o a • • • • • • • • • • _ o o o o o o o o o o ^ o o o o o o o o o o ~ o o o o o o o o o o ^ o o o o o o o o o o ®

* # # # » # # # # * # # * *

C n ^ ^ W M M > - 0 0 < û < S C 3

^ ^ r o o c x ) c n w * £ > o * w v o u i o ^ o v o o ^ r o o f p - j u i o u ' . » ! -I I I I I I r I 1 I I I

o o o o * • •

s " 4 o m i n N o s » - 0 > W N r o C O M • > u V Û

I I I I I I

o o o • • •

O i f i « C O > 0 i f l < 0 < 0 ( 0 v Q v S ( 0 ^ 0 i 0 < 0 0 9 0 ) 0 > • • • • • • • • • • • • • • • • • *

CO 09 •— V ->J iMf ViM W IW Wl r o c * ' - c n v o o J c * » û i \ ) m > j » 0 ' - w - f > 0 ! u i o * o * o > o i

N N O ^ w u î ' t > O j f \ j r o « o o \ o c i > 4 N > - 4 5 ' > J O l i J O i v O M ( ; i ( B ^ . P ' - > J v O

U 1 U l M O I I I I

O N O J 0 > I I I T

U > - O N A <0 o a> I I I I

O < 0 > 0 <yi o> O' « • • M f O » -O W N O < û N U 1 S O D

v û \ û * û ^ û * û \ 0 s û 0 » û v û 0 v 0 0 u 3 v û v û v û 0 * û ' û * û s û 0 0 rrs in ffi rn /o in rn tn rn rn m rn rn m tn rn rn rv rv N. ^ ^

C -A f -» • *

0 ( J M > Û M U 0 U ! I T I I I I I I

U 3 \ û < 0 < 0 v 0 i û « 0 i 0 ^ 0 v 0 < 0 > 0

• - o c v O \ o œ N N c > 0 ' O i - P ' ^ O J r o r o ' - o o o œ « j N O > i n - P ' U M r j ' - o v û C D rvj N ON ~ ~ ~ ' - - - ui 0* o o t\3 m œ

o 4 > O D r o C 7 N 0 4 > - « j » -^ o \ - > j - > 4 - « j u i r o c o c j • - t j O N \ û * * U i ^ t n o i

f t C D ^ N O •«J O •- M O

ro ui «g - J u > 1 u - p i t i r o v o u i t c r o

l « j W \ 0 4 > U I N N N

l/l o -p-u: vo

• • • • 0 » U l . p U M 0 0 0 0 \ 0 o c f c * N ^ U 1 ro o m m <0

> z T3 r

I 0 CD

? 1 > W )

? o o

0* ©I a 0 • • • *

o \ O N e - G N C \ C N ( y < C \ O N O ^ O D O ^ C N • » • • • » • • • • •

0 > C D « • •

0 I 0 N 0 N 0 N C V 0 N 0 n 0 * 0 > 0 N • • • • • • • • •

O n O N O N C C N O N O N O * © * ® • • • • • • • • • •

W W U W U W W l U U J U U W C J W U U U U U j W U W U U W W W U U U W W W W U W W W U W W W ^ 0» f\ f\ ^ 1^ f\ O /"S ^ f—\ /"> f-\ r*X x-» f» f\ f—\ f-L \ M ^N, M #"* A o o o o o o o o o o o o o o o o c o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o O O O O O O O o O O O O O O O O O O o o o o o o o o o o o o o o o o o o 2

m

O t p m c j i u i u i u i i n m u i Œ • • • • • • • • • • • O O O I Û Œ C D S N O N O N C I m o (ji-o m o (f o U) o Œ o o o o o o o o o o o o o o o o o o o o o o

i n c n o i o i o i o i i n u ' . c j i c f l i r • • • • • • • • * • • U l f ' - P U U M N ' - ' - O O o u l o o i o c n o u i o u l o o o o o o o o o o o o o o o o o o o o o o o

• • • * • • • « • • * o * c c r > ® N N ( ? o > u i m u i o u i o m o u i o u l o o o o o o o o o o o o o o o o o o o o o

• P ' ' f > t u C J N f 0 » - » - O O 5 ( j i o c n o u i o c n o c p o O O O O O O O O O O ~ o o o o o o o o o o

o o o o o o o o o • • • * • • » • • t n u i m t f l u i t n u i m o i o o o o o o o o o o o o o o o o o o U W U U U W U U U

0 0 0 0 0 0 0 0 • • • • • • • • 0 1 0 1 e n u » u i t n m U ! o o o o o o o o o o o o o o o o u w w u w u w w

o o o o o o o o o • • * • • • • • • O l O I O l O l O l U l Œ O l O l o o o o o o o o o o o o o o o o o o W U U U W U W U l U

o o o o o o o o o • • • • • • • • • o i o i c n o i c n o i c T i o i o : o o o o o o o o o o o o o o o o o o U U U l > l ( j J U i ( j J U l U l

H o o o o o o o • • • • • • • " T ( P 0 1 0 1 0 1 m C I 0 1 Ç o o o o o o o c o o o o o o o 6 w u u u u w u ^

I f t

Page 130: The microwave dielectric properties of chalcogenide glasses

118

8.5000 9. I 200-186. 7844 15. 8000 4 • 0000 0 .5003

8.5000 9.1873-186. 9140 15. 8000 4 .0500 0 .5003

8.5000 9.2544- 18 7. 04 19 IS. 8000 4 .1000 0 .5003

8.5000 9.3213-187. 1677 15. 3000 4 . 1500 0 .5003

8.5000 9.3879-187. 2913 15. 8000 4 .2000 0 .5003

8.5000 9.4544— 187. 4131 15. 8000 4 .2500 0.5003

8.5000 9.5206- 187. 5328 15. 8000 4 .3000 0 .5003

8.5000 9.5866— 187. 6507 15. 8000 4 .3500 0 .5003

8.5000 9.652 5-187. 7668 15. 8000 4 .4000 0 .5003

8.5000 9.7181-187. 8809 15. 8000 4 .4500 0 .5003

8.5000 9.7835-187. 9932 15. 8000 4 .5000 0 .5003

8.5000 9.8487-188. 1037 15. 8000 4 .5500 0 .5003

8.5000 9.9 138-188. 2124 15. 8000 4 .6000 0.5003

8.5000 9.9786- 188m 3194 1 5. 8000 4 .6500 0 .5003

8.5000 10.0433-188. 4246 15. 80 0 0 4 .7000 0 .5003

8.5000 10.1077- 18 8. 5280 15. 8000 4 .7500 0 .500 3

8.5000 10.172 0-188. 6298 15. 8000 4 .8000 0 .5003

8.5000 10.2361-188. 7300 15. 8000 4 .8500 0 .5003

8.5000 10.3000- 168. 8284 15. 8000 4 .9000 0 .500 3

8.5000 10.3637- 188. 9253 15. 8000 4 .9500 0 .5003

8.5000 10.4273- 189. 02 06 15. 8000 5 .0000 0 .5003

8.5000 10.4906- 189. 1 142 15. 8000 5 .0500 0 .5003

8.5000 10.553 8- 189. 2063 15. 8000 5 .1000 0 .5003

8.5000 10.6168- 189. 2968 15. 8000 5 .1500 0 .5003

8.5000 10.6797- 189. 3858 1 5. 3000 5 .2000 0 .5003

8.5000 10.7423-189. 4733 15. 8000 5 .2500 0 .5003

8.5000 10.8049- 189. 5593 15. 80 00 5 .3000 0 .5003

8.5000 10.8672-189. 6439 15. 8000 5 .3500 0 .5003

8.5000 10.9294-189. 72 70 15. 8000 5 .4000 0 .5003

8.5000 10.9914- 189. 8086 15. 8000 5 .4500 0 .5003

8.5000 11.0532-189. 8888 15. 8000 5 .5000 0 .5003

8.5000 11.114 8-1 89. 96 75 15. 8000 5 .5500 0 .5003

8.5000 11.1764- 190. 0450 1 5. 8000 5 .6000 0 .5003

8.5000 11.2377- 190. 1210 15. 8000 5 .65 00 0 .5003

8.5000 11.2989- 1 90. 1957 15. 8000 5 . 7000 0 .5003

8.5000 11.3599- 190. 2691 15. 8000 5 .7500 0 .5003

8.5000 11.42 oe­ 19 0. 3409 1 5. 8000 5 .8000 0 .5003

8.5000 il .4815-190. 41 17 15. 8000 5 .8500 0 .5003

8.5000 11.5421- 19 0. 4811 1 5. 8000 5 .9000 0 .5003

8.5000 11.6025- 190. 5492 15. 8000 5 .9500 0 .5003

Page 131: The microwave dielectric properties of chalcogenide glasses

119

9.0000 7. 8269-175. 6400 15. 5000 2 .6000 0 .5003

9.0000 7. 891 8-175. 8559 15. 50 00 2 .6500 0 .5003

9.0000 7. 9567- 176. 0687 1 5. 5000 2 .7000 0 .5003

9.0000 6. 021 6-176. 2783 15. 5000 2 .7500 0 .5003

9.0000 8. 0863- 176. 4847 15. 5000 2 .8000 0 .5003

9.0000 8. 1509-176. 6881 15. 5000 2 .8500 0 .5003

9.0000 8. 2155- 176. 8883 15. 5000 2 .9000 0 .5003

9.0000 8. 2799- 177. 0 857 15. 5000 2 .9500 0 .5003

9.0000 8. 3443-177. 2801 15. 5000 3 .0000 0 .5003

9.0000 8. 4086- 177. 4714 15. 5000 3 .0500 0 .5003

9.0000 8. 472 8-17 7. 6600 15. 5000 3 .1000 0 .5003

9.0000 8. 5369-177. 8457 15. 5000 3 • 1500 0 .5003

9.0000 8. 6009- 178. 0285 15. 5000 3 .2000 0 .5003

9.0000 8. 664 7— 178. 2085 15. 5000 3 .25 00 0 .5003

9.0000 8. 7285-178. 3858 15. 5000 3 .3000 0 .500 3

9.0000 8. 7922- 178. 5604 15. 5000 3 .350 0 0 .5003

9.0000 8. 8559-178. 7325 15. 5000 3 .4000 0 .5003

9.0000 8c 9194-1 78. 9013 15. 50 00 3 .4500 0 .5003

9.0000 8. 982 8-179. 0686 1 5. 5000 3 .5000 0 .5003

9.0000 9. 046 l-179. 2327 15. 5000 3 .5500 0 .5003

9.0000 9. 109 2- 179. 3944 15. 5000 3 .6000 0 .5003

9.0000 9. 1724-1 79. 5536 15. 5000 3 .6500 0 .5003

9.0000 9. 2353-179. 7103 1 5. 5000 3 . 7000 0 .5003

9.0000 9. 2982- 179. 8645 15. 5000 3 .7500 0 .5003

9.0000 9. 361 0-180. 0165 15. 5000 3 .8000 0 .5003

9.0000 9. 423 7- 180. 1660 1 5. 5000 3 .8500 0 .5003

9.0000 9. 4863-180. 3132 15. 5000 3 .9000 0 .5003

9.0000 9. 5488- 180. 4581 15. 5000 3 .9500 0 .5003

9.0000 9. 6112-180. 60 07 15. 5000 4 .0000 0 .5003

9.0000 9. 6734-180. 741 1 15. 5000 4 .0500 0 .5003

9.0000 9. 735 6-180. 8792 15. 5000 4 .1 000 0 .5003

9.0000 9. 7976-181 . 0152 15. 5000 4 .1500 0 .5003

9.0000 9. 8596-181. 1490 15. 5000 4 .2000 0 .5003

9.0000 9. 92 15- 181. 2806 15. 5000 4 .2500 0 .5003

9.0000 6. 8619- 170. 8438 1 5. 6000 1 .8000 0 .5003

9.0000 6* 9266-171. 1 185 15. 6000 1 .8500 0 .5003

Page 132: The microwave dielectric properties of chalcogenide glasses

120

9.5000 9. 3659- 1 74. 0585 15. 2000 3 .4000 0 .5003

9.5000 9. 4248- 174. 2204 15. 2000 3 .4500 0 ,5003

9.5000 9. 4 83 8- 174. 3799 15. 2000 3 .5000 0 .5003

9.5000 9. 542 7- 174. 5363 15. 2000 3 .5500 0 .5003

9.5000 9. 6017-174. 6914 1 5. 2000 3 .6000 0 .5003

9.5000 9. 6606-174. 8435 15. 2000 3 .6500 0 .5003

9*5000 9. 7195- 174. 9934 15. 2000 3 .7000 0 .5003

9.5000 9. 7784-175. 14 08 15. 2000 3 .7500 0 .5003

9.5000 9. 837 3- 175. 2858 15. 2000 3 .8000 0 .5003

9.5000 9. 8961- 175. 4286 15. 2000 3 .8500 0 .5003

9.5000 9. 9550- 175. 5691 1 5. 2000 3 .9000 0 .5003

9.5000 10. 0 138-175. 7 075 15. 2000 3 .9500 0 .5003

9.5000 10. 0726- 175. 8435 1 5. 2000 4 .0000 0 .5003

9.5000 10. 1314- 175. 9774 15. 2000 4 .0500 0 .5003

9.5000 10. 1902- 176. 1 090 15. 2000 4 .1000 0 .5003

9.5000 10. 2489- 176. 2385 15. 2000 4 . 1500 0 .5003

9.5000 10. 3076- 176. 3659 1 5. 2000 4 .2000 0 .5003

9.5000 10. 3663- 176. 4911 15. 2000 4 .2500 0 .5003

9.5000 7. 5704- 166. 6360 1 5. 3000 1 .8000 0 .5003

9.5000 7. 6269-166. 8919 15. 3000 1 .8500 0 .5003

9.5000 7. 6836- 167. 1445 15. 3000 1 .9000 0 .5003

9.5000 7. 7404- 167. 3936 15. 3000 1 .9500 0 ,5003

9.5000 7. 7973- 167. 6393 15. 3000 2 .0000 0 .5003

9.5000 7, 854 3-167. 8817 15. 3000 2 .0500 0 .5003

9.5000 7. 9113-168. 12 07 15. 3000 2 .1000 0 .5003

9.5000 7. 9685- 168. 3566 15. 3000 2 .1500 0 .5003

9.5000 8. 0258- 168. 5892 15. 3000 2 .2000 0 .5003

9.5000 a. 0831- 168. 8186 15. 3000 2 .2500 0 .5003

9.5000 8. 1 405- 169. 0449 15. 3000 2 .3000 0 .5003

9.5000 6. 1980- 169. 2681 1 5 . 3000 2 .350 0 0 .5003

9.5000 8. 2555- 1 6 9 . 4881 15. .3000 2 .4000 . 0 . 5003

9.5000 8. 3132- 169. 7052 15. 3000 2 .4500 0 .5003

9.5000 8. 3708- 169. 9190 15. 3000 2 .5000 0 .5003

Page 133: The microwave dielectric properties of chalcogenide glasses

121

1 0 . 0 0 0 0 8 . 1 6 8 8 - 1 6 3 . 0 5 5 4 1 5 . 1 0 0 0 1 • 8 0 0 0 . 0 . 5 0 0 3

1 O m 0 0 0 0 a . 2 1 9 5 - 1 6 3 . 2 7 9 5 1 5 . 1 0 0 0 1 • 8 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 a . 2 7 0 3 - 1 6 3 . 5 0 0 7 1 5 . 1 0 0 0 1 • 9 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 3 2 1 4 - 1 6 3 . 7 1 9 0 1 5 . 1 0 0 0 1 . 9 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 a . 3 7 2 7 - 1 6 3 . 9 3 4 6 1 5 . 1 0 0 0 2 . 0 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 4 2 4 1 - 1 6 4 . 1 4 7 2 1 5 . 1 0 0 0 2 . 0 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 4 7 5 8 - 1 6 4 . 3 5 7 2 1 5 . 1 0 0 0 2 . 1 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 a . 5 2 7 5 - 1 6 4 . 5 6 4 3 1 5 . 1 0 0 0 2 . 1 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 5 7 9 5 - 1 6 4 . 7 6 8 7 1 5 . 1 0 0 0 2 . 2 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 a . 6 3 1 6 - 1 6 4 . 9 7 0 4 1 5 . 1 0 0 0 2 • 2 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 6 8 3 9 - 1 6 5 . 1 6 9 3 1 5 . 1 0 0 0 2 . 3 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 7 3 6 4 - 1 6 5 . 3 6 5 7 1 5 . 1 0 0 0 2 . 3 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 7 8 9 0 - 1 6 5 . 5 5 9 2 1 5 . 1 0 0 0 2 . 4 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 8 4 1 7 - 1 6 5 . 7 5 0 0 1 5 . 1 0 0 0 2 . 4 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 8 9 4 6 - 1 6 5 . 9 3 8 5 1 5 . 1 0 0 0 2 . 5 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 8 . 9 4 7 6 - 1 6 6 . 1 2 4 0 1 5 . 1 0 0 0 2 . 5 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 0 0 0 7 - 1 6 6 . 3 0 7 2 1 5 . 1 0 0 0 2 . 6 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 0 5 4 0 - 1 6 6 . 4 8 7 7 1 5 . 1 0 0 0 2 . 6 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 1 0 7 4 - 1 6 6 . 6 6 5 6 1 5 . 1 0 0 0 2 . 7 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 1 6 0 9 - 1 6 6 . 8 4 1 0 1 5 . 1 0 0 0 2 . 7 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 2 1 4 6 - 1 6 7 . 0 1 3 8 1 5 . 1 0 0 0 2 . 8 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 2 6 8 3 - 1 6 7 . 1 8 4 2 1 5 . 1 0 0 0 2 . 8 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 3 2 2 2 - 1 6 7 . 3 5 2 2 1 5 . 1 0 0 0 2 . 9 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 3 7 6 2 - 1 6 7 . 5177 1 5 . 1 0 0 0 2 . 9 5 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 4 3 0 2 - 1 6 7 . 6 8 0 7 1 5 . 1 0 0 0 3 • 0 0 0 0 0 . 5 0 0 3

1 0 . 0 0 0 0 9 . 4 8 4 4 - 1 6 7 . 8413 15. 1 0 0 0 3 .0500 0 .5003

1 0 . 0 0 0 0 9. 5 3 8 7 - 167. 9996 15. 1 0 0 0 3 • 1 0 0 0 0 .5003

1 0 . 0 0 0 0 9. 5930- 1 6 8 . 1 5 5 4 15. 1 0 0 0 3 .1500 0 .5003

1 0 . 0 0 0 0 9 . 6 4 7 5 - 1 6 6 . 3089 15. lOOO 3 . 2 0 0 0 0 .5003

1 0 . 0 0 0 0 9. 7020- 1 6 8 . 4 6 0 1 15. looa 3 .2500 0 .5003

1 0 . 0 0 0 0 9. 7 5 6 6 - 1 6 8 . 6 0 8 9 15. 1 0 0 0 3 .3000 0 .5003

1 0 . 0 0 0 0 9 . 8113- 1 6 8 . 7 5 5 4 1 5 . 1 0 0 0 3 . 3500 0 .5003

Page 134: The microwave dielectric properties of chalcogenide glasses

122

10.5000 8. 6896-159. 0441 15. 1000 1 .8000 0 .5003

10.5000 8. 7355- 159. 2232 15. 1000 1 .8500 0 .5003

10.5000 8. 781 6-159. 4000 15. 1000 1 .9000 0 .5003

10.5000 8. 8280- 159. 5746 15. 1 000 1 -9500 0 .5003

10.5000 8. 8747-159. 7470 15. 1000 2 .0000 0 .5003

10.5000 8. 9216-159. 9170 15. lOÔO 2 .0500 0 .5003

10.5000 8. 9687-160. 0848 15. 1000 2 .1000 0 .5003

10.5000 9. 0161-160. 2504 15. 1000 2 .1500 0 .5003

10.5000 9. 0637- 160. 4138 15. 1000 2 .2000 0 .5003

10.5000 9. 1115-160. 5749 15. 1000 2 .2500 0 .5003

10.5000 9. 159 5-160. 7339 1 5. 1000 2 .3000 0 .5003

10.5000 9. 2078- 160. 8906 15. 1000 2 .3500 0 .5003

10.5000 9. 2562-161. 0452 15. 1000 2 .4000 0 .5003

10.5000 9. 3 04 9- 161. 1976 15. 1000 2 .4500 0 .5003

10.5000 9. 3538- 161. 34 78 15. 1000 2 .5000 0 .5003

10.5000 9. 4029- 161. 4959 1 5. 1000 2 .5500 0 .5003

10.5000 9. 4521- 161. 6418 15. 1000 2 .6000 0 .5003

10.5000 9. 50 16- 161. 7856 1 5. 1000 2 . 6500 0 .5003

10.5000 9. 551 2-161. 9273 15. 1000 2 .7000 0 .5003

10.5000 9. 6010- 162. 0668 15. 1000 2 .7500 0 .5003

10.5000 9. 651 0- 162. 2044 15. 1000 2 .8000 0 .5003

10.5000 9. 701 2- 162. 3398 15. 1000 2 .8500 0 .5003

10.5000 9. 7516- 162. 4731 15. 1000 2 .9000 0 .5003

10.5000 9. 8021-162. 6043 15. 1000 2 .9500 0 .5003

10.5000 9. 8528- 162. 7335 15. 1 000 3 .0000 0 .5003

10.5000 9. 9036-162. 8608 15. 1000 3 .0500 0 .5003

10.5000 9. 9546- 162. 9860 15. 1000 3 .1000 0 .5003

10.5000 10. 0058-163. 1092 15. 1000 3 .1500 0 .5003

10.5000 10. 057 1-163. 2303 1 5. 1000 3 .2000 0 .5003

10.5000 10. 1085- 163. 3495 15. 1000 3 • 2500 0 .5003

10.5000 10. 1601- 163. 4668 15. 1000 3 .3000 0 .5003

Page 135: The microwave dielectric properties of chalcogenide glasses

123

11 • 0000 10. 8487- 157* 8206

11 .0000 10.8 9 9 8 - 157. 8812

11 .0000 10. 951 1-15 7. 9404

11 • 0000 11.0026- 157. 9981

11 • 0000 11.05 42- 158. 0545

11 .0000 11.1059- 158. 1 094

11 • 0000 11.1579- 158. 1629

11 • 0000 11 .2099- 158. 2150

11 • 0000 11.2621- 158. 2657

11 • 0000 11.3145-158. 3150

11 • 0000 11.3670- 158. 3629

11 • 0000 11.4196- 158. 4096

11 • 0000 9^0933-153. 8233

11 .0000 9.1353- 153. 9397

11 .0000 9.1776-154. 0546

11 . 0000 9.2202-154. 1677

11 • 0000 9.2631- 154. 2793

11 .0000 9. 30 6 3- 154. 3894

11 • 0000 9.3498- 154. 4978

11 .0000 9.3935- 154. 6046

11 .0000 9.43 76- 154. 7099

11 • 0000 9.4819- 154. 8134

11 • 0000 9^5264- 154. 9156

11 .0000 9.5712- 155. 0160

11 .0000 9.616 3— 155. 1 148

11 .0000 9.6616— 155. 2122

11 .0000 9.7072- 155. 3 080

11 .0000 9.7531-155. 4022

11 .0000 9.7991-155. 4948

11 .0000 9. 84 54- 155. 5859

11 .0000 9.8920- 155. 6754

11 .0000 9.9387- 155. 7634

11 .0000 9.9857- 155. 8498

11 .0000 10.0330- 155. 9347

5. 3000 3 • 7000 0 • 5003

5. 3000 3 • 7500 0 • 5003

5. 3000 3 • 8000 0 • 5003

S. 3000 3 • 8500 0 • 5003

5# 3000 3 • 9000 0 • 5003

5. 3000 3 • 9500 0 .5003

5. 3000 4 • 0000 0 .5003

5. 30 00 4 • 0500 0 .5003

5. 3000 4 • 1000 0 .5003

5. 3000 4 • 1500 0 .5003

5. 3000 4 • 2000 , 0 .5003

5* 3000 4 • 2500 0 .5003

5. 4000 1 .8000 0 .5003

5. 4000 1 .8500 0 .5003

5. 40 00 1 .9000 0 .5003

5. 4000 1 .9500 0 .5003

5. 4000 2 .0000 0 .5003

5. 4000, 2 .0500 0 . 5003

5^ 4000 2 • 1000 0 .5003

5. 4000 2 • 1500 0 • 5003

5. 4000 2 • 2000 0 .5003

5. 4000 2 .2500 0 .5003

5. 4000 2 • 3000 0 .5003

5. 4000 2 .3500 0 .5003

5. 4000 2 .4000 0 .5003

5. 4000 2 .4500 0 .5003

5. 4000 2 .5000 0 .5003

5. 4000 2 .5500 0 .5003

5. 4000 2 .6000 0 .5003

5. 4000 2 .6500 0.5003

5. 4000 2 • 7000 0 .5003

5. 4000 2 .7500 0 .5003

5. 4000 2 .8000 0 .5003

5. 4000 2 .8500 0 .5003

1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 t 1

1 1 1 1 1

1 1 1

1 1 1 1

Page 136: The microwave dielectric properties of chalcogenide glasses

124

11 • 5000 8.8763- 147. 2812

11 • 5000 8.9143- 147. 3261

11 • 5000 8.952 6- 147. 3701

11 .5000 8.99 14- 147. 4133

11 • 5000 9.0304-147. 4555

11 • 5000 9. 0699- 147. 4970

11 • 5000 9. 1096- 147. 5375

11 • 5000 9.1497-147. 5772

11 • 5000 9.190 1- 147. 6161

11 • 5000 9.2309-147. 6540

11 • 5000 9.2719- 14 7. 6911

11 • 5000 9.3134- 147. 7273

11 • 5000 9.3551-147. 7627

11 • 5000 9.3971- 147. 7971

11 • 5000 9.4394-147. 8307

11 • 5000 9. 482 I- 147. 8635

11 • 5000 9.5251- 147. 8953

11 • 5000 9.5683- 147. 9263

11 • 5000 9.6119- 147. 9564

11 • 5000 9.6557-147. 9855

11 • 5000 9.6999- 148. 0140

11 • 5000 9.7443- 14 8. 04 14

11 • 5000 9.7890- 148. 0 680

11 • 5000 9.8340- 148. 0937

11 • 5000 9.8793- 148. 1 187

11 • 5000 9.9246-140. 1426

11 • 5000 9. 9706- 14 8. 1657

11 • 5000 10.0166- 148. 1879

5. 9000 1 .4000 0 .5003

5. 9000 1 .4500 0 .5003

5. 9 0 0 0 1 .5000 0 .5003

5 • 9 0 0 0 1 .5500 0 .5003

5. 9 0 0 0 1 .6000 0 .5003

5. 9 0 0 0 1 .6500 0 «5003

5. 9 0 0 0 1 . 7000 0 .5003

5. 9000 1 .7500 0 .5003

5. 9000 1 .8000 0 .5003

5. 9000 1 .8500 0 .5003

5. 9000 1 .9000 0 .5003

5. 9000 1 .9500 0 .5003

5. 9000 2 .0000 0 .5003

5. 9000 2 .0500 0 .5003

5. 9000 2 .1000 0 .5003

5. 9000 2 . 1500 0 .5003

5. 9000 2 .2000 0 .5003

5. 9000 2 .2500 0 .5003

5. 9000 2 .3000 0 .5003

5. 9000 2 .350 0 0 .5003

5. 9000 2 .4000 0 .5003

5. 9000 2 .4500 0 .5003

5. 9000 2 .5000 0 .5003

5. 9000 2 .5500 0 .5003

5. 9000 2 .6000 0 .5003

5. 9000 2 .6500 0 .5003

5. 9000 2 . 7000 0 .5003

S. 9 0 0 0 2 .7500 0 .5003

1 1 1 1

1

1 1

1 I

1

1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

Page 137: The microwave dielectric properties of chalcogenide glasses

125

12.0000 8.2020- 141. 4364 16. 4000 1 .0000 0 .5003

12.0000 8.2398- 141. 3883 16. 4000 1 .0500 0 .5003

12.0000 8.27-79- 141. 3403 16. 4000 1 . 1000 0 .5003

12.0000 8.3165-141. 2922 16. 4000 1 . 1500 0 .5003

12.0000 8.3554- 141. 2442 16. 4000 1 .2000 0 .5003

12.0000 8.3948- 141. 1963 16. 4000 1 .2500 0 .5003

12.0000 8.4345-141. 1484 16. 4000 1 .3000 0 .5003

12.0000 8.4747- 141. 1006 16. 4000 1 .3500 • 0 .5003

12.0000 8.5152- 141. 0526 16. 4000 1 .4000 0 .5003

12.0000 8.5561- 141. 0048 16. 4000 1 .4500 0 .5003

12.0000 8.5974-140. 9570 16. 4000 1 .5000 0 .5003

12.0000 8# 63 91 — 140. 9091 16. 4000 1 .5500 0 .5003

12o0000 8.6812- 140. 8614 16. 4000 1 .6000 0 • 5003

12.0000 8.7236-140. 8135 16. 4000 1 .6500 0 .5003

12.0000 8, 766 4- 140. 7658 16. 400 0 1 .7000 0 ,5003

12.0000 8.8095- 140. 7 180 16. 4000 1 .7500 0 .5003

12.0000 8.8531- 140. 6701 16. 4000 1 .8000 0 .5003

12.0000 8.8969- 140. 6224 1 6. 40 0 0 1 .3500 0 .5003

12.0000 8.941 1-140. 5745 16. 4000 1 • 9000 0 .5003

12.0000 8. 985 7-140. 5267 16. 4000 1 .9500 0 .5003

12.0000 9. 030 6— 140. 4788 16. 4000 2 .0000 0 .5003

12.0000 9.0758- 140. 4310 16. 4000 2 .0500 0 .5003

12.0000 9.1213-140. 3831 16. 4000 2 .1000 0 .5003

12.0000 9. 1672- 140. 3352 16. 4000 2 .1500 0 .5003

12.0000 9.2134- 140. 2872 16. 4000 2 .2000 0 .5003

12.0000 9.2599- 140. 2392 16. 4000 2 .2500 0 .5003

12.0000 9.3067- 140. 1912 16. 4000 2 .300 0 0 .5003

12.0000 9.3539-140. 1432 16. 4000 2 .350 0 0 .5003

Page 138: The microwave dielectric properties of chalcogenide glasses

126

12.4000 7.5515-136. 4125 16. 7000 1 • 0000 P .5003

12.4000 7.5955- 136. 2 830 16. 7000 1 .0500 0 .5003

12.4000 7.6399- 136. 1545 16. 7000 1 . 1000 0 .5003

12.4000 7.684 8— 136. 0269 16. 7000 1 .1500 0 .5003

12.4000 7.7301- 135. 9004 16. 7000 1 .2000 0 .5003

12.4000 7.7758-135. 7749 16. 7000 1 .2500 0 .5003

12.4000 7.8219- 135. 6503 16. 7000 1 .3000 0 .5003

12.4000 7.8684- 135. 5268 16. 7000 1 .3500 0 .5003

12.4000 7.9154-135. 4041 16. 7000 1 .4000 0 .5003

12.4000 7.9627- 135. 2 824 16. 7 0 0 0 1 .4500 0 .5003

12.4000 8.0104- 135. 1617 16. 7000 1 .5000 0 .5003

12.4000 8.0585- 135. 0420 16. 7000 1 .5500 0 .5003

12.4000 8. 1070- 134. 9231 16. 7000 1 . 6000 0 .5003

12.4000 8.1559-134. 8052 16. 7000 1 .6500 0 .5003

12.4000 8. 205 1- 134. 6882 1 6. 7 0 0 0 1 .7000 0 .5003

12.4000 8.2547-134. 5721 16. 7000 1 .7500 0 .5003

12.4000 8. 3047- 134. 4569 16. 7000 I .8000 0 .5003

12.4000 8.3550- 134. 3427 16. 7000 1 .8500 0 .5003

12.4000 8.4056- 134. 2293 16. 7000 1 .9000 0 .5003

12.4000 8. 4566— 134. 1 168 16. 7000 1 .9500 0 .5003

12.4000 8.5079- 134. 0051 16. 7000 2 .0000 0 .5003

12.4000 8. 5596- 133. 8942 16. 7000 2 .0500 0 .5003

12.4000 8.61 16- 133. 7843 16. 7000 2 • 1 000 0 .5003

12.4000 8.6639-133. 67 52 1 6. 7000 2 .1500 0 .5003

12.4000 8.7165-133. 5668 16. 7000 2 .2000 0 .5003

12.4000 8.7695- 133. 4594 1 6. 7000 2 «2500 0 .5003

12.4000 8.8227-133. 3527 16. 7000 2 .3000 0 .5003

12.4000 8.8762- 133. 2468 16. 7000 2 .3500 0 .5003

Page 139: The microwave dielectric properties of chalcogenide glasses

127

BIBLIOGRAPHY

Bishop, S. G., P. C. Taylor, D. L. Mitchell, and L. H. Slack. 1971. Far infrared and microwave conductivity spectrum of semiconducting TlgSe'ASgTCg glass. J. Non-Cry. Solids 5:351-357.

Boer, K. W. 1970. The electrical conduction mechanism in highly dis­ordered semiconductors. J. Non-Cry. Solids 2:44-453.

Carlson, David E. 1977. Amorphous silicon solar cells. IEEE Trans­actions on Electron Devices ED-24(4):449-453.

Cline R. L. 1962. Anodized aluminum film switches. Sandia Corp. Tech. Memo. 228-62-72.

Cohen, M. D., H. Fritzsche, and S. R. Ovshinsky. 1969. Simple band model for amorphous semiconducting alloys. Phys, Rev. Lett. 22:1065-1068.

Cohen, Morrell H. 1970. Electronic structure and transport in covalent amorphous semiconducting alloys. J. Non-Cry. Solids 2:432-443.

Dakin, T. W., and C. N. Works. 1947. Microwave dielectric measurements. J. Appl. Phys. 18(9):789-796.

Das Gupta, Chimoy. 1974. Microwave measurement of a complex dielectric constant over a wide range of values by means of a waveguide-reson­ator method. IEEE Transactions on Microwave Theory and Techniques MTT-22:365-372.

Davies, J. S. 1970. Microwave applications of As-Te-Ge amorphous semi­conductor. Unpub. paper presented at the Eighth Annual Meeting, Affiliate Program in Solid-State Electronics, Iowa State University, Ames, Iowa. May, 1970. Engr. Research Inst., Iowa State University, Ames, Iowa.

Doctor, S. R. 1973. Secondary emission of chalcogenide glasses. Un­published Ph.D. thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

Fritzsche, H. 1971. Optical and electrical energy gaps in amorphous semiconductors. J. Non-Cry. Solids 6:49-71.

Fritzsche, H., and S. R. Ovshinsky. 1970. Calorimetric and dilatometric studies on chalcogenide alloy glasses. J. Non-Cry. Solids 2:148-154.

Harrington, Roger F. 1961. Time-harmonic electromagnetic fields. McGraw-Hill Book Co., Inc., New York.

Page 140: The microwave dielectric properties of chalcogenide glasses

128

Hilton, A. R., C. E. Jones, and M. Brau. 1966. Nonoxide IVA-VA-VIA chalcogenide glasses. Part 1. Glass-forming regions and variations in physical properties. Phys. Chem. Glasses 7(4):106.

Kao, Van-Che. 1972. Filament formation in bulk samples of amorphous chalcogenide AsggTeg^Ge^g. Unpublished Ph.D. thesis. Library, Iowa State University, Ames, Iowa.

Madan, A., J. Allison, and M. J. Thompson. 1976. Switching behaviour of amorphous threshold devices in the gap configuration. J. Non-Cry. Solids 21:1-2.

Marcuvitz, N. 1951. Waveguide handbook. McGraw-Hill Book Co., Inc., New York.

Nelson, S. 0., D. W. Schlaphoff, and L. E. Stetson. 1972. Computer pro­gram for calculating dielectric properties of low- or high-loss materials from short-circuited waveguide measurements. Agricultural Research Service Publication ARS-NC-4.

Ovshinsky, S. R. 1963. Symmetrical current control device. Patent No. 3271591. September 20, 1963.

Pearson, A. David, W. R. Northover, Jacob F. Dewald, and W. F. Peck, Jr. 1962. Chemical, physical and electrical properties of some unusual inorganic glasses. Pp. 357-365 in Advances in Glass Technology. Plenum Press, New York.

Peterson, E., David Adler, and M. P. Shaw. 1976. Amorphous-crystalling heterojunction transistors. IEEE Transactions on Electron Devices ED-23(4):471.

Post, R. E., R. G. Brown, R. A. Sharpe, and W." L. Hughes. 1973. Lines, waves, and antennas. Ronald Press Co., New York.

Roberts, S., and A. Von Hippel. 1946. A new method for measuring di­electric constant and loss in the range of centimeter waves. J. Appl. Phys. 17:610.

Saji, M., C. H. Leung, and K. C. Kao. 1977. Experimental evidence of energy-controlled switching in amorphous semi-conductors. J. Non-Cry. Solids 23:147-158.

Shanks, Ray R. 1970. Ovonic threshold switching characteristics. J. Non-Cry. Solids 2:504-514.

Sie, C. H. 1968. A memory cell using bulk effect in amorphous semi-con­ductor, Unpublished paper presented at the Sixth Annual Meeting, Affiliate Program in Solid-State Electronics, Iowa State University, Ames, Iowa, May 22, 1968. Engr. Research Inst., Iowa State University, Ames, Iowa.

Page 141: The microwave dielectric properties of chalcogenide glasses

129

Sie, C. H. 1969. Memory cell using bistable resistivity in amorphous As-Te-Ge film. Unpublished Ph.D. thesis. Library, Iowa State Uni­versity, Ames, Iowa.

Stocker, H. J. 1970. Phenomenology of switching and memory effects in semiconducting chalcogenide glasses. J. Non-Cry. Solids 2:371-381.

Stratton, 3 . A, 1941. Electromagnetic theory. McGraw-Hill Book Co., Inc., New York.

Thomas, C. B., and J. A. Savage. 1977. Thermal conductivity and specific heat of tellurium-based chalcogenide glasses. J. Non-Cry. Solids 23:139-143.

Uttecht, R. R, 1969. Bistable resistivity switching properties of the semiconducting- glass As-Te-Ge. Unpublished Ph.D. thesis. Library, Iowa State University, Ames, Iowa.

Uttecht, R. R., H. Stevenson, C. H. Sie, J. D. Griener, and K. S. Raghavan. 1970. Electric field-induced filament formation in As-Te-Ge glass. J. Non-Cry. Solids 2:358-370.

Von Hippel, Arthur R, 1954. Dielectrics and waves, John Wiley & Sons, Inc., New York.

Weir, William B. 1974. Automatic measurement of complex dielectric con­stant and permeability at microwave frequencies. Proc. of the IEEE 61(1):33-36.

Westphal, William B. 1954. Distributed circuits. Pp. 62-121 Arthur Von Hippel (Ed;). Dielectric materials and applications. The Tech­nology Press of Massachusetts Institute of Technology, Cambridge.

Wilson, L. K., G. T. O'Reilly, and D. L. Kinser. 1974. Microwave dielec­tric properties of an amorphous semi-conductor system. IEEE Trans­actions on Microwave Theory and Techniques MTT-22:470-471.'

Wronski, Christopher R. 1977. Electronic properties of amorphous silicon in solar cell operation. IEEE Transactions on Electron Devices ED-24(4):351-357.

Page 142: The microwave dielectric properties of chalcogenide glasses

130

ACKNOWLEDGMENTS

This author is deeply grateful to Dr. Robert E. Post for his guidance

and instruction throughout my graduate career.

I wish to thank,Dr. Gordon Danielson for his encouragement. I am

indebted to Mr. Duke Sevde, Mr. Howard Shanks, Mr. Paul Sidles, and

especially Dr. Chip Comstock and Mr. Curtiss Buck for their assistance in

the preparation of the samples. A special thanks goes to Dr. Glenn Fanslow

who furnished data, on pyrite.

I would like to express my appreciation to Dr. A. V. Pohm, Dr. Warren

B. Boast, Dr. J. 0. Kopplin, and the Engineering Research Institute for

their support throughout the years.

Last, but not least, I thank my wife, Vonda Sines Davies, for her

material and spiritual assistance.