12
The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is 1. 81 2 = 6561 times greater 2. 81 times greater 3. equally strong 4. 1/81 as great 5. (1/81) 2 = 1/6561 as great Q12.1

The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

Embed Size (px)

Citation preview

Page 1: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

The mass of the Moon is 1/81 of the mass of the Earth.

Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is

1. 812 = 6561 times greater

2. 81 times greater

3. equally strong

4. 1/81 as great

5. (1/81)2 = 1/6561 as great

Q12.1

Page 2: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

The mass of the Moon is 1/81 of the mass of the Earth.

Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is

1. 812 = 6561 times greater

2. 81 times greater

3. equally strong

4. 1/81 as great

5. (1/81)2 = 1/6561 as great

A12.1

Page 3: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

The planet Saturn has 100 times the mass of the Earth and is 10 times more distant from the Sun than the Earth is.

Compared to the Earth’s acceleration as it orbits the Sun, the acceleration of Saturn as it orbits the Sun is

1. 100 times greater

2. 10 times greater

3. the same

4. 1/10 as great

5. 1/100 as great

Q12.2

Page 4: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

The planet Saturn has 100 times the mass of the Earth and is 10 times more distant from the Sun than the Earth is.

Compared to the Earth’s acceleration as it orbits the Sun, the acceleration of Saturn as it orbits the Sun is

1. 100 times greater

2. 10 times greater

3. the same

4. 1/10 as great

5. 1/100 as great

A12.2

Page 5: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

Compared to the Earth, Planet X has twice the mass and twice the radius.

This means that compared to the Earth, Planet X has

1. 4 times the surface gravity

2. twice the surface gravity

3. the same surface gravity

4. 1/2 as much surface gravity

5. 1/4 as much surface gravity

Q12.3

Page 6: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

Compared to the Earth, Planet X has twice the mass and twice the radius.

This means that compared to the Earth, Planet X has

1. 4 times the surface gravity

2. twice the surface gravity

3. the same surface gravity

4. 1/2 as much surface gravity

5. 1/4 as much surface gravity

A12.3

Page 7: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

A satellite is moving around the Earth in a circular orbit. Over the course of an orbit, the Earth’s gravitational force

1. does positive work on the satellite

2. does negative work on the satellite

3. does positive work on the satellite during part of the orbit and negative work on the satellite during the other part

4. does zero work on the satellite at all points in the orbit

Q12.4

Page 8: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

A satellite is moving around the Earth in a circular orbit. Over the course of an orbit, the Earth’s gravitational force

1. does positive work on the satellite

2. does negative work on the satellite

3. does positive work on the satellite during part of the orbit and negative work on the satellite during the other part

4. does zero work on the satellite at all points in the orbit

A12.4

Page 9: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

A planet (P) is moving around the Sun (S) in an elliptical orbit. As the planet moves from aphelion to perihelion, the Sun’s gravitational force

1. does positive work on the planet

2. does negative work on the planet

3. does positive work on the planet during part of the motion from aphelion to perihelion and negative work on the planet during the other part

4. does zero work on the planet at all points between aphelion and perihelion

Q12.5

Page 10: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

A planet (P) is moving around the Sun (S) in an elliptical orbit. As the planet moves from aphelion to perihelion, the Sun’s gravitational force

1. does positive work on the planet

2. does negative work on the planet

3. does positive work on the planet during part of the motion from aphelion to perihelion and negative work on the planet during the other part

4. does zero work on the planet at all points between aphelion and perihelion

A12.5

Page 11: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

A planet (P) is moving around the Sun (S) in an elliptical orbit. As the planet moves around the orbit, the planet’s angular momentum

1. increases as it moves from aphelion to perihelion and decreases as it moves from perihelion to aphelion

2. decreases as it moves from aphelion to perihelion and increases as it moves from perihelion to aphelion

3. increases at all times

4. decreases at all times

5. remains the same at all times

Q12.6

Page 12: The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that

A planet (P) is moving around the Sun (S) in an elliptical orbit. As the planet moves around the orbit, the planet’s angular momentum

1. increases as it moves from aphelion to perihelion and decreases as it moves from perihelion to aphelion

2. decreases as it moves from aphelion to perihelion and increases as it moves from perihelion to aphelion

3. increases at all times

4. decreases at all times

5. remains the same at all times

A12.6