24
Adv. Theor. Appl. Mech., Vol. 5, 2012, no. 2, 69 - 92 The Influence of Diffusion on Generalized Magneto- Thermo-Viscoelastic Problem of a Homogenous Isotropic Material F. S. Bayones Mathematics Department, Faculty of Science Umm Al-Qura University, P. O. Box 10109, Makkah, Saudi Arabia [email protected] Abstract The present paper is aimed at studying the effects of viscosity and diffusion on generalized magneto- thermoelastic interactions in an isotropic with a spherical cavity. A harmonic function techniques are used. The thermal stresses, temperature and displacement have been obtained. These expressions are calculated numerically for a Copper material and depicted graphically. Keywords: Viscoelastic; Generalized magneto thermo; Isotropic; Diffusion; Spherical 1-Introduction The diffusion can be defined as the spontaneous migration of substances from regions of high concentration to regions of low concentration . Thermodiffusion in the olids is one of the transport processes that has great practical importance . Thermodiffusion in an elastic solid is due to the coupling of the fields of temperature, mass diffusion and that of strain . Nowacki[1-3] developed the theory of thermoelastic diffusion . In this theory , the coupled thermoelastic model is used which implies infinite speeds of propagation of thermoelastic waves. Sherief et al.[4] developed the theory of generalized thermoelastic diffusion that predicts finite speeds of propagation for thermoelastic and diffusive waves. Sherief and Saleh [5] worked on a problem of a thermoelastic half-space with a permeating substance, in contact with the bounding plane in the context of the theory of generalized thermoelastic diffusion . Recently , Xia et al.[6] studied the dynamic response of an infinite body with a cylindrical cavity whose surface

The Influence of Diffusion on Generalized Magneto- Thermo ...m-hikari.com/atam/atam2012/atam1-4-2012/bayonesATAM1-4...2012/01/04  · The Influence of Diffusion on Generalized Magneto-

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Adv. Theor. Appl. Mech., Vol. 5, 2012, no. 2, 69 - 92

    The Influence of Diffusion on Generalized Magneto-

    Thermo-Viscoelastic Problem of a Homogenous

    Isotropic Material

    F. S. Bayones

    Mathematics Department, Faculty of Science Umm Al-Qura University, P. O. Box 10109, Makkah, Saudi Arabia

    [email protected]

    Abstract The present paper is aimed at studying the effects of viscosity and diffusion on

    generalized magneto- thermoelastic interactions in an isotropic with a spherical cavity. A harmonic function techniques are used. The thermal stresses, temperature and displacement have been obtained. These expressions are calculated numerically for a Copper material and depicted graphically. Keywords: Viscoelastic; Generalized magneto thermo; Isotropic; Diffusion; Spherical 1-Introduction

    The diffusion can be defined as the spontaneous migration of substances from regions of high concentration to regions of low concentration . Thermodiffusion in the olids is one of the transport processes that has great practical importance . Thermodiffusion in an elastic solid is due to the coupling of the fields of temperature, mass diffusion and that of strain . Nowacki[1-3] developed the theory of thermoelastic diffusion . In this theory , the coupled thermoelastic model is used which implies infinite speeds of propagation of thermoelastic waves. Sherief et al.[4] developed the theory of generalized thermoelastic diffusion that predicts finite speeds of propagation for thermoelastic and diffusive waves. Sherief and Saleh [5] worked on a problem of a thermoelastic half-space with a permeating substance, in contact with the bounding plane in the context of the theory of generalized thermoelastic diffusion . Recently , Xia et al.[6] studied the dynamic response of an infinite body with a cylindrical cavity whose surface

  • 70 F. S. Bayones suffers thermal shock using finite element method. Effect of rotation in a generalized magneto - thermo - viscoelastic media discussed by Abd-Alla et. [7] . Lord and Shulman [8,9] ,Green and Lindsay [10] explained two important generalized theories of thermoelasticity that have become the center of the interest of recent research in this area. Some problems of thermoelasticity or generalized thermoelasticity are investigated by Abd-Alla [11,12] Abd-Alla et al.[13,14] and Elnagar and Abd-Alla [15] respectively . . Roychoudhuri and Mukhopadhyay [16] studied the effect of rotation and relaxation times on plane waves in generalized thermo-viscoelasticity. Roychoudhuri and Banerjee [17] investigated the magneto-thermoelastic interactions in an infinite viscoelastic cylinder of temperature rate dependent material subjected to a periodic loading . Spherically symmetric thermo-viscoelastic waves in a viscoelastic medium with a spherical cavity discussed by Banerjee , et al. [18] . 2- Formulation of the problem

    Let us consider the medium is a perfect electric conductor and the linearized Maxwell equations governing the electromagnetic field , in the absence of the displacement current (SI) in the form as in Roychoudhuri and Mukhopadhyay [16] and Kraus [19] :

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛×

    ∂∂

    −=

    =

    =

    =∂∂

    =

    Ht

    UE

    Ediv

    hdiv

    Ecurlth

    hcurlJ

    e

    e

    μ

    μ

    0

    ,0

    ,

    ,

    (2.1)

    where h is the perturbed magnetic field over the primary magnetic field , E is the electric intensity , J is the electric current density , eμ is the magnetic

    permeability, H is the constant primary magnetic field and U is the displacement vector .

    Applying an initial magnetic field vector ),0,0( φHH in spherical coordinate ),,( φθr to Eq.(2.1) we have

    )0,,0(),,0,0(),0,0),,((tuHEHHHtruUU e ∂∂

    −−=== φφ μ , (2.2a)

  • Influence of diffusion 71

    ⎟⎠⎞

    ⎜⎝⎛ +∂∂

    −=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂

    ∂−=

    ru

    ruHh

    rh

    J 2,0,,0 φφφ , (2.2b)

    )0,,0( 2EE = . (2.2c) The elastic medium is rotating uniformly with an angular velocity nΩ=Ω

    where n is a unit vector representing the direction of the axis of rotation. The displacement equation of motion in the rotating frame has two additional term centripetal acceleration, )( u×Ω×Ω is the centripetal acceleration due to time

    varying motion only and •

    ×Ω u2 is the Coriolis acceleration, and )0,,0( Ω=Ω . Following , (see [4,5]), the governing equations for an isotropic,

    homogeneous elastic solid with generalized magneto-thermo- viscoelastic diffusion under effect of rotation are : (i)The Maxwell's electro-magnetic stress tensor ijτ is given by

    ( . ) , , 1, 2,3.ij e i j j i ijH h H h H h i jτ μ δ⎡ ⎤= + − =⎣ ⎦uur r

    (2.3) (ii) The equation of motion:

    { } ,)]2()([)( ,2,1,, jrimimijjmjjim uuufCTuu•••

    ×Ω+×Ω×Ω+=+−−++ ρβτβτμλτμτ (2.4)

    where rf is defined as Lorentz's force, Kraus [19], which may be written as

    )2()( 2ru

    ru

    rHHJf eer +∂

    ∂∂∂

    =×= φμμ ,

    (iii) the equation of heat conduction :

    )()( 01022

    1, CcTeTTcttKT kkmvii ++∂

    ∂+

    ∂∂

    = βτρτ , (2.5)

    (iv) the equation of mass diffusion:

    iiiiiikkm DbCCttDcTeD ,2

    2

    ,,2 =⎟⎠

    ⎞⎜⎝

    ⎛∂∂

    +∂∂

    ++ τβτ , (2.6)

    (v) the constitutive equations: [ ]))((2 201 CTTee kkijijmij ββλδμτσ −−−+= , (2.7)

    )( 02 TTcbCeP kkm −−+−= βτ , (2.8) where ρ is the mass density of the material, K is thermal conductivity,

    tαμλβ )23(1 += and cαμλβ )23(2 += , tα and cα are , respectively, the coefficients of linear thermal and diffusion expansion , vc is specific heat at constant strain , μλ , are Lame' elastic constants, T is the absolute temperature of the medium , 0T is the reference uniform temperature of the body chosen such that 1/)( 00

  • 72 F. S. Bayones the heat conduction equation will predict finite speed of heat propagation, and τ is the diffusion relaxation time, which will ensure that the equation satisfied by the concentration C will also predict finite speed of propagation of matter from one medium to the other, and D is the diffusive coefficient. The constants c and b are the measures of thermodiffusion effects and diffusive effects, respectively, ijσ are the components of the stress tensor, ije are the components of the strain tensor, and p is the chemical potential.

    The non-vanishing displacement component is the radial one ),( truur = , is

    .3,2,1,,,)(21

    ,, =Δ=+= jieuue jjijjiij (2.9)

    Then, the strain tensor has the following components

    ruee

    ruerr ==∂∂

    = φφθθ, . (2.10)

    The cubical dilatation is thus given by:

    ( )urrrr

    urue 2

    2

    12∂∂

    =+∂∂

    = . (2.11)

    Due to spherical symmetry, Eqs. (2.4)-(2.8), take the form

    ⎥⎦

    ⎤⎢⎣

    ⎡∂∂

    Ω−Ω−∂∂

    =∂∂

    −∂∂

    −∂∂

    tuu

    tu

    rrC

    re

    mm 22

    2

    2

    120 ρθβτβτα , (2.12)

    )()( 01022

    12 CcTeTc

    ttTK kkmv ++∂

    ∂+

    ∂∂

    =∇ βτθρτ , (2.13)

    CDbCtt

    TDceD m2

    2

    222

    2 ∇=⎟⎠

    ⎞⎜⎝

    ⎛∂∂

    +∂∂

    +∇+∇ τβτ , (2.14)

    ⎟⎠⎞−−+

    ∂∂

    ⎜⎝⎛= Ce

    ru

    mrr 212 βθβλμτσ , (2.15)

    ⎟⎠⎞−−+⎜

    ⎝⎛== Ce

    ru

    m 212 βθβλμτσσ θθφφ , (2.16)

    θβτ cbCeP m −+−= 2 , (2.17) where

    rrr ∂∂

    +∂∂

    =∇2

    2

    22 , )2(2

    ru

    ru

    rHf er +∂

    ∂∂∂

    = φμ 2

    0 )2( φμμλτα Hem ++= . (2.18)

    3- Dimensionless quantities

    Now we introduce the following non – dimensional variables in Eqs.

    (2.12)-(2.17):

  • Influence of diffusion 73

    ( ),,,,

    ,1,,

    ,,,)(

    ,,

    021

    *10

    21

    *100

    21

    *00

    21

    *

    *2**2*

    *

    2

    *

    0

    *

    021

    *

    0

    2*

    0

    0101

    *01

    *

    τηττηττητη

    βτα

    σσ

    ηαβτ

    αβτ

    θηη

    ccctct

    urrr

    epp

    cC

    CTT

    ucurcr

    m

    ijij

    mm

    ====

    ∂∂

    ===

    Ω=Ω=

    −===

    (3.1)

    where ρα 02

    1 =c and Kcv /0 ρη = , we have

    *

    ***2

    2*

    *2

    **

    *

    *

    *

    2tuu

    tu

    rrC

    re

    ∂∂

    Ω−Ω−∂∂

    =∂∂

    −∂∂

    −∂∂ θ (3.2)

    )()( *20*

    10

    2

    2*

    2*1*

    2 Cett

    m εαεατθτθ ++

    ∂∂

    +∂∂

    =∇ , (3.3)

    *230

    *2*

    2*

    *202

    10*22 CC

    tte mm ∇=⎟

    ⎞⎜⎝

    ⎛∂∂

    +∂∂

    +∇+∇ ταατααθαατ , (3.4)

    **

    0*

    *

    0

    2 Ceru mm

    rr −−+∂∂

    = θαλτ

    αμτσ , (3.5)

    **

    0*

    *

    0

    2Ce

    ru mm −−+== θ

    αλτ

    αμτ

    σσ θθφφ , (3.6)

    θββτ

    αβτα

    212

    0*

    22

    20*

    mm

    cCbeP −+−= , (3.7)

    where

    .,1,,,2

    30

    22

    221

    12

    012

    02

    11 β

    αηβ

    αββ

    αβ

    βερβε Db

    DccT

    cT

    v

    ===== (3.8)

    4- Boundary conditions

    The homogeneous initial conditions are supplemented by the following boundary conditions : (1) The cavity surface is traction free

    0),( =+ rrrr ta τσ . (4.1a) (2) The cavity surface is subjected to a thermal shock

    ).(),( 0 tHta θθ = (4.1b) (3) The chemical potential is also assumed to be a known function of time at the cavity surface

    ).(),( 0 tHptap = (4.1c) where 0θ and 0p are constants and H(t) is the Heaviside unit step function. (4) The displacement function

  • 74 F. S. Bayones

    .0),( =tau (4.1d) 5- Solution of the problem

    Assuming a simple harmonic time dependent factor for all the quantities

    and omitting the factor tie ω as following:

    .)(),(,)(),(

    ,)(),(,)(),(***

    **

    *******

    *******

    titi

    titi

    erGtrCertre

    ertrerUtruωω

    ωω θ

    =Ε=

    Θ== (5.1)

    Eqs. (2.12)-(2.14) become

    Urr

    Gr

    β=∂Θ∂

    −∂∂

    −∂Ε∂

    *** (5.2)

    )( 4312 Gεε +Ε+Θ=Θ∇ l , (5.3)

    GG 2542

    32 ∇=+Θ∇+Ε∇ lll . (5.4)

    By applying the operator **2*

    22 2

    rrr ∂∂

    +∂∂

    =∇ to Eq.(5.2) , we obtain

    Θ∇+∇=Ε−∇ 222 )( Gβ , (5.5) From Eqs. (5.3)- (5.5) , we obtain

    ,0),,)(( 32

    24

    16 =ΘΕ+∇+∇+∇ Gaaa (5.6)

    where

    { }541435433515

    1 ])([)1(1

    llllllll

    βεεεε ++−++++−−

    =a , (5.7)

    { })1())(()1(

    134134514

    52 εεβ ++++−= lllllll

    a , (5.8)

    )1( 541

    3 −−

    =l

    llβa , (5.9)

    ).2(

    ,1,)2(,,

    ,,,,)1(),1(

    *2*2

    *0

    *2**02

    *041*

    0

    2*

    3

    *3

    *0

    52*

    22*0

    42*

    1*0

    3*

    2*11

    Ω+Ω+−=

    +=++===

    ===+=+=

    ωωβ

    ωττμμλταεαεεατ

    ε

    ταα

    ταα

    ταα

    ωτωωτω

    φ

    i

    iH

    iiii

    memm

    mmm

    ll

    llll

    (5.10) The above system of equations can be factorized as

    ,0),,())()(( 2122

    122

    12 =ΘΕ+∇+∇+∇ Gkkk (5.11)

    where k1, k2 and k3 are the roots of the characteristic equation .03

    22

    41

    6 =+++ akakak (5.12)

  • Influence of diffusion 75

    The solution of Eq.(5.11) , which is bounded at infinity , is given by

    ),()(1),( *2/13

    1*

    * rkKAr

    r jjj

    ωω ∑=

    =Θ (5.13)

    ),()(1),( *2/13

    1*

    * rkKAr

    r jjj

    ωω ′=Ε ∑=

    (5.14)

    ),()(1),( *2/13

    1*

    * rkKAr

    rG jjj

    ωω ′′= ∑=

    (5.15)

    where jj AA ′, and jA ′′ are parameters depending only on ω , and 2/1K is the

    modified Bessel function of the second kind of order 1/2 . Compatibility between Eqs. (5.13)- (5.15) along with (5.3) and (5.4) will give rise to

    )()(

    ))(()(

    42

    5312

    41

    23144

    251

    2

    ωεε

    εω j

    jj

    jjjj Akk

    kkkA

    llll

    lllll

    −+−−−

    =′ , (5.16)

    )()(

    )()(

    42

    531142

    1222

    313 ωεε

    εω j

    jj

    jjjj Akk

    kkkA

    llll

    lll

    −+−+

    =′′ . (5.17)

    Substituting from Eqs. (5.13)-(5.15) into (5.1), we obtain

    ,)()(1),( **2/13

    1*

    ** tijj

    jerkKA

    rtr ωωθ ∑

    =

    = (5.18)

    ,)()(1),( **2/13

    1*

    *** tijj

    jerkKA

    rtre ωω′= ∑

    =

    (5.19)

    .)()(1),( **2/13

    1*

    *** tijj

    jerkKA

    rtrC ωω′′= ∑

    =

    (5.20)

    Integrating both sides of Eqs.(5.19) in the relation to the r* , we obtain

    **2/3

    42

    5312

    41

    23144

    251

    23

    1*

    *** )()()(

    ))((1),( tijjjj

    jjj

    jerkKA

    kkkkk

    rtru ωω

    εεεllll

    lllll

    −+−−−

    = ∑=

    . (5.21)

    Also, from (3.5)-(3.7), we get

    **2/3

    1*2/12

    31442

    512

    42

    5312

    4121

    42

    5312

    41

    23144

    251

    23

    1*

    )()())((

    )()(

    )())((

    )(1

    tijj

    jjj

    jj

    jj

    jjjj

    jrr

    erkKr

    rkKkkk

    kkmm

    kkkkk

    Ar

    ωαε

    εε

    εεε

    ωσ

    ⎪⎭

    ⎪⎬⎫

    −⎥⎥⎦

    ⎢⎢⎣

    −−−

    −+−+

    ⎪⎩

    ⎪⎨⎧

    −+

    −−−= ∑

    =

    lllll

    llll

    llll

    lllll

    (5.22)

  • 76 F. S. Bayones

    **2/1

    42

    531142

    1222

    313

    42

    5312

    41

    23144

    251

    2

    2

    *2/3

    42

    5312

    41

    23144

    251

    2

    *1

    3

    1*

    )()(

    )(1

    )())((

    )()(

    ))(()(1

    tij

    jj

    jjj

    jj

    jjj

    jjj

    jjjj

    j

    erkKkk

    kkkkk

    kkkm

    rkKkk

    kkkrm

    Ar

    ω

    θθφφ

    εεε

    εεε

    εεε

    ωσσ

    ⎪⎭

    ⎪⎬⎫

    ⎥⎥⎦

    −+

    −+−−

    −+

    −−−

    ⎢⎢⎣

    ⎡+

    −+

    −−−

    ⎪⎩

    ⎪⎨⎧

    == ∑=

    llll

    lll

    llll

    lllll

    llll

    lllll

    (5

    .23)

    **2/14

    42

    531142

    1222

    3133

    42

    5312

    41

    23144

    251

    23

    1*

    )()(

    )(

    )())((

    )(1

    tij

    jj

    jjj

    jj

    jjjj

    j

    erkKmkk

    kkkm

    kkkkk

    Ar

    P

    ω

    εεε

    εεε

    ω

    ⎪⎭

    ⎪⎬⎫

    −−+

    −++

    ⎪⎩

    ⎪⎨⎧

    −+

    −−−−= ∑

    =

    llll

    lll

    llll

    lllll

    (5.24)

    where

    .,,,2

    21*

    *0

    422

    2*

    *0

    3*0

    *

    2*0

    *

    1 ββτα

    βτα

    αλτ

    αμτ

    mm

    mm cmbmmm ====

    By using the boundary conditions , we get

    ,])([])([)(

    ,])([])([)(

    ,])([])([)(

    10012/1220022/113

    10012/13032/13012

    022/1203032/13021

    MWpakKNaWpakKNaA

    MWpakKNapakKWNaA

    MpakKWaNpakKWaNA

    θθω

    θθω

    θθω

    −−−=

    −+−=

    −+−−=

    (5.25)

    ⎪⎭

    ⎪⎬⎫

    ⎥⎦⎤⎟⎠⎞−⎜

    ⎝⎛+⎢⎣

    ⎡−⎥⎥⎦

    ⎢⎢⎣

    −−−

    −+−+

    ⎪⎩

    ⎪⎨⎧

    −+

    −−−=

    )(3)())((

    )()(

    )())((

    2/32

    221

    2/123144

    251

    2

    42

    5312

    4121

    42

    5312

    41

    23144

    251

    2

    akKka

    Ham

    akKkkk

    kkmm

    kkkkk

    N

    jiejjjj

    jj

    jj

    jjjj

    φμεεε

    εεε

    lllll

    llll

    llll

    lllll

    (5

    .26)

    )()(

    )(

    )())((

    2/144

    253114

    2

    1222

    3133

    42

    5312

    41

    23144

    251

    2

    akKmkk

    kkkm

    kkkkk

    W

    jjj

    jjj

    jj

    jjjj

    ⎪⎭

    ⎪⎬⎫

    −−+−+

    +

    ⎪⎩

    ⎪⎨⎧

    −+−−−

    −=

    llll

    lll

    llll

    lllll

    εεε

    εεε

    , j=1,2,3. (5.27)

  • Influence of diffusion 77

    ⎭⎬⎫−+

    ⎩⎨⎧ −−−=

    )]()([

    ])()([])()([

    22/1112/123

    12/1112/13232/1222/131

    akKWakKWN

    akKWakKWNakKWakKWNM (5.28)

    The discussion in thermoelastic diffusion medium is clear up from Figs. (1-

    6) and in thermoelastic medium is clear up from Figs. (7-10):

    -1.50E+00

    -1.00E+00

    -5.00E-01

    0.00E+00

    5.00E-01

    1.00E+00

    1.50E+00

    2.00E+00

    2.50E+00

    3.00E+00

    3.50E+00

    0 0.5 1 1.5 2 2.5

    -2.00E+00

    -1.50E+00

    -1.00E+00

    -5.00E-01

    0.00E+00

    5.00E-01

    1.00E+00

    1.50E+00

    2.00E+00

    0 0.5 1 1.5 2

    -6.00E-01

    -4.00E-01

    -2.00E-010.00E+00

    2.00E-01

    4.00E-01

    6.00E-01

    8.00E-01

    1.00E+001.20E+00

    1.40E+00

    1.60E+00

    0 0.5 1 1.5 2 2.5

    -2.00E+00

    -1.00E+00

    0.00E+00

    1.00E+00

    2.00E+00

    3.00E+00

    4.00E+00

    0 0.5 1 1.5 2 2.5

    Fig.(1): The displacement ),( tru in thermo viscoelastic diffusion medium

    t

    0=Ω __ _ ___ 2.0=Ω ________ 5.0=Ω ..........

    1=r _ __ _ __ 5.1=r _______ 2=r ..............

    u u

    u

    r

    r

    u

    __ _ __ 01.00 =τ

    1.00 =τ _______ 2.00 =τ..........

    r

    t=0 ___ _ __ t=1.4 ______

    t=2 .............

  • 78 F. S. Bayones

    -1.20E+00

    -1.00E+00

    -8.00E-01

    -6.00E-01

    -4.00E-01

    -2.00E-01

    0.00E+000 0.5 1 1.5 2 2.5

    -4.50E-01

    -4.00E-01

    -3.50E-01

    -3.00E-01

    -2.50E-01

    -2.00E-01

    -1.50E-01

    -1.00E-01

    -5.00E-02

    0.00E+000 0.5 1 1.5 2 2.5

    -4.50E-01

    -4.00E-01

    -3.50E-01

    -3.00E-01

    -2.50E-01

    -2.00E-01

    -1.50E-01

    -1.00E-01

    -5.00E-02

    0.00E+000 0.5 1 1.5 2 2.5

    -1.60E+00

    -1.40E+00

    -1.20E+00

    -1.00E+00

    -8.00E-01

    -6.00E-01

    -4.00E-01

    -2.00E-01

    0.00E+000 0.5 1 1.5 2 2.5

    Fig.(2): The temperature ),( trθ in thermo viscoelastic diffusion medium

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    θ r

    0=Ω _ __ __ 2.0=Ω _______ 5.0=Ω ..........

    θ r

    __ _ __ 01.00 =τ

    1.00 =τ _______ 2.00 =τ ...........

    θ

    θ r 1=r _ __ _ __ 5.1=r _______ 2=r ..............

  • Influence of diffusion 79

    0.00E+00

    5.00E-18

    1.00E-17

    1.50E-17

    2.00E-17

    2.50E-17

    3.00E-17

    0 0.5 1 1.5 2 2.5

    -5.00E-17

    0.00E+00

    5.00E-17

    1.00E-16

    1.50E-16

    2.00E-16

    2.50E-16

    3.00E-16

    0 0.5 1 1.5 2 2.5

    -5.00E-17

    0.00E+00

    5.00E-17

    1.00E-16

    1.50E-16

    2.00E-16

    2.50E-16

    3.00E-16

    3.50E-16

    0 0.5 1 1.5 2 2.5

    0.00E+00

    5.00E-17

    1.00E-16

    1.50E-16

    2.00E-16

    2.50E-16

    3.00E-16

    3.50E-16

    4.00E-16

    4.50E-16

    5.00E-16

    0 0.5 1 1.5 2 2.5

    Fig.(3): The concentration ),( trC in thermo viscoelastic diffusion medium

    C

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    __ _ __ 01.00 =τ

    1.00 =τ _______ 2.00 =τ ............

    r

    0=Ω _ __ _ _ 2.0=Ω ________ 5.0=Ω ............

    r

    C

    C C

    1=r _ __ _ __ 5.1=r _______ 2=r .............

    r t

  • 80 F. S. Bayones

    -2.00E+04

    0.00E+00

    2.00E+04

    4.00E+04

    6.00E+04

    8.00E+04

    1.00E+05

    0 0.5 1 1.5 2 2.5

    -2.00E+05

    -1.50E+05

    -1.00E+05

    -5.00E+04

    0.00E+00

    5.00E+04

    1.00E+05

    1.50E+05

    2.00E+05

    0 0.5 1 1.5 2 2.5

    -1.40E+05

    -1.20E+05

    -1.00E+05

    -8.00E+04

    -6.00E+04

    -4.00E+04

    -2.00E+04

    0.00E+00

    2.00E+04

    4.00E+04

    0 0.5 1 1.5 2 2.5

    -5.00E+05

    -4.00E+05

    -3.00E+05

    -2.00E+05

    -1.00E+05

    0.00E+00

    1.00E+05

    2.00E+05

    0 0.5 1 1.5 2 2.5

    Fig.(4): The stress rrσ in thermo viscoelastic diffusion medium

    r

    r

    __ _ __ _ 01.00 =τ

    1.00 =τ _______ 2.00 =τ .............

    0=Ω __ _ __ 2.0=Ω ________ 5.0=Ω ............

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    1=r _ __ _ __ 5.1=r ______ 2=r .............

    rrσ

    t r

    rrσ

    rrσ

    rrσ

  • Influence of diffusion 81

    -4.00E-01

    -2.00E-01

    0.00E+00

    2.00E-01

    4.00E-01

    6.00E-01

    8.00E-01

    1.00E+00

    0 0.5 1 1.5 2 2.5

    -1.50E+00

    -1.00E+00

    -5.00E-01

    0.00E+00

    5.00E-01

    1.00E+00

    1.50E+00

    2.00E+00

    0 0.5 1 1.5 2 2.5

    0.00E+00

    2.00E-01

    4.00E-01

    6.00E-01

    8.00E-01

    1.00E+00

    1.20E+00

    1.40E+00

    1.60E+00

    0 0.5 1 1.5 2 2.5

    -5.00E-01

    0.00E+00

    5.00E-01

    1.00E+00

    1.50E+00

    2.00E+00

    2.50E+00

    3.00E+00

    3.50E+00

    4.00E+00

    4.50E+00

    0 0.5 1 1.5 2 2.5

    Fig.(5): The stress φφσ in thermo viscoelastic diffusion medium

    φφσ φφσ

    r

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    0=Ω _ __ __ 2.0=Ω _______ 5.0=Ω ..........

    φφσ __ _ __ _ 01.00 =τ

    1.00 =τ _______ 2.00 =τ .............

    r

    r

    φφσ

    1=r _ __ _ __ 5.1=r ______ 2=r .............

    t

  • 82 F. S. Bayones

    0.00E+00

    1.00E+00

    2.00E+00

    3.00E+00

    4.00E+00

    5.00E+00

    6.00E+00

    0 0.5 1 1.5 2 2.5

    0.00E+00

    5.00E-01

    1.00E+00

    1.50E+00

    2.00E+00

    2.50E+00

    3.00E+00

    3.50E+00

    4.00E+00

    4.50E+00

    0 0.5 1 1.5 2 2.5

    0.00E+00

    5.00E-01

    1.00E+00

    1.50E+00

    2.00E+00

    2.50E+00

    0 0.5 1 1.5 2 2.5

    0.00E+00

    1.00E+00

    2.00E+00

    3.00E+00

    4.00E+00

    5.00E+00

    6.00E+00

    0 0.5 1 1.5 2 2.5

    Fig.(6): The chemical potential p in thermo viscoelastic diffusion medium

    p p

    p p

    r r

    r t

    0=Ω _ __ __ 2.0=Ω _______ 5.0=Ω ..........

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    __ _ __ _ 01.00 =τ

    1.00 =τ _______ 2.00 =τ .............

    1=r _ __ _ __ 5.1=r ______ 2=r .............

  • Influence of diffusion 83 6- Particular case:

    i- If we neglect the diffusion effect by eliminating Eqs.(2.6) and (2.8), and by putting 02 == cβ in Eqs. (2.4) , (2.5) and (2.8), we have

    tirtir eBeAtre ωλωλ ωωθ +−+− += 21 )()(),)(,( , (6.1) where

    [ ]2211222131211

    421),(

    ,)(,)(

    ηηηλλ

    εβηβη

    −±=

    −=+−= ll (6.2)

    ,)()(22)(22),( 2132

    22

    22

    2

    31

    21

    21

    2tirr eCeB

    rrreA

    rrrtru ωλλ ωω

    λλλω

    λλλ

    ⎥⎦

    ⎤⎢⎣

    ⎡+

    +++

    ++−= −− (6.3)

    (6.4)

    ,)()1(22

    )()1(22

    2

    1

    232

    32

    22

    2

    1

    231

    31

    21

    2

    1

    tir

    r

    eeBmr

    rrm

    eAmr

    rrm

    ωλ

    λθθφφ

    ωλλλ

    ωλλλσσ

    ⎪⎭

    ⎪⎬⎫

    ⎥⎦⎤−−⎟

    ⎠⎞++

    ⎜⎝⎛

    ⎢⎣⎡+

    ⎥⎦⎤−−⎟

    ⎠⎞++

    ⎜⎝⎛

    ⎢⎣⎡

    ⎪⎩

    ⎪⎨⎧

    −==

    (6.4)

    By using the boundary conditions , we have

    ,)()(

    ,)(,)(

    12

    1212

    21

    04132

    21

    01

    21

    02

    aa

    aaaa

    ehehhhhhC

    ehehhB

    ehehhA

    λλ

    λλλλ

    θω

    θωθω

    −−

    −−−−

    −−

    =

    −=

    −−

    = (6.5)

    ,)1(244

    ,)1(244

    2

    1

    22

    232

    3

    32

    322

    22

    12

    12

    231

    3

    31

    321

    21

    11

    ae

    ae

    eHma

    aaamh

    eHma

    aaamh

    λφ

    λφ

    λμλ

    λλλ

    λμλ

    λλλ

    ⎟⎠⎞−−+

    +++⎜⎝⎛=

    ⎟⎠⎞−−+

    +++⎜⎝⎛=

    (6.6)

    .22,22 21 32

    22

    22

    2

    431

    21

    21

    2

    3aa e

    aaahe

    aaah λλ

    λλλ

    λλλ −− ⎟

    ⎠⎞++

    ⎜⎝⎛=⎟

    ⎠⎞++

    ⎜⎝⎛= (6.7)

    ,)()1(244

    )()1(244

    2

    1

    232

    3

    32

    322

    22

    1

    231

    3

    31

    321

    21

    1

    tir

    rrr

    eeBmr

    rrrm

    eAmr

    rrrm

    ωλ

    λ

    ωλ

    λλλ

    ωλ

    λλλσ

    ⎥⎥⎦

    ⎤⎟⎠⎞−+

    +++⎜⎝⎛+

    ⎟⎠⎞−+

    +++⎜⎝⎛

    ⎢⎢⎣

    ⎡=

  • 84 F. S. Bayones

    -1.00E+01

    0.00E+00

    1.00E+01

    2.00E+01

    3.00E+01

    4.00E+01

    5.00E+01

    6.00E+01

    0 0.5 1 1.5 2 2.5

    -1.00E+01

    0.00E+00

    1.00E+01

    2.00E+01

    3.00E+01

    4.00E+01

    5.00E+01

    0 0.5 1 1.5 2 2.5

    -1.00E+02

    0.00E+00

    1.00E+02

    2.00E+02

    3.00E+02

    4.00E+02

    5.00E+02

    6.00E+02

    7.00E+02

    8.00E+02

    9.00E+02

    0 0.5 1 1.5 2 2.5

    0.00E+00

    2.00E+02

    4.00E+02

    6.00E+02

    8.00E+02

    1.00E+03

    1.20E+03

    1.40E+03

    0 0.5 1 1.5 2 2.5

    Fig.(7): The displacement ),( tru in thermo viscoelastic medium

    u u

    u u

    r r

    r t

    0=Ω _ __ __ 2.0=Ω _______ 5.0=Ω ..........

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    __ _ __ _ 01.00 =τ

    1.00 =τ _______ 2.00 =τ .............

    1=r _ __ _ __ 5.1=r ______ 2=r .............

  • Influence of diffusion 85

    -2.00E+03

    -1.50E+03

    -1.00E+03

    -5.00E+02

    0.00E+00

    5.00E+02

    0 0.5 1 1.5 2 2.5

    -2.50E+03

    -2.00E+03

    -1.50E+03

    -1.00E+03

    -5.00E+02

    0.00E+00

    5.00E+02

    0 0.5 1 1.5 2 2.5

    -1.80E+03

    -1.60E+03

    -1.40E+03

    -1.20E+03

    -1.00E+03

    -8.00E+02

    -6.00E+02

    -4.00E+02

    -2.00E+02

    0.00E+00

    2.00E+02

    0 0.5 1 1.5 2 2.5

    -3.00E+03

    -2.50E+03

    -2.00E+03

    -1.50E+03

    -1.00E+03

    -5.00E+02

    0.00E+00

    5.00E+02

    0 0.5 1 1.5 2 2.5

    Fig.(8): The temperature ),( trθ in thermo viscoelastic medium

    θ

    r r

    r t

    0=Ω _ __ __ 2.0=Ω _______ 5.0=Ω ..........

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    __ _ __ _ 01.00 =τ

    1.00 =τ _______ 2.00 =τ .............

    1=r _ __ _ __ 5.1=r ______ 2=r .............

    θ

    θ θ

  • 86 F. S. Bayones

    -1.40E+04

    -1.20E+04

    -1.00E+04

    -8.00E+03

    -6.00E+03

    -4.00E+03

    -2.00E+03

    0.00E+00

    2.00E+03

    0 0.5 1 1.5 2 2.5

    -1.20E+04

    -1.00E+04

    -8.00E+03

    -6.00E+03

    -4.00E+03

    -2.00E+03

    0.00E+00

    2.00E+03

    0 0.5 1 1.5 2 2.5

    -9.00E+03

    -8.00E+03

    -7.00E+03

    -6.00E+03

    -5.00E+03

    -4.00E+03

    -3.00E+03

    -2.00E+03

    -1.00E+03

    0.00E+00

    1.00E+03

    0 0.5 1 1.5 2 2.5

    0.00E+00

    1.00E-01

    2.00E-01

    3.00E-01

    4.00E-01

    5.00E-01

    6.00E-01

    7.00E-01

    8.00E-01

    9.00E-01

    1.00E+00

    0 0.5 1 1.5 2 2.5

    Fig.(9): The stress rrσ in thermo viscoelastic medium

    0=Ω _ __ __ 2.0=Ω _______ 5.0=Ω ..........

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    r=0 ___ _ __ r=1.4 ______

    r=2 ...........

    __ _ __ _ 01.00 =τ

    1.00 =τ _______ 2.00 =τ .............

    r r

    r

    t

    rrσrrσ

    rrσ rrσ

  • Influence of diffusion 87

    -2.00E+01

    0.00E+00

    2.00E+01

    4.00E+01

    6.00E+01

    8.00E+01

    1.00E+02

    1.20E+02

    1.40E+02

    1.60E+02

    1.80E+02

    0 0.5 1 1.5 2 2.5

    -2.00E+01

    0.00E+00

    2.00E+01

    4.00E+01

    6.00E+01

    8.00E+01

    1.00E+02

    1.20E+02

    1.40E+02

    1.60E+02

    0 0.5 1 1.5 2 2.5

    -2.00E+01

    0.00E+00

    2.00E+01

    4.00E+01

    6.00E+01

    8.00E+01

    1.00E+02

    1.20E+02

    1.40E+02

    0 0.5 1 1.5 2 2.5

    -7.00E-01

    -6.00E-01

    -5.00E-01

    -4.00E-01

    -3.00E-01

    -2.00E-01

    -1.00E-01

    0.00E+000 0.5 1 1.5 2 2.5

    Fig.(10): The stress φφσ in thermo viscoelastic medium

    t=0 ___ _ __ t=1.4 ______

    t=2 ...........

    0=Ω _ __ __ 2.0=Ω _______ 5.0=Ω ..........

    __ _ __ _ 01.00 =τ

    1.00 =τ _______ 2.00 =τ .............

    r=0 ___ _ __ r=1.4 ______

    r=2 ...........

    r r

    r

    t

    r

    φφσφφσ

    φφσφφσ

  • 88 F. S. Bayones 7- Numerical results and discussion

    The Copper material was used chosen for purposes of numerical

    evaluations. The constants of the problem given by [20] and [21], are

    20

    256224

    038

    3415

    3310310

    /73.8886,/109.0,/102.1

    ,293,/1085.0,/386

    ,/1098.1,1078.1,/1.383

    ,/8954,/1076.7,/1086.3

    mskgsmbKsmc

    KTmskgDmKWk

    kgmKKkgJc

    mkgmskgmskg

    ctv

    =×=×=

    =×==

    ×=×==

    =×=×=−−−

    η

    αα

    ρλμ

    Using these values, it was found that:

    .2.0,2.0,01.0,107.0,5.9,2,1,1,2.0 105

    00 ===×======− τττωθμ φHape

    The numerical technique outlined above was used to obtain the temperature, radial displacement, radial stress and concentration as well as the chemical potential distribution inside the sphere. These distributions are shown in Figs. 1-10 respectively. For the sake of brevity some computational results are not being presented here. -In thermo - viscoelastic diffusion medium

    Fig. (1) shows the variation of the radial displacement ),( tru under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of ),( tru decreased with an increased of time , rotation and radius , while the values of ),( tru are take the same values (a slight change) at different values of mechanical relaxation time.

    Fig. (2) shows the temperature distribution ),( trθ under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of ),( trθ decreased and increased with an increased of time and radius respectively, while the values of ),( trθ are take the same values (a slight change) at different values of mechanical relaxation time and rotation.

    Fig. (3) shows the concentration distribution ),( trC under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of ),( trC decreased with an increased of time , radius and mechanical relaxation time, while the values of ),( trC are take the same values (a slight change) at different values of rotation.

    Fig. (4) shows the radial stress stress rrσ under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of rrσ decreased and increased with an increased of (time and rotation) and radius respectively, while the values of rrσ are take the same values (a slight change) at different values of mechanical relaxation time and rotation.

    Fig. (5) shows the tangential stress φφσ under effects the change of time t ,

    rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that

  • Influence of diffusion 89 the values of φφσ decreased with an increased of time , rotation and radius, while the values of φφσ are take the same values (a slight change) at different values of mechanical relaxation time and rotation.

    Fig. (6) shows the chemical potential distribution p under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of p decreased with an increased of time , rotation and radius, while the values of p are take the same values (a slight change) at different values of mechanical relaxation time and rotation. -In thermo viscoelastic medium

    Fig. (7) shows the radial displacement ),( tru under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of ),( tru decreased with an increased of time , rotation and radius, while the values of ),( tru are take the same values (a slight change) at different values of mechanical relaxation time and rotation.

    Fig. (8) shows the temperature distribution ),( trθ under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of ),( trθ decreased and increased with an increased of time , (rotation and radius) respectively , while the values of ),( trθ are take the same values (a slight change) at different values of mechanical relaxation time and rotation.

    Fig. (9) shows the radial stress rrσ under effects the change of time t , rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of rrσ decreased and increased with an increased of (time and radius) and rotation respectively , while the values of rrσ are take the same values (a slight change) at different values of mechanical relaxation time and rotation.

    Fig. (10) shows the tangential stress φφσ under effects the change of time t ,

    rotation Ω , mechanical relaxation time 0τ and the radius r. It was found that the values of φφσ decreased and increased with an increased of (time and rotation) and radius respectively , while the values of φφσ are take the same values (a slight change) at different values of mechanical relaxation time and rotation.

    8- Conclusions From the previous discussion in thermo viscoelastic diffusion medium, we

    have the values of the displacement ),( tru , the concentration distribution ),( trC , the stress φφσ and the chemical potential distribution p decreased with increased values of time t , rotation Ω and the radius r , and take the same values (a slight

  • 90 F. S. Bayones change) at different values of mechanical relaxation time 0τ . While the values of the temperature distribution ),( trθ , the stress rrσ take changes values increased , decreased or slight change with increased values of time t , rotation Ω , mechanical relaxation time 0τ and the radius r.

    From the previous discussion in thermo viscoelastic medium, we have the values of the displacement ),( tru decreased with increased values of time t , rotation Ω and the radius r , and take the same values (a slight change) at different values of mechanical relaxation time 0τ . While the values of the temperature distribution ),( trθ , the stress rrσ , and the stress φφσ take changes values increased , decreased or slight change with increased values of time t , rotation Ω , mechanical relaxation time 0τ and the radius r.

    Finally, the results obtained in this chapter should prove useful for research in material science, designers of new materials, low-temperature physicists, as well as for those working on the development of a theory of hyperbolic thermo diffusion. Cross effects of heat, magnetic field, rotation and mass diffusion exchange with the environment arising from and inside nuclear reactors influence their design and operations. Study of the phenomenon of diffusion is also used to improve the conditions of oil extraction.

    References [1] Nowacki. W. 1974, Dynamical problems of thermodiffusion in solids Bull. Acad. Pol. Sci. Ser. Sci. Tech , 22 , pp. 55-64. [2] Nowacki . W. 1974 , Dynamical problems of thermodiffusion in solids II, Bull. Acad. Pol. Sci. Ser. Sci. Tech, 22 , pp.129-135. [3] Nowacki. W. 1974, Dynamical problems of thermo diffusion in solid III, Bull. Acad. Pol.Sci. Ser. Sci. Tech. 22 , pp. 266-275. [4] Sherief . H ., Hamza . F., Saleh . H . 2004 , The theory of generalized thermoelastic diffusion , Int. J. Eng. Sci, 42, pp. 591-608. [5] Sherief . H ., Saleh . H. 2005 , A half - space problem in the theory of generalized thermoelastic diffusion , Int. J. Solids Struct, 42 , pp. 4484- 4494. [6] Xia. R., Tian. X., Shen.Y. 2009,The influence of diffusion on generalized thrmoelastic problems of infinite body with a cylindrical cavity, Int. J. Eng. Sci. 47, pp. 669-679. [7] Abd-Alla . A. M., Bayones. F. S. 2011, Effect of rotation in a generalized magneto-thermo - viscoelastic media , Advanc Theoretical and Applied Mechanic . 4 , no. 1, pp. 15-42.

  • Influence of diffusion 91 [8] Lord, H.W., Shulman, Y.1967, A generalized dynamical theory of thermo- elasticity, J. Mech. Phys. Solids 7,pp. 71–75. [9] Lord, H. W ., Shulman . Y, 1967, A generalized thermodynamical theory of thermo-elasticity. Elasticity, J. Mech. Phys. Solids, 15 , pp. 299-309. [10] Green, A.E., Lindsay, A. 1972, Thermoelasticity, J. Elasticity 2, pp. 1–7. [11] Abd-Alla, A.M. 1995, Thermal stress in a transversely isotropic circular cylinder due to an instantaneous heat source, Appl. Math . Comput, 68, pp.113-124. [12] Abd-Alla , A. M . 1996, Transient response of inhomogeneous transversely isotropic thermoelastic cylinder to a dynamic input , J. Appl . Math .Comput, 74, pp. 1–13. [13] Abd-Alla , A. M. 1999, Propagation of Rayleigh waves in an elastic half-space of orthotropic material ,Applied Mathematics and Computation, Vol, 99, pp.61-619. [14] Abd-Alla, A. M., Abd-Alla , A.N., Zeidan, N . A. 2000 , Thermal stresses in a non-homogeneous orthotropic elastic multilayered cylinder , J .Thermal Stresses, 23 (5), pp. 413–428. [15] El-Naggar, A.M., Abd-Alla, A.M. 1987 , On a generalized thermoelastic problem in an infinite cylinder under initial stress, Earths, Moon Planets, 37, pp.213–223. [16] Roychoudhuri , S.K ., Mukhopadhyay , S . 2000, Effect of rotation and relaxation times on plane waves in generalized thermo– viscoelasticity, IJMMS, 23 (7), pp. 497–505. [17] Roychoudhuri, S. K ., Banerjee, S . 1998, Magneto-thermoelastic Interactions in an infinite viscoelastic cylinder of temperature rate dependent material subjected to a periodic loading, Int. J. Eng. Sci, 36 (5/6) , pp.635-643. [18] Banerjee, S., (Mukhopadhyay), Rychoudhuri, S. K. 1995 , Spherically symmetric thermo - viscoelastic waves in a viscoelastic medium with a spherical cavity, Comput . Math. Appl, 30, pp.91-98. [19] Kraus, J.D . 1984, Electromagnetics . Mc Graw-Hill, New York. [20] Singh, H., Sharma, J. N.1985 , Generalized thermoelastic waves in transversely isotropic media . J. Acoust . Soc . Am, 77, pp.1046-1053.

  • 92 F. S. Bayones [21] Thomas . L .1956, Fundamentals of Heat Transfer . Prentice -Hall Inc , Englewood Cliffs, New Jersey. Received: November, 2011