The Flow Past a Pitot Tube at Low Reynolds Numbers

  • Upload
    ozkene

  • View
    234

  • Download
    0

Embed Size (px)

Citation preview

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    1/25

    ~ , i ~ 7 . ~ . : : , , .- ~ . . . . :

    M I N I S T R Y O F V I T I O N

    A E R O N A U T I C A L . R ES E AR C H C O U N C I L

    R E P O R T S A N D M E M O R A N D A

    R . M . N o . 3 2 4 0

    T h e F l o w p ast a P i t o t T u b e a t L o w R e y n o l d s

    N u m b e r s

    Par t I . T he N um er ica l So lu t ion o f the Nav ie r -S tokes Equa t ions fo r

    S tead y V i sco u s A x i - sy mmet r i c F lo w

    Par t I I . T he Ef fec ts o f Viscos ity and Or i f ice S ize on a P i to t Tub e a t

    L o w R e y n o l d s N u m b e r s

    By W. G. S. LESTER

    DEPARTMENT OF ENGINEERING SCIENCE, UNIVERSITY OF OXFORD

    L O N D O N : H E R M A J E S T Y S S T A T I O N E R Y O F F I C E

    I96I

    PRICE

    9s. 6d.

    NET

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    2/25

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    3/25

    d i f f e r e n c e e q u a t io n s w h o se n o n - l i n e a r i t y h a s ma d e a t t e mp t s a t so lu t i o n e x t r e me ly l o n g a n d t e d io u s .

    E v e n i n t h e s o l u t i o n f o r s l o w f lo w s , u s in g t h e S t o k e s ' a p p r o x i m a t i o n , b y n u m e r i c al m e t h o d s t h e

    l a b o u r r e q u i r e d i s a lmo s t p r o h ib i t i v e a n d t h e i n c lu s io n o f t h e n o n - l i n e a r t e r ms so c o mp l i c a t e s t h e

    p r o b l e m a s t o m a k e i t im p r a c t i c a b le f o r s o lu t i o n b y h a n d . H o w e v e r , t h e g r o w i n g u s e o f e le c tr o n ic

    c o m p u t o r s r e m o v e s m u c h o f t h e d i ff i cu l ty a n d a f fo r d s e n c o u r a g e m e n t f o r t h e d e v e l o p m e n t o f a

    s a t i s f a c t o r y r o u t i n e m e t h o d . T h e m a c h i n e t i m e u s e d c a n b e q u i t e h i g h e v e n w i t h a r e l a t i v e l y

    s t r a i g h t f o r w a r d p r o b l e m . . T h e s u c c e ss o f a s o l u t io n m a y w e l l d e p e n d t o a la r g e e x te n t o n t h e c h o i c e

    o f t h e i n i t i a l s t a r ti n g v a lu e s ; t o b u i l d u p a so lu t i o n w i th a l l f u n c t i o n v a lu e s i n it i al l y z e r o ma y s e e m

    t h e b e s t p r o c e d u r e b u t h a s t h e d i s a d v a n ta g e o f t a k in g s o m u c h m a c h i n e t i m e . O n t h e o t h e r h a n d ,

    a n u n f o r tu n a t e c h o i c e ca n e a s il y l e a d to d iv e r g e n c e i n t h e n u me r i c a l p r o c e s s e mp lo y e d . I t sh o u ld

    b e e m p h a s i s e d t h a t t h i s d i v e r g e n c e a r i s e s f r o m t h e n u m e r i c a l m e t h o d a n d h a s n o c o n n e c t i o n w i t h

    h y d r o d y n a m i c s t a b i li t y s in c e s te a d y f l o w is p o s tu l a t ed . D i v e r g e n c e c a n u s u a l ly b e c o m b a t e d w h e n

    w o r k i n g b y h a n d b u t c a n b e d i ff ic u l t t o d e a l w i t h o n a c o m p u t e r , t h e u s u a l t e c h n i q u e b e i n g e i th e r t o

    r e d u c e t h e me sh s i z e o r e mp lo y o n ly a p a r t i a l mo v e me n t i n f u n c t i o n v a lu e s a t me sh p o in t s .

    T h e f i rs t a t t e m p t t o o b t a i n a n u m e r i c a l s o l u t i o n w a s m a d e b y T h o m 3 w h o e x a m i n e d t h e s l o w

    mo t io n o f a v i s c o u s f l u id t h r o u g h a n a b r u p t e x p a n s io n i n a c ir c u l a r p ip e, w o r k in g i n c y l i n d r i c a l

    p o l a r c o - o r d in a t e s a n d so lv in g t h e S to k e s ' e q u a t i o n s . T h e o n ly w o r k v a l i d a t a f i n i te R e y n o ld s

    n u m b e r a p p e a rs t o b e t h a t o f J e n s o n 4 w h o h a s p r o d u c e d s o l u ti o n s f o r t h e f l o w p a s t a s p h e r e p l a c e d

    o n th e a x i s o f a c ir c u l a r p ip e a t R e y n o ld s n u m b e r s u p t o f o r ty ( b a se d o n t h e sp h e r e d i a me te r ) .

    T h e c o - o r d in a t e sy s t e m u se d w a s sp h e r i c a l p o l a r s .

    S o m e o f t h e m e t h o d s a p p l ic a b l e in t w o d i m e n s i o n s w i l l n o w b e e x t e n d e d t o t h e c a se o f a x ia ll y

    sy m me t r i c f l o w s u s in g c y l i n d r ic a l c o - o r d in a te s . T h e w o r k in g v a r i a b l e s a r e t h e S to k e s ' s t r e a m

    f u n c t io n ~b a n d t h e v o r t i c i t y ~ . I n t w o d ime n s io n s , t h i s tw o - f i e ld r e l a t e d sy s t e m o f v a r i a b le s , f i r s t

    i n ' t r o d u c e d b y T h o m 1, h a s b e e n s h o w n b y F o x 5 t o h a v e a f a s t e r ra t e o f c o n v e r g e n c e t h a n i f t h e s i n g l e

    v a r i a b l e ~b h a d b e e n u se d . I t i s to b e e x p e c t e d t h a t a s imi la r r e su l t w i l l h o ld f o r t h e a x i a l ly sy m me t r i c

    c a se. A n a c c u r a t e f o r m u la t o r e l a t e ~ a n d ~b a t a so l i d b o u n d a r y , a n a lo g o u s t o W o o d s ' f o r m u la i n

    t w o

    d ime n s io n s ( R e f . 6 ) , i s d e r iv e d . T h i s f o r mu la h a s b e e n f o u n d to b e q u i t e s a t i s f a c to r y i n t h e

    p r o b l e ms so f a r c o n s id e r e d a n d g iv e s a r e a so n a b le r a t e o f c o n v e r g e n c e . I t h a s u n f o r tu n a t e ly

    n o t

    y e t p r o v e d p o s s ib l e t o d e r iv e a n e a s i l y a p p l i e d c o n v e r g e n c e c r i t e r i o n a s f o r t h e tw o - d ime n s io n a l

    f l o w ( R e f . 7 ) , b u t i n p r a c t i c e i t s e e ms th a t t h e tw o - d ime n s io n a l t e s t d o e s g iv e so me in d i c a t i o n a s

    t o

    w h e n d iv e r g e n c e c a n b e e x p e c t e d . ' '

    A s an e x a m p le o f t h e m e th o d a n d t h e t e c h n iq u e u se d , t h e e f f ec t s o f v i s c o s i t y o n a p i t o t t u b e a t a

    l o w R e y n o l d s n u m b e r h a v e b e e n i n v e s t i g at e d i n s o m e d e t a il i n P a r t I I .

    1.2. T he Ax i a l l y Sym me t r i c For m o f the N av i er -S t okes Equa t ions. A b r i e f d e r iv a t i o n o f t h e

    a x i al l y sy m m e t r i c f o r m o f t h e e q u a t io n s i n c y l i n d r i c a l c o - o r d in a t e s i s n o w in c lu d e d .

    I n t e r m s o f S t o k e s ' s t r e a m f u n c t i o n t h e v e l o c i ty c o m p o n e n t s m a y b e w r i t t e n

    a a a

    r 8 ~; q r ' = r o z ' ' - 0

    a n d t h e v o r t i c i t y c o m p o n e n t s

    (cu rl q)~ = 0;

    3qr 3q~

    ( c u r lq ) ~ - - O ; ( c u r lq ) ~ = ~ - 8 - 7 - - ~

    I f

    i~ i ~ a n d i r a r e u n i t v e c t o r s i n t h e m e r i d i a n

    p l a n e a n d p e r p e n d i c u l a r

    t o t h a t

    plane ,

    q - qzi~ + q~ir, an d ~ = ~i~.

    2

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    4/25

    I n - v e c t o r f o r m t h e N a v i e r - S t o k e s e q u a t io n s a r e

    aT

    a t V A q a g ) = - ~ V A V A g ) .

    N o w

    - - V A q A ~ ) =

    { a q o g ) a ~ )

    ~ +

    ~ +

    a

    a ( ,

    a

    v ~ v ~ ) = - t ~ ~ a ~ l + ~ ~ ) ) I i+

    w h e r e

    3qr Oq 1 t 3~ 32~b 1 3 I 1E ~ b

    ~ = ~ W - T / a z = + g ~ r ~ 7 g = 7

    3s a 2

    I 0

    E 2 = - -

    O z ~ O r r &

    T h e e q u a t i o n o f c o n t i n u i ty i s

    ~ a ,q,,-, a q ; , ) _ o .

    0 z 3 r

    F r o m 2 ) a n d 5 ),

    3

    - - V A ( q A ~ ) = r l q z ~ - - z ( ~ ) -[ - q r ~ r ( ) I i "

    F r o m 4 ) a n d 3 ),

    V A ( V ~ ) = - - E ~ 4* i ~ .

    S u b s t i t u t i n g i n 1 )

    a t a , g/O .E~ = O.

    r ~ + r 3 z,r)

    A s s u m i n g s t e a d y m o t i o n

    R 4 r a , g / r )

    ,, a z, r)

    - 0 .

    E q u a t i o n s 4 ) a n d 6 ) w i l l b e c o n s i d e r e d i n t h e f o r m

    1 a

    a ~ = r + - -

    a r

    w h e r e

    A 2 ~ = 3 r + - -

    7 - v r 3 z 3 r a r 3 z v r~ 3 z

    A ~ - ~ r2 + az--~.

    1 )

    2)

    s)

    4 )

    5 )

    6 )

    7)

    8 )

    83079) A*

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    5/25

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    6/25

    T h i s e q u a t i o n e n a b le s th e p r e s s u r e d i f f e r e n c e b e t w e e n a n y t w o p o i n ts A a n d B i n t h e f l u i d t o b e

    d e t e r m i n e d b y i n t e g r a t io n a l o n g a p a t h c o n n e c t i n g t h e m .

    1 .5 . T h e N o n - D i m e n s i o n a l F o r m o f t h e E q u a t io n s . I t i s f r e q u e n t l y c o n v e n i e n t t o w o r k w i t h t h e

    e q u a t i o n s in a n o n - d i m e n s i o n a l f o r m . I f a d a s h is u s e d t o d e n o t e a n o n - d i m e n s i o n a l q u a n t i t y ,

    r L r ' , z L z ' , q U q ', F = U F , ,

    U

    = = = p = 1 y7 2~ ~ ,

    ~ . P ~ 2 , ~b = U L ' an d

    ~ = - ~ ,

    where U i s a r ep res en t a t i ve ve l oc i t y and L a r ep res en t a t i ve l eng t h .

    S ubs t i t u t i ng t hes e exp res s i ons i n Equa t i ons (4 ) and (6 ) o f S ec t i on 1 .2 :

    E ' ~ ' = r ' ~ ' ( 11 )

    r E 2 ( r ~ ) = R e 1 8 O ~ 8 ~ b a ~ ~ a - ~ t ( 1 2 )

    8z ' 8r ' 8 r ' 8 z ' r ' Oz ' 1

    w h e r e R e i s a R e y n o l d s n u m b e r U L / v , a n d

    8 2 8 ~ 1 8

    E ~ _ -_ + - -

    8 Z 2

    O r 2 r O r

    T h e e q u a t i o n to d e t e r m i n e t h e p r e s s u r e d i ff e r e n c e b e t w e e n t w o p o i n t s b e c o m e s

    2 ( F / d r ' + F : ' d z ' ) - ( P B ' - P f f ) = q B ~ - q ~ '2 _ 2 ~ t' t 7 ~ az. + ~ / , d r ' -

    f I

    e t \ O z ' + - - d r ' - + d z '

    ~ r S a z \ S t 7

    w h e r e A a n d B a r e t h e p o in t s c o r r e s p o n d i n g t o A a n d B i n t h e n o n - d i m e n s i o n a l f o r m .

    (13)

    1.6.

    T h e N u m e r i c a l S o l u t i o n o f t h e E q u a t io n s .

    T h e t e c h n i q u e u s e d i n t h e n u m e r i c a l s o l u t i o n o f

    t h e a x i a ll y s y m m e t r i c e q u a ti o n s i s s i m i la r t o t h a t u s e d b y , T h o r n i n t w o - d i m e n s i o n a l p r o b l e m s .

    T h e c o n t i n u o u s f i e ld o f f l o w is r e p l a c e d b y a r e c t a n g u l a r m e s h a n d a t t h e m e s h p o i n t s a s s u m e d

    va l ues o f ~b and ~ a re p l aced . Th es e va l ues o f ~b and ~ a re t hen r eca l cu l a t ed a l t e rna t e l y by m eans o f

    f i n i te d i f f e rence app rox i m at i ons t o t he Equ a t i ons (7 ) and (8) , w i t h a s s um ed va l ues o f ~ on t he s o l i d

    b o u n d a r i e s . F r o m t h e n e w c o n f i g u r a ti o n s o f a n d ~ i n t h e n e i g h b o u r h o o d o f t h e b o u n d a r y n e w

    bo und ary va l ues o f ~ have t o be ca l cu l a t ed . T he wh o l e p roces s i s t he n r e pea t ed un t i l t he va l ues o f ~b

    a n d ~ a r e r e p e a t e d e v e r y w h e r e t o t h e r e q u i r e d d e g r e e o f a c c u r a c y .

    1 .7 . F i n i t e D i f f er e n c e A p p r o x i m a t i o n s t o t h e N a v i e r - S t o k e s E q u a t io n s .

    T h e s i m p l e s t f i n i t e

    d i f f e rence app rox i m at i ons t o t he Eq ua t i ons (7) and (8 ) o f S ec t i on 1 .2 a re bas ed on t w o p o i n t

    d i f fe r e n ti a ti o n . W i t h a d i a m o n d

    (i.e. ,

    t he m es h i s o r i en t a t ed a s s ho w n i n F i g . 1 ), t he app rox i m at i ons

    a re g i ven by

    rn 2

    ~bo = C m - ( D - B ) - - ~ - ~o (14 )

    I n ( d _ b ) _ l ~ . { ( A _ C ) ( d _ b ) _ ( D _ B ) ( a _ c ) } ,

    (15)

    ~ n A - C ) = ~ m + ~ ;

    ~o 1 + 4r 2 8r2v

    5

    83079) A* 2

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    7/25

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    8/25

    I n o r d e r t o d e r i v e a f i n it e d i f fe r e n c e e q u a t i o n f o r o b t a i n i n g ~ o n a s o l i d b o u n d a r y s u b j e c t t o t h e

    c o n d i t i o n s g i v e n i n E q u a t i o n ( 2 0 ), t h e c o n f i g u r a t i o n s h o w n i n F i g . 3 i s c o n s i d e r e d . S u p p o s e t h e

    r a n d z a x e s a re r o t a t e d t h r o u g h a n a n g l e 0 so t h a t t h e n e w Z a x i s i s p a r a ll e l to t h e t a n g e n t t o

    4` = c o n s t a n t a t 0, a n d t h e n e w R a x i s is p a r a l l e l to t h e n o r m a l a t 0, t h e n

    Z = z c o s O + r s i n O

    a n d

    R

    e

    0

    O r

    = r c o s 0 - z s i n 0 ( 2 1 )

    = Z s i n 0 + R c o s 0

    0 O

    = co s 0 ~ + s i n 0 0 -- 2 ( 22 )

    0 0 O

    - s i n + c o s 0 - - ( 2 3 )

    O z 0 o R O Z

    E q u a t i o n s ( 18 ) a n d ( 1 9 ) t r a n s f o r m t o b e c o m e

    O34 034` 1 l O4` 04`l = C . (2 4)

    O R~ + O Z3 ( Z s i n 0 + R c o s 0 ) c o s 0 ~ + s i n 0 ~ -~

    O R+ O Z ~ ( Z s i n O + R c o s O ) c o s 0 ~ + s i n V f f Z t ' ( 2 5)

    w h e r e f ' i s u s e d t o d e n o t e f ( r , z ) i n t h e t ra n s f o r m e d p l an e . O n t h e b o u n d a r y :

    0 4 a 4

    0- R - 0 ; f f Z = O ; 4 ` = 4 ` 0 . ( 26 )

    n s i d e r i n g a p o i n t 2 o n t h e n o r m a l t o ~b = c o n s t a n t a t a d i s t a n c e h f r o m 0 i n t h e d i r e c t io n o f R

    i n c r e a si n g , T a y l o r ' s t h e o r e m g i v e s

    04`0 h a 02 h ~ h ~

    ' 0 0 3 4 `0 0

    4`2 = 4`0 h -g ~ + 2 ~ + 6 OR + 24 OR + O (M ) . ( 2 7 )

    D i f f e r e n t i a t in g E q u a t i o n ( 2 4 ) a n d e v a l u a t i n g a t t h e p o i n t 0 m a k i n g u s e o f t h e b o u n d a r y c o n d i t i o n s

    ( 2 6 ) , t h e f a c t t h a t a l l d e r i v a t i v e s w i t h r e s p e c t t o Z a r e z e r o a n d a ~4 ` - 0 , t h e f o l l o w i n g re l a t i o n s

    OROZ 3

    c a n b e o b t a i n e d :

    0 3 4 ` 0

    - ~ o * ( 2 8 )

    OR 2

    0 ~ 4 ` o 0 ~ . o c o s 0

    + ~0~ ( 2 9 )

    OR 3 OR ( Z 0 s i n 0 + R 0 c o s 0 )

    04~o 044 0 cosO 0. ~o* co s 0 0o*

    OR+ O R 2 0 Z+ ( Z o s i n O + R

    0 c o s 0 ) - ( Z o s i n 0 + R o c o s 0 )

    O R

    si n 0 085b0 0e~o*

    ( Z 0 s i n

    O + R o

    c o s 0 )

    O R 2 0 Z = O R s

    ( 3 0 )

    0 3 4 ` o 0 ~ o *

    O R 2 0 Z O Z

    ( 3 1 )

    a ~ o a~ o

    R 2 a Z 2 a Z 2

    ( 3 2 )

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    9/25

    F r o m ( 3 0) , ( 3 1 ) a n d ( 3 2 ) , m a k i n g u s e o f ( 2 5) ,

    0460

    2

    02~*

    O R ~ - f o ' -

    cs20 . ~o*

    ( Z o s in 0 + R o cos O)z

    S u b s t i t u t i n g f r o m ( 2 8 ) , ( 2 9 ) a n d ( 3 3 ) i n ( 2 7 ) ,

    6 9 . = 6 o + ~ ~0~ + ~ + Z 0 s i n 0 + R 0 c o s0

    h ' I 32~o cos20 . ~0* _ f o , I

    + ~ 2 3 R 2 ( Z o s i n 0 + R o c o s0 ) 2

    A l s o , b y T a y l o r ' s t h e o r e m ,

    ~2 = ~o + h ~ + - - - -

    h 2 8 2 ~ o *

    2 O R ~ + O (h 3 )

    + o h ~ ) .

    (33)

    (34)

    3 5 )

    E l i m i n a t i n g

    O ~ o e /O R

    f r o m ( 3 4 ) a n d ( 3 5 ) a n d r e a r r a n g i n g , t h e t e r m s i n

    O 2 ~ o * / O R~

    c a n c e l o u t a n d

    l ; ( G - G ) - ~ * + - ~ fo ' l

    ~0 = h cos 0

    2 + ( Z s i n 0 + R o c o s 0 ) - 4 ( Z o s i n 0 + R o c o s 0 )2

    T r a n s f e r r i n g t o t h e o r i g i n a l ( r , z ) c o - o r d i n a t e s t h i s b e c o m e s

    t 6 h I

    ~ 0 = t h2 ( ~ - 6 o ) - ~ 2 + y L

    h cos 0

    2 4ro 2 t

    +

    I 0

    I n t h e a x i al ly s y m m e t r i c f o r m o f t h e N a v i e r - S t o k e s e q u a t i o n s

    E ~ r ~ ) - r 0 6 , ~ / ~ )

    v 3 ( z , r) - f ( r ' z )

    A t th e b o u n d a r y

    (36)

    Or - 0; = 0

    a n d s o f o i s z e r o .

    T h e c o r r e c t f o r m o f f i n i t e d i f f e r e n c e e q u a t i o n f o r u s e a t t h e b o u n d a r y i s g i v e n b y r e p l a c i n g

    ~ e i n E q u a t i o n ( 36 ) b y

    r~ ,

    a n d f 0 b y z e r o . H e n c e

    12+--hcS0r0

    h _ 4 r ocs~Ol

    (37)

    T h i s f o r m u l a i s c o r r e c t to

    O ( h ~ )

    i n ~ a n d i s p r o b a b l y t h e m o s t c o n v e n i e n t a n d a c c u r a t e f o r m u l a t h a t

    c a n b e u s e d .

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    10/25

    A s a n e x a m p l e o f t h e u s e o f th i s f o r m u l a l e t u s c o n s i d e r t h e P o i s e u i l l e fl o w i n a c i r c u l a r p i p e .

    W i t h a p ip e r a d i u s o f t w e n t y u n i t s a n d a c e n t r e - l i n e v e l o c i ty o f t w o u n i ts , t h e s t r e a m f u n c t i o n a n d

    v o r t i c it y a r e g i v e n r e s p e c t i v e l y b y

    = 0 . 0 0 1 2 5 r ~ - r 2

    a n d

    = 0 . 0 1 r .

    S u p p o s e t h a t t h e v a l u e o f ~ o n t h e b o u n d a r y ( r = 2 0 ) h a s to b e f o u n d f r o m t h e v a lu e s o f ~ a n d ~ o n

    t h e l i n e r = 1 9 . I n t h e b o u n d a r y f o r m u l a ( 3 7) t h e d i r e c t e d m e s h l e n g t h h i s - 1 a n d 0 = 0 .

    S u b s t i t u t i n g i n t h e f o r m u l a ,

    2 0~ 0 = 6 ( 2 0 0 - 1 9 8 . 0 9 8 7 5 ) - 1 9 x 0 . 1 9 = 4 . 0

    2-

    w h i c h g i v e s ~ = 0 2 0 a s r e q u i r e d b y t h e th e o r y . T h i s c o m p l e t e a g r e e m e n t is t o b e e x p e c t e d i n a

    P o i s e u il l e fl o w , b e c a u s e t h e n e g l e c t e d t e r m s i n th e d e r i v a t io n o f t h e b o u n d a r y f o r m u l a a r e t h e n z e r o .

    9

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    11/25

    P a r t I I T h e E f fe c ts o f V i s c o s i t y a n d O r i fi c e S i z e o n a P i t o t T u b e a t

    L o w R e y n o l d s N u m b e r s

    Summary T he e f fec ts o f v i s cos i ty and or i f i ce s i ze on a b lun t -nose d p i to t tube h ave been the ore t i ca l ly

    i n v e s ti g a t ed u p t o a R e y n o l d s n u m b e r o f t e n , w h e r e t h e R e y n o l d s n u m b e r h a s b e e n b a s e d o n t h e r a d i u s o f

    the tub e . R esu l t s a re expres sed in t e rm s o f a p res sure coe f f i c ien t

    C I~ _ Po - P.~

    pU~

    whe re P 0 i s the p res su re m ea sured in the tu be , p the de ns i ty o f the f lu id , and p~ and U the s t a t i c p res sure and

    ve loc i ty in an und is tu rbed f low a t the pos i t ion o f the tube .

    T h e v a l u es o f f f: ~ f o r a b l u n t - n o s e d t u b e a r e f o u n d t o b e l e ss t h a n t h o s e f o r t u b e s w i t h h e m i s p h e r o i d a l

    heads , b~ i t a lways g rea te r than un i ty in the range cons ide red . T he e f fec t o f the o r i f ice s ize i s to dec rease C2~

    as the o r i f ice si ze inc reases, th i s dec rease i s ve ry sm a l l bu t inc reases wi th the Reyn olds num ber . At a Reyn olds

    nu m ber o f t en the dec rease is a t m os t f ive pe r cen t o f the va lue o f Cp w hen th e re i s no o r if ice .

    I t i s sugges ted tha t the d ec rease o f C~) be low un i ty foun d in som e exper im enta l inves t iga t ions a t a h ighe r

    Reyn olds num ber cou ld be due to the e f fec t s o f o r i fi ce s ize .

    2 . 1 . Introduction W h e n d e t e r m i n i n g v e l o c it i es i n a f l u i d f r o m i m p a c t p r e s s u r e m e a s u r e m e n t s

    w i t h a p i t o t t u b e a s p e c ia l i n t e r p r e t a t i o n i s n e c e s s a r y w h e n t h e t u b e R e y n o l d s n u m b e r i s s m a ll .

    I t i s u s u a l t o a s s u m e t h a t t h e f l u i d o n t h e s t a g n a t i o n s t r e a m l i n e i s b r o u g h t t o r e s t w i t h o u t t h e

    a c t i o n o f v i s c o u s fo r c e s , a n d t h a t t h e p r e s s u r e m e a s u r e d a t t h e t u b e o r i f i c e i s t h e s t a g n a t i o n p o i n t

    p r e ss u r e. T h e v e l o c it y c a n t h e n b e d e t e r m i n e d f r o m B e r n o u i ll i 's e q u a t i o n . W h e n t h e v i sc o u s a n d

    i n e r ti a l f o r c e s b e c o m e c o m p a r a b l e i n m a g n i t u d e t h e B e r n o u i l l i f o r m u l a i s i n a p p l i c a b l e a n d a n e w

    i n t e r p r e t a t i o n i s r e q u i r e d t o d e t e r m i n e t h e v e l o c i t y c o r r e c t ly .

    T h e g e o m e t r y o f t h e t u b e h a s b e e n f o u n d t o i n f l u e n c e c o n si d e r a b ly t h e r e a d i ng s a t l o w R e y n o l d s

    n u m b e r s . T h e t u b e s m o s t f r e q u e n t l y u s e d a r e t h e s t r ai g h t c y l in d r i c a l b l u n t - n o s e d t y p e a n d t h o s e

    w i t h h e m i s p h e r i c a l o r s o u r c e sh a p e d h e a d s . T h e c o r r e c t i o n s t o b e a p p l ie d t o t h e b l u n t - n o s e d t y p e s

    a t lo w R e y n o l d s n u m b e r s h a v e b e e n f o u n d e x p e r i m e n t a l ly to b e s m a l l e r t h a n t h o s e r e q u i r e d f o r

    t u b e s w i t h h e m i s p h e r o i d a l h e a d s . I f th e t u b e o r i f i c e i s l a r g e a c o m p l e x f l o w p a t t e r n i s s e t u p i n s id e

    a n d a r o u n d t h e t u b e w h i c h c a n s o d i s t u r b t h e f l o w t h a t th e p r e s s u r e r e c o r d e d i s n o t t h e t r u e

    s t a g n a t io n p o i n t p r e s s u r e ; t h i s e f f e c t i s n o t c o n f i n e d t o m e a s u r e m e n t s a t l o w R e y n o l d s n u m b e r s .

    W h e n t h e t u b e o r i fi c e i s s m a l l c o m p a r e d w i t h t h e t u b e d i a m e t e r t h i s f l o w d o e s n o t o c c u r t o t h e

    s a m e e x t e n t a n d t h e p r e s s u r e m e a s u r e d d i f fe r s l i tt le f r o m t h e t r u e s t a g n a t i o n p o i n t p r e s s u r e .

    A c o n s i d e r a b l e a m o u n t o f r e s e a r c h h a s n o w b e e n d o n e o n t h e e f f e c ts o f v i s c o si t y a n d o f p r o b e

    g e o m e t r y o n p i t o t tu b e s , t h e m a j o r i t y o f w h i c h h a s b e e n e x p e r i m e n t a l . T h e o n l y t h e o r e t i c a l b as e s

    a v a il a b le f o r c o m p a r i s o n h a v e b e e n e i t h e r t h e f l o w n e a r t h e s t a g n a t io n p o i n t o f a s p h e r e o r a p r o l a t e

    s p h e r o i d . R e a s o n a b l e a g r e e m e n t b e t w e e n t h e o r y a n d e x p e r i m e n t h as b e e n o b t a i n e d i n t h e c a se s o f

    h e m i s p h e r i c a l h e a d e d a n d s o u r c e s h a p e d tu b e s . W i { h t h e b l u n t - n o s e d t u b e w e c a n e x p e c t t h e f l o w

    p a t t e r n t o d i f f e r f r o m t h a t a r o u n d a s p h e r o i d a n d w h i l s t t h e f l o w r o u n d a s p h e r o i d h a s b e e n u s e d b y

    s o m e a u t h o r s f o r c o m p a r i s o n t h e r . es ul ts h a v e n o t b e e n i n a g r e e m e n t a n d t h e r e i s l it tl e j u s t i f i c a ti o n

    f o r m a k n g t h e c o m p a r i s o n .

    T h e e a r li e st w o r k o n t h e e f fe c t s o f v i s c o s it y o n p i t o t t u b e s w a s t h a t o f M i s s B a r k e r n , w h o

    e x p e r i m e n t e d w i t h s t r a ig h t c y l i n d r i ca l t u b e s i n a P o is e u i ll e fl o w . T h e v i s c o u s e ff e c ts w e r e f o u n d

    10

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    12/25

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    13/25

    The origin of co-ordinates was taken at the stagnation point 0 on the cylinder

    see

    Fig. 4) With

    the z-axis along the axis of the pipe and the r-axis perpendicular to it. We specified = 0 on the

    cylinder surface and t~ = - 200 on the surface of the containing pipe. The upstream Poiseuille

    flow was given by

    = O 00125r 4 - r 2 (1)

    = O.Olr where 0 ~< r ~< 20

    and the limiting annular flow downstream by

    = 0.0018716r ~ - 1. 14798r 2 log r + 0.245538r 2 - 0-247409 (2)

    = 0.014973r - O 997125/r where 1 < r < 20.

    2.3.

    T h e N u m e r i c a l S o l u t i o n .

    With an initial mesh length of unity, assumed values of and

    were placed at mesh points throughout the field. Upstream, boundary values given by the

    Poiseuille flow of Equations (1) were placed about two pipe radii from the cylinder. Downstream,

    similarly about two pipe radii away, boundary values given by Equations (2) were used. These

    artificial boundaries were completely arbitrary for it was obvious that the transition from Poiseuille

    to annular flow could not take place over such a short distance. Placing the boundaries any further

    away initially would have so increased the size of the field to be worked as to make an attempt at

    solution impracticable.

    Using the methods of Part I, an approximate solution to the Stokes' equations i .e. , the case of

    zero Reynolds number) was obtained working entirely by hand. The next step ~in the process was

    to move the assumed boundaries further away and investigate the effect which this had upon the

    function values in the neighbourhood in whic h we were particularly interested. After moving the

    boundaries further away and settling the field again it sdon became apparent th at whilst the ups tream

    flow was settling fairly rapidly and the disturbance caused by the insertion of the cylinder was not

    being propagated very far upstream, the flow downstream could not settle to the annular flow for

    many pipe diameters. Fort unat ely this was no serious disadvantage, for changes of quite large magni-

    tude in the function values a short distance downstream were found to have almost no effect

    on the upstream values. Since our main interest lay in the region around the end of the cylinder

    and in the upstream flow it was found possible to fix the downstream function values when they

    were only changing slightly after each recalculation from the finite difference equations, without

    causing too serious a disturbance of the upstream flow. This procedure was adopted and the field

    settled. The mesh length was then reduced in the region extending about one pipe radius up and

    downstream of the stagnation point 0 and further reduced in the region near the cylinder and

    stagnation point.

    At the sharp corner of the cylinder the empirical method int roduced by Th om 17 for use in two

    dimensions was used. In Fig. 7 two values of ~ were used at the poin t A, one of these was calculated

    from the values of $ and ~ at B and used in the recalculation of the function values at B using a

    diamond, and the other was calculated from the values at C and used in the diamond centred on C

    for recalculating values there. The two values of ~ at A are artificial, effectively one is on the inner

    wall of the annulus and the other on the blunt end of the cylinder and both are slightly removed

    from the actual corner. Repeated subdivision of the field in this neighbourhood has been found to

    raise these values considerably while hardly affecting the surrounding points.

    12

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    14/25

    A sufficiently accurate approximat ion to the Stokes flow having been obtained this solution was

    used to provide a series of starting values for the problem at a finite Reynolds number. The Reynolds

    numbe r was based on the radius of the cylinder and the upstream centre-line velocity, v the kinematic

    viscosity being the parameter used for varying the Reynolds number.

    It was found that the flow away from the cylinder at a low Reynolds number deviated only

    slightly from the solution given by the Stokes approximation and that changes in the function

    values at some distance from the cylinder did not affect the solution closer in. This enabled a much

    smaller field to be used for the finite Reynolds number solutions and the assumption was made that

    the flow four radii upstream and downstream of the cylinder, and three radii out into the stream,

    was given by the solution of the Stokes equations. Ini tially the field used was even smaller than

    this and the boundary taken only two radii up and downstream, the extension to four radii still

    caused only slight changes and it; seems that the assumpt ion is reasonably valid provided that it

    is not used at too high a Reynolds number.

    Solutions have been obtained under the assumptions already mentioned at Reynolds numbers of

    0, 1.0, 2.5, 5.0 and 10. It was felt that the assumptions made should certainly be valid as far as

    R e = 5 and whilst solutions above this could be obtained care should be taken in interpreting

    them. The calculations at R e = 0 and R e = 1 were both initially worked by hand and later checked

    on an electronic computer; those at R e = 2.5, 5.0 and 10 were entirely worked on a computer.

    When the problem had been solved for a blunt-ended cylinder without an orifice, the geometry

    was changed to that shown in Fig. 6 where the cylinder is assumed to have infinitesimally thin

    walls, and the problem reworked. In this case three artificial values of ~ were required at the sharp

    lip of the cylinder.

    2.4. Th e C alculation of the Pressure C oeff icient It was convenient to express the pressure

    measured at the stagnation point 0 on the cylinder in terms of the coefficient

    Cp Po P~

    p U

    where Po is the pressure measured at O, p~ the static pressure at 0 in a Poiseuille flow undist urbe d by

    the int roduction of the cylinder, p the density of the fluid, and U the centre-line velocity in the

    undisturbed upstream flow.

    A point A was taken on the pipe axis at such a distance from 0 that the flow there was practically

    undisturbed. The pressure coefficient was then given by

    = p U 2 - = ~ - 1 2

    \ N pU ] Disturbed \ ~ p S ]Undislburbed

    The pressure differences were then determined using Equat ion (10) of Part I. Between two points

    and a on the pipe axis we have

    P l - P - P P ) - q f2

    + f i ( )

    On the pipe axis both ~ and r are zero, making ~/r an indeterminate form; L Hopital s rule gives

    13

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    15/25

    The Reynolds number was based on the radius of the cylinder and the undisturbed centre-line

    velocity (U = 2 cm/sec) whence

    2

    P Re

    On substitution the following formula was arrived at for the calculation of C~):

    0 0 2 l 2 f o

    O~

    C D = 1 R e R e ~ T r d Z

    where l is the distance between 0 and A.

    2.5.

    Resul ts .

    Numerical values for ~b and ~ m a portion of the field near to the cylinder at a

    Reynolds number of five are recorded in Figs. 8 and 9; in Fig. 8 we have the values for the

    blunt-ended cylinder and in Fig. 9 those for the cylinder with an orifice.

    A careful numerical integration led to t he values of C~) set out in the Tables below being obtained.

    TABLE 1

    Bhmt-ended Cyl inder

    Re Cp

    0 -> 2.37/R e

    1-0 3.21

    2-5 1.818

    5.0 1. 384

    10.0 1.185

    TABLE 2

    Cylinder wi th Ori f ice

    Re C~

    1.0 3.17

    2.5 1.765

    5.0 1-326

    10.0 1-128

    The value of

    C p

    in the limiting case

    R e ~ 0

    is artificial. It should be realised that when we solve

    the Stokes approximations by a numerical method the solution is still being obtained for a finite

    Reynolds number. This Reynolds num ber varies with position in the field and is related to the order

    of magnitude of the neglected terms in the finite difference approximations and to the residual at

    each point in the field.

    The variations of pressure and velocity on the stagnation streamline for the blunt-nosed cylinder

    are shown in Figs. 10 and 11 respectively.

    The change of position of the zero streamline with Reynolds number near the cylinder with

    infinitely thin walls is depicted in Fig. 12. It is seen from Fig. 13 that the streamline enters the

    tube and that a very weak eddy is set up inside the orifice.

    14

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    16/25

    2.6. Comparison with Expe rim enta l Results . T h e v a r i a ti o n o f C ~ w i t h R e y n o l d s n u m b e r , b a s e d

    o n th e i n t e r n a l r a d iu s o f t h e t u b e , i s p lo t t e d i n F ig . 1 4 . A l so sh o w n a r e t h e e x p e r ime n ta l r e su l t s o f

    M i s s B a r k e r , S h e r m a n , H u r d

    el al.

    a n d M a c M i l l a n f o r t u b e s w h i c h h a d a s i m i la r g e o m e t r y t o t h a t

    o f t h e m o d e l u s e d i n t h e p r e s e n t i n v e s ti g a ti o n . T h e e x p e r i m e n t a l p o i n t s a r e ra t h e r s c a t t e r e d b u t t h e

    g e n e r a l a g r e e me n t w i th t h e t h e o r e t i c a l r e su l t i s q u i t e g o o d ; a l so sh o w n i s t h e t h e o r e t i c a l r e su l t o f

    H o m a n n f o r t h e s p h e re , w h i c h l ie s c o n s id e r a b l y a b o v e th e p r e s e n t r e su l t.

    W i t h t h e t u b e R e y n o l d s n u m b e r b a s e d o n t h e e x t e rn a l r a d iu s t h e r e s u l ts a r e g iv e n in F i g . 1 5 .

    M i s s B a r k e r s r e s u k s h a v e b e e n p l o t t e d o n t h e a s s u m p t i o n t h a t t h e t u b e w a s s h a r p l i p p e d a n d t h e

    in t e r n a l a n d e x t e r n a l r a d i i w e r e t h e s a me .

    M a c M i l l a n h a s d r a w n f a i r ed c u r v e s th r o u g h h i s o w n e x p e r i m e n t a l p o i n t s a n d a l s o c u r v e s th r o u g h

    t h e p o i n t s o f S h e rm a n a n d H u r d et al. w i t h t h e R e y n o l d s n u m b e r b a s e d o n t h e e x t er n a l d i a m e t e r

    o f t h e p i t o t t u b e . P l o t t e d o n t h i s b a s i s i t i s a p p a r e n t t h a t t h e v a l u e s o f C ~ f o r b l u n t - n o s e d t u b e s l ie

    b e lo w th o se f o r h e misp h e r o id a l h e a d e d t u b e s , a n d t h a t a s t h e o r i f i c e s i z e i n c r e a se s so C ~ d e c r e a se s .

    T h e r e s u l t s o b t a i n e d u s i n g t h e p r e s e n t a p p r o a c h c o n f i r m b o t h o f t h e s e e x p e r im e n t a l f a c ts . W h e n

    t h e i n t e r n a l r a d i u s i s u s e d i n d e f i n i n g t h e R e y n o l d s n u m b e r a l l t h e e x p e r i m e n t a l r e s u l t s t e n d t o

    l ie m u c h c l o se r t o g e t h e r a s h a s b e e n s h o w n b y M a c M i l l a n . C e r t a in l y i n t h e c a se o f t h e b l u n t - n o s e d

    t u b e i t s e e m s t h a t t h e i n te r n a l r a d i u s s h o u l d b e u s e d i n t h e d e f i n it i o n o f t h e R e y n o l d s n u m b e r ;

    w i t h o u t f u r t h e r i n v e s ti g a t io n o n h e m i s p h e r o i d a l h e a d e d t u b e s i t is d i ff ic u lt t o d e t e r m i n e w h i c h

    d im e n s io n sh o u ld b e u se d i n t h e i r c a se . T h e f a c t t h a t a s t h e o r i f i c e s i ze i n c r e a se s so C 2~ d e c r e a se s

    c o u l d p o s s i b l y e x p l a in t h e d e c r e a s e o f C ~ b e l o w u n i t y a s f o u n d b y H u r d et al. i t m a y b e t h a t t h e

    o r i f ic e e ff e c t o u tw e ig h e d t h e v i s c o u s e f f e c t a r o u n d a R e y n o ld s n u m b e r o f 6 0 . S in c e t h e o r i f i c e a n d

    v i s c o u s ef f ec t s a r e p r e s u m a b l y i n t e r d e p e n d e n t a n d h a v e s o m e d e p e n d e n c e o n t h e r a t i o o f in t e r n al

    t o e x t e r n a l r a d iu s o f th e t u b e , t h e v a l u e o f th i s r a ti o u s e d b y M a c M i l l a n m a y n o t h a v e b e e n h ig h

    e n o u g h to i n f lu e n c e su f f i c ie n t l y t h e o r i f i c e ef f e c t i n h i s e x p e r im e n t s w i t h c i r c u l ar t u b e s , a n d t h e r e

    w a s n o d e c r e a s e Of C ~ b e l o w u n i t y . T h e t u b e s w i t h a r e ct a n g u l a r c r o s s s e c t io n w i t h w h i c h M a c M i l l a n

    f o u n d C ~ < 1 h a d b e e n f o r m e d b y f l a tt e n in g c i rc u l a r t u b e s w h o s e o r i g i na l r a ti o o f i n t e r n al t o

    e x t e rn a l r a d i u s w a s b e t w e e n 0 . 8 a n d 0 . 9 . I f t h e f l a tt e n e d t u b e s c o u l d b e r e g a r d e d a s e q u i v a l e n t

    t o t h e o r ig i n al c i r c u la r t u b e s f r o m w h i c h t h e y w e r e f o r m e d t h e n t h i s r at i o w o u l d a p p e a r h i g h e n o u g h

    f o r t h e o r i fi c e ef fe c t t o o u t w e i g h t h e v i s c o u s ef fe c t. T h e t u b e g e o m e t r y o f S h e r m a n w a s s l ig h t ly

    d i f f e r e n t a n d f r o m h i s r e s u l t s w i t h a n o p e n - e n d e d t u b e t h e r e a p p e a r s t o b e s o m e M a t h n u m b e r

    e f fe c t e v e n a t s u b s o n i c s p e e d s . S h e r m a n s t a te s t h a t a t s u b s o n i c s p e e d s t h e r e w a s n o t e n d e n c y f o r

    C ~ to f a ll b e lo w u n i ty ; h o w e v e r , o n a clo se e x a min a t io n o f h i s r e a d in g s i n t h e r a n g e o f R e y n o ld s

    n u m b e r s b e t w e e n 5 0 a n d 1 0 0 0 w i t h t h e o p e n - e n d e d t u b e , o u t o f s o m e s ix t y r e a d in g s a b o u t h a l f

    w e r e e i t h er l e s s t h a n o r e q u a l t o u n i t y . A t s u p e r s o n i c s p e e d s C ~ w a s l e s s t h a n u n i t y o v e r a w i d e r a n g e .

    T h i s su g g e s t i o n t h a t C ~ d e c r e a se s be lo w - u n i ty a t so m e v a lu e o f t h e r a t io o f i n t e r n a l t o e x t e r n a l

    t u b e r a d i u s w h e n t h e R e y n o l d s n u m b e r i s h i g h e n o u g h f o r t h e v i s c o u s e f fe c ts t o b e o u t w e i g h e d

    b y th e o r i f i c e e f f e c t i s v e r y t e n t a t i v e . T h e e x p e r im e n ta l e v id e n c e i s b y n o m e a n s c o n c lu s iv e a n d

    mu c h s c o p e i s s t i l l a v a i l a b l e f o r f u r th e r e x p e r ime n t .

    Acknowledgement . T h e a u t h o r w i s h e s t o t h a n k P r o f . A. T h o m f o r hi s v a lu a b l e h e lp a n d c r i ti c is m .

    T h a n k s a re a ls o d u e to t h e O x f o r d U n i v e r s i t y C o m p u t i n g L a b o r a t o r y f o r p r o v i d i n g f a c il it ie s o n th e

    M e r c u r y C o m p u t e r w h i c h e n a b l e d p a r t o f t h is w o r k t o b e d o n e.

    15

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    17/25

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    18/25

    No. Au thor

    1 A. Tho m ..

    2 H. Schlichting .. . .

    3 A. Thorn .. ..

    4 V.G. Jenson . . . . .

    5 L. Fox . . . . . .

    6 L.C. Woods . . . .

    7 A. Thorn and C. J. Apelt ..

    8 H.B. Squire . . . . . .

    9 H. L . Agrawal . . . . . .

    10 A. Thorn . . . . . . .

    11 M. Barker . . . . . .

    12 F. Homann . . . . . . .

    13 C. W. Hurd, K. P. Chesky and

    A. H. Shapiro .. ..

    14 F.A . MacMillan . .. .

    15 F.A . MacMillan . .. .

    16 F.S. Sherman . . . . . .

    17 A. Thorn

    REFERENCES

    Title etc.

    An investigation of fluid flow in two dimensions.

    A.R .C .R . M. 1194. 1929.

    Boundary Layer Theory.

    Pergamon Press. 1955.

    An arithmetical solution of certain problems in steady viscous flow.

    A.R .C. R. M. 1475. 1932.

    Viscous flow round a sphere at low Reynolds numbers.

    Proc. Roy. Soc. A. 249. 1959. 346.

    The numerical solution of elliptic differential equations when the

    boundary conditions involve a derivative.

    Phil . Trans. Roy. Soc.

    A. 242. 1950.

    A note on the numerical solution of fourth-order differential

    equations.

    Aero. Quart .

    V. Pt. 3. September, 1954.

    Note on the Convergence of numerical solutions of the Navier-Stokes

    equations.

    A.R .C. R. M. 3061. June, 1956.

    The round laminar jet.

    Quar t . J . Mech . App . M ath .

    IV. Pt. 3. 1951.

    A new exact solution of the equations of viscous flow with axial

    symmetry.

    Quar t . J . Mech . App . Math .

    X. Pt. 1. 1957.

    The arithmetic o f field equations.

    Aero. Quart .

    IV. Pt. 3. August, 1953.

    On the use of very small pitot tubes for measuring wind velocity.

    Proc. Roy. Soc.

    A. 101. 1922. 435.

    The effect of high viscosity on the flow around a cylinder and

    around a sphere.

    N.A.C.A. Tech. Memo. 1334. 1952.

    Influence of viscous effects on impact tubes.

    J . App . Mech .

    Vol. 20. No. 2. 1953.

    Viscous effects on pitot tubes at low speeds.

    A.R.C. 16,866. June, 1954.

    Viscous effects on flattened pitot tubes at lowspeeds.

    A.R.C. 17,106. October, 1954.

    New experiments on impact pressure interpretation in supersonic

    and subsonic rarefied air streams.

    N.A.C.A. Tech. Note. 2995. 1953.

    Arithmetical solution of equations of the type V4~ = constant.

    A.R .C .R . M. 1604. 1934.

    17

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    19/25

    ( 3 o

    m

    B

    F I G . I

    F I G . 2 -

    2

    F I G . 3 .

    : ~ - Z

    F I G . 4

    o /

    "~ = 2 0 0

    l r

    F I G , , 5 t

    O

    F I G . 6

    F

    O

    F I G . ?

    ~ z

    ~ ' - = - - z

    ~ z

    = ' ' l ~ g = ' : ' i " i : ' q : r ' " P ~ ' q i ' = ' ' = ' ' : = i l ~ l l i: " ' I l l ' I ; j ' l T i l r l ' I = ' ~ t l i " i ' ' I r ' " r s ' " = ~ " = " a p r , : : : , ; , , ; r l : i i i , ~ l , , " r T " d ' = = , ' ~ r ; i t ' ] ' 1 , = ' ] I : , i r i: i l r, , i ,] , ~ i , , , i , , = , , i i [ s ~ , i , , , , , , , i i = i , i i ; l l , i ~ , , i : , l , , i ; , l , i i ~ l i l l l l i , = i ;, l l :m i , = i , i = , i = , l i l l q ' l i l' ~ i ' i ' ' l i ; ' = " i * " l i l " 'l l r l l i l " ' ' ; M l ' ; i i : l i i i ' r ; l l I I ' ] i l ' l i r = ; l l T i ' i i

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    20/25

    -2 , 23 3 -1 "95 1 - 1 "6 IS

    - 0 '051 -0 " 102 -0 .2 57

    - I , 6 6 0 - I - 5 4 3 - I - 4 1 0 - 1 " 2 6 0 - 1 " 0 9 6 -0 " 9 2 7

    - 0 .. 0 4 7 - 0 " 0 7 0 - 0 " 1 1 6 - 0 " 2 0 2 - 0 . 3 4 5 - 0 - 5 5 6

    1.187 -1-084 -0 969 -0 836 -0-6 86 -0-530

    - 0 " 0 4 5 - 0 .0 7 4 - 0 ' 1 3 5 - 0 - 2 5 4 - 0 " 4 6 9 - 0 "8 1 2

    - 0 . 7 9 4 - 0 ' 7 1 7 - 0 ' 6 2 4 - 0 '5 1 4 - 0 " 3 8 6 - 0 " 2 4 9

    - 0 " 0 4 3 -0 - 0 7 7 - 0 " 1 5 2 - 0 - 3 0 7 - 0 " 6 1 3 - I . 1 8 0

    - 0 : 4 9 2 - 0 " 4 3 7 - 0 ' 3 7 0 - 0 - 2 8 8 - 0 " 1 9 2 - 0 - 0 8 8

    - 0 " 0 4 0 - 0 -0 7 6 - 0 " 1 5 7 - 0" 3 31 - 0 " 6 9 7 - 1 ' 4 9 4

    - 0 " 2 6 9 - 0 " 2 3 5 - 0 " 1 9 4 - 0 " 1 4 3 - 0 " 0 8 6 - 0 -0 5 1

    - 0 ' 0 3 4 - 0 " 0 6 7 - 0 " 1 4 0 - 0 . 2 9 0 - 0 " 5 7 0 - 1 " 0 1 8

    - 0 " 1 1 7 -- 0" 10 1 - 0 - 0 8 1 - 0 " 0 5 8 - 0 " 0 3 2 - 0 " 0 1 0

    - 0 ' 0 2 5 - 0 . 0 5 0 - 0 " 1 0 3 - 0 " 2 0 7 -0 " 3 7 8 - 0 " 5 8 5

    - 0 " 0 2 9 - @ 0 2 4 - 0 " 0 1 9 - 0 - 0 1 5 - 0 - 0 0 7 - 0 " 0 0 2

    , 0 " 0 1 3 - 0 " 0 2 6 - 0 ' 0 5 4 - 0 " 1 0 6 - 0 - 1 8 4 - 0 " 2 6 3

    0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 ' 0 0 0 0 "0 0 0

    0 . 0 0 0 - - 0 0 00 ~ 0 0 0 0 ~ 0 O 0 0 Q 0 - 0 0 0 ~ 0 . 0 0 0 - - 0 - 0 0 ( ]

    - I 2 6 6 - 1 .0 21 - 0 8 8 0

    - 0 . 5 6 9 - 0 . 7 0 9 - 0 . 7 1 5

    - 0 " 7 7 2 - 0 ' 6 5 2 - 0 - 5 6 9 - 0: 5 0 1 - 0 " 4 7 2

    - 0 " 7 9 2 - 0 " 9 1 4 - 0 " 9 2 7 - 0 " 9 0 6 - 0 " 8 6 0

    - 0 - 3 91 - 0 " 5 0 1 - 0 , 2 4 7 - 0 . 2 1 6 - 0 , 1 9 7

    - 1 " 2 1 9 - 1 " 2 7 7 - 1 " 1 9 4 - 1 " 0 9 2 - 1 " 0 0 4

    - 0 " 1 2 9 -0 " 0 7 9 - 0 " 0 5 9 - 0 " 0 5 0 - 0 " 0 4 5

    - 2 " 0 9 8 - 1 "8 0 7 - 1 " 4 8 6 - 1 "2 7 4 - ] ' 1 4 2

    - 4 ' 5 7 0 T - 2 " 5 9 5 - 1 "6 9 7 - 1 "4 1 7 - 1 " 2 8 4

    - 3 " 4 6 0

    - 1 460

    - 0 ' 6 5 9

    - 0 " 2 5 5

    V a lu e s a r e w r i t te n V s l ~ , e x c e p t o n t h e b o u n d a r y w h e n o n l y ~ is g i v e n

    F I O 8 F l o w p a s t p i t o t t u b e a t R e = 5

    -2 "2 37 - 1 -957 - - 1 -620

    - 0 "0 5 0 - O ' I 0 0 - 0 "25 3

    - 1 " 6 65 - 1 "5 4 9 - I - 4 1 6 - 1 " 2 6 6 - 1 " 1 0 2

    - 0 ' 0 4 6 - 0 "0 6 8 - 0 - 1 1 3 - 0 "1 9 7 - 0 " 3 4 0

    - 1 - 1 8 7 - I - 0 9 0 - 0 " 9 7 6 - 0- ~,4 3 - 0 - 6 9 3

    - 0 " 0 4 3 - 0 "0 7 1 - 0 " 1 2 8 - 0 " 2 4 4 - 0 " 4 5 9

    - 0 " 7 9 9 - 0 - 7 2 4 - 0 " 6 3 2 - 0 - 5 2 2 - 0 - 3 9 4

    - 0 - 0 41 - 0 " 0 7 2 - 0 ' 1 4 1 - 0 ' 2 8 9 - 0 " 5 9 1

    - 0 " 4 9 7 - 0 "4 4 3 - 0 " 3 7 7 - 0 ' 2 9 7 -0 " 2 0 2

    - 0 - 03 7 - 0 -0 6 9 - 0 " 1 4 1 - 0 " 2 9 9 - 0 " 6 4 7

    -0 272 -0 240 -0 200 -0 152 0 097

    -0 030 -0-058 -0 I19 -0 237 -0 439

    -0 119 -0-I05 -0 085 -0 063 -0'039

    - 0 0 2 2

    - 0 "0 4 2 - 0 - 0 8 3 - 0 " 1 5 7 - 0 " 2 6 0

    - 0 " 0 2 9 : - 0 '0 2 5 - 0 " 0 2 0 - 0 " 0 15 - 0 " 0 0 9

    - 0 -0 1 1 - 0 " 0 2 2 - O ' 0 4 Z - 0 " 0 7 7 - 0 " 1 2 1

    - I "268 - 1 "021 -0 "8 79

    - 0 " 5 7 0 -0 . 7 1 1 - 0 . 7 1 6

    - 0 . 9 3 1 - 0 " 7 7 4 - 0 . 6 5 3 - 0 " 5 6 9 - 0 ' 5 1 0 - 0 " 47 2

    - 0 - 5 5 3 - 0 . 7 9 4 - 0 , 9 1 7 - 0 . 9 3 0 - 0 . 9 0 8 - 0 " 8 6 2

    - 0 " 5 3 5 - 0 . 3 9 3 - 0 . 3 0 1 - 0 "2 4 7 - 0 - 2 1 6 - 0 - 1 9 6

    - 0 . 8 0 8 - 1 ' 2 2 5 -~ 1" 28 4 - 1" 1 9 8 - 1 " 0 9 5 - I . 0 0 5

    - 0 - 2 5 5 - 0 . 1 3 1 - 0 " 0 8 0 - 0 " 0 5 9 - 0 . 0 5 0 - 0 "0 4 5

    - I . 1 7 3 - 2 " 1 1 8 - I . 819 - I - 4 9 1 - 1 " 2 7 5 - I ' r 4 2

    - 0 " 09 5 ~ . ~ 4R 4 ~ 3 ~ - 2 " 40 6 - I - 6 9 5 -

    1 414

    -J'281

    - ~ 3 '

    -1'476 -=0~345JI-0 0079 0 0265 0. 01 60 0-0065

    - 0 "0 4 4 - 0 "0 0 9 W __O.O010 0 "00 0 3 0 0002 0"0001

    - 0 - 6 6 2 - 0 " 5 3 1 - -0 " 1 1 12 - 0 " 0 2 9 2 - 0 " 0 0 5 3 0 " 00 0 0

    - 0 " 0 1 8 - 0 " 0 0 5 - 0 " 0 0 0 6 0 "0 00 3 0 - 00 03 0 0002

    - 0 " 3 3 Z - - 0 ' 2 1 9 - - 0 " 0 4 2 - - 0 " 0 4 0 9 - 0 - 0 1 3 8 - 0 . 0 0 3 6

    - 0 " 0 0 0 1 0 " 0 0 0 1 0 ' 0 00 1 0 " 0 00 1

    - O- 0577 - O- 0258 - O- O0 99 - O- 0030

    - 0 " 0 0 4 - 0 " 001

    - 0 . 1 4 5 - 0 " 1 0 6

    O ' O 0 0 Q O . 0 0 0 0 . 0 0 0_ _ .. 0 .0 0 0_ __ _ 0 . 0 0 0 O 0 0 0 O . O 0 0 q O . 0 0 0 O . 0 0 00 _ _. 0 0 0 00 _ _. 0 -0 0 00 ._ _

    0 0 0 0 0 0 0 0

    0 "0 0 0 0 "0 0 0 0 - 0 0 0 0 "0 0 0 0 - 0 0 0 0 "0 0 0 0 0 . 0 0 0 0 0 "0 0 0 0 0 .0 0 0 0

    V a l u e s a r e w r i t t e n ~ / ~ p e xce p t o n t h e b o u n d a r y w h e n o n l y ~' is 5 i ve n

    F r o 9 F l o w p a s t o p e n p i t o t t u b e a t R e = 5

    19

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    21/25

    3 ,0

    2 .0

    2 0

    3 5

    . o

    0

    Fm. 10.

    0 ' 5

    2 3 4

    z i n c m

    Pressure variation on stagnation streamline

    for blunt-ended tube.

    1 5

    1.0

    u

    E

    ~9

    U

    0 - 5

    0

    I

    1,0

    Fm. 11.

    2 . 0 3 0

    z i n c m

    Velocity variation on stagnation streamline for

    blunt-ended tube.

    i " , " " " : ' " : i ' ~ " ' " i 1 ' 1 : i ~: ' ' ' ' : , , ' i ; ' l " ' i ' ~ " l " " i i " " i l ' "i T , I : " ~ [ i r ' l l li ' i l i l " I ' :' l [ ' ~ : , ; ," l ' u ~ [ ' , ~ l " l " i i ' ' It ' ' ' : '' I l l ' l ,, , , l i ' l ' : l i , ' :' l i i ' r i i l " '1 1 l ; , j l ' il ' l ' ll ' e i l r ' i l i ~ i ' :: , ' i l , l , l r , ~ ' , ~ : l i " l i F I : "I ~ " ' l [ ' l l ' i I l ' i i 'l ' l l l i ' i : i l ' r i a ~ i ] l ? i ' " l l l " " i l i ' i ~ l [ ' r " ' l i " l ~ ,, , , i , ' , , i i : r ' , : i I l l l [ I r l l ' : r ' , r I l , l i , " r ' i r i ' i I i i,

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    22/25

    R

    FIG 12 Position of zero streamlines

    O

    Fic 13 Flow at

    R e = 1

    21

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    23/25

    ] I i I I I J [

    /

    o)

    3 . 0

    2 . 8

    2 ' 6 - -

    2 . 4

    , 2 . 2

    2 . 0

    C p

    bo

    I . B

    1 - 6

    1 . 4

    1 2 r-

    i i

    \

    \

    o \

    o

    o

    \

    i J

    ] I I I [ I I

    . . . . Homann

    ( s p h e r e )

    x B a r k e r

    o S h e r m a n

    H u r d, C h e s k y ~ S h a p i r o

    a M a c m i l l a n

    L e s t e r

    \

    \

    \

    \

    \

    - - . , .

    3

    o

    ~ . . o o o

    X

    iX X

    X OE]

    o

    X

    I I I I I I I

    2 3 4 E 6 7 8 9 I0 I I 12 13

    R e y n o l d s n u m b e r

    ( b a s e d o n i n t e r n a l r a d i u s )

    3 0

    2 . 8

    2 6 - -

    2 . 4 -

    2 - 2

    2 . 0

    Cp

    1 . 8

    1 6

    1 4

    I . (

    0

    \

    \

    o

    o \

    o \

    \

    o

    o

    H o m a n n (sphere)

    x Barker

    o Sherman

    e Hurd, Chesky Shapi ro

    o M o c m i l l a n

    L e s t e r

    x

    \

    o ~ ~' ~.

    ~0

    Q o o

    O ~

    X

    X ~

    ) X ~ X 0

    m

    I I I I I I I I I I

    2 3 4 5 6 7 8 9 I0 II 12 13

    R e y n o l d s n u m b e r

    ( b a s e d a n e x t e r n a l r a d i u s )

    FI G 1 4 F I G 1 5

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    24/25

  • 8/9/2019 The Flow Past a Pitot Tube at Low Reynolds Numbers

    25/25

    2{o l~vL

    ~ q O o

    3 2 4 ~

    rown copyright x96x

    P r i n t e d a n d p u b l i s h e d b y

    H~.R ~/~AJESTY S STATIONERY OFFICE

    T o b e p u r c h a s e d f r o m

    Y o r k H o u s e I K in g sw a y L o n d o n w . c . 2

    4 2 3 O x f o r d S tr e e t L o n d o n w . I

    1 3A C a s t l e S t r e e t E d i n b u r g h 2

    x o 9 S t . M a r y S t r e e t C a r d i f f

    3 9 K i n g S t r e e t M a n c h e s t e r 2

    5 0 F a i r f a x S t r e e t B r i s t o l x

    3 5 S m a l l b r o o k R i n g w a y B i r m i n g h a m 5

    8 0 C h i e h e s t e r S t re e t B e l f a s t x

    o r t h r o u g h a n y b o o k s e l l e r

    Printed in England

    l~ M N ~ o 3 2 4 0