22
The evolution and dynamics of an The evolution and dynamics of an oceanic quasi-linear convective oceanic quasi-linear convective system occurred on Sept. 10, system occurred on Sept. 10, 2004 over the Taiwan Strait 2004 over the Taiwan Strait Zhao Kun Zhao Kun 1,2 1,2 and and Ben Jong-Dao Jou Ben Jong-Dao Jou 1 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, T Department of Atmospheric Sciences, National Taiwan University, Taipei, T aiwan aiwan 2 The key laboratory of Mesoscale Severe Weather, Department of Atmospheric The key laboratory of Mesoscale Severe Weather, Department of Atmospheric Sciences Sciences Nanjing University, Nanjing China Nanjing University, Nanjing China Oct. Oct. 3 1, 200 1, 2006 Boulder Boulder

The evolution and dynamics of an oceanic quasi-linear convective system occurred on Sept. 10, 2004 over the Taiwan Strait Zhao Kun 1,2 and Ben Jong-Dao

Embed Size (px)

Citation preview

The evolution and dynamics of an oceanic The evolution and dynamics of an oceanic quasi-linear convective system occurred on Sept. quasi-linear convective system occurred on Sept.

10, 2004 over the Taiwan Strait10, 2004 over the Taiwan Strait

The evolution and dynamics of an oceanic The evolution and dynamics of an oceanic quasi-linear convective system occurred on Sept. quasi-linear convective system occurred on Sept.

10, 2004 over the Taiwan Strait10, 2004 over the Taiwan Strait

Zhao KunZhao Kun1,21,2 and and Ben Jong-Dao JouBen Jong-Dao Jou11

11Department of Atmospheric Sciences, National Taiwan University, Taipei, TaiwanDepartment of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan22The key laboratory of Mesoscale Severe Weather, Department of Atmospheric SciencesThe key laboratory of Mesoscale Severe Weather, Department of Atmospheric Sciences

Nanjing University, Nanjing ChinaNanjing University, Nanjing China

Oct.Oct. 331, 2001, 20066 BoulderBoulder

Zhao KunZhao Kun1,21,2 and and Ben Jong-Dao JouBen Jong-Dao Jou11

11Department of Atmospheric Sciences, National Taiwan University, Taipei, TaiwanDepartment of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan22The key laboratory of Mesoscale Severe Weather, Department of Atmospheric SciencesThe key laboratory of Mesoscale Severe Weather, Department of Atmospheric Sciences

Nanjing University, Nanjing ChinaNanjing University, Nanjing China

Oct.Oct. 331, 2001, 20066 BoulderBoulder

OutlineOutline

BackgroundBackground, case description, case description Dual-Doppler synthsis (kinematic structure Dual-Doppler synthsis (kinematic structure

and thermodynamic/dynamic retrieval) and and thermodynamic/dynamic retrieval) and results aresults analysisnalysis

Discussion on origin, longevity, and the Discussion on origin, longevity, and the upscale growth of the mesovortexupscale growth of the mesovortex

ConclusionsConclusions

BackgroundBackground, case description, case description Dual-Doppler synthsis (kinematic structure Dual-Doppler synthsis (kinematic structure

and thermodynamic/dynamic retrieval) and and thermodynamic/dynamic retrieval) and results aresults analysisnalysis

Discussion on origin, longevity, and the Discussion on origin, longevity, and the upscale growth of the mesovortexupscale growth of the mesovortex

ConclusionsConclusions

QLCS#1

QLCS#2

QLCS#3

QLCS#4

QLCS#5

Develop-Mature -Decay 1.5h

Redevelop 1.5hRedevelop 1.5h

Decay 1.5h

A+B

A

B

Dual-Doppler AnalysisDual-Doppler Analysis1. RCTP and RCWF Radars, baseline 60km2. 1.5 hour period, total of 15 analysis volumns 3. Grid spacing: 1000m X 1000 m X 500m4. Domain: 60 km X 60 km X 16 km 5. Boundary conditions: W=0 at upper and lower

boundaries6. Horizontal field at echo top are lightly smoothed wit

h two pass Leise filter prior to divergence calculation and vertical integration for W

Thermodynamic Retrieval: Roux et al.(1990)

Houze et al. 1989

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0750UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Mature stage of mesovortex: after merge, a balanced feature?

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0709UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0703UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0657UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0646UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0640UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0634UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

V#3

V#1

V#2

V#1

V#2

CELL

Mesovortices in QLCS#1Mesovortices in QLCS#1

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0738UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0732UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0727UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)D

ista

nce

Nor

th o

f R

CW

F R

adar

(km

)

10m/s

0721UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Distance West of RCWF Radar (km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar (

km)

10m/s

0715UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

Vortex MergeV#1+V#3

Distance West of RCWF Radar (km)D

ista

nce

Nor

th o

f R

CW

F R

adar

(km

)

10m/s

0750UTC 2KM

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -3010

15

20

25

30

35

40

45

50

55

60

dBZ

10

15

20

25

30

35

40

45

50

0634UTC

10m/s(dBZ) 2KM

A

A'

(a)

10

15

20

25

30

35

40

4510 15 20 25 30 35 40 45 50 10m/s

(dBZ) 4KM

(b)10 15 20 25 30 35 40 45 50

1

1

2

-2-1

0

0

0

0

00

0

1

23

-2

-1

2KMVertical Velocity Vertical Vorticity

(c)

-80 -70 -60 -5010

15

20

25

30

35

40

45

1

1

1

1

2

-2-1

0

0

0

1234

-2

-2

-1

-1 -1

4KMVertical Velocity Vertical Vorticity

(d)

-80 -70 -60 -50

Distance West of RCWF Radar(km)

Dis

tan

ce N

ort

h o

f RC

WF

Ra

da

r(km

)

V#1

V#2

V#1

10m/s(dBZ) 2KM

B

B'

(a)

10

20

30

40

50

6010 15 20 25 30 35 40 45 50 10m/s

(dBZ) 4KM

(b)10 15 20 25 30 35 40 45 50

1

1

1

11

2

2

23

3

34

-2

-2-1

-1

-1

-1

0

0

0

0

0

0

0

00

0

11

1

1

1

12

2

2

2

-1

-1

-1

-1-1

-1

2KMVertical Velocity Vertical Vorticity

(c)

-80 -70 -60 -50 -40 -3010

20

30

40

50

60

1

1

1

1

2

2

-2-1

-1

-1

-1

-1

0

0

00

0

0

0

11

1

1

1

1

1

1

1

2

2

2

3

3

-2

-2

-1

-1

-1

-1

-1

-1

-1

-1

4KMVertical Velocity Vertical Vorticity

(d)

-80 -70 -60 -50 -40 -30

Distance West of RCWF Radar(km)

Dis

tan

ce N

ort

h o

f RC

WF

Ra

da

r(km

)0709UTC

V#1

V#2

V#3

10m/s(dBZ) 2KM

C

C' (a)

10

20

30

40

50

6010 15 20 25 30 35 40 45 50 10m/s

(dBZ) 4KM

(b)10 15 20 25 30 35 40 45 50

1

1

1

11

22

23 3 4

-2-1

-1

-1

-1

-1

-1

0

0

0

0

0

0

0

0

0

00

0

0

0

1

1

11

1

1

2

2 3

3

-1

-1

-1

-1-1

2KMVertical Velocity Vertical Vorticity

(c)

-80 -70 -60 -50 -40 -3010

20

30

40

50

60

11

1

1

1 2

23

-1

-1

-1

-1

-1

-1

-1

0

0

00

0

0

0

0

0

0

0

0

1

1

1

1 1

1

1

1

12

2

22

3

34

-2

-2

-2

-2

-1

-1

-1

-1

-1

-1

-1

-1

-1

4KMVertical Velocity Vertical Vorticity

(d)

-80 -70 -60 -50 -40 -30

Distance West of RCWF Radar(km)

Dis

tan

ce N

ort

h o

f RC

WF

Ra

da

r(km

)0750UTC

V#3

Themodynamic Fields at 0750UTCThemodynamic Fields at 0750UTC

-80 -70 -60 -50 -4010

15

20

25

30

35

40

45

50

55

60

2

-80 -70 -60 -50 -4010

15

20

25

30

35

40

45

50

55

60

6

-80 -70 -60 -50 -4010

15

20

25

30

35

40

45

50

55

60

0

-80 -70 -60 -50 -4010

15

20

25

30

35

40

45

50

55

60

2km P’(0.1mb) T’(0.1o)

4km

W

W

L

L

Distance West of RCWF Radar(km)

Dis

tance N

ort

h o

f R

CW

F R

adar(

km

)

0750~0756UTC 2KM term-dynamic-dev

-5

(b) Dynamic

-80 -70 -60 -50 -40 -3010

15

20

25

30

35

40

45

50

55

60

Distance West of RCWF Radar(km)

Dis

tance N

ort

h o

f R

CW

F R

adar(

km

)

0750~0756UTC 2KM term-buoyancy-dev

-5

(c) Buoyancy

-80 -70 -60 -50 -40 -3010

15

20

25

30

35

40

45

50

55

60

Distance West of RCWF Radar(km)

Dis

tanc

e N

orth

of

RC

WF

Rad

ar(k

m)

0750~0756UTC 2KM term-total-dev

0

0

0

0

0

0

5

5

5

5

-25

-20-15

-15

-10

-10

-10

-10

-5

-5

-5

-5

-5

-5

-5

(a) Total

-80 -70 -60 -50 -40 -3010

15

20

25

30

35

40

45

50

55

60

Thermodynamic diagnose

For the vortex at mature stage

Cross sectionCross section

Heigh

t (km)

10m/s

5m/s

0750~0756UTC Reflectivity and Wind Field

(a)

0 5 10 15 20 250

2

4

6

8

10

dBZ

101520253035404550

0750~0756UTC Vertical velocity and Vertical vorticity

(b)

Distance (km)

Heigh

t (km)

0 5 10 15 20 250

2

4

6

8

10

Heigh

t (km)

10m/s

5m/s

0709~0715UTC Reflectivity and Wind Field

(a)

0 5 10 15 20 250

2

4

6

8

10

dBZ

101520253035404550

1

0

0709~0715UTC Vertical velocity and Vertical vorticity

(b)

Distance (km)

Heigh

t (km)

0 5 10 15 20 250

2

4

6

8

10

Heigh

t (km)

10m/s

5m/s

0634~0640UTC Reflectivity and Wind Field

(a)

0 5 10 15 20 250

2

4

6

8

10

dBZ

101520253035404550

0634~0640UTC Vertical velocity and Vertical vorticity

(b)

Distance (km)

Heigh

t (km)

0 5 10 15 20 250

2

4

6

8

10

A A’ B B’ C C’

1

1.5

2

2.5

3

3.5

4

4.5

5

Heig

ht(

km

)

(a) VORTEX#1

m

erg

er w

ith

cy

clo

nic

vo

rte

x#

2

Vertical Vorticiy 10 Sep. 2004 Vertical Velocity

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (UTC)

Heig

ht(

km

)

(b) VORTEX#2

0634

0640

0646

0657

0703

0709

0715

0721

0727

0732

0738

0741

0744

0750

0756

Vertical Vorticiy 10 Sep. 2004 Vertical Velocity

VORTEX#1

VORTEX#3

Time-height profiles of the average vorticity and divergence within the vortex 1 and 3

Vorticity Budget

TILT STR VADV HADV LC

)())(()(z

u

y

w

z

v

x

w

y

v

x

uf

zw

yv

xu

t

He

igh

t(km

)

(a)

-2 -1 0 1 2

1

2

3

4

5

VOR

DIV

W

Vorticity budget 10-7s-2

He

igh

t(km

)

(b)

-15 -12 -9 -6 -3 0 3 6 9 12 15

1

2

3

4

5

HADV

VADV

STRTILT

LC

He

igh

t(km

)

(a)

-2 -1 0 1 2

1

2

3

4

5

VOR

DIV

W

Vorticity budget 10-7s-2

He

igh

t(km

)

(b)

-15 -12 -9 -6 -3 0 3 6 9 12 15

1

2

3

4

5

HADV

VADV

STRTILT

LC

0709UTC 0750UTC

DiscussionDiscussion

(1) Origin of vortex(1) Origin of vortex

14104 s

14104 s 141014 s

0657UTC 0750UTC

Stretching + Tilting (?)

(2) Longevity of Vortex(2) Longevity of VortexVortex Rossby RadiusVortex Rossby Radius (Frank 1983)(Frank 1983)Durran and Klemp (1982) Durran and Klemp (1982)

14

15

1

1055.6

1016.6

22

5.4

)5.2(6

s

sf

kmR

kmH

kmmsVt

2/112/1 )2()( fRVf

NHRd

T

2/1)]([z

gN

2/122

])ln

()/(1(

)/(1[

dz

dq

dz

dq

TC

L

dz

d

CpRTqL

RTLqgNm ws

ps

s

kmRdm

sNm

kmRd

sN

66

101.9

88

1029.1

13

12

TaipeiSounding

Dynamical large

MaKungSounding

kmRdm

sNm

kmRd

sN

29

108.4

73

1022.1

13

12

Dynamical small

Different Environment

(Kuo (Kuo et. al et. al

2004)2004)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

0.8

0.7

0.7

0.7

0.8

0.7

0.7

0.7

/R1

0657UTC

0703UTC

0709UTC

0715UTC

(3) Upscale growth of (3) Upscale growth of

VortexVortex

Merger

A A SchematicSchematic diagram of the circulation and the vertical motion/ diagram of the circulation and the vertical motion/ trajectory atrajectory at mature stage of vortext mature stage of vortex ( (0750UTC)0750UTC)

0

2

4

6

8

10

He

igh

t(km

)

dBZ

10 20 30 40 50

Vm

N

B

10km

A

C

D

ConclusionsConclusions

TThe formation and evolution of thhe formation and evolution of thee mesovorices in mesovorices in QLCS#1 QLCS#1 dependdependss greatly on the greatly on the preexisting boundarypreexisting boundary, , in addition to in addition to the vertical wind shear and CAPEthe vertical wind shear and CAPE..

Contrary to previously documented MCV in QLCS whicContrary to previously documented MCV in QLCS which often accentuated by Coriolis force, this study provideh often accentuated by Coriolis force, this study provides an evidence that the small scale mesovorices originatins an evidence that the small scale mesovorices originating in the convective region can merge and grow upscale tg in the convective region can merge and grow upscale to result in a vortex of greater horizontal and vertical exteo result in a vortex of greater horizontal and vertical extent through an efficient merger process. nt through an efficient merger process.

The MCV at the mature stage exhibited The MCV at the mature stage exhibited somesome features of features of balanced vortex, which may induce a new updraft and cobalanced vortex, which may induce a new updraft and contribute the following convection.ntribute the following convection.