22
The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University K.Y. Ng Fermilab 1

The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

The Emittance Growth Scaling Laws in Resonance Crossing

X. Pang, F. Wang, X. Wang, S.Y. LeeIUCF, Indiana University

K.Y. NgFermilab

1

Page 2: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

IntroductionFFAG → a favorable candidate for high power proton driver.   

Constant guide field → rep rate can be very high, in the kHzs.

Scaling design  nonlinear fields, large magnet apertures.

→ fixed tune, but fringing field or flux saturation in iron           

poles can cause tune change.

Non‐scaling design  linear fields, much smaller magnet apertures. 

tunes change by many units in a ramp cycle. 

Beam quality can deteriorate when crossing resonances.

Tune‐ramp rate

typically ~ ‐10‐4  to ‐5*10‐3 per turn

nE

Enzxzx

ΔΔ

−≈ΔΔ

2,,

βνν

2

Page 3: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

ExampleRuggiero suggested 3 concentric FFAGs as a proton driver to replace BNL AGS to reach            

10 MW beam power.  

Tunes change from

(νx, νz) = (40,38.1) to (19.1,9.3)

Cross systematic 4th and 6th

resonances: (P=136)

4νx=P,  4νz=P,  2νx+2νz=P

6νx=P,  6νz=P,  2νx+4νz=P,  4νx+2νz=P

S.Y. Lee pointed out emittance 

growth can be large if crossing 

rate is slow, and gave a scaling relationship.

Thus phase advance per cell cannot be near 900 and 600.

Lattice design can become very restricted.

3

Page 4: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

The ModelLee, et al. studied sp‐ch driven 4th order systematic resonances  and field‐error                  

driven linear resonances.

We study here sp‐ch driven 6th order systematic resonances  and octupole driven 

4th order parametric resonances.

Our study bases on simulations.

Lattice is similar to Fermilab Booster, with P = 24 FODO cells.

Sp‐ch kicks applied at the center of D and F quadrupoles, two kicks per 

superperiod. (Making 4 kicks per superperiod does not change our results)

Transport matrices used from magnet to magnet.

Kinetic energy fixed at 1 GeV, tunes allowed to ramp.

Syn. oscillation neglected since emittance usually grows much faster.

Assume bi‐Gaussian distribution: 

4

Page 5: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Systematic ResonancesSp Ch potential:

Taylor’s Expansion:

Each particle passing through a length ∆s experiences a space‐charge kick:

4th order

6th order

5

Page 6: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Space Charge Force

In our simulation:• not round beam  complex error function

• round beam  power series

If the beam is not round beam, it is straightforward to show 

. ,22 ,

)(2 ,

)(2

],21[)( Where

)],()([)(

2

,2

zx

2

22

2222

0

)()(

22

''

22

22

x

z

x

z

zxzx

ZZ

rbjarjba

zx

sc

scsc

rttvzbxa

dejeZw

rbjarwejbawjF

FKs

js

σσ

σσ

σσσσ

ζπ

σσπ

ζ

=++

=−

=−

=

+=

+−+−

=

=ΔΔ

−ΔΔ

∫−

+++−∧

singularity when r=1

6

Page 7: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Space Charge Force

For round beam, we need to expand the space‐charge force around σx=σzor r=1.

ttvzbxa

evdv

rrzxf

edvr

zxf

zxfzKz

VF

zxfxKx

VF

x

z

zxzx

vbva

rz

vbva

rx

zz

scsc

scz

xx

scsc

scx

++

=−

=−

=

−=

−=

=∂∂

−=

=∂∂

−=

−−−−

−−−−

2

22

2222

)11()1(1

22

222

)11()1(1

222

222,

222,

22 ,

)(2 ,

)(2 where

1

),(

1

1),(

),(

),(

2222

2222

σσ

σσσσ

σ

σ

x

zxrσσσε −

=−=1

εεσσσ

εσσσ

εσσ

σ /)1( , ])1)((

)2/1()()2/1(exp[ ),(

1

0 2

2222 vt

tttzttxdtzxf

zxxzxxzx

xx −=

−+−

−+

−−

+= ∫

7

Page 8: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Space Charge Force

• Do Taylor’s Expansion and using the integral:

We obtain:

)( ,

)( ,, )2

!1(!)(

221

00

1zxxzxx

n

k

kw

nnwt

nzqxpqpw

kwe

wndttewf

σσσσσσ +=

+=+=−== ∫ ∑

=

−+

)}.()](3840

)3()(24

)3(

)](16

93465)(2193)(

27[

)](384

)3()(4

)3()(4

235)(3[

)](48

)3()()3()(2

5[

)](8

)3()(2[)(23)({),(

610

5

9

3

8

322

7

2

65

8

4

7

2

6

2

54

6

3

543

4

2

32

2022

ε

ε

ε

ε

εεσσ

σ

Owfqpwfqqp

wfqpqqpwfqpqwqf

wfqpwfqqpwfqpqwqf

wfqpwqfqpwfq

wfqpwqfwfqpwfzxfzx

xx

+−

+−

+−−

−−−+

−−

−−

−−−+

−+−−−+

−+−+

−+

+=

ysingularit theremove to!)1(

)()(

use small, is Whenever 0. beam theofcenter

at the resides particleWhen

0∑∞

= ++−

=

=

k

k

n kknwwf

ww

An expansion up to O(ε3) together with ε ≤0.01 will provide a space chargeforce that is accurate up to one part in one million.

8

Page 9: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Space Charge Force

• To ensure the accuracy of our calculation of the space charge force, we compare the computed space charge force using complex error function and series with results obtained by direct numerical integration. 

σx=1cm, σz=0.5cm σx=1cm, σz=0.99cm

Numerical integrations are still too time-consuming for systematic paramatricstudies.

9

Integrals converge

To cope with the infinite upper limits,transform the variable to u=1/(t+1)

Page 10: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

In action‐angle variables,

Can factor out sp‐ch dependent part of resonance strength,giving dimensionless reduced strength gmnl:

sp‐ch dependentlattice dependent

6νx= P

6νz= P

6th order Systematic Resonance

10

Page 11: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Simulation Parameters

• Proton injection rate           particles per turn.

• Harmonic number h= 84.

• Circumference C=474.2m.

• Bunching factor 

• Initial emittance:  

• Kinetic energy is kept constant at 1GeV during the tracking.

11104×

2)2/( == shCB σπ

mrmsN πε 6, 1033.8 −×=

11

Page 12: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

100 turns injection 

Crossing systematic   

resonances:

6νx=P,    6νz=P,      P=24

dνx,z/dn = ‐0.0004

Aperture=

Emittance growth factor

(EGF):

Final emit./initial emit.

Sample  Simulation

)(3.69,3.89)ν,(ν

)(4.25,4.45)ν,(ν

zx

z0x0

=⇓

=

Turn 820

Turn 127000172.0||00181.0||

06

60

==

P

P

gg

mradmm−π500

12

Page 13: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Scaling Power Laws

Tune ramp rate:0.0004   0.0112

Log‐log plots

Scaling Law

Critical tune ramp rate

13

Page 14: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Critical Tune Ramp Rate

Can serve as a guideline for FFAG design!

At the critical tune ramp rate, emittance is almost unchanged.

Emittance ~ G·∆n constantG : resonance strength∆n: number of turn under the

influence of resonance.

G~ g·∆νsc∆n ~ ∆νsc /|dν/dn|c

14

Page 15: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Similar scaling law for the 4th order Systematic Resonances

15

Page 16: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Conclusion

Power scaling laws obtained between EGF and dνz/dn for 

crossing sp‐ch driven systematic 6th order resonances

For a ring like Fermilab Booster, 

with |g60P|~0.00118, Δνsc,x=0.30,  |dνx/dn|crit~0.006/turn

with kinetic energy 1GeV, and νx =4, (dΕ/dn)crit ~ 2.2MeV

Solution:

Design a machine with smaller stopband!

16

Page 17: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

What if we have more space‐charge kicks

The effect of the space chargekicks should essentially dependon the harmonic content.

17

Page 18: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

4th Order Parametric ResonanceOne octupole is added at D‐magnet in last cell to mimic random 4th order parametric 

resonance.

Potential:

In action‐angle variables:

Octupole kick:

Dimensionless reduced resonant strength:

4νx= l

4νz= l

18

Page 19: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Simulation Parameters

• Kinetic energy 1GeV

• Octupole strength S4 = 50 m‐3, pole tip field 0.035T with aperture 5cm and length 1m.

• Placed at defocusing Quadrupole.

• 3 × 1011 particles are injected per turn.

• Tracking for 1200 turns.  Initial tune 

(vx0,vz0)=(6.975,6.875)

19

Page 20: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Sample Simulationβx,D=6.3m, βz,D=21.4m S4=20m‐3

70 –turn injection

The space charge turn shift:(∆vsc,x , ∆vsc,z )=(0.167,0.165)

Bare tunes are ramped downfrom 100th turn at a rate of:

Heavy beam loss is observed6.5% during 1200 turns 

20

Page 21: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Scaling Power Laws

Critical tune ramp rate

21

Page 22: The Emittance Growth Scaling Laws in Resonance Crossing · The Emittance Growth Scaling Laws in Resonance Crossing X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University. K.Y

Critical Tune Ramp RateOctupole driven 4th order resonance:4vz = 27

Given Δνsc,z and |g04l|, 

this gives min. tune ramp

rate so that EGF remains

tolerable.

It is clear that sp‐ch

contribution is significant.

22