25
The emission of microparticles from metal joints under shock wave influence 1 Lavrentiev Institute of Hydrodynamics SB RAS, Russia, 2 Budker Institute of Nuclear Physics SB RAS, Russia, 3 Institute of Solid State Chemistry and Mechanochemistry SB RAS, Russia 4 Russian Federal Nuclear Center, Zababakhin All-Russian Scientific Research Institute of Technical Physics, Russia 5 Novosibirsk State University Konstantin Ten 1* , Edward Pruuel 1,5 , Aleksey Kashkarov 1,5 , Ivan Rubtsov 5 , Lev Shekhtman 2,5 , Vladimir Zhulanov 2,5 , Boris Tolochko 3 , Aleksandr Garmashev 4 , Dmitriy Petrov 4 , Aleksandr Muzyrya 4 , Evgeny Smirnov 4 , Vyatcheslav Smirnov 4 , Mikhail Stolbikov 4 . International Conference "Synchrotron and Free electron laser Radiation“ (SFR-2018), 25-28 June, 2018, Novosibirsk, Russia

The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

The emission of microparticles

from metal joints under shock

wave influence

1 Lavrentiev Institute of Hydrodynamics SB RAS, Russia,2 Budker Institute of Nuclear Physics SB RAS, Russia,

3 Institute of Solid State Chemistry and Mechanochemistry SB RAS, Russia4 Russian Federal Nuclear Center, Zababakhin All-Russian

Scientific Research Institute of Technical Physics, Russia5 Novosibirsk State University

Konstantin Ten1* , Edward Pruuel1,5 , Aleksey

Kashkarov1,5 , Ivan Rubtsov5 , Lev Shekhtman2,5 ,

Vladimir Zhulanov2,5 , Boris Tolochko3 , Aleksandr

Garmashev4, Dmitriy Petrov4, Aleksandr Muzyrya4 ,

Evgeny Smirnov4, Vyatcheslav Smirnov4, Mikhail

Stolbikov4.

International Conference "Synchrotron and Free electron laser Radiation“ (SFR-2018), 25-28 June, 2018, Novosibirsk, Russia

Page 2: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

1. To obtain ultra-high compression requires high speed pistons. At

high accelerations in front of the piston there is a flow of

microparticles (dust, ejection). The ejection of particles is linked

with questions of ultimate strength of materials in the micron

scale. In the conditions of large strain rates and phase

transitions.

2. Existing x-ray methods of registering bad allow you to record the

flows of microparticles with a linear density of less than 0.01

g/cm2.

3. Synchrotron radiation can be useful due to the soft energy

spectrum (30 Kev) and the possibility of using dynamical

diffraction methods.

The relevance of the use of SR for the

registration of flows micro and nanoparticles

Page 3: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

In VNIIEF [4,5], using x-ray and piezoelectric techniques

received instant distribution density of the particles emitted from

the free surface of the lead. To obtain a satisfactory quality was

used a long groove (slit). Employees LANL [1, 3] a series of

experiments in the area of pressure when the metal is in a mixed

solid-liquid state in a wave of unloading. It was shown

experimentally that the mass of emitted particle is determined by

the profile of SW exposed at the free surface (FS), and the

parameters of the initial disturbances.

Review of the literature on "dusting".

Page 4: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

To record the distribution of mass along the flow

of the micro particles from the free surface of different

materials (copper, tin) using SR.

1. To measure the density distribution along the flux of

microparticles resulting from the roughness of micron

size.

2. To register the flows of nano particles from the

roughness

3. To perform simultaneous measurement of x-ray films,

and a piezosensors.

4. Obtain experimental data on the microparticle fluxes

from different joints.

The objectives

Page 5: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Acceleration complex VEPP-3 - VEPP-4 is the basis of the experiments with HE.

4.

Detector KEDR

ROKK-1M

Page 6: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

wiggler

SR

VEPP-3

Explosion

chamber

Transmitted beam

detector

detonation

front

Electron

bunches

detonationproducts

SAXS detector

explosive

berylliumwindows

Pulse period – 125 ns,

frame time - 1 ns

4Setup of explosion experiment at VEPP-3

VEPP - oncoming electron-positron beams,

Page 7: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

General view of DIMEX-3. Channels

size 100 мкм, Channel numbers – 512,

number of frames – 100, time between

frames – 125 нс.

DIMEX - detector for study of the detonation and

shock waves processes.

Dependence efficiency of

registration from photon energy.

Page 8: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Ejection from roughness.

Profile roughness on the free

surface of tin.

version

The roughness

parameters FS

H, мм The

pressure

in the

explosion

chamber,

barr

А,

мк

м

λ,

мк

м

L,

мм

1 6 50 20 65 0.01

2 60 250 5 28 0.01

а – the depth of the groove roughness,

λ – the distance between the grooves

Page 9: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Measurement of the SAXS.

Left - setting experiments, on the right - the dynamics of distributions

of SAXS after shock loading of tin with Rz = 5. The time between

frames is 600 ns.

-0.5

0.0

0.5

1.0

1.5

2.0

0

200

400

600

800

1000

1200

C6

t=4.8C8

t=6.0C10

t=7.2C11

t=7.8C12

t=8.4

t=4.8

t=6.0

t=7.2

t=7.8

t=8.4

2 teta, mrad

SA

XS

Time, mks

N 1

Page 10: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Ejection from roughness.

Left - the dynamics of distributions of SAXS after shock loading of tin

with Rz = 60. The time between frames is 600 ns.

0.0

0.5

1.0

1.5

2.0

0

500

1000

1500

2000

C12

t=8.4C14

t=9.6C16

t=10.8C18

t=12.0C20

t=13.2C22

t=14.4

t=8.4

t=9.6

t=10.8

t=12.0

t=13.2

t=14.4

2 teta, mrad

SA

XS

N 2

Размер наночастиц от

от 6 до 100 нмВакуум (воздух)

1 атм(воздух)

Образец из олова–

толщина h = 3 мм,

диаметр d= 20 мм, Rz5есть нет

Образец из олова–

толщина h = 3 мм,

диаметр d= 20 мм, Rz60нет нет

Page 11: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Experimental Set Up.

Fig. 1. Schematic arrangement of sample,

detector and SR plane (width 20 mm,

height 0.1 mm). H - distance from the free

surface to the sensor

Fig. 2. General view of the experimental

setup for the shock compression of tin

samples. 1 – HE charge, pressed

HMX, Ø20×20 mm 2 - tin plate,

Ø20×3 mm, 3 - piezoelectric sensor.

Page 12: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Measurement of mass distribution

The relative intensity of transmitted

radiation vs time. X – is directed along

the motion of the disk. Registration was

made within 125 nS, the picture is given

lines through 1,0 mS.

0 2 4 6 8 10 12 14 16-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X , mm

Y ,

re

lative

In

ten

sity

t=0

t=1

t=3

t=4

t=5

t=6

2 4 6 8 10 120.00

0.02

0.04

0.06

X, mm

d

, g/c

m2

t=1

t=2

t=3

t=4

Max Limit

The mass distribution along the jet

in the first microseconds. Brown line

- the limit of measurement of mass

Page 13: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Ejection from roughness.

The oscillogram of the signal from the

piezoelectric sensor. The signal at the

sensor starts to grow through 24.8 µs

The position of the plate, the jet and the

sensor vs time. X-axis: time from start of

motion of the plate, the Y – axis distance

from the initial position FS. Red line – the

position of the piezoelectric sensor.

18 19 20 21 22 23 24 25 26 27 28 29 300

5

10

15

20

25

30

35

40

X, m

m

Time, ms

Piston Calc

Jet

Sensor

Piston Exp

D=3.86 km/s

Page 14: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Ejection from roughness.

36.0 36.2 36.4 36.6 36.8 37.0 37.2 37.4

1E-3

0.01Rh

o*d

, g

/cm

2

X , mm

t=11.04

t=11.29

t=11.41 mkS

t=11.66

t=11.91

N7 Air

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

0

5

10

15

20

Se

nso

r, m

V

Time, mks

Trig

C1

N 7 Air

t2=11.45 mks

Рис. 8. Распределение d в облаке

микрочастиц перед ударом в датчик.

(Воздух). Положение датчика Х=37.3

мм. Плотность пыли в момент удара

1.0 мг/см3.

Рис. 9. Осциллограмма сигнала от

пьезоэлектрического датчика.

Сигнал на датчике начинает расти

через 11.45 мкс. (Красная стрелка).

Page 15: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Comparison of measurements of the piezoelectric

sensor and the detector DIMEX.

Page 16: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Ejection from metal joints

General view of the plates with the joints:

Left – straight match, right - junction of

the step. Copper – M1, diameter 25 mm

General view of the

Assembly for research

ejection. Substrate –

12Н18Х10Т (h=0.5 mm).

Straight joint, copper M1

(h=2 mm)

Page 17: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Движение микроструи из канавок.

•The position of the plate, and the jet vs

time. X-axis: time from start of motion of

the plate, the Y – axis distance from the

initial position FS. Straight joint.

•The mass distribution along the jet in the

first microseconds. Black line - the limit of

measurement of mass

Page 18: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Движение микроструи из канавок.

Распределение массы вдоль струи.

По вертикали масса в

логарифмическом масштабе.

Постановка эксперимента с

обратной канавкой.

19 20 21 22 23 24 25

1E-3

0.01

0.1

ln(r

ho

*d)

X , mm

t=13.40

t=13.65

t=13.90

t=14.39

t=14.89

1369

Page 19: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Движение микроструи из трубки

Постановка эксперимента и динамика

распределений масс в микроструе из

трубки. Показаны каждый второй

кадры.

1

2 3 4

18 20 22 24 26 28 30 32 34 36

0.01

ln(R

ho

*d)

X , mm

t=6.20

t=6.70

t=7.20

t=7.69

1375

6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8

16

18

20

22

24

26

28

30

32

34

36

X,

mm

Time, mks

B

Linear Fit of Data3_B

U=11.79 km/s

1375

Page 20: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Движение микроструи из канавок.

Изменение поперечного профиля струи из медного диска. Канавки 300 мкм.

Показаны каждый четвертый кадр.

20 22 24 26 28 30 32 34 36 38

0.000

0.005

0.010

0.015

Rh

o*d

X, mm

t=7.44

t=7.94

t=8.44

t=8.93

t=9.43

1361

Page 21: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Движение микроструи из стыков.

Динамика Распределений массы

струи вдоль струи (вверху) и

поперек (внизу). Нижняя струя

пробивает пластину.

Стык – ступенька, медь, толщина 2

мм

24 25 26 27 28 29 30 31 32

0.0

0.2

0.4

0.6

0.8

Rh

o*d

, g

/sm

2

X , mm

t=10.55

t=10.67

t=10.79

t=10.92

136320 21 22 23 24 25 26

0.01

0.1

ln(R

ho

*d)

X , mm

Mean_Before

t=12.40

t=12.90

t=13.40

t=13.90

1365

Page 22: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Расчет движения микроструи из канавок .

Распределение массы на луче СИ

через 1 мкс после движения СП

Расчет. Распределение массы на

луче СИ через 1 мкс после движения

СП

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.41E-4

1E-3

0.01

0.1

d

, g

/cm

2

X, mm

t=0

t=1

2.7 2.8 2.9 3.0 3.1 3.2

0.1

1

L

(г/с

м2)

X(мм)

при t = 1 мкс

Page 23: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Выводы.

Проведены эксперименты по регистрации распределения

массы вдоль струи из ударно сжатых металлов (с помощью

СИ).

1. Наличие наночастиц (от 6 до 100 нм) при малых Rz6.

2. Получены распределения массы вдоль струи.

Минимальная измеряемая линейная масса - 1 мг/см2

3. Измерены одновременно распределение массы вдоль

струи и показания пьезодатчика. (Удалось синхронизовать

координаты струи с записью давления датчиком).

3. Измерены скорости пластины и струи (и ее массe) в

зависимости от типа стыков .

Page 24: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave

Thank you

for your attention!

International Conference "Synchrotron and Free electron laser Radiation“ (SFR-2018), 25-28 June, 2018, Novosibirsk, Russia

Page 25: The emission of microparticles from metal joints under ...ssrc.inp.nsk.su/CKP/userdoc/SFR/2018.06.27/04 Ten.pdf · The emission of microparticles from metal joints under shock wave