43
The Elusive Hamilton Problem for Cayley Graphs—an Overview 28th Clemson Mini-Conference on Discrete Mathematics and Algorithms Erik E. Westlund Department of Mathematics and Statistics Kennesaw State University October 3, 2013 Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 1 / 43

The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

The Elusive Hamilton Problem for Cayley Graphs—anOverview

28th Clemson Mini-Conference on Discrete Mathematics and Algorithms

Erik E. Westlund

Department of Mathematics and StatisticsKennesaw State University

October 3, 2013

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 1 / 43

Page 2: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Preliminaries

Definition

G finite group; S ⊆ G − {e}, S = S−1, the Cayley graph of G with connection set S

X = Cay(G ; S)

V (X ) = G

{x , y} ∈ E(X )⇔ x−1y ∈ S , i.e., E(X ) = {{x , xs} : s ∈ S}

Cay(Z12; {2, 3, 4}?) Cay(D4; {a, b}?) Cay(Z42; S?)

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 2 / 43

Page 3: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Preliminaries

Definition

G finite group; S ⊆ G − {e}, S = S−1, the Cayley graph of G with connection set S

X = Cay(G ; S)

V (X ) = G

{x , y} ∈ E(X )⇔ x−1y ∈ S , i.e., E(X ) = {{x , xs} : s ∈ S}

Remark

X connected ⇔ 〈S〉 = G

e = {x , y} is a t-edge if x−1y = t ∈ S

subgraph generated by t consists of all t-edges

involution generates a 1-factor.

non-involution generates a 2-factor (cycle ↔ coset a〈t〉).

Cayley graphs are vertex-transitive (VT). Identical “local neighborhoods.” Tons ofsymmetry.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 3 / 43

Page 4: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Terminology

Definition

S is inverse-free if for all x ∈ S , either |x | = 2 or −x /∈ S .

S is involution-free if |x | 6= 2 for all x ∈ S .

S is inverse-closed if whenever x ∈ S then −x ∈ S.

S? is the inverse-closure of S : the smallest superset of S that is inverse-closed.

Remark

If S = {s1, . . . , sk} is an inverse- and involution-free generating set for A, then X = Cay(A; S?)is connected and 2k-regular.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 4 / 43

Page 5: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

44 years ago....

In 1969, Lovasz posed this problem:

“Let us construct a finite, connected undirected graph which is [vertex-transitive] and has nosimple path containing all vertices.”

Conjecture (Lovasz et al. c. 1969)

Every finite, connected, vertex-transitive graph has a Hamilton path.

MASSIVE AMOUNT OF RESEARCH & RICH LITERATURE ⇒ No known counterexamples!

Only FOUR finite, connected nontrivial VT graphs are known that do not possess a Hamiltoncycle.

NONE OF THE FOUR ARE CAYLEY GRAPHS.

Conjecture (Many people....)

Every connected, Cayley graph on a finite group has a Hamilton cycle, except for K2.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 5 / 43

Page 6: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Done for Abelian groups!

Theorem (Folklore)

Every nontrivial, connected Cayley graph of a finite Abelian group has HC.

Approaches.

1 Method 1: Abelian, transitive subgroup of automorphisms [Lovasz 1979]

2 Method 2: Chen-Quimpo Theorem [Chen-Quimpo 1981]

3 Method 3: induction using M-sequences [Marusic 1983]

4 Method 4: induction on |S | [Witte ?]

Cayley graphs of Abelian groups flourish with Hamilton cycles.

Assumptions hereafter: A is a finite Abelian group. S ⊆ A. All notation is additive.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 6 / 43

Page 7: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

A conjecture of Alspach

Conjecture (Alspach 1984)

If X = Cay(A; S) is connected and 2k-regular, then X is decomposable into k Hamilton cycles.

Theorem

Known results (k = 1 is trivial):

k = 2 (Bermond et al. 1989, Fan et al. 1996)

k = 3 and A ∼= Z2n+1 or A ∼= Z2n with a generator in S (Dean 2006, 2007)

k = 3 and |A| = 2n + 1 (Fan et al. 1996, Kreher, Liu, W. 2009)

|A| = 2n + 1, S is minimal (Liu 1996)

|A| = 2n ≥ 4, S is strongly minimal (Liu 2003)

|A| ∈ {p, 2p, pq, p2}, odd primes (Liu 1993, Li et al. 2000)

X cartesian product of cycles and 4-regular Cayley graphs (Alspach et al. 1992)

X is a Payley graph (Alspach et al. 2012)

numerous others (e.g., Alspach et al. 2013)

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 7 / 43

Page 8: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Terminology

Definition

Let S ⊂ A. Fix an a ∈ S .

S is minimal if x /∈ 〈S − {x}〉 for all x ∈ S .

S is strongly minimal if 2x /∈ 〈S − {x}〉 for all x ∈ S .

S is strongly a-minimal if 2x /∈ 〈a〉 for all x ∈ S − {a}.

Strongly-minimal ⇒ minimal, involution-free, strongly a-minimal ∀a ∈ S.

Strongly a-minimal does not imply strongly-minimal or minimal.

Strongly a-minimal for non-involution a implies involution-free.

Even strongly a-minimal for ALL a ∈ S does not imply strongly-minimal or minimal.

S = {(1, 0), (0, 1), (3, 1)} ⊂ Z4 ⊕ Z4 is strongly a-minimal for all a ∈ S .

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 8 / 43

Page 9: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Quotients of Cayley Graphs

Definition

Let S = {s1, . . . , sk} generate A and S = {s1, . . . , sk−1}, where si = si + 〈sk 〉 for all i . The

Cayley graph, X = Cay(A; S) where A = A/〈sk 〉 is a quotient graph of X = Cay(A;S).

6-regular Cayley graph and one of its cubic quotient graphs (not 4-regular because S is notstrongly 4-minimal).

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 9 / 43

Page 10: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Lifting Edge Sets

Definition

Let S = {s1, . . . , sk} be inverse-free.

Lift of the si -edge {a, b} ∈ E(X ) is

LX {a, b} := {{x , y} : a = x , b = y , y − x = si}.

|LX {a, b}| = |sk |.Lift of the subgraph F (of X ) is the subgraph F (of X ) induced on⋃

{a,b}∈E(F )

LX {a, b}.

Edge-disjoint subgraphs in X lift to edge-disjoint subgraphs in X .

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 10 / 43

Page 11: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Lifting Example

X = Cay(Z12; {2, 3, 4}?) and X = Cay(Z12/〈4〉; {2, 3}?)

LX {3, 2} = {{x , y} : x = 3, y = 2, y − x = 3}

3 2+3

7 10

3 6+3

11 2

3 + 〈4〉 2 + 〈4〉

LX {3, 1} = {{x , y} : x = 3, y = 1, y − x = 2}

3 1+2

7 9

3 5+2

11 1

3 + 〈4〉 1 + 〈4〉

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 11 / 43

Page 12: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

r -pseudo-cartesian products

Definition

For a fixed r ∈ Zm, the graph An ×r Bm is the r -pseudo-cartesian product of An = a1, . . . , anand Bm = b1, . . . , bm:

V = {(ai , bj ) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}E = EH ∪ EV ,

EH = {{(ai , bj ), (ai+1, bj )}, {(an, bj ), (a1, bj+r )} : 1 ≤ i < n, 1 ≤ j ≤ m}EV = {{(ai , bj ), (ai , bj+1)}, {(ai , b1), (ai , bm)} : 1 ≤ i ≤ n, 1 ≤ j < m}

A10 ×2 B8

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 12 / 43

Page 13: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

r -pseudo-cartesian products

Fact

EH is a 2-factor H, of An ×r Bm consisting of t = gcd(r ,m) cycles of length nm/t.

bi -row and bj -row on same cycle ⇔ j ≡ i (mod t)

Any t consecutive rows on t different cycles.

An ×r Bm∼= Cay(A; {s1, s2}?), where ns1 = rs2.

An ×r Bm is HD for all n,m ≥ 3. [Fan et al. (1996)]

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 13 / 43

Page 14: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Lifting Hamilton Cycles I

Theorem (Liu 1994)

If S = {s1, . . . , sk} is an inverse- and involution-free generating set for A, and F is the 2-factor

generated by sk , then any Hamilton cycle of Cay(A/〈sk 〉;S?

) lifts to a 2-factor, H, ofCay(A; S?), such that H ∪ F ∼= An ×r Bm.

X = Cay(Z12; {2, 3, 4}?) and X = Cay(Z12/〈4〉; {2, 3}?)

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 14 / 43

Page 15: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

D3(m, n)-graphs and Cayley Graphs

If Hamilton cycle lifts to a 2-factor, then Hamilton decomposition lifts to a 2-factorization.

Definition (Liu 1994)

G is a Dk(m, n)-graph if, for m, n,≥ 3:

1. V (G) = {(ai , bj ) : 1 ≤ i ≤ n and 1 ≤ j ≤ m}

2. E(G) = F ∪ H1 ∪ · · · ∪ Hk−1, and for t ∈ {1, . . . , k − 1},

F ∪ Ht∼= A

(t)n ×rt Bm

where A(t)n = at

σt (1)atσt (2)

· · · atσt (n)

atσt (1)

and Bm = b1b2 · · · bmb1, for some σt ∈ Sym(n), and

(ati , bj ) = (ai , bj+hi,t ) for some 0 ≤ hi,t < m.

Color edges in H1 blue, edges in H2 black, and edges in F red. Dk (m, n)-graphs are idealplatforms to perform edge color-switching.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 15 / 43

Page 16: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z6 ⊕ Z8; {(3, 1), (1, 2), (5, 7)}?) is a D3(8, 6)-graph

S is strongly (3, 1)-minimal, X = Cay(A/〈(3, 1)〉; {(1, 2), (5, 7)}?) is HD:

H1 = (0, 0), (1, 2), (5, 2), (4, 0), (3, 6), (5, 7), (0, 0)

H2 = (0, 0), (5, 2), (3, 6), (1, 2), (5, 7), (4, 0), (0, 0).

a1 a2 a3 a4 a5 a6

b8

b7

b6

b5

b4

b3

b2

b1

3,7 4,1 5,2 4,0 3,6 2,4

0,6 1,0 2,1 1,7 0,5 5,3

3,5 4,7 5,0 4,6 3,4 2,2

0,4 1,6 2,7 1,5 0,3 5,1

3,3 4,5 5,6 4,4 3,2 2,0

0,2 1,4 2,5 1,3 0,1 5,7

3,1 4,3 5,4 4,2 3,0 2,6

0,0 1,2 2,3 1,1 0,7 5,5

a21 a2

3 a25 a2

2 a26 a2

4

b8

b7

b6

b5

b4

b3

b2

b1

3,7 2,5 3,6 4,7 5,1 4,0

0,6 5,4 0,5 1,6 2,0 1,7

3,5 2,3 3,4 4,5 5,7 4,6

0,4 5,2 0,3 1,4 2,6 1,5

3,3 2,1 3,2 4,3 5,5 4,4

0,2 5,0 0,1 1,2 2,4 1,3

3,1 2,7 3,0 4,1 5,3 4,2

0,0 5,6 0,7 1,0 2,2 1,1

H1 ∪ F ∼= A(1)6 ×6 B8 H2 ∪ F ∼= A

(2)6 ×0 B8

{F : R6;H1 : BL2;H2 : BK8}

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 16 / 43

Page 17: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Using quotient graphs

Theorem (Liu 1996)

Let X = Cay(A; {s1, . . . , sk}?) and B = 〈sk 〉. If X = Cay(A/B; {s1, . . . , sk−1}?) can be

decomposed into k − 1 Hamilton cycles, Hi , then X is a Dk (m, n)-graph, with m = |B|,n = |A : B|, where F is the 2-factor generated by sk and Hi is the lift of Hi , for i = 1, . . . , k − 1.

Focus on S = {s1, s2, s3} involution-free, inverse-free, strongly s3-minimal:

X = Cay(A; S?) is 6-regular ⇒ X is 4-regular ⇒ X is D3(m, n)-graph

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 17 / 43

Page 18: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Decomposing D3(m, n)-graphs

Theorem (Bermond et al., Dean, Fan et al., Li et al., Liu, Westlund et al.)

A D3(m, n)-graph is HD if:

(a) m, n ≥ 3 and t1 = 1 or t2 = 1.

(b) m ≥ 3 is odd, and n ∈ {3, 5, 7} or n ≥ 9.

(c) m ≥ 4 is even, and n ≥ 9, and t1 and t2 are odd.

(d) m ≥ 4 is even, and n ≥ 10 is even, t1 is even, t2 is odd.

(e) m ≥ 6 is even, and n ≥ 14 is even, t1 and t2 are even.

Remark (Open Cases)

Low-Order m ≥ 3; 3 ≤ n ≤ 8; mn is even.

High-Order m ≥ 4 is even; n ≥ 9 is odd; t1 is even, t2 is odd.

High-Order m ≥ 4 is even; 9 ≤ n ≤ 12 or n ≥ 13 is odd; t1 and t2 both even.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 18 / 43

Page 19: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Color-switching fundamentals

In An ×r Bm, color EH blue and color EV red.

Definition

An {ai , ai+1, bj , bj+1}-color switch is an operation that interchanges the color of the edges

{{(ai , bj ), (ai+1, bj )}, {(ai , bj+1), (ai+1, bj+1)}}

with the color of the edges

{{(ai , bj ), (ai , bj+1)}, {(ai+1, bj ), (ai+1, bj+1)}}.

A color-switching configuration, abbreviated CSC, is a set of color-switches that are pairwiseedge-disjoint.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 19 / 43

Page 20: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Color-switching fundamentals

Suppose C1 and C2 are vertex-disjoint cycles in a graph X , and {xi , yi} ∈ E(Ci ) for i ∈ {1, 2}. IfC = x1y1x2y2 is a cycle of length four in X , and the edges {y1, x2} and {y2, x1} are not inE(C1) ∪ E(C2), then the subgraph of X whose edge set is the symmetric difference

(E(C1) ∪ E(C2))⊕ E(C)

is a single cycle.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 20 / 43

Page 21: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Color-switching fundamentals

{ai , ai+d , bj}-LAHS {ai , ai+d , bj}-RAHS

{ai , bj , bj+d}-LAVS {ai , bj , bj+d}-RAVS

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 21 / 43

Page 22: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Example: Cay(Z42; {6, 3, 7}?)

{F : R7,H1 : BL3,H2 : BK6}

X = Cay(Z42, {6, 3, 7}?), X = Cay(Z42/〈7〉, {6, 3}?) ∼= Cay(Z7, {1, 2}?). X is a D3(6, 7)-graph

with F ∪ H1∼= A

(1)7 ×3 B6 and F ∪ H2

∼= A(2)7 ×0 B6. (vertical red edges shown twice.)

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 22 / 43

Page 23: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Example: Cay(Z42; {6, 3, 7}?)

{S1(F) : R5,S1(H1) : BL

1,H2 : BK6}

S1 = {a2, b1, b3}-RAVS

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 23 / 43

Page 24: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Example: Cay(Z42; {6, 3, 7}?)

{S1(F) : R5,S1(H1) : BL

1,H2 : BK6}

Orient the blue Hamilton cycle and search for a “good” 4-cycle.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 24 / 43

Page 25: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Example: Cay(Z42; {6, 3, 7}?)

{S2S1(F) : R4,S2(S1(H1)) : BL

1,H2 : BK6}

S2 = {a3, a4, b3, b4}-CS

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 25 / 43

Page 26: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Example: Cay(Z42; {6, 3, 7}?)

{S3S2S1(F) : R2,S2S1(H1) : BL

1,S3(H2) : BK2}

S3 = {a25, b1, b5}-RAVS

Case Analysis: search for a properly 2-edge-colored red/black 4-cycle to make the final switch.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 26 / 43

Page 27: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Example: Cay(Z42; {6, 3, 7}?)

{S4S3S2S1(F) : R1,S2S1(H1) : BL

1,S4S3(H2) : BK1}

S4 = {a24, a

26, b5, b6}-CS

Three monochromatic Hamilton cycles. (vertical red edges shown twice.)

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 27 / 43

Page 28: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch. Let A = A/〈s3〉 = {a1, a2, . . . , an}, n ≥ 9

1 X is D3(m, n)-graph and assume that s1 6= ±s2.

Example: X = Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?) has strongly (1, 0)-minimal S .

X = Cay((Z8 ⊕ Z11)/〈(1, 0)〉; {(4, 1), (4, 2)}?) is 4-regular circulant of order 11.

H1 = (4, 3), (0, 4), (4, 5), (0, 6), (4, 7), (0, 8), (4, 9), (0, 10), (1, 0), (4, 1), (0, 2);

H2 = (0, 6), (0, 8), (0, 10), (4, 1), (4, 3), (4, 5), (4, 7), (4, 9), (1, 0), (0, 2), (0, 4).

H1 and H2 lift to H1 and H2, each having t1 = t2 = 4 cycles.

H1 ∪ F ∼= A(1)11 ×4 B8 and H2 ∪ F ∼= A

(2)11 ×4 B8

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 28 / 43

Page 29: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch. Let A = A/〈s3〉 = {a1, a2, . . . , an}, n ≥ 9

1 X is D3(m, n)-graph and assume that s1 6= ±s2.

Example:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a27 a2

9 a211 a2

2 a24 a2

6 a28 a2

10 a21 a2

3 a25

b8

b7

b6

b5

b4

b3

b2

b1

{H1 : BL4,F : R11,H2 : BK4}

H1 ∪ F ∼= A(1)11 ×4 B8 and H2 ∪ F ∼= A

(2)11 ×4 B8

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 29 / 43

Page 30: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch.

2 X has a 6-path, P = aσ1(1) aσ1(2) aσ1(3) ap aσ2(2) aσ2(3), where {σ2(2), σ2(3)} = {q, n}, and4 ≤ p < q < n − 1, and p = σ1(4) = σ2(1).

a1 a2 a3 a4 a5 a6 a7

apa8 a9

aqa10 a11

an

b8

b7

b6

b5

b4

b3

b2

b1

a1 a2 a3 a4 a5 a6 a7

apa8 a9

aqa10 a11

an

b8

b7

b6

b5

b4

b3

b2

b1

a27 a

29 a

211 a2

2 a24 a2

6 a28 a2

10 a21 a2

3 a25

b8

b7

b6

b5

b4

b3

b2

b1

{H1 : BL4,F : R11,H2 : BK4}

P = (4, 3), (0, 4), (4, 5), (0, 6), (0, 8), (0, 10) = a4 a5 a6 a7 a9 a11

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 30 / 43

Page 31: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch.

3 S1 = {{a2, b1, bt1−1}-RAVS, {a3, a4, bt1−1, bt1}-CS} ⇒ blue Hamilton cycle, red cycle onai -columns, 1 ≤ i ≤ 4.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a27 a2

9 a211 a2

2 a24 a2

6 a28 a2

10 a21 a2

3 a25

b8

b7

b6

b5

b4

b3

b2

b1

{S1(H1) : BL1,S1(F ) : R8,H2 : BK4}S1 = {{a2, b1, b3}-RAVS, {a3, a4, b3, b4}-CS}

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 31 / 43

Page 32: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch.

4 S2 = {a4, an−1, bt1−1}-RAHS to create a red 2-factor with 2 cycles, preserve the blue cycle.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a27 a2

9 a211 a2

2 a24 a2

6 a28 a2

10 a21 a2

3 a25

b8

b7

b6

b5

b4

b3

b2

b1

{S2S1(H1) : BL1,S2S1(F ) : R2,H2 : BK4}S2 = {a4, a10, b3}-RAHS

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 32 / 43

Page 33: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch.

5 Remove the switches incident with the aq-column. This preserves the blue cycle and

creates a red 2-factor with four cycles:

♦-cycle on ai -columns, 1 ≤ i ≤ q − 1.

♣-cycle on aq-column and the ♥-cycle on an-column.

♠-cycle on ai -columns, q + 1 ≤ i ≤ n − 1.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a1

♦a2

♦a3

♦a4

♦a5

♦a6

♦a7

♦a8

♦a9

♣a10

♠a11

b8

b7

b6

b5

b4

b3

b2

b1

a27 a2

9 a211 a2

2 a24 a2

6 a28 a2

10 a21 a2

3 a25

b8

b7

b6

b5

b4

b3

b2

b1

{S2S1(H1) : BL1,S2S1(F ) : R4,H2 : BK4}

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 33 / 43

Page 34: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch.

6 Apply S3 = {{a2σ2(2)

, b1+`, bt2−1+`}-LAVS or -RAVS, for “nice” `, producing:

red 2-factor with 2 cycles: ♠-cycle and F-cycle.

black 2-factor with 2 cycles: (1) containing all edges in bj+`-rows, 1 ≤ j ≤ t2 − 1, (2)

containing edges in bkt2+`-rows.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a1

Fa2

Fa3

Fa4

Fa5

Fa6

Fa7

Fa8

Fa9

Fa10

♠a11

F

b8

b7

b6

b5

b4

b3

b2

b1

a27

F

a29

F

a211

F

a22

F

a24

F

a26

F

a28

F

a210

♠a2

1

F

a23

F

a25

F

b8.

b7◦

b6◦

b5◦

b4.

b3◦

b2◦

b1◦

{S2S1(H1) : BL1,S3S2S1(F ) : R2,S3(H2) : BK2}S3 = {a2

9, b1, b3}-LAVS

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 34 / 43

Page 35: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Cay(Z8 ⊕ Z11; {(4, 1), (4, 2), (1, 0)}?)

Lemma (W.)

If S is strongly s3-minimal, |s3| = 2k ≥ 6, and |A : 〈s3〉| = 2n′ + 1 ≥ 9, then X is HD.

Partial proof sketch.

7 z = min3≤i<n{a2σ2(i)

-column is on F-cycle and a2σ2(i+1)

-column is on ♠-cycle}.

8 Technical case analysis ⇒ S4 = {a2σ2(z)

, a2σ2(z+1)

, bk , bk+1}-CS ⇒ HD.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b8

b7

b6

b5

b4

b3

b2

b1

a27 a2

9 a211 a2

2 a24 a2

6 a28

z

a210

z + 1

a21 a2

3 a25

b8

b7

b6

b5

b4

b3

b2

b1

{S2S1(H1) : BL1,S4S3S2S1(F ) : R1,S4S3(H2) : BK1}S4 = {{a2

8, a210, b8, b1}-CS}

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 35 / 43

Page 36: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Basis for Main Result

Theorem (Fan et al. 1996)

If X = Cay(A; {s1, s2, s3}?) is connected, 6-regular, and has a strongly s3-minimal connectionset, where |s3| is odd, and |A : 〈s3〉| ≥ 9, then X is HD.

Corollary (Fan et al. 1996)

If X = Cay(A; {s1, s2, s3}?) is connected, 6-regular, has odd order, and |s1| ≥ |s2| > |s3|, then Xis HD.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 36 / 43

Page 37: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

New Results for 6-Regular Graphs

Theorem (W.)

If X = Cay(A; {s1, s2, s3}?) is connected, 6-regular, and has a strongly s3-minimal connectionset, then X is HD whenever

1 |A : 〈s3〉| ≥ 4; or

2 |A : 〈s3〉| = 3 and 〈s1〉 and 〈s2〉 have even index.

Hypotheses forbid |A : 〈s3〉| = 2: we have partial results.Dean resolves case when |A : 〈s3〉| = 1.

Corollary (W.)

If X = Cay(A; {s1, s2, s3}?) is connected, 6-regular, has even order, and |s1| ≥ |s2| > 2|s3|, thenX is HD.

Even when S is very non-minimal:

Corollary (W.)

If X has even order, A = 〈s1, s3〉 = 〈s2, s3〉, and |A : 〈s3〉| ≥ 4, then X is HD.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 37 / 43

Page 38: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

New Results for 6-Regular Graphs

Theorem (W. 2012)

If A = 〈s1, s2〉 and |A : 〈s3〉| = 2, then X is HD.

E.g., if A has order 2n, where n is square-free, then has cyclic subgroups of index two.

Corollary

Circ(2n; {a, b, c}?) is HD ifgcd(2n, a, b) · gcd(2n, c) = 2.

E.g., Cay(Z2c ; {2a + 1, b, 2}) is HD.

Corollary

If s1 generates a 2-factor consisting of two cycles in X , and s2 generates a Hamilton cycle in X ,then X is HD.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 38 / 43

Page 39: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Open Problems

1 Find HD if |A : 〈s3〉| = 3 and at least one of 〈s1〉 and 〈s2〉 has odd index.

2 Find HD if S is not strongly a-minimal for any a ∈ S.

3 Find HD if S is not involution-free.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 39 / 43

Page 40: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

Thank you.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 40 / 43

Page 41: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

References I

Combinatorial structures and their applications, Proceedings of the Calgary InternationalConference on Combinatorial Structures and their Applications held at the University ofCalgary, Calgary, Alberta, Canada, June, vol. 1969, Gordon and Breach Science Publishers,New York, 1970.

B. Alspach, Research problem 59, Discrete Math. 50 (1984), 115.

B. Alspach, D. Bryant, and D. Dyer, Paley graphs have Hamilton decompositions, DiscreteMath. 312 (2012), no. 1, 113–118.

B. Alspach, C. Caliskan, and D. L. Kreher, Orthogonal projection and liftings ofHamilton-decomposable Cayley graphs on abelian groups, Discrete Math. 313 (2013),no. 13, 1475–1489.

B. Alspach, K. Heinrich, and G. Z. Liu, Orthogonal factorizations of graphs, Contemporarydesign theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992,pp. 13–40.

J.-C. Bermond, O. Favaron, and M. Maheo, Hamiltonian decomposition of Cayley graphsof degree 4, J. Combin. Theory Ser. B 46 (1989), no. 2, 142–153.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 41 / 43

Page 42: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

References II

J. A. Bondy, Hamilton cycles in graphs and digraphs, Proceedings of the NinthSoutheastern Conference on Combinatorics, Graph Theory, and Computing (FloridaAtlantic Univ., Boca Raton, Fla., 1978) (Winnipeg, Man.), Congress. Numer., XXI, UtilitasMath., 1978, pp. 3–28. MR 527929 (80k:05074)

C. C. Chen and N. F. Quimpo, On strongly Hamiltonian abelian group graphs,Combinatorial mathematics, VIII (Geelong, 1980), Lecture Notes in Math., vol. 884,Springer, Berlin, 1981, pp. 23–34.

M. Dean, On Hamilton cycle decomposition of 6-regular circulant graphs, Graphs Combin.22 (2006), no. 3, 331–340.

, Hamilton cycle decomposition of 6-regular circulants of odd order, J. Combin.Des. 15 (2007), no. 2, 91–97.

C. Fan, D. R. Lick, and J. Liu, Pseudo-Cartesian product and Hamiltonian decompositionsof Cayley graphs on abelian groups, Discrete Math. 158 (1996), no. 1-3, 49–62.

H. Li, J. Wang, and L. Sun, Hamiltonian decomposition of Cayley graphs of orders p2 andpq, Acta Math. Appl. Sinica (English Ser.) 16 (2000), no. 1, 78–86. MR 1757325

J. Liu, Hamiltonian decompositions of Cayley graphs on abelian groups, Discrete Math. 131(1994), no. 1-3, 163–171.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 42 / 43

Page 43: The Elusive Hamilton Problem for Cayley Graphs|an Overviewgoddard/MINI/2013/Westlund.pdf · The Elusive Hamilton Problem for Cayley Graphs|an Overview 28th Clemson Mini-Conference

References III

, Hamiltonian decompositions of Cayley graphs on abelian groups of odd order, J.Combin. Theory Ser. B 66 (1996), no. 1, 75–86.

, Hamiltonian decompositions of Cayley graphs on abelian groups of even order, J.Combin. Theory Ser. B 88 (2003), no. 2, 305–321.

D. Marusic, Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1983), no. 1, 49–54.MR 708161 (85a:05039)

G. Sabidussi, On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9 (1958),800–804.

E. E. Westlund, Hamilton decompositions of certain 6-regular Cayley graphs on Abeliangroups with a cyclic subgroup of index two, Discrete Math. 312 (2012), 3228–3235.

, Hamilton decompositions of 6-regular Cayley graphs on even order Abelian groupswith involution-free connection sets, 2013.

E. E. Westlund, J. Liu, and D. L. Kreher, 6-regular Cayley graphs on abelian groups of oddorder are hamiltonian decomposable, Discrete Math. 309 (2009), no. 16, 5106–5110.

Erik Westlund (KSU) Elusive Hamilton Problem for Cayley Graphs October 3, 2013 43 / 43