29
The Current Status of Perovskite Solar Cell Research at UCLA Department of Materials Science and Engineering University of California, Los Angeles, CA, USA Lijian Zuo, Sanghoon Bae, Lei Meng, Yaowen Li, and Yang Yang* 1

The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

The Current Status of Perovskite Solar Cell Research at UCLA

Department of Materials Science and Engineering University of California, Los Angeles, CA, USA

Lijian Zuo, Sanghoon Bae, Lei Meng, Yaowen Li, and Yang Yang*

1

Page 2: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

What is a Solar Cell?

Diffusion potential to contacts is typically <1mVolt. k

A GOOD Solar Cell does not require a p-n junction!*

hνE

EFn

EFp

Voc

e- h

h+ e-e-

e - h+ e- h+

e-

h+ +

h + h +Wider Bandgap top,

bottom and sides

double hetero-structure Selective electron contact

Selective hole

contact

+ -

-

+

e- e- e-

h+h+ h+

Courtesy of Prof. Eli Yablonovitch

*http://energyseminar.stanford.edu/node/369

Page 3: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Lev Perovski (1792 – 1856) Structure

History of hybrid perovskite materials and solar cells

3Courtesy of Prof. Yanfa Yan

Page 4: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Perovskite Si CIGS GaAsBand gap (eV) 1.5 (tunable) 1.1 1.12 1.43

Absorption coefficient 104-5 103 104-5 104-5

Carrier mobility cm2/(V·s) 100 1500 < 10 8500

Carrier lifetime > 100 ns ms 50-200 ns <100 ns

Essential physical properties of major PV materials

Long Diffusion length

Low recombination rate

and high PL

Electron/hole transportation

Long carrier lifetime

4

Perovskite is a great PV material

Page 5: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Perovskite Si CIGS GaAsVOC 1.1 V 0.706 0.68V 1.12 V

VOC deficit 0.3 - 0.45 V 0.3-0.4V > 0.4 V ~0.3 V

JSC (mA/cm2) ~ 22 42.7 36 29.5FF ~80% ~ 80% ~80% >85%

Film thickness ~350 nm 100-200 um 1-2 um 4 um

Device parameters of different solar cells

5

Device parameter: A promising PV material

Yan et al, Adv. Mater. 2014, 26, 4653–4658

Page 6: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Planar Device structure: PiN & NiP

ITO

TiOx (N)

Perovskite (i)

Spiro (P)

Au

ITO

PEDOT or NiOx (P)

Perovskite (i)

PCBM or ZnO(N)

Au

N-i-P device structure (regular structure)

P-i-N device structure* (inverted structure)

At UCLA , we work on both PiN and NiP planar perovskite solar cells.

6

*Prof. T.F. Guo (Taiwan), (1) Adv. Mat. 25, 3727, 2013; (2) SPIE Solar and Alternative Energy, 2013

Page 7: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Park et al, APL Mater. 2, 081510 (2014)

• Solution-Based: one-step or two-Step • Annealing to evaporate solvents and to crystallize perovskites • Challenge: large-area, pinhole-free, with thickness/composition

control 10

Film formation via solution: one-step v.s. two-step

7Courtesy of Prof. Kai Zhu

Page 8: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

8/16/17 8

Importance of crystal growth

Solution grown polycrystalline PVSK

[1] H. J. Snaith et al. Science 2015, 348, 683-686

500 nm

Fluorescence image of PVSK film

Boundary

Boundary

Local PL decay profiles

Page 9: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Recombination at GBs

Formation of trap statesStructural defects at GBs

non-radiative recombination loss at GBs

8/16/17 9

[1] Y. Yan et al. Adv. Electron. Mater. 2015, 1, 1500044 [2] D. K. et al. J. Phys. Chem. C 2017, 121, 3143−3148

→ structural defects at GB induce charge recombination loss

Page 10: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

8/16/17 10

Ion migration through GBs Current-voltage hysteresis

Ion migration at GBs

ions

→ ion migration through GBs results in I-V hysteresis and poor stability

[4] J. Huang et al. Energy Environ. Sci., 2016, 9, 1752-1759

Page 11: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

8/16/17 11

Ingression of moisture through GBs

Moisture ingression through GBs

→ We need to grow highly crystalline PVSK with less grain boundaries

[1]J. Huang et al. Energy Environ. Sci. 2017, 10, 516-522

Page 12: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

8/16/17 12

1) Intermediate adduct method using a Lewis base additive

Manuscript under revision

Page 13: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Intermediate phase : adduct

8/16/17 13

MAPbI3

MAI•PbI2•DMSO MAI+PbI2+DMSO in DMF

After heatingIntermediate phase

X + :Y → X⋅Y acid base adduct

[1] N.-G. Park et al. J. Am. Chem. Soc. 2015, 137, 8696−8699 [2] N.-G. Park et al. Acc. Chem. Res. 2016, 49, 311−319

10 µm 10 µm

w/o intermediate phase w/ intermediate phase

DMSO (g)↑

Page 14: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

EaIntermediate adduct

PVSK

 

[1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932

fast growth → formation of small grains

slower growth→ formation of large grains

Crystallization kinetics

→To enhance the grain size, we need to slow down the reaction by Ea↑

8/16/17 14

MAI•PbI2•Lewis base

MAPbI3

Page 15: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Urea additive for higher Ea

DMSO µ=3.96D

Urea µ=4.56D

···· ····

0 s 10 s 30 s 60 s 70 s 90 s 120 s

65 oC 100 oC

ref

w/ 10 mol% urea

MAI•PbI2•DMSO

MAI•PbI2•DMSO•urea0.1

σ-

σ+

σ-

σ+

→ stronger interaction of urea with PVSK precursor, Ea↑, k↓

8/16/17 15[1] Manuscript accepted.

Page 16: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

ref 1 mol% 2 mol% 4 mol% 6 mol%14161820

PCE

(%)

0.6

0.7

0.8

FF

20

22

J SC (m

A/cm

2 )

1.0

1.1

1.2

V OC (V

)

0.0 0.2 0.4 0.6 0.8 1.0 1.20

5

10

15

20

25

RefJ

SC: 21.47 mA/cm2

VOC

: 1.048 VFF: 0.77PCE: 17.34%

w/ urea 4 mol%J

SC: 21.68 mA/cm2

VOC

: 1.092 VFF: 0.78PCE: 18.55%

Curre

nt d

ensit

y (m

A/cm

2 )

Voltage (V)

300 400 500 600 700 8000

20

40

60

80

100

EQE

(%)

Wavelength (nm)

Ref (20.91 mA/cm2) w/ 4 mol% urea (21.26 mA/cm2)

Effect of urea on PV performance

8/16/17 16[1] Manuscript accepted.

Page 17: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

ref

w/ 4mol% urea

500 nm

ref

500 nm

w/ 4mol% urea

ITO+SnO2

PVSK

spiro-MeOTAD

Ag

Effect of urea on morphology

8/16/17 17

800 nm

800 nm

[1] Manuscript accepted.

Page 18: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth
Page 19: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Presence of urea in the film

8/16/17 19

4000 3000 2000 1000

Tran

smitt

ance

Wavelength (nm)

MAPbI3+ureaMAPbI3urea

1800 1500 1200

C-NN-HC=O

10 20 30 40 50 Two theta (degree)

urea (powder)

# # (314)(224

)(222

)

(220

)

(202

)(2

11)

(112

)

4 mol% urea

Ref

(110

)

*

50 100 150 200 250 3000

2040

60

80

100urea

TG (%

)

Temperature (oC)

DMSO

→ urea exist in MAPbI3 film

→ no additional peaks and peak shift[1] Manuscript accepted.

Page 20: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

8/16/17 20

Urea at GBPb I

ONC

A B C

D E F

4 mol% →with 50 mol% urea →crystallization of urea at GBs[1] Manuscript accepted.

Page 21: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

8/16/17 21

Stability

0 5 10 15 20 25 300

5

10

15

20

PCE

(%)

Time (days)

ref 4 mol%

→ Both ex-situ and in-situ stability were improved after addition of urea

On shelf test Under 1 sun

[1] Manuscript accepted.

Page 22: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

N-I-P Structure P-I-N Structure

1. Instability of Perovskite: CH3NH3PbI3 ! CH3NH3I+PbI2 2. Instability of Interface: Organic transport layers

Two major reasons of device instability:

Pursue of highly stable perovskite solar cells

ITO Glass

compact-TiO2

CH3NH3PbI3

Auspiro-MeOTAD

ITO GlassPEDOT:PSS

CH3NH3PbI3

Al

PCBM

22

Page 23: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

ITO Glass

PEDOT:PSS

CH3NH3PbI3

Al

PCBM

NiO

ZnO

Organic: • Less stability; • Unable to block carriers;

“Replacement”

Metal oxide: • Ambient stability; • Prevent carrier leakage; • Optical transparency

Materials selection for charge transport layers

23

Page 24: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

NiO

ITO Glass NiO

CH3NH3PbI3

Al

ZnO

ZnO

Transmission and AFM images of NiOx and ZnO layers

24J. You, et. al, Nature Nanotech. 11, 75 (2016).

NiOx ZnO

Page 25: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Device performance >16% PCE

Performance of Perovskite Solar Cells

25Y. Yang* et. al, Nature Nanotech. 11, 75 (2016).

Page 26: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Comparison of device stability using inorganic and organic charge transport layers

Air stability of devices with all metal oxide layers

26Y. Yang* et. al, Nature Nanotech. 11, 75 (2016).

Page 27: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Summary & outlooks

27

1. We report our studies on (1) UCLA PVSK progress, (2) the intermediated phase engineering, (3) carrier transport layers (All metal oxides).

2. Many issues: physical mechanism(s), hysteresis, Pb-containing, water soluble, stability still require much more understanding

3. We are still in the early stage of the perovskite PV research, and we like to establish collaborations with others who are interested in this topic.

4. How about OPV? We are continuing to work on it, and please be patience, more ( and important) results to come.

Page 28: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Yang’s group, UCLA, summer 2016

Page 29: The Current Status of Perovskite Solar Cell Research at UCLAcast.ucmerced.edu/sites/cast.ucmerced.edu/files/...PVSK [1] N.G. Park et al. Nat. Nanotech. 9, 2014, 927-932 fast growth

Acknowledgments

Thank you for your attention

UC-Solar Program