15
June 2016 Reading UK The contribution of greenhouse gases to the recent slow-down in global-mean temperature trends: Supplementary Material R. Checa-Garcia, K.P. Shine, M.I. Hegglin Department of Meteorology, University of Reading Earley Gate, Reading RG6 6BB, UK email: [email protected] This supplementary material includes (1) a description of the main dataset built from the combination of greenhouse gases (GHGs) concentrations provided by the AGAGE network, historical and IPCC information, (2) the description and results from alter- native dataset based on the observations of the GHGs concentrations from the NOAA network, (3) the methods used to calculate the radiative forcings of GHGs, (4) specific information of the Energy balance model, (5) information about the CMIP5 model time series used and (6) Radiative Forcing datasets for the two datasets created. S1 Reference dataset (based on AGAGE network) 2 S1.1 Additional results ........................... 4 S2 Alternative dataset (based on NOAA-GMD network) 5 S2.1 Results for the alternative dataset .................. 7 S3 Estimation of Radiative Forcing from global concentrations 10 S3.1 CO2, CH4 and N2O ........................ 10 S3.2 Fluorinated gases and Ozone Depleting substances ......... 10 S4 Energy Balance Model 11 S5 CMIP5 multimodel RCP45 dataset 11 S6 Radiative forcing datasets 12 S6.1 Python code to read the radiative forcing datasets ......... 14

The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

Embed Size (px)

Citation preview

Page 1: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

June 2016Reading

UKThe contribution of greenhouse gases to the recent slow-down in

global-mean temperature trends: Supplementary Material

R. Checa-Garcia, K.P. Shine, M.I. HegglinDepartment of Meteorology,

University of ReadingEarley Gate, Reading RG6 6BB, UK

email: [email protected]

This supplementary material includes (1) a description of the main dataset built fromthe combination of greenhouse gases (GHGs) concentrations provided by the AGAGEnetwork, historical and IPCC information, (2) the description and results from alter-native dataset based on the observations of the GHGs concentrations from the NOAAnetwork, (3) the methods used to calculate the radiative forcings of GHGs, (4) specificinformation of the Energy balance model, (5) information about the CMIP5 modeltime series used and (6) Radiative Forcing datasets for the two datasets created.

S1 Reference dataset (based on AGAGE network) 2S1.1 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

S2 Alternative dataset (based on NOAA-GMD network) 5S2.1 Results for the alternative dataset . . . . . . . . . . . . . . . . . . 7

S3 Estimation of Radiative Forcing from global concentrations 10S3.1 CO2, CH4 and N2O . . . . . . . . . . . . . . . . . . . . . . . . 10S3.2 Fluorinated gases and Ozone Depleting substances . . . . . . . . . 10

S4 Energy Balance Model 11

S5 CMIP5 multimodel RCP45 dataset 11

S6 Radiative forcing datasets 12S6.1 Python code to read the radiative forcing datasets . . . . . . . . . 14

Page 2: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S1 Reference dataset (based on AGAGE network)

Provides an exhaustivedataset of GHGs globalconcentrations

The main dataset used in the paper relies on a combination of observational values of GHGs concentra-tions coming from AGAGE (Advanced Global Atmospheric Gases Experiment) network (1), historicalvalues consistent with (2), and radiative forcing described in IPCC report (3). The AGAGE networkof instruments provides systematic global estimations of the observed concentrations for a long list ofsubstances. It comprises three types of instruments named Gas Chromatography - MultiDetector (GC-MD), a Gas Chromatography with Mass Spectrometry (ADS GC-MS) and MEDUSA Gas Chromatog-raphy with Mass Spectrometry (Medusa GC-MS). The instruments Medusa GC-MS has a broader setof substances systematically estimated since 2004. The instruments GC-MD includes fewer numberof substances but began in 1978. Given that a central part of our study involves Ozone DepletingSubstances (ODS), the most comprehensive dataset in terms of the number of substances is chosen.Consequently our main dataset relies on Medusa GC-MS and includes the main substances covered bythe Montreal Protocol. For those substances not included in AGAGE datasets we have used the IPCCradiative forcing values described in (3).

The Table S1 shows the different sources of information for this dataset. Figure S1 shows both thehistorical and AGAGE concentrations for a number of CFCs, HFCs and Halons substances. For bothnetworks of instruments Medusa GC-MS and the GC-MD, the global dataset of concentrations is givenwith monthly resolution, so for our study it was averaged to give mid-year values.

SUPPLEMENTAL MATERIAL, TABLE S1: Radiative forcing datasets are created from (3) and from global experimentalconcentrations of several gases. The global concentrations are translated to radiative forcing using the IPCC expressionsdetailed in section §S3 and the radiative efficiencies shown in Table 8.A.1 in (3). The datasets contain radiative forcinguntil 2014 and the values not present in the IPCC report are extended by assuming they are constant 2011 values.M-CONC indicated values obtained from the (3) tables of concentrations. IPCC-RF indicates (3) values of RadiativeForcing (from Table AII.1.2, pag. 1404). AG-MD indicates the Global dataset of AGAGE GC-MD concentrationswith monthly resolution averaged to give mid-year values. AG-MS means Global dataset of AGAGE GCMS-Medusaconcentrations with monthly resolution averaged to give mid-year values.

DATASET REFERENCESpecies Before 2003 After 2003 Formula Efficiency [Wm−2ppb−1]

CO2 IPCC-RF IPCC-RF CO2 -CH4 M-CONC AG-MD CH4 -N2O M-CONC AG-MD N2O -

Fluorinated GasesHFC-23 M-CONC AG-MS CHF3 0.18HFC-32 M-CONC AG-MS CH2F2 0.11

HFC-125 M-CONC AG-MS CHF2CF3 0.23HFC-134a M-CONC AG-MS CH2FCF3 0.16HFC-143a M-CONC AG-MS CH3CF3 0.16

HFC-227ea M-CONC AG-MS CF3CHFCF3 0.26HFC-245fa M-CONC AG-MS CHF2CH2CF3 0.24

Sulfur Hexafluoride M-CONC AG-MS SF6 0.57PFC-116 M-CONC AG-MS CF3CF2CF3 0.25

O3 depleting GasesCFC-11 M-CONC AG-MD CCl3F 0.26CFC-12 M-CONC AG-MD CCl2F2 0.32

CFC-113 M-CONC AG-MD CCl2FCClF2 0.30CFC-114 M-CONC AG-MS CClF2CClF2 0.31CFC-115 M-CONC AG-MS CClF2CF3 0.20HCFC-22 M-CONC AG-MS CHClF2 0.21

HCFC-141b M-CONC AG-MS CH3CCl2F 0.16HCFC-142b M-CONC AG-MS CH3CClF2 0.19Halon-1211 M-CONC AG-MS CBrClF2 0.29Halon-1301 M-CONC AG-MS CBrF3 0.30Halon-2402 M-CONC AG-MS C2Br2F4 0.31

Carbon Tetrachloride M-CONC AG-MS CCl4 0.17Methyl Bromide M-CONC AG-MS CH3Br 0.004Methyl Chloride M-CONC AG-MS CH3Cl 0.01

Methyl Chloroform M-CONC AG-MD CH3CCl3 0.08

Stratospheric H2O IPCC-RF IPCC-RF H2O -Tropospheric O3 IPCC-RF IPCC-RF O3 -Stratospheric O3 IPCC-RF IPCC-RF O3 -

Page 3: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

SU

PP

LE

ME

NTA

LM

AT

ER

IAL,

FIG

UR

ES

1:

Dat

aset

base

don

AGAG

Ene

twor

kof

inst

rum

ents

:co

ncen

trat

ions

ofCF

Cs,H

CFC,

Hal

ogen

ated

and

Brom

ide

subs

tanc

es.

The

hist

oric

alva

lues

are

take

nfr

om(2

)up

toye

ar20

03th

enth

eex

peri

men

talc

once

ntra

tion

spr

ovid

edby

AGAG

Ene

twor

kar

eus

ed.

The

valu

eof

year

2004

isca

lcul

ated

toen

sure

cont

inui

tyon

the

conc

entr

atio

ns.

Anex

haus

tive

list

ofth

esu

bsta

nces

incl

uded

inou

rda

tase

tis

give

nin

Tabl

eS1

.

Page 4: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S1.1 Additional results

1940 1950 1960 1970 1980 1990 2000 2010­0.20

­0.10

0.00

0.10

0.20

0.30

GM

ST

 tren

d [K

 per

 dec

ade]

GHGs totalCO2

HadCRUT4.4

1940 1950 1960 1970 1980 1990 2000 20100.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

GM

ST

 tren

d [K

 per

 dec

ade]

CH4

Strat. H2O←CH4 oxid.N2OFluorinated gasesStratospheric O3

ODS

1940 1950 1960 1970 1980 1990 2000 2010Year

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

GM

ST

 tren

d [K

 per

 dec

ade]

Tropospheric O3

CH4 and Strat. H2OODS and Strat. O3

N2O and  Fluorinated GHGs

SUPPLEMENTAL MATERIAL, FIGURE S2: Overlapping GMST trends using a 5-year window. First panel: In-dividual greenhouse gas contributors to the GMST trend using the simple model. Second Panel: Contributionsgrouped into related forcings (methane and stratospheric water vapour, tropospheric ozone, ozone depleting sub-stances and stratospheric ozone, and other greenhouse gases (nitrous oxide and non-ODS fluorinated GHGs)).The red bar illustrates the size of the overlapping window. The smoothed GMST trend between 1985 and 2003 ishighlighted (purple-shaded area).

SUPPLEMENTAL MATERIAL, TABLE S2: Decadal Trend change from 1985 to 2003 [K per decade] for the differentGHGs groups analysed and for three values of the climate sensitivity parameter λ [K (W m−2)−1].

Trend Change [K/10yr]Component Group λ = 0.30 λ = 0.75 λ = 1.4CO2O 0.006 0.014 0.023N2O and Fluorinated Gases 0.001 0.003 0.004CH4 and Strat. H2O -0.012 -0.022 -0.027ODS and Strat. Ozone -0.018 -0.026 -0.028Tropospheric Ozone -0.009 -0.016 -0.020

All GHGs -0.031 -0.047 -0.049

Page 5: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S2 Alternative dataset (based on NOAA-GMD network)

Provides an alternativedataset of GHGs globalconcentrations to ensurerobustness of the mainconclusions.

To ascertain that our results do not depend significanlty on how the dataset is built, an alternativedataset is created based on NOAA network of instruments. NOAA-ERSL Global Monitoring Divisionnetwork is providing datasets covering the main species on each category: CO2, CH4, N2O, CFCs,HCFC, Halons (the last three groups are provided specifically by Halocarbons and other AtmosphericTrace Species (HATS) group, (4)) together with methyl chloroform and methyl bromide(5; 6). Even ifit is not as exhaustive in terms of the number of substances as AGAGE Medusa network, it still coversthe most important species since 1994. Therefore it is used as an alternative testing dataset to verifythe robustness of our conclusions against a different networks of instruments. Table S3 shows thesources of information for this dataset. Figure S2 shows both the historical and NOAA concentrationsfor a number of CFCs, HFCs and Halons substances.

SUPPLEMENTAL MATERIAL, TABLE S3: Radiative forcing datasets are created from IPCC report (3) and from globalexperimental concentrations of several gases. The global concentrations are translated to radiative forcing using theIPCC expressions detailed in section §S3 and the radiative efficiencies shown on the Table 8.A.1 in (3). M-CONCindicated values obtained from the (3) tables of concentrations. IPCC-RF indicates (3) values of Radiative Forcing.NOAA-A means NOAA-ESRL dataset with the global GHGs concentrations of CO2, CH4 and N2O averaged to givemid-year values. IPCC-RF means IPCC 2013 report dataset on Radiative Forcing (from Table AII.1.2, pag. 1404).NOAA-B indicates NOAA-ESRL dataset from S. Montzka (NOAA) with additional species with elements Br, F, and Cl.This dataset has monthly resolution and is averaged to give mid-year concentrations.

DATASET ALTERNATIVESpecies Before 1993 After 1994 Formula Efficiency [Wm−2ppb−1]

CO2 M-CONC NOAA-A CO2 -CH4 M-CONC NOAA-A CH4 -N2O M-CONC NOAA-A N2O -

Fluorinated GasesHFC-32 M-CONC NOAA-B CH2F2 0.11

HFC-125 M-CONC NOAA-B CHF2CF3 0.23HFC-134a M-CONC NOAA-B CH2FCF3 0.16HFC-143a M-CONC NOAA-B CH3CF3 0.16

HFC-227ea(*) M-CONC NOAA-B CF3CHFCF3 0.26

O3 depleting GasesCFC-11 M-CONC NOAA-B CCl3F 0.26CFC-12 M-CONC NOAA-B CCl2F2 0.32

CFC-113 M-CONC NOAA-B CCl2FCClF2 0.30HCFC-22 M-CONC NOAA-B CHClF2 0.21

HCFC-141a M-CONC NOAA-B CH3CCl2F 0.16HCFC-142a M-CONC NOAA-B CH3CClF2 0.19Halon-1211 M-CONC NOAA-B CBrClF2 0.29Halon-1301 M-CONC NOAA-B CBrF3 0.30Halon-2402 M-CONC NOAA-B C2Br2F4 0.31

Carbon Tetrachloride M-CONC NOAA-B CCl4 0.17Methyl Bromide M-CONC NOAA-B CH3Br 0.004

Methyl Chloroform M-CONC NOAA-B CH3CCl3 0.08

Stratospheric H2O IPCC-RF IPCC-RF H2O -Tropospheric O3 IPCC-RF IPCC-RF O3 -Stratospheric O3 IPCC-RF IPCC-RF O3 -

(*) HFC-227ea global concentrations are provided by NOAA since 2007, therefore the historical values of (2) areconsidered until 2006 for this GHG.

Page 6: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

SU

PP

LE

ME

NTA

LM

AT

ER

IAL,

FIG

UR

ES

3:

Dat

aset

base

don

NO

AAne

twor

kof

inst

rum

ents

:co

ncen

trat

ions

ofCF

Cs,

HCF

C,H

alog

enat

edan

dBr

omid

esu

bsta

nces

.Th

ehi

stor

ical

valu

esar

eta

ken

from

(2)

upto

year

year

1993

then

the

expe

rim

enta

lcon

cent

rati

ons

prov

ided

byN

OAA

netw

ork

are

used

.Th

eva

lue

ofye

ar19

94is

calc

ulat

edto

ensu

reco

ntin

uity

onth

eco

ncen

trat

ions

.An

exha

usti

velis

tof

the

subs

tanc

esin

clud

edin

our

data

set

isgi

ven

inTa

ble

S3.

Not

eth

atH

FC-2

27ea

glob

alco

ncen

trat

ions

are

prov

ided

byN

OAA

sinc

e20

07,t

here

fore

the

hist

oric

alva

lues

of(2

)ar

eco

nsid

ered

unti

l200

6fo

rth

isG

HG

.

Page 7: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S2.1 Results for the alternative dataset

1940 1950 1960 1970 1980 1990 2000 2010­0.20

­0.10

0.00

0.10

0.20

0.30

GM

ST

 tren

d [K

 per

 dec

ade]

GHGs totalCO2

HadCRUT4.4

1940 1950 1960 1970 1980 1990 2000 20100.01

0.00

0.01

0.02

0.03

0.04

0.05

GM

ST

 tren

d [K

 per

 dec

ade]

CH4

Strat. H2O←CH4 oxid.N2OFluorinated gasesStratospheric O3

ODS

1940 1950 1960 1970 1980 1990 2000 2010Year

0.01

0.00

0.01

0.02

0.03

0.04

0.05

GM

ST

 tren

d [K

 per

 dec

ade]

Tropospheric O3

CH4 and Strat. H2OODS and Strat. O3

N2O and  Fluorinated GHGs

SUPPLEMENTAL MATERIAL, FIGURE S4: Alternative dataset based result for overlapping GMST trends usinga 15-year window for comparison with Figure 2 of main text. (a) Observed trends using HadCRUT4.4 (red)(7) and simple model results for CO2-only (light blue), and for all GHGs (black). (b) Individual greenhouse gascontributors to the GMST trend using the simple model. (c) Contributions grouped into related forcings (methaneand stratospheric water vapour, tropospheric ozone, ozone depleting substances and stratospheric ozone, andother greenhouse gases (nitrous oxide and non-ODS fluorinated GHGs)). The red bar illustrates the size of theoverlapping window. The smoothed GMST trend between 1985 and 2003 is highlighted (purple-shaded area).

Page 8: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

0.4

0.6

0.8

1.0

1.2

1.4

Sen

sitiv

ity P

aram

eter

 [K

(Wm

2 )1 ]

0.045

0.060

0.075

0.090

0.105

0.120

Panel a: CO2

0.013

0.017

Panel b: N2O and Fluorinated GHGs

0.4

0.6

0.8

1.0

1.2

1.4

Sen

sitiv

ity P

aram

eter

 [K

(Wm

2 )1 ]

­0.140

­0.130

­0.120

­0.110

­0.100­0.090

­0.080

Panel c: CH4 and Stratospheric H2O

­0.140

­0.130

­0.120

­0.110­0.100

Panel d: ODS and Stratospheric O3

10 12 14 16 18Overlapping Window Size [yr]

0.4

0.6

0.8

1.0

1.2

1.4

Sen

sitiv

ity P

aram

eter

 [K

(Wm

2 )1 ]

­0.100

­0.090

­0.080

­0.070

­0.060­0.050

Panel e: Tropospheric O3

10 12 14 16 18Overlapping Window Size [yr]

­0.255

­0.240

­0.225

­0.210­0.195­0.180

Panel f: GHGs total

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.150

0.255

0.225

0.195

0.140

0.120

0.100

0.080

0.060

0.010

SUPPLEMENTAL MATERIAL, FIGURE S5: Alternative dataset based result for the smoothed trend in the simple-model mean GMST for 2003 minus 1985, divided by the mean value of the smoothed observed trend for thesame period for comparison with Figure 3 of the main text. The dependence of this metric on the overlappingsize window from 5 to 20 years, and the climate sensitivity parameter λ from 0.3 to 1.4 K (W m-2)-1 is shown:(a) carbon dioxide, (b) nitrous oxide and non-ozone-depleting fluorinated gases, (c) methane and stratosphericwater vapour changes due to methane oxidation, (d) ozone depleting substances and stratospheric ozone, (e)tropospheric ozone and (f) all components.

Page 9: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

1940 1950 1960 1970 1980 1990 2000 2010­0.20

­0.10

0.00

0.10

0.20

0.30

GM

ST

 tren

d [K

 per

 dec

ade]

GHGs totalCO2

HadCRUT4.4

1940 1950 1960 1970 1980 1990 2000 20100.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

GM

ST

 tren

d [K

 per

 dec

ade]

CH4

Strat. H2O←CH4 oxid.N2OFluorinated gasesStratospheric O3

ODS

1940 1950 1960 1970 1980 1990 2000 2010Year

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

GM

ST

 tren

d [K

 per

 dec

ade]

Tropospheric O3

CH4 and Strat. H2OODS and Strat. O3

N2O and  Fluorinated GHGs

SUPPLEMENTAL MATERIAL, FIGURE S6: Alternative dataset based result for overlapping GMST trends using a5-year window. First panel: Individual greenhouse gas contributors to the GMST trend using the simple model.Second Panel: Contributions grouped into related forcings (methane and stratospheric water vapour, troposphericozone, ozone depleting substances and stratospheric ozone, and other greenhouse gases (nitrous oxide and non-ODS fluorinated GHGs)). The red bar illustrates the size of the overlapping window. The smoothed GMST trendbetween 1985 and 2003 is highlighted (purple-shaded area).

Page 10: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S3 Estimation of Radiative Forcing from global concentrations

The methodology used to estimate the radiative forcing is consistent with the reference (3)

S3.1 CO2, CH4 and N2O

For the case of CO2 it is used the expression:

RFCO2 = 5.35ln(XCO2[ppm]/278.0) (1)

For the case of CH4 and N2O it is introduced a function to estimate the interference between bothspecies

F (XA, XB , XC) = 0.47ln(1 + 2.01 · 10−5(XAXB)0.75 + 5.31 · 10−15XA(XAXB)1.52)+ 0.47ln(1 + 2.01 · 10−5(XCXB)0.75 + 5.31 · 10−15XC(XCXB)1.52)

and we estimated the radiative forcing as:

RFCH4 = 0.036√XCH4 −

√X0

CH4 + F (XCH4, X0N2O, X

0CH4)) (2)

For the case of NO2

RFN2O = 0.12√XN2O −

√X0

N2O + F (X0CH4, XN2O, X

0N2O) (3)

and X0N2O = 270ppb and X0

CH4 = 722ppb

S3.2 Fluorinated gases and Ozone Depleting substances

For the Fluorinated gases and Ozone Depleting substance the estimation of the radiative forcing isbased on the efficiency provided by Table 8.A.1 in (3)

RFi = εi(Xi −X0i ) (4)

the values of the the efficiency εi [Wm−2ppb−1] are given in the Tables 1 and 2. The concentrationsin the past are taken as zero in consistency with IPCC report (3)

Page 11: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S4 Energy Balance Model

The energy balance model applied can be written as system of ordinary differential equations (ODEs)defining a simple two-box model:

dTm

dt= 1

Cm

[δF − Tm

λ− κρcp(Tm − Td)α

](5)

dTd

dt= 1

Cd[κρcp(Tm − Td)α] (6)

Where Tm and Td are the mixed layer and deep ocean temperatures change respectively, and t is time.The different values and units are detailed in the Table S4

Variable Symbol Unit Typical Value

Mixed Layer depth dm [m] 100Deep Layer depth dd [m] 900Diffusivity κ [m2 s−1] 0.0001Water density ρd [kgm−3] 1000.Specific heat water cp [J kg−1 K−1] 4128.Heat capacity Deep layer Cd [J K−1 m−2] ρdcpdd

Heat capacity Mixed layer Cm [J K−1 m−2] ρmcmdm

Climate Sensitivity λ [K (W m−2)−1] ∈ [0.3, 1.4]Radiative Forcing δF [W m−2] ∈ [−8, 8]

SUPPLEMENTAL MATERIAL, TABLE S4: Main variables and parameters of the Two Layer Energy Balance Model.

S5 CMIP5 multimodel RCP45 dataset

The Figure 1 of the main paper includes a time series of GMST estimated from climate models. Thistime series relies on a multi-model mean over 42 simulations corresponding to the same ensemblemember r1i1p1.

Detailed information on the multi-model dataset can be found in (8), while specific information aboutthe scenario RCP45 in contained in the Atlas Index Supplementary Material 4.5 (AISM4.5). In partic-ular the Table AI.SM4.5.1 details all the models used for the multi-model mean.

Page 12: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S6 Radiative forcing datasets

The two radiative forcing datasets for GHGs build for this study are available as plain ASCII files (inboth cases the data is organized in columns with the first column an standard date-time string.) andXLS/CSV. The plain ASCII files has a header with the main information of the sources.

For the reference dataset it is

# ------------------------------------------------------------------------------# Radiative Forcing dataset created from:## 1 AGAGE global concentrations:## http://agage.eas.gatech.edu/data_archive/global_mean/global_mean_md.txt# http://agage.eas.gatech.edu/data_archive/global_mean/global_mean_ms.txt## 2 Historical data of concentrations analogous to CMIP5 project from## Meinshausen, M., S. J. Smith, K.V. Calvin, J.S. Daniel, M.L.T. Kainuma,# J.F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi,# A. M. Thomson, G. J. M. Velders and D. van Vuuren 2011.# "The RCP Greenhouse Gas Concentrations and their Extension from# 1765 to 2300." Climatic Change Special Issue,# DOI: 10.1007/s10584-011-0156-z## 3 IPCC expressions for Radative Forcing:## Table 6.2 in "Radiative Forcing of Climate Change" pag. 358# Co-ordinating Lead Author: V. Ramaswamy# http://www.grida.no/climate/ipcc_tar/wg1/pdf/tar-06.pdd## 4 IPCC Radiative Efficiencies as given in 2013 report Table 8.A.I## Myhre, G., D. Shindell, F.-M. Breon, W. Collins, J. Fuglestvedt, J. Huang,# D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock,# G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural# Radiative Forcing. In: Climate Change 2013: The Physical Science Basis.# Contribution of Working Group I to the Fifth Assessment Report of the# Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin,# G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,# V. Bex and P.M. Midgley eds.]. Cambridge University Press, Cambridge,# United Kingdom and New York, NY, USA.## 5 IPCC Radative Forcings for CO2, Stratospheric H2O, Stratospheric O3 and# Tropospheric O3 given on the 2013 IPCC Report Table AII.1.2## IPCC, 2013: Climate Change 2013: The Physical Science Basis.# Contribution of Working Group I to the Fifth Assessment Report of the# Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin,# G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,# V. Bex and P.M. Midgley eds.]. Cambridge University Press, Cambridge,# United Kingdom and New York, NY, USA, 1535 pp.### --- Dataset RF created in: 2016-06-10 13:52:24## -----------------------------------------------------------# Contact INFO: [email protected]# University of Reading, Deparment of Meteorology.# ------------------------------------------------------------------------------### FIELDS organized by columns as:#

Page 13: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

while for the alternative dataset it is

# ------------------------------------------------------------------------------# Radiative Forcing dataset created from:## 1 NOAA global concentrations:## http://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/#global_data# http://www.esrl.noaa.gov/gmd/ccgg/trends/# ftp://ftp.cmdl.noaa.gov/hats/n2o/insituGCs/CATS/global/insitu_global_N2O.txt# ftp://ftp.cmdl.noaa.gov/hats/Total_Cl_Br/## 2 Historical data of concentrations analogous to CMIP5 project from## Meinshausen, M., S. J. Smith, K.V. Calvin, J.S. Daniel, M.L.T. Kainuma,# J.F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi,# A. M. Thomson, G. J. M. Velders and D. van Vuuren 2011.# "The RCP Greenhouse Gas Concentrations and their Extension from# 1765 to 2300." Climatic Change Special Issue,# DOI: 10.1007/s10584-011-0156-z## 3 IPCC expressions for Radative Forcing:## Table 6.2 in "Radiative Forcing of Climate Change" pag. 358# Co-ordinating Lead Author: V. Ramaswamy# http://www.grida.no/climate/ipcc_tar/wg1/pdf/tar-06.pdd## 4 IPCC Radiative Efficiencies as given in 2013 report Table 8.A.I## Myhre, G., D. Shindell, F.-M. Breon, W. Collins, J. Fuglestvedt, J. Huang,# D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock,# G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural# Radiative Forcing. In: Climate Change 2013: The Physical Science Basis.# Contribution of Working Group I to the Fifth Assessment Report of the# Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin,# G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,# V. Bex and P.M. Midgley eds.]. Cambridge University Press, Cambridge,# United Kingdom and New York, NY, USA.## 5 IPCC Radative Forcings for Stratospheric H2O, Stratospheric O3 and# Tropospheric O3 given on the 2013 IPCC Report Table AII.1.2## IPCC, 2013: Climate Change 2013: The Physical Science Basis.# Contribution of Working Group I to the Fifth Assessment Report of the# Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin,# G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,# V. Bex and P.M. Midgley eds.]. Cambridge University Press, Cambridge,# United Kingdom and New York, NY, USA, 1535 pp.### --- Dataset RF created in: 2016-06-10 13:52:23## -----------------------------------------------------------# Contact INFO: [email protected]# University of Reading, Deparment of Meteorology.# ------------------------------------------------------------------------------## FIELDS organized by columns as:#

Page 14: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

S6.1 Python code to read the radiative forcing datasets

1 """2 Code to read the Radiative Forcing datasets as numpy3 structured arrays. It is programmed with python 34 syntax but changing the print statement it can work5 with python 2.7.67 Usage: (f_name is the name or path to provided .txt files)89 data = read.RF_dataset(f_name, dataset=’AGAGE’) # or dataset=’NOAA’

1011 year = data[’date’] # gives information on datetime array12 o3_trop_RF = data[’o3trop_RF’] # gives values of O3 tropospheric RF time series.1314 Note: with datetime module it is possible to convert the string date15 values to datetime objects:1617 year = [datetime.datetime.strptime(a, ’%Y-%m-%d %H:%M:%S’) for a in data[’date’]]1819 """2021 __author__ = "Ramiro Checa-Garcia"22 __copyright__ = "SMURPHS project, University of Reading"23 __credits__ = ["Ramiro Checa-Garcia", "Keith P. Shine", "M. I. Hegglin"]24 __license__ = "GPL"25 __maintainer__ = "Ramiro Checa-Garcia"26 __email__ = "[email protected]"27 __status__ = "Production"28 __version__ = "1.0"2930 import numpy as np3132 dic_dtype_NOAA = {’names’: (’date’,33 ’ccl4_RF’,’cfc-113_RF’,’cfc-11_RF’,’cfc-12_RF’,34 ’ch3br_RF’,’ch3ccl3_RF’,’ch4_RF’,’co2_RF’,35 ’fhalon_RF’,’h-1211_RF’,’h-1301_RF’,’h-2402_RF’,36 ’h2ostrat_RF’,’hcfc-141b_RF’,’hcfc-142b_RF’,37 ’hcfc-22_RF’,’hfc-125_RF’,’hfc-134a_RF’,38 ’hfc-143a_RF’,’hfc-227ea_RF’,’hfc-32_RF’,39 ’n2o_RF’,’o3dep_RF’,’o3strat_RF’,’o3trop_RF’),40 ’formats’: (’a20’,41 np.float, np.float, np.float, np.float,42 np.float, np.float, np.float, np.float,43 np.float, np.float, np.float, np.float,44 np.float, np.float, np.float, np.float,45 np.float, np.float, np.float, np.float,46 np.float, np.float, np.float, np.float,47 np.float)}4849 dic_dtype_AGAGE = {’names’: (’date’,50 ’c2f6_RF’,’ccl4_RF’,’cfc-113_RF’,’cfc-114_RF’,51 ’cfc-115_RF’,’cfc-11_RF’,’cfc-12_RF’,’ch3br_RF’,52 ’ch3ccl3_RF’,’ch3cl_RF’,’ch4_RF’,’co2_RF’,53 ’fhalon_RF’,’h-1211_RF’,’h-1301_RF’,’h-2402_RF’,54 ’h2ostrat_RF’,’hcfc-141b_RF’,’hcfc-142b_RF’,55 ’hcfc-22_RF’,’hfc-125_RF’,56 ’hfc-134a_RF’,’hfc-143a_RF’,’hfc-227ea_RF’,57 ’hfc-23_RF’,’hfc-245fa_RF’,’hfc-32_RF’,’n2o_RF’,58 ’o3dep_RF’,’o3strat_RF’,’o3trop_RF’,’sf6_RF’),59 ’formats’: (’a20’,60 np.float, np.float, np.float, np.float,61 np.float, np.float, np.float, np.float,62 np.float, np.float, np.float, np.float,63 np.float, np.float, np.float, np.float,64 np.float, np.float, np.float, np.float,65 np.float, np.float, np.float, np.float,66 np.float, np.float, np.float, np.float,67 np.float, np.float, np.float, np.float)}68697071 def read_RF_dataset(f_name, dataset=’AGAGE’):7273 if dataset == ’NOAA’:74 dataset = np.loadtxt(f_name, dtype=dic_dtype_NOAA)75 elif dataset==’AGAGE’:76 dataset = np.loadtxt(f_name, dtype=dic_dtype_AGAGE)77 else:78 print(’Dataset name should be NOAA or AGAGE’)7980 return dataset

Page 15: The contribution of greenhouse gases to the recent slow ...iopscience.iop.org/1748-9326/11/9/094018/media/erl094018_suppdata.… · The contribution of greenhouse gases to the recent

Acknowledgements

The authors acknowledge AGAGE for the concentrations global datasets. Also the authors acknowl-edge NOAA-ERSL-Global Monitoring Division for their GHGs concentrations global estimations, andKNMI for their climate explorer platform. The AGAGE network is supported principally by NASA(USA) grants to MIT and SIO, and also by: DECC (UK) and NOAA (USA) grants to Bristol University;CSIRO and BoM (Australia): FOEN grants to Empa (Switzerland); NILU (Norway); SNU (Korea); CMA(China); NIES (Japan); and Urbino University (Italy).

References[1] R. G. Prinn, R. F. Weiss, P. J. Fraser, P. G. Simmonds, D. M. Cunnold, F. N.

Alyea, S. O’Doherty, P. Salameh, B. R. Miller, J. Huang, and et al. A his-tory of chemically and radiatively important gases in air deduced fromALE/GAGE/AGAGE. J. Geophys. Res., 105(D14):17751–17792, Jul 2000,doi:10.1029/2000jd900141.

[2] Malte Meinshausen, S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma,J-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi,A. Thomson, G. J. M. Velders, and D.P. P. Vuuren. The RCP greenhouse gasconcentrations and their extensions from 1765 to 2300. Climatic Change,109(1):213–241, 2011, doi:10.1007/s10584-011-0156-z.

[3] G. Myhre, D. Shindell, F.M. Breon, W. Collins, F. Fuglestvedt, J. Huang,D. Koch, J.F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock,G. Stephens, T. Takemura, and H. Zhang. Working Group I contributionto the Fifth assessment report of the Intergovernmental Panel on ClimateChange. In Thomas F Stocker, editor, Climate change 2013: the physicalscience basis. Cambridge University Press, 2014.

[4] T. M. Thompson, J. H. Butler, B. C. Daube, G. S. Dutton, J. W. Elkins, B. D.Hall, D. F. Hurst, D. B. King, E. S. Kline, B. G. Lafleur, J. Lind, S. Lovitz,D. J. Mondeel, S. A. Montzka, F. L. Moore, J. D. Nance, J. L. Neu, P. A. Ro-mashkin, A. Scheffer, and W. J. Snible. Halocarbons and other atmospherictrace species. In Climate Monitoring and Diagnostics Laboratory. SummaryReport No. 27 2002-2003. National Oceanic and Atmospheric Administra-tion, 2003.

[5] S. A. Montzka, M. McFarland, S. O. Andersen, B. R. Miller, D. W. Fahey, B. D.Hall, L. Hu, C. Siso, and J. W. Elkins. Recent Trends in Global Emissions ofHydrochlorofluorocarbons and Hydrofluorocarbons: Reflecting on the 2007Adjustments to the Montreal Protocol. The Journal of Physical Chemistry A,119(19):4439–4449, 2015, doi:10.1021/jp5097376. PMID: 25405363.

[6] S. A. Montzka, J. H. Butler, B. D. Hall, D. J. Mondeel, and J. W. Elkins.A decline in tropospheric organic bromine. Geophysical Research Letters,30(15), Aug 2003, doi:10.1029/2003gl017745.

[7] Colin P. Morice, John J. Kennedy, Nick A. Rayner, and Phil D. Jones.Quantifying uncertainties in global and regional temperature change us-ing an ensemble of observational estimates: The HadCRUT4 data set.Journal of Geophysical Research: Atmospheres, 117(D8):n/a–n/a, 2012,doi:10.1029/2011JD017187. D08101.

[8] G. J. van Oldenborgh, M. Collins, J. Arblaster, J. Hesselbjerg Christensen,J. Marotzke, S. B. Power, M. Rummakainen, and T. Zhou. Atlas of globaland regional climate projections. In T. F. Stocker, D. Sin, G.-K. Plattner,M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M.Midgley, editors, Climate Change 2013: The Physical Science Basis, chapterAnnex I, pages 1311–1393. Cambridge University Press, Cambridge, U.K.and New York, U.S.A., 2013.