35
The category of Hilbert modules Chris Heunen 1 / 20

The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

The category of Hilbert modules

Chris Heunen

1 / 20

Page 2: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Hilbert modules form a monoidal category

I categorical quantum mechanics can take place

I geometry: continuous fields of Hilbert spaces

I Frobenius structures: algebraic quantum field theory

I restriction: recovering open subsets of base space

I spacetime structure: restriction becomes propagation

I quantum teleportation: proof of concept

2 / 20

Page 3: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Hilbert spaces

C-module H with complete inner product valued in C

tensor product over C monoidal categorytensor unit C tensor unit Icomplex numbers C scalars I → Ifinite dimension dual objectsadjoints daggerorthonormal basis commutative dagger Frobenius structureC*-algebra dagger Frobenius structure

3 / 20

Page 4: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Base space

Let X be locally compact Hausdorff space.C0(X) = {f : X → C cts | ∀ε > 0∃K ⊆ X cpt : f(X \K) < ε}

C

f

K

Cb(X) = {f : X → C cts | ∃0 < ‖f‖ <∞∀t ∈ X : |f(t)| ≤ ‖f‖}

4 / 20

Page 5: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Hilbert modules

C0(X)-module with complete inner product valued in C0(X)

tensor product over C0(X) monoidal categorytensor unit C0(X) tensor unit ICb(X) scalars I → I? dual objectsadjointable morphisms dagger? dagger Frobenius structure

“Scalars are not numbers”

5 / 20

Page 6: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Bundles of Hilbert spaces

Bundle E � X, each fibre Hilbert space, operations continuous

, with

E

Xt

Et

Hilbert C0(X)-modules ' bundles of Hilbert spaces over Xsections vanishing at infinity ←[ E � X

E 7→ localisation

6 / 20

Page 7: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Bundles of Hilbert spaces

Bundle E � X, each fibre Hilbert space, operations continuous, with

E

Xt

Et

Hilbert C0(X)-modules ' bundles of Hilbert spaces over Xsections vanishing at infinity ←[ E � X

E 7→ localisation

6 / 20

Page 8: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Bundles of Hilbert spaces

Bundle E � X, each fibre Hilbert space, operations continuous, with

E

Xt

Et

Hilbert C0(X)-modules ' bundles of Hilbert spaces over Xsections vanishing at infinity ←[ E � X

E 7→ localisation

6 / 20

Page 9: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Dual objects

if X compact

E has dual object when : I → E∗ ⊗ E and

: E ⊗ E∗ → I satisfy = and =

⇐⇒

finite Hilbert bundle:⇐⇒

7 / 20

Page 10: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Dual objects

if X paracompact

E has dual object when : I → E∗ ⊗ E and

: E ⊗ E∗ → I satisfy = and =

⇐⇒

finite Hilbert bundle:supt∈X dim(Et) <∞

⇐⇒

7 / 20

Page 11: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Dual objects

if X paracompact

E has dual object when : I → E∗ ⊗ E and

: E ⊗ E∗ → I satisfy = and =

⇐⇒

finite Hilbert bundle:supt∈X dim(Et) <∞

⇐⇒

finitely presented projective Hilbert module:

E C0(X)ni

i†

id

7 / 20

Page 12: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Dual objects

if X compact

E has dual object when : I → E∗ ⊗ E and

: E ⊗ E∗ → I satisfy = and =

⇐⇒

finite Hilbert bundle:∀t ∈ X : dim(Et) <∞

⇐⇒

finitely generated projective Hilbert module:

spanC0(X)(x1, . . . , xn) = E

F

G

7 / 20

Page 13: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Frobenius structures

E has special dagger Frobenius structure : E ⊗ E → E:

= = =

⇐⇒

E is a finite bundle of C*-algebras:each fibre is C*-algebra, operations continuous, sup dim(Et) <∞

8 / 20

Page 14: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Commutative Frobenius structures

p : Y � X branched covering: continuous, open, supt∈X |p−1(t)| <∞

pp

z

z2

p

C0(Y ) special dagger Frobenius: 〈f | g〉(t) =∑

p(y)=t f(y)∗g(y)

comultiplication comes from Y ×X Y = {(a, b) ∈ S1 × S1 | a2 = b2}

9 / 20

Page 15: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Commutative Frobenius structures

p : Y � X branched covering: continuous, open, supt∈X |p−1(t)| <∞

pp

z

z2

p

C0(Y ) special dagger Frobenius: 〈f | g〉(t) =∑

p(y)=t f(y)∗g(y)

comultiplication comes from Y ×X Y = {(a, b) ∈ S1 × S1 | a2 = b2}

9 / 20

Page 16: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Commutative Frobenius structures

p : Y � X branched covering: continuous, open, supt∈X |p−1(t)| <∞

pp

z

z2

p

C0(Y ) special dagger Frobenius: 〈f | g〉(t) =∑

p(y)=t f(y)∗g(y)

comultiplication comes from Y ×X Y = {(a, b) ∈ S1 × S1 | a2 = b2}

9 / 20

Page 17: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Nontrivial central Frobenius structure

D = {z ∈ C | |z| ≤ 1}S1 = {z ∈ C | |z| = 1}

X = S2 = {t ∈ R3 | ‖t‖ = 1}

{x ∈ C0(D,Mn) : x(z) =

(z

1

)x(1)

(z

1

)if z ∈ S1

}is special dagger Frobenius structure: 〈x | y〉(t) = tr(x(t)∗y(t))

central: Z(E) = C0(X)

10 / 20

Page 18: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Nontrivial central Frobenius structure

D = {z ∈ C | |z| ≤ 1}S1 = {z ∈ C | |z| = 1}

X = S2 = {t ∈ R3 | ‖t‖ = 1}

{x ∈ C0(D,Mn) : x(z) =

(z

1

)x(1)

(z

1

)if z ∈ S1

}is special dagger Frobenius structure: 〈x | y〉(t) = tr(x(t)∗y(t))

central: Z(E) = C0(X)

10 / 20

Page 19: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Transitivity

E is special dagger Frobenius structure in HilbC0(X)

⇐⇒

E is special dagger Frobenius structure in HilbZ(E)

and

Z(E) is specialisable dagger Frobenius structure in HilbC0(X)

11 / 20

Page 20: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Idempotent subunits

Subobject s : S � E is idempotentif s⊗ idS : S ⊗ S → E ⊗ S isomorphic

Subunit s : S � C0(X) idempotent

⇐⇒

S = C0(U) ' {f ∈ C0(X) | f(X \ U) = 0}for open U ⊆ X

12 / 20

Page 21: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Order

Category is firm when s⊗ idT monic for subunits s, t

Idempotent subunits in a firm braided monoidal categoryform a meet-semilattice

S

I

T

s

t

⇐⇒

S I

S ⊗ T I ⊗ I

s

s⊗ t

''

13 / 20

Page 22: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Order

Category is firm when s⊗ idT monic for subunits s, t

Idempotent subunits in a firm braided monoidal categoryform a meet-semilattice

S

I

T

s

t

⇐⇒

S I

S ⊗ T I ⊗ I

s

s⊗ t

''

13 / 20

Page 23: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Restriction

For s idempotent subunit in monoidal category C,write C|s for full subcategory of E with idE ⊗ s iso

Coreflective monoidal subcategory:

C C|s

(−)⊗ S

coreflector (−)⊗ S : C→ C|s is restriction to s

14 / 20

Page 24: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Restriction

For s idempotent subunit in monoidal category C,write C|s for full subcategory of E with idE ⊗ s iso

Coreflective monoidal subcategory:

C C|s

(−)⊗ S

coreflector (−)⊗ S : C→ C|s is restriction to s

14 / 20

Page 25: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Conditional expectation

Conditional expectation is

Xg� U

f→ Radon(X) with supp(f(t)) ⊆ g−1(t)

Induces monoidal functor HilbC0(X) → HilbC0(U)

whereas in generalHilbC0(X)|C0(U) ' {E | ∀x ∈ E : ‖x‖(X \ U) = 0}

15 / 20

Page 26: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Conditional expectation

Conditional expectation is

Xg� U

f→ Radon(X) with supp(f(t)) ⊆ g−1(t)

Induces monoidal functor HilbC0(X) → HilbC0(U)

whereas in generalHilbC0(X)|C0(U) ' {E | ∀x ∈ E : ‖x‖(X \ U) = 0}

15 / 20

Page 27: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Localisation

Localisation formally inverts given class of morphismsRestriction to s is localisation at Σ = {idE ⊗ s | E ∈ C}

C C|s(−)⊗ S

D

inverting Σ'

16 / 20

Page 28: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Graded monad

Let (I,⊗, 1) be monoidal categoryGraded monad is strong monoidal functor T : I→ [C,C]

I functor T : I→ [C,C]

I natural iso η : idC ⇒ T (1)

I natural isos µs,t : T (s) ◦ T (t)⇒ T (s⊗ t)I associative and unital

Restriction forms graded monad (ISub(C),⊗, I)→ [C,C]

T (s) = (−)⊗ Sη = λµ = α

17 / 20

Page 29: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Graded monad

Let (I,⊗, 1) be monoidal categoryGraded monad is strong monoidal functor T : I→ [C,C]

I functor T : I→ [C,C]

I natural iso η : idC ⇒ T (1)

I natural isos µs,t : T (s) ◦ T (t)⇒ T (s⊗ t)I associative and unital

Restriction forms graded monad (ISub(C),⊗, I)→ [C,C]

T (s) = (−)⊗ Sη = λµ = α

17 / 20

Page 30: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Spatial structure

f : E → F restricts to s when it factors through F ⊗ S

if f restricts to s and g restricts to t,then g ◦ f and g ⊗ f restrict to t⊗ s

18 / 20

Page 31: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Causal structure

What if X is spacetime?On open U ⊆ X, causal/chronological cones I±(U) = J±(U) same

η

A

B

Closure operator is I+ : ISub(C)→ ISub(C)satisfying s ≤ I+(s) ≥ I+(I+(s)) and monotone

Restriction = propagation

Teleportation only successful on intersection of Alice and Bob’s cones

19 / 20

Page 32: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Causal structure

What if X is spacetime?On open U ⊆ X, causal/chronological cones I±(U) = J±(U) same

η

A

B

Closure operator is I+ : ISub(C)→ ISub(C)satisfying s ≤ I+(s) ≥ I+(I+(s)) and monotone

Restriction = propagation

Teleportation only successful on intersection of Alice and Bob’s cones

19 / 20

Page 33: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Causal structure

What if X is spacetime?On open U ⊆ X, causal/chronological cones I±(U) = J±(U) same

η

A

B

Closure operator is I+ : ISub(C)→ ISub(C)satisfying s ≤ I+(s) ≥ I+(I+(s)) and monotone

Restriction = propagation

Teleportation only successful on intersection of Alice and Bob’s cones

19 / 20

Page 34: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

Causal structure

What if X is spacetime?On open U ⊆ X, causal/chronological cones I±(U) = J±(U) same

η

A

B

Closure operator is I+ : ISub(C)→ ISub(C)satisfying s ≤ I+(s) ≥ I+(I+(s)) and monotone

Restriction = propagation

Teleportation only successful on intersection of Alice and Bob’s cones

19 / 20

Page 35: The category of Hilbert modules · Bundles of Hilbert spaces Bundle E X, each bre Hilbert space, operations continuous, with E X t E t Hilbert C 0(X)-modules ’ bundles of Hilbert

This is just the beginning

I Continuous extension of higher quantum theory

I Infinite dimension with standard methods

I Deformation quantization?

I Relativistic quantum theory: summoning?

I Graphical calculus?

I Logic?

20 / 20