16
The Campus as a Living Lab Erik B. Helgren Dept. of Physics California State University East Bay California Higher Education Sustainability Conference Tuesday June 17 th 2014 Topic Areas: Curriculum - Institutionalizing Sustainability Course Redesign for Renewable Energy Engineering Physics Advanced Lab

The Campus as a Living Lab

  • Upload
    nakia

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

Topic Areas: Curriculum - Institutionalizing Sustainability Course Redesign for Renewable Energy Engineering Physics Advanced Lab. The Campus as a Living Lab. California Higher Education Sustainability Conference Tuesday June 17 th 2014. Erik B. Helgren Dept. of Physics - PowerPoint PPT Presentation

Citation preview

Page 1: The Campus as a Living Lab

The Campus as a Living Lab

Erik B. HelgrenDept. of PhysicsCalifornia State University East Bay

California Higher Education Sustainability ConferenceTuesday June 17th 2014

Topic Areas: Curriculum - Institutionalizing Sustainability

Course Redesign for Renewable Energy Engineering Physics Advanced Lab

Page 2: The Campus as a Living Lab

Motivation

Motivation: to provide Physics Lab experiments and curriculum pertaining to the sustainable and renewable energy infrastructure already present at the CSUEB campus!

Page 3: The Campus as a Living Lab

Motivation

Motivation: to provide Physics Lab experiments and curriculum pertaining to the sustainable and renewable energy infrastructure already present at the CSUEB campus!

The CSUEB Physical Plant (Sustainable Technologies):

• Over 1 MW of peak power solar photovoltaic panels on the rooftops of four buildings

• A 1.4 MW Fuel Cell operated by PG&E – vendor Fuel Cell Energy Inc. Danbury, Connecticut

Page 4: The Campus as a Living Lab

Motivation

Motivation: to provide Physics Lab experiments and curriculum pertaining to the sustainable and renewable energy infrastructure already present at the CSUEB campus!

The CSUEB Physical Plant (Sustainable Technologies):

• Over 1 MW of peak power solar photovoltaic panels on the rooftops of four buildings

• A 1.4 MW Fuel Cell operated by PG&E – vendor Fuel Cell Energy Inc. Danbury, Connecticut

These are the technologies I wanted to teach about in the classroom and develop hands on labs for the students to learn about them.

Page 5: The Campus as a Living Lab

Fuel Cell LabStudents ran the “Introduction to

Fuel Cell Technology Lab”

$600 per fuel cell kit

Page 6: The Campus as a Living Lab

Making a Silicon Solar CellStudents carried out all the steps needed to convert a silicon “wafer” into a working solar cell:

• “Spin coat” a “p-type” wafer of silicon with an “n-type” dopant oxide • Put the silicon wafer in a furnace – this allows the n-type dopant to diffuse into

the silicon• Dip the silicon wafer in acid to “etch” or “eat away” the silicon oxide• Make metallic “contacts to the front and back surfaces (silver paint)• Go out in the sunshine and measure!

Thanks to colleagues at SJSU for use of their Microscale Process Engineering Lab!

Page 7: The Campus as a Living Lab

Off-Grid Solar Installation

Students built an “off Grid” solar station, then designed and built electronic components to compare efficiencies of the commercial system to their own.

This lab was inspired by a Physics Today ArticleT. W. Murphy Jr., “Home Photovoltaic Systems for Physicists,” pp. 42-47, AIP publisher, July 2008

Page 8: The Campus as a Living Lab

Off-Grid Solar Installation

This open-ended lab allowed students to pursue their own interests; from electrical circuit design to building the panel support structures – the Engineering Physics overlap!

Page 9: The Campus as a Living Lab

Research Projects

White Papers and a final Oral Presentation on a topic relevant to sustainability:

• The Cost for CSUEB to Subsidize E-car Fuel

• CSUEB Concord Campus Solar Installation Evaluation

• Cost/Benefit Analysis of Parking Lot Solar Canopies at CSUEB

• Carbon Sequester and Sequestration Using Algae Bioreactors

• A review of Fracking and its Effects in California

Page 10: The Campus as a Living Lab

Field Trips!

Students met with scientists at the Advanced Light Source working on renewable energy materials science and technology; e.g. testing novel PV and battery materials

Page 11: The Campus as a Living Lab

Field Trips!

Representatives from PG&E and Fuel Cell Energy Inc. provided a “behind the fence” tour of the CSUEB Fuel Cell system

Under construction President Morishita ribbon cutting 2011

Page 12: The Campus as a Living Lab

AssessmentPre and Post course assessment surveys:

Assessment focused on content knowledge to be covered in the class on the topic of sustainability and the Physics and technology of solar photovoltaic materials and fuel cell systems:

•What is the cost of electric power?

•What is the typical efficiency of a commercial solar panel?

• Define “Sustainability” and can you list an example of sustainability here at CSUEB?

Page 13: The Campus as a Living Lab

Assessment

“What is the cost of electric power?”

Borrowed this “Lecture Starter” question from Rob Knapp (The Evergreen State College), who presented this at the APS “Physics of Sustainable Energy Conference,” UC Berkeley, April 2014

Page 14: The Campus as a Living Lab

AssessmentPre and Post course assessment surveys:

Assessment focused on content knowledge to be covered in the class on the topic of sustainability and the Physics and technology of solar photovoltaic materials and fuel cell systems:

Pre: 41% correctPost: 82% correct

•What is the cost of electric power?

•What is the typical efficiency of a commercial solar panel?

• Define “Sustainability” and can you list an example of sustainability here at CSUEB?

Page 15: The Campus as a Living Lab

AssessmentPre and Post course assessment surveys:

Assessment focused on content knowledge to be covered in the class on the topic of sustainability and the Physics and technology of solar photovoltaic materials and fuel cell systems:

Pre: 41% correctPost: 82% correct

Also asked for feedback on the post course survey, e.g. :

“My favorite experiment was making our own solar cell from the silicon wafer. I learned a lot about efficiencies in solar cells.”

•What is the cost of electric power?

•What is the typical efficiency of a commercial solar panel?

• Define “Sustainability” and can you list an example of sustainability here at CSUEB?

Page 16: The Campus as a Living Lab

Summary

The course redesign of Physics 3281 at CSUEB enabled by the Chancellor’s Office Campus as a Living Lab grant:

• Raised students awareness of sustainability efforts at the CSUEB campus: Solar PV and Fuel Cell as part of the physical plant at CSUEB

• Provided a framework to teach Green Energy and Semiconductor Industry Physics and Engineering principles to our students

Contact: [email protected]