10
J Anim Physiol Anim Nutr. 2017;1–10. wileyonlinelibrary.com/journal/jpn | 1 © 2017 Blackwell Verlag GmbH Received: 14 February 2017 | Accepted: 11 October 2017 DOI: 10.1111/jpn.12840 ORIGINAL ARTICLE The biomechanical construction of the horse`s body and activity patterns of three important muscles of the trunk in the walk, trot and canter K. Kienapfel 1 | H. Preuschoft 2 | A. Wulf 3 | H. Wagner 3 1 Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany 2 Anatomical Institute, Ruhr University Bochum, Bochum, Germany 3 Institute of Sport and Exercise Science, University of Münster, Münster, Germany Correspondence K. Kienapfel, Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany. Email: [email protected] Summary The activity patterns of trunk muscles are commonly neglected, in spite of their impor- tance for maintaining body shape. Analysis of the biomechanics of the trunk under static conditions has led to predictions of the activity patterns. These hypotheses are tested experimentally by surface electromyography (EMG). Five horses, with and without a rider, were examined in the walk, trot and canter. Footfall was synchronised with EMG by an accelerometer. Averages of ten consecutive cycles were calculated and compared by statistical methods. The start and stop times of the muscle activities of 5–10 undisturbed EMG plots were determined and the averages and standard de- viations calculated. In walking, muscle activities are minor. Electromyography (EMG) activity was increased in the m. rectus during the three-limb support. When the bend- ing moments assume their greatest values, for example while the horses’ mass is ac- celerated upward (two times earth acceleration) in the diagonal support phases in trot and canter the m. rectus, connecting the sternum with the pubic bone is most active. The m. obl. externus is most active when the torsional and bending moments are greatest during the same support phases, but not bilaterally, because the forces ex- erted on one side by the (recorded) m. obl. externus are transmitted on the other side by the (not recorded) m. obl. internus. While the hindlegs touch the ground in the trot and canter, ground reaction forces tend to flex the hip joint and the lumbar spine. Therefore, the vertebral column needs to be stabilised by the ipsilateral m. longissimus dorsi, which in fact can be observed. As a whole, our EMG data confirm exactly what has been predicted by theoretical analysis. KEYWORDS bow and string theory, dressage, electromyography, finite elements 1 | INTRODUCTION The construction of the body stem (that is head, neck, trunk and tail) in quadrupedal animals can be explained with a theoretical consider- ation. This can be called the “beam-theory,” which has been developed from the older and commonly known “bow-string theory.” In spite of being more popular, the latter explains not more than the trunk alone. The beam theory has been developed on the basis of mechanical theory (Kummer, 1959; Preuschoft, 1976; Preuschoft & Fritz, 1977; Preuschoft, Witzel, Hohn, Schulte, & Distler, 2007; Slijper, 1946). Although the theoretical approach is well-established in engineering sciences and since several years confirmed by Finite Element Systems Analysis (Witzel, Mannhardt, Goessling, de Michaelis, & Preuschoft, 2011), it has not been tested experimentally. Because the beam the- ory implies predictions concerning muscle activities, an experimen- tal approach is possible by means of the electromyography (EMG)

The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

J Anim Physiol Anim Nutr. 2017;1–10. wileyonlinelibrary.com/journal/jpn  | 1© 2017 Blackwell Verlag GmbH

Received:14February2017  |  Accepted:11October2017DOI:10.1111/jpn.12840

O R I G I N A L A R T I C L E

The biomechanical construction of the horse`s body and activity patterns of three important muscles of the trunk in the walk, trot and canter

K. Kienapfel1  | H. Preuschoft2 | A. Wulf3 | H. Wagner3

1DepartmentofAnimalEcology,EvolutionandBiodiversity,RuhrUniversityBochum,Bochum,Germany2AnatomicalInstitute,RuhrUniversityBochum,Bochum,Germany3InstituteofSportandExerciseScience,UniversityofMünster,Münster,Germany

CorrespondenceK.Kienapfel,DepartmentofAnimalEcology,EvolutionandBiodiversity,RuhrUniversityBochum,Bochum,Germany.Email:[email protected]

SummaryTheactivitypatternsoftrunkmusclesarecommonlyneglected,inspiteoftheirimpor-tance formaintainingbodyshape.Analysisof thebiomechanicsof thetrunkunderstaticconditionshasledtopredictionsoftheactivitypatterns.Thesehypothesesaretested experimentally by surface electromyography (EMG). Five horses, with andwithoutarider,wereexaminedinthewalk,trotandcanter.FootfallwassynchronisedwithEMGbyanaccelerometer.Averagesoftenconsecutivecycleswerecalculatedandcomparedbystatisticalmethods.Thestartandstoptimesofthemuscleactivitiesof5–10undisturbedEMGplotsweredeterminedandtheaveragesandstandardde-viationscalculated.Inwalking,muscleactivitiesareminor.Electromyography(EMG)activitywasincreasedinthem.rectusduringthethree-limbsupport.Whenthebend-ingmomentsassumetheirgreatestvalues,forexamplewhilethehorses’massisac-celeratedupward(twotimesearthacceleration)inthediagonalsupportphasesintrotandcanterthem.rectus,connectingthesternumwiththepubicboneismostactive.Them. obl. externus ismost activewhen the torsional and bendingmoments aregreatestduringthesamesupportphases,butnotbilaterally,becausetheforcesex-ertedononesidebythe(recorded)m.obl.externusaretransmittedontheothersidebythe(notrecorded)m.obl.internus.Whilethehindlegstouchthegroundinthetrotandcanter, ground reaction forces tend to flex thehip joint and the lumbar spine.Therefore,thevertebralcolumnneedstobestabilisedbytheipsilateralm.longissimusdorsi,whichinfactcanbeobserved.Asawhole,ourEMGdataconfirmexactlywhathasbeenpredictedbytheoreticalanalysis.

K E Y W O R D S

bowandstringtheory,dressage,electromyography,finiteelements

1  | INTRODUCTION

Theconstructionofthebodystem(thatishead,neck,trunkandtail)inquadrupedalanimalscanbeexplainedwithatheoreticalconsider-ation.Thiscanbecalledthe“beam-theory,”whichhasbeendevelopedfromtheolderandcommonlyknown“bow-stringtheory.”Inspiteofbeingmorepopular,thelatterexplainsnotmorethanthetrunkalone.The beam theory has been developed on the basis of mechanical

theory (Kummer,1959;Preuschoft,1976;Preuschoft&Fritz,1977;Preuschoft, Witzel, Hohn, Schulte, & Distler, 2007; Slijper, 1946).Althoughthetheoreticalapproach iswell-established inengineeringsciencesandsinceseveralyearsconfirmedbyFiniteElementSystemsAnalysis (Witzel,Mannhardt,Goessling, deMichaelis,&Preuschoft,2011),ithasnotbeentestedexperimentally.Becausethebeamthe-ory implies predictions concerningmuscle activities, an experimen-tal approach is possible by means of the electromyography (EMG)

Page 2: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

2  |     KIENAPFEL Et AL.

method,whichallowscontrollingoftheactivityofmusclesinrealtime.Unfortunately,theexertedforcecannotbedetermined.Accordingtoseveral authors (Konrad, 2011; Larson, 1995; Stern,Wells, Vangor,&Fleagle,1977), itcanbeexpectedthatmuscleactivitiesaremostpronounced while muscles exert most force, that means: duringlocomotion.

Inthecaseoftrunkmuscles,thenecessaryexcursionsareminimalduringstanding,sothatnecessaryforcesmaybeexertedbyconnec-tivetissue,suchas ligaments (headandneck), strongfasciae (abdo-men)oraponeuroses(lumbarregion).These(“passive”)structuresmaywellberesponsibleforthemaintenanceofbodyposture,particularlyatrestunderstaticconditions,whentension-resistantstructuresmustnotchangetheirlengths.Duringlocomotion,however,muscleshavetoassumedifferentlengthsbyactivecontractions,whichexistsonlyforshortperiodsoftime,alternatingwithshortperiodsoflesseractiv-ityinamotioncycle.ThiscanbedocumentedbyEMGthatiswhyweputmostemphasisongaits,ratherthanstatics.

Thebodystemofaquadrupedcanbecomparedtoaheavybeamontwosupports.Thisbeamisexposedtoshearingforcesandbendingstressesunderitsownweight.AsillustratedbyPreuschoftandFritz(1977),theanteriorcantilever(=headandneck)isbentdownward,soproducingcompressionatitslowermarginandtensionontheupper.Betweenthesupports, the trunk tends tosagventrallydownwards,sothatcompressingforcesoccuralongtheuppermarginandtensionatthelower.Thisdistributionofinternalforcesisinagreementwiththearrangementofthecompression-resistantskeleton(vertebralcol-umnandsternum,pelvis,(Preuschoft&Fritz,1977))andthetension-producing musculature (neck, cranial thoracic dorsal musculatureandseveralshouldermuscles,asdetailedinKienapfel(2014)).Asidefromthemuscles,thereexistverystrongstrandsofconnectivetissue,whichcantakeoveratleastpartofthetensileforces,andareclaimedbyseveralresearchers(Gellman&Bertram,2002;Nickel,Schummer,Seiferle,&Frewein,2004;Slijper,1946;Zschokke,1892)todoso.

During locomotion, maintaining body shape becomes more de-mandingthanatrest,becausethemassofthebodyisacceleratedup-wards.AccordingtoPreuschoft(1985)andWitte,Lesch,Preuschoft,andLoitsch (1995a,b), theaccelerations in thegaits trot andcantercommonly are two times earth acceleration. This means that theweightforce,whichmustbecountered, is twiceasmuchasat rest.Inaddition,thebodyissupportedonallfour,three,twoextremitiesorevenonelimbalone.Thereoccurevenphaseswithoutanygroundcontact,whilethebodyisfloatingfreely.Becauseofthesephasesofaerialfloating,thereactionforcesbetweengroundandthebodyvaryconsiderably.Inthetake-offphaseforajump,horsesproduceaccel-erationsof2.5g, during landing after a jump3.7g (as calculated in(Preuschoft&Fritz,1977)).Insmallermammals,especiallyadaptedtoleaping, theaccelerationsmaywell reachmore than10 timesearthacceleration(Demes&Gunther,1989;Gunther,Ishida,Kumakura,&Nakano,1991).

Theoccurringshearingforcesreachtheirmaximumattheshoulderanddeclinetowardsthehindlimbsupport,changingtheirsignataboutthoracal/lumbarregion.Shearingforcesareinafirmmathematicalre-lationshiptobendingmoments.Astructure,wellsuitedforsustaining

shearing forcesaretheribsplus the intercostalmuscles (Preuschoftetal.,2007).

Assoonasonlyonelimbisliftedfromtheground(forexampletoplaceitforwardandsoinitiatelocomotion),torsionalmomentsoccurinside the trunk (that is that part of thebody stembetweenante-rior andposterior limbs (Preuschoftetal., 2007;Preuschoft,Hohn,Distler,Witzel,&Sick,2005)).Tosustaintorsionalmomentsinsidethetrunk,thereexistwell-suitedstructures:ribsforcompressiveforcesandtheobliquemusclesofthebodywall(Mm.obliquusexternusandinternus,intercostales)fortensileforces.Torsionalmomentsconcen-trate near the periphery of the twisted part and therefore the pe-ripheralarrangementoftheribsaswellasoftheobliquemusclesfitsperfectlytothetheoreticalexpectations.Aclose-up(stilltheoretical)analysisofthesestructuresshowsexactagreementbetweentheoret-icaldemandsandmorphologyinvariousanimals(Hohn,Preuschoft,Witzel,&Distler,2013;Preuschoft&Klein,2013;Preuschoftetal.,2005,2007).

Weconcentratedoureffortsonhorses,whicharetypicalcursorialmammals.ThelocomotormodesandEMGactivitiesoftheseanimalsareknownindetail.Theyareusedtobeinghandledbyhumansandsocaneasilybeinducedtoperformallnecessaryactionsforastudy.Theirgaitsarerhythmic,thecyclesreliablyuniformandnotinfluencedordisturbedinnormalconditionsbyhumans,thatisridersorresearch-ers (commonexperienceamongriders;ownresults)and inaddition,horsesareavailableinnumberssufficientforprovingtherelevanceoftheexperiments.Theyarewellsuitedtoserveasmodelstostandforall cursorialmammals.Becausewewantedtoexamine thegaitpat-terns inpracticalriding,thehorseswereexaminedontrackandnotonatreadmill.

Thepatternsofmuscleactivityhavebeenstudiedrepeatedly. Inmostcases, the interestof theauthorswasfixedonmusclesof thelimbs.Thishasresultedinafairlycompleteoverviewofmuscleactionsduring several performancesof avarietyofvertebrates.Rare, how-ever,arestudiesdesignedtoobtainingempiricalprovestoverifythebalanceofforcesinsidethemoreorlesshorizontallyorientatedbodystem(Carrier,1990,1993;Ritter,1996;Ritter,Nassar,Fife,&Carrier,2001;Schilling&Carrier,2009).

Theknowledgeoftheregularmuscleactivitypatternsofthetrunkevidentlypromisesanunderstandingofthebiomechanicalconstruc-tionofaquadrupedalanimal`sbody.Italsowillgiveusefulanswerstoquestionsconcerningtrainingtechniques,ortoidentifypain.

Muscles lyingnearthesurfacesothattheyprovidetherequiredinformationarethem.longissimusdorsiasmostobviousmuscleofthetopline,them.rectusabdominisasstraightmuscleofthebellyandthem.obliquusexternusasdiagonalabdominalmuscle.

Theactivityofthem.longissimusdorsiisknowninthewalkandtrot(Cottriall,Ritruechai,&Wakeling,2009;Licka,2001;Licka,Frey,&Peham,2009;Robert,Audigie,Valette,Pourcelot,&Denoix,2001;Robert,Valette,&Denoix,2000;vonScheven,2010).Justonestudymentionsonepeakactivityinthecanter(Robertetal.,2000),butnofurtherinformationwasprovided.

Them.rectusabdominiswasmentionedinthesamestudyinthecanterwithonepeakactivity,butagainwithnofurther information

Page 3: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

     |  3KIENAPFEL Et AL.

aboutthestageofmovement.Inthewalkandtrot,itsactivityisdoc-umentedbythestudiesofseveralauthors(Robert,Valette,&Denoix,2001;Robertetal.,2000;Zsoldos,Kotschwar,Rodriguez,Peham,&Licka,2010).Them.obliquusexternuswasalsopartofthelatterstudyandinvestigatedinthewalkandthetrot.

Inaheavybeam,whichissupportedlikebodystemofhorseonan-teriorandposteriorlimbs,wecanexpecttensileforces—thatismuscleactivity—alongtheventralsideofthebellyaswellasalongthedorsalsideoftheanteriorthoraxandproximalneck.The latterhas indeedbeenfoundinanearlierstudy(Kienapfel,2014).Ifthesamebeamissupportednearitsrear(caudal)endbyaforwardlyinclinedleg,withground contact underneath its belly, tensile forceswill occur at theposteriorbackandrearmarginofthebeam.Theforceswilloccuronlyforshortperiodsoftimeineachmotioncycle.Ifweimaginethebeamonstiltsreplacedbyahorse′sbody,aforwardlyplacedhindlimbneedsto be balanced in the hip joint bymuscles. Some of thesemuscles(hamstrings,ischiofemoralpartofm.gluteus)pulltheischiumdown-wardsandsoleadtoanupwardmovementoftheiliosacral junctionplusposterior lumbarvertebrae. Sucha flexionmustbeblocked, atleastcontrolled,bymuscles:mm.gluteusmedius,iliocostalisandlon-gissimus.Diagonalsupportofthe“beam”onafrontlimbanditscontra-lateralhindlimbleadstoatwistingofthe“beam”—ortrunk—betweenthesupportinglimbs.Twistingimpliestensileforcesbetweenthesup-portingdiagonallimbs,whichcanbeproducedbytheobliquemusclesofthetrunkwall.

Therefore, the correctness and reliability of our theoretical ap-proach would be confirmed if three hypotheses turn out to becorrect:

(i) Thestraightventralmusclesofthetrunkhavetobeactivatedinthephasesofsupport,whenthegreatestforcesareactingdownwards

(ii) Thedorsal/epaxialmusclesofthetrunk(m.longissimusdorsi)areactivatedduringthestancephaseoftheipsilateralhindleg.

(iii)Torsional stresses lead toanactivationof theobliqueabdominalmusclesinthephasesofdiagonalsupport.Moreprecisely,them.obliquusabdominisexternus(whichalonecanbecontrolledbysur-faceelectrodes)ofonesideshouldbeactiveduringsupportontheipsilateralfore-andcontralateralhindlimb.

2  | MATERIALS AND METHODS

2.1 | Ethics statement

Thistypeofnon-invasiveresearchisapprovedundertheGermanani-malprotectionactanddoesnotrequireastudy-specificpermission.Thehorseswerehandledbytheirusualriderswithoutaddingstress-orsorpaintotheanimals.

2.2 | Methods

Themeasurementsweretakenfromfivewarmbloodgeldingswithoutbackpainor lameness according to theirprofessional trainers.Theirheightatwithersvariedbetween1.68and1.74mandtheirageswere

between9and16years.Thehorseswereusedfortrainingofridersonbasictoadvancedlevels.

ThemeasurementsweredoneinaLongehall(diameter20m).Formeasuringmuscleactivation,bipolarself-adhesiveelectrodes

were fixed on the shaved and cleaned skin.Two bipolar electrodes(2,000Hz)werepositioned3cmapart in thedirectionofmuscle fi-breson themusclebellies.Them.obliquusexternuswasmeasuredbilaterallyatthe levelofthe16thrib.Electrodesonthem. longissi-musdorsiwereplacedasfarcranialaspossibleonthesaddledhorsewiththesaddlenottouchingtheelectrodes.ThiswasapproximatelyontopofL3–L4.Thereferenceelectrodewasplacedonthehighestpointof thepelvis,which is not coveredbymusculature.TheEMGsignalswerefilteredwithaButterworthfourth-orderhighpass(40Hz)andthenrectified.Thereafter,thedataweresmoothenedbymovingaverageprocedure(window40datapoints)foreachhorseandcondi-tion.Movementsweresynchronisedbyrecordingaccelerationsalongtheleftforeleg.Theaccelerometerwasfixedtothemetacarpalbyabandage. The locomotor cycles were identified in close analogy to(Falaturi,2001)usingthemaximumpeaksoftheaccelerometerdataastriggers.

Werecorded1–3cyclesineachgaitintheLongehallandcollecteddatafortenormoreclearrhythmicstridesinarowinthedesiredposi-tion.First,theprogramwasperformedunderariderandthenwithout.Thetenconsecutivecycleswerechosenforeachrunonthebasisofthevideotapes.Selectionwasbasedoncorrectrhythm,maintenanceof constant speed and relaxed head-neck position. Averages werecalculatedseparatelyperhorseandexperimentalrun.

For the searching of divergences between themuscles on bothsides,with andwithout a rider and on both sides, statistical analy-seswereperformed.Theon- andoff-timesof themuscle activitiesweredeterminedandmeanvaluesandstandardvariationscalculated.Because no clear on- and off-data of activity in the case of them.obliquus externus could be discerned, only themaximum activitieswereusedforthecalculationsofmeanvalueandstandardvariation.

2.3 | Statistical analyses

Toevaluatedifferencesbetweenthemusclesofbothsides,withandwithoutarider,andleftversusrightturns,thedataweretestedwiththeKolmogorov–SmirnovtestforaGaussiandistribution.Equalityofthevarianceswas testedby theLevene’s test. If therewerediffer-ences,theywerelocatedwiththeMann–Witney(independentdata,e.g.,comparisonbetweenbothsides,withandwithoutarider),ifthedatadidnotshowaGaussiandistribution.IfthedataweredistributedsymmetricallyaccordingtoGauss,theStudent’sttestwasperformed.Everytestwastakenfordependentvariables.Significancelevelwasconsideredtobeatp≤.05.

Forthegraphsoftheactivitypatterns,fivetypicalEMGplots(eachbeingthemeanvalueof10cycles)foreveryhorsewereoverlain,andforeachtimeunit,themedianlineshowingtheactivitywasdrawnbyhand.

Theaccelerometerplotwassynchronisedwiththefootfallpat-ternofPreuschoftandGünther(1994),thelengthofthestridecycle

Page 4: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

4  |     KIENAPFEL Et AL.

wasthesame inbothfigures,sothat itcouldbeadaptedwithoutfurtherchanges.“Adapting”heremeansshiftingthedataalongthetimeaxisuntilthefootfallpatternsmatchedwiththeaccelerometerdata.

3  | RESULTS

Theactivitiesofallthreetrunkmusclesbecomesignificantlygreater(p<.01)fromwalkovertrottocanter—soincantertheactivitywasthegreatest.Nosignificantdifferencesoccurredbetween themus-clesoftheleftandtherightsideorbetweenmovingontheleftandrightrein.Inthewalk,themm.longissimusdorsiandrectusabdominis

show significantlymore activitywith a rider thanwithout (p<.05).Neitherinthetrotnorinthecantersuchdifferencescouldbefound.Inthefastergaitstrotandcanter,whichincludephasesofaerialsus-pension,andthereforehighergroundreactionforces,allEMGactivi-tiesaremoremarkedthaninthewalk(Figure1a,b).

Inwalking, them. obliquus externus is activewhile one of thefrontlimbsandthecontralateralhindlimbsupportthetrunk.

Them.longissimusdorsishowsnoclearactivitiesinthewalk.Them.rectusabdominisisactivetwotimesineachcycle,assoonasoneoftheforehoovesistouchingtheground.Itsactivityendsinalaterstageofthestancephaseoftheforehoof.Whiletheforehoofisincontactwiththegroundandthem.rectusabdominisisactive,bodyweightissupportedbythreelimbs,twoforeandonehind.

F IGURE  1  (a)Walk.Meanactivityphasesasgreensegmentsofthesolidcolumns.Thehorizontalaxisisdividedin%ofthecycleduration.Standarddeviations±SDareshownasnarrowbars.Atthetop,thefootfallisdisplayed.Onecycleinthewalkhadameandurationof1s.Them.longissimusdorsishowednomeasurableactivityduringthewalk. Forthem.obliquuusexternus,onlythemaximumpeaksareconsidered.(b)Walk.Ontop,thefootfallsequenceisdisplayed.Theboldlinesarethemedianelectromyography(EMG)signalsfromfivehorsesovertencyclesperhorse.Thethinlinerepresentstheaccelerometeratfrontleftmetapodium,beingidenticalinalldiagrams.IthasthesamelengthinallillustrationsandallowsconnectingtheEMGdatawithfootfallsequence.Obl.le/re:m.obliquusexternusleftandright,Lonle/re:m.longissimusleftandright,Rele/re:m.rectusabdominisleftandright.HR,hindright;HL,hindleft;FR,frontright;FL,frontleft

(a)

(b)

Page 5: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

     |  5KIENAPFEL Et AL.

In the trot (Figure2a,b) the activity of them. obliquus externushas three to five peaks of activity throughout each cycle,with onehighandseveral lowerspikes.Themainpeakoftheleftm.obliquusexternusoccursduringthestancephaseofLFandRH.Therightm.obliquusexternushasitsmainpeakduringthediagonalstancephaseRFandLH.Thismuscleobviouslyisactiveatthestancephaseoftheipsilateralfore-andcontralateralhindlimb.

Themainactivityofthem.longissimusdorsitakesplacefromthemiddleoftheswingphaseuntilshortlyaftertouchdownoftheipsilat-eralhindlegwithanadditionallowpeakatliftoff.Them.rectusshows

twopeaksfromthebeginningtothemiddleofeachdiagonalstancephaseofbothfore-andthecontralateralhindhoof.

Inthecanter(Figures3a,b,4a,b),them.obliquusexternusoftheleadingsideshowsonehighpeakofactivityshortlyafterthetouch-downof the leading foreleg (forexample the left foreleg in the leftleadcanter)untilthemiddleofitsstancephase(includingthethree-legsupportof the leading front, the trailing frontand leadinghind).The contralateral obliquushas threepeaksof activity: a lowoneatgroundcontactofthetrailinghindleg, thebigpeak inthemiddleofthethree-legsupportphase(HL,HR,FLinrightleadandHR,HL,FR

F IGURE  2  (a)Trot.Meanactivitymarkedgreen,±SDbynarrowbars.Thehorizontalaxisisdividedin%ofthecycleduration.Ontop,thefootfallisdisplayed.Eachfullcycleintrothadameandurationof0.8s,orafrequencyofca.85/min,likeinPreuschoft(1987).Forthem.obliquusexternus,onlythehighestpeaksareshown.(b)Trot.Footfallontop.Eachcycleofthetrothadameandurationof1s.ConventionsasinFigure1.HR,hindright;HL,hindleft;FR,frontright;FL,frontleft

(a)

(b)

Page 6: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

6  |     KIENAPFEL Et AL.

inleftlead)andanotherlowoneinthemiddleofthestancephaseoftheleadingforeleg.ThemaximumpeaksareshowninFigure3a.Them.longissimusdorsiisactiveshortlybeforetouchdownoftheipsilat-eralhindleguntilthemiddleofthestancephase,nomatterifitistheleadingortrailing.

Them.rectusabdominisisactiveonbothsidesshortlyaftertouch-downofthetrailinghindleguntiltheendofthediagonalstancephase.Them.obliquusexternusshowsmostactivityalwaysslightlyafterthepeakactivityofthem.rectusabdominisinthediagonalstancephaseofthetrotaswellasinthethree-legsupportinthecanter,whilemostweightissupportedbythediagonal.

4  | DISCUSSION

Tomakethemost importantpoint first,ourpresentstudyprovidesdataobtainedduringtruelocomotion.Acomparisonwiththelitera-ture, however, shows that thedifferencesbetweenour results andthoseobtainedfromthetreadmillareminor.MostEMGdata intheliterature(exceptRobert,Valette,Pourcelot,Audigie,&Denoix,2002)who recorded muscle activities in two horses under natural con-ditions)were not taken at track but on the treadmill. This artificialcondition,whichisnottheonetowhichhorsesareadaptedbyevolu-tion,providesdatawhichtheoreticallymaywelldivergefromnormal

F IGURE  3  (a)Canterleftlead.Meanactivityphasesaremarkedpink,±SD shownbynarrowbars.Thehorizontalaxisisdividedin%ofthecycleduration.Ontop,thefootfallsequenceisdisplayed.Onecycleinthecanterhadameandurationof0.6s.Forthem.obliquuus,onlythemaxi4mumpeaksaredisplayed.(b)Canterleftlead.Atthetop,thefootfallisdisplayed.Onestridecycleincanterhadameandurationof0.6s.ConventionsasinFigure1.HR,hindright;HL,hindleft;FR,frontright;FL,frontleft

(a)

(b)

Page 7: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

     |  7KIENAPFEL Et AL.

conditions outside on the grounds or even in a riding hall. On thetreadmill,thehorsecannotmoveonits individuallypreferredspeedorstridelengths,hasnofeedbackbytheprogressitismakinginthechosengait,anddoesnotneedtobalancetheuneven,permanentlychangingconditionsofthesoilinovergroundlocomotion.Accordingtoown,unpublisheddata,groundreactionforcesmayvaryonroughgroundsby±40%oftheaveragevalues.Differencesbetweenthesetwo conditions occur especially in the lumbar regions of the back(Álvarez,Rhodin,Byström,Back,&Weeren,2009).Usingatreadmillhas advantages such as constant environment, speed and ground

conditions; therefore, experiments promise to better repeatability(Sloet vanOldruitenborgh-Oosterbaan&Clayton, 1999). The sameauthorsadmit,ontheotherhand,thattestingontrack,especiallywiththeaimtostudylocomotion,isclosertonaturalconditions.

AccordingtoMilner-BrownandStein (1975), itshouldbepossi-bletocreateanapproximatelylinearrelationshipbetweenEMGsignalandforceaslongastherecordingisconfinedtoonemuscleandtheelectrodesarenotmoved.Larson(Larson,1995)alsousedtwostagesofEMGactivityasbenchmarkformuscle force, lowandhighactiv-ity, following in thispointSternetal. (1977).Thepatternofmuscle

F IGURE  4  (a)Canterrightlead.Meanactivityphasesaremarkeddarkgrey,±SD indicatedbynarrowbars.Thehorizontalaxisisdividedin%ofthecycleduration.Ontop,thefootfallpatternisdisplayed.Eachcycleinthecanterhadameandurationof0.6s.Forthem.obliquus,onlythemaximumpeaksareshown.(b)Canterrightlead.Atthetop,thefootfallisdisplayed.Onecycleincanterhadameandurationof0.6s.ConventionsasinFigure1.HR,hindright;HL,hindleft;FR,frontright;FL,frontleft

(a)

(b)

Page 8: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

8  |     KIENAPFEL Et AL.

activitiescanbeunderstoodbest,iftheirfittothemajorexchangeofforcesbetweenhorseandgroundistakenintoconsideration.

In the trot, groundcontact (and thatmeansapossibility toexertforces from thegroundon thehorse′sbody)exists aloneduring thephases of diagonal support. In the canter, the “diagonal” in fact rep-resentsaphaseofthree-leggedsupport,duringwhichfirsttheleadinghindlimb,secondthetrailinghindandcontralateralforelimb(diagonalstance)and third theother forelimbareon theground.According toPreuschoftandFritz(1977),thegreatestaccelerationsupwardcoincidewiththesupportonthediagonal limbs. Ifthehorse is inthesupportphaseoftrotandcanter,andmostoftheweightcarriedbythediago-nal,thebendingmomentsshouldreachtheirhighestvalues(Preuschoft,1987):Theweightsofallheavysegmentsbetweenthesupportinglimbs,thoraxandabdomen(togetherabout70%oftotalbodymass)aremov-ingdownwardsatexactlythistime(Preuschoft,1987).Wemustexpectthosemuscles,whichkeepthetrunkinbalanceagainstweight,tobehighlyactive.Thisisindeedthecase,them.rectusabdominisisalwaysactiveduringthediagonalstancephaseofthetrot,aswellasduringthestancephaseinthecanter,whichisdominatedbythe“diagonal.”

Theactivitiesofm.rectusabdominisare incompleteagreementwiththeliterature(Robert,Audigie,etal.,2001;Robert,Valette,etal.,2001;Robertetal.,2002;Zsoldosetal.,2010)withtwoactivitypeaksintrotandoneincanter,aswellasthetimingoftheactivityphases.

AsZsoldosetal. (2010)notedaswell, them.obliquusexternusshowsahighvariabilityinthewalkandinthetrot.Theauthorssup-posedthiscouldbeduetotheassumedrespiratoryfunction(Nickeletal.,2004). If the inconsistentactivity in the trotwould indeedbecausedbybreathing(Ainsworthetal.,1997;Bramble&Carrier,1983),itsactivityinthecanter(wherebreathingandlocomotionarecoupledaccordingtoBrambleandCarrier(1983)andAinsworthetal.(1997))shouldbemorepronouncedandsteadier.Asthisisnotthecase,an-otherreasonseemstoberesponsible.Theskinmusclem.cutaneoustrunci,forexample,wassuspectedbyNickeletal.(2004)toplayaroleinmotion.Asitsfibreshavethesamedirectionasthem.obliquusex-ternus,itcouldindeedinterferewiththeobliquussignal.Maybethereisalsosomecrosstalkfromthem.obliquusinternusandthem.rec-tusabdominis,whichmakesthesignalsovariable.Inspiteofalltheseproblems,themainactivityofthem.obliquusabdominisexternusco-incidesconsistentlywithsupportondiagonallimbs.

In fact, thediagonal support requires a tension-resistant tie be-tweenthestancelimbs.This isprovidedbytheobliquusinternusoftheipsilateralsideofthehindlimbandthem.obliquusexternusofthecontralateralside.Toavoidadislocationofthelineaalba,thetensileforceofthedeepobliquemustbepassedontothesuperficialobliqueofthecontralateralside.Oursuperficialelectrodesdidnotallowcon-trollingthem.obliquusinternusbutthem.obliquusexternusofthecontralateral sidewas in fact active. This is in full agreementwithDeban,Schilling,andCarrier(2012)ondogs.

Them.longissimusdorsihasamaximumactivitybeforeandwhilethe ipsilateralhindleg ison theground (thatmeans,whileweight isbornebythislimb)andalowerpeakatliftoffintrotbutnotincanter.

Carrying loadon theantevertedhindlimb requiresacontractionoftheverystrongextensorsofthehip joint,namelymm.gluteiand

the hamstrings. Following the theory, them. gluteus should be ac-tive(notstudiedinthispaper,butinRobert,Valette,Degueurced,&Denoix,1999)aswellasthem.longissimus,whichisindeedthecaseforbothmuscles(Robertetal.,1999).Thesemusclesnotonlyextendthehipjointtheyalsoliftthecranialpartofthepelvis,theilium.Tocompensate the resulting torqueat the iliosacral joint andbetweenthe lowermost lumbarsegments,acontractionofthedorsalmuscu-latureisrequired.Regardingthispoint,weareinfullagreementwiththeresultsobtainedbySchillingandCarrier(Schilling&Carrier,2009)ondogs.

Themostpowerful flexorof thehip jointused for initiating theforeswingofthehindlimbisthem.psoas,locatedventraltotheverte-bralbodiesofthelumbarsection.Itseemslogicalthatthiscontractionofthepsoasleadstoaflexionofthelumbarsegmentswhichmustbecounteractedby theextensor—them. longissimusdorsi.Thiswouldresultintheminorpeakofactivityobservedatliftoffoftheipsilateralhindlimb.Inthecanter,suchastabilisingcounteractionisnotneces-sary,becausebothhindlegsareswungforwardtogetherandthemostposterior segmentsof the trunkare flexedventrally (Loitsch,1993).This ventral flexion is followed by an extension (or dorsiflexion) ofthe trunk.Thatmovement seems to be induced by elastic recoil ofmusclesandtheirtendonsandhasbeeninterpretedbiomechanicallybyWitteetal.(1995a)asameanstoacceleratetheforeswingofthehindlimbs.Ifthehindlegistouchingthegroundandweightisshiftedonthis limb,thevertebralcolumnneedstobestabilisedagainsttheventralflexingmomentofthehamstringsandotherextensorsofthehipjoint.StudiesofLicka(2001),Lickaetal.(2009),Robert,Audigie,etal.(2001),Robertetal.(2000),vonScheven(2010);Cottrialletal.(2009)confirmthatinwalkandtrot,theactivityofthelongissimusisconnectedwiththeipsilateralhindleg.Licka(2001)reportedtwomax-imapercycleinthetrotlikewehaveobservedinmostcasesofourstudy,buttheydescribedtheactivitytooccurabitlaterinthemotioncyclethanwecanreport.

Former investigationshave shown that in thephaseof forelimbsupport,thedorsalneckmuscles(m.splenius,anteriorpartofm.tra-pezius)areactive(Kienapfel,2014).

Themostconflictingamongourresultsisthemissingofaclear-cutactivityofthem.longissimusdorsiinthewalk.Acontractionofthismuscleisevidentfrompalpationbehindthesaddlebytherider.Simpleobservationshowsthattheperceivedcontractionofthedorsalmusclecoincideswiththestancephaseoftheipsilateralhindlimb.Lickaetal.(2009)observedEMGactivitiesofthem.longissimusdorsiinthewalk,whichwedidnotfindatall.Thereasoncouldbethedivergentloca-tionoftheelectrodes.WeplacedtheelectrodesatthelevelofL2/L3becauseofthesaddle(whichisforriding),whereasLicka(2001)foundaloweractivityatthislevelincomparisonwithmorecranialregionsof them. longissimus dorsi.Our results of them. longissimus dorsiconcerningthepeaksofthetrotmatchwellwiththetimingobservedbyRobertetal.(2000)andCottrialletal.(2009).vonScheven(2010)reportedonetofourinconsistentactivityburstsofthismuscle.

Incanter,wefoundtheexpectedburstpercycleofthem.longissi-musandconstantactivitypatternsinallmeasuredhorses.Wakeling,Ritruechai,Dalton,andNankervis(2007)founddifferencesbetween

Page 9: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

     |  9KIENAPFEL Et AL.

theleftandrightrein,withtheinnermusclesidegivinghigherEMGactivitiesthantheouterside.Wecouldnotdetectsuchdifferences,butthiscouldbeduetothebigcirclediameterof20m,wherethehorsesdonotneedtobendmarkedly,andbecausethiseffectwasdetectedinthemorecranialpartofthelongissimusdorsi.

Ifa rider ismountedonahorse,he isaddinghisweighton topof theweightof the segmentsbetween the supporting legs.This isreflected inmoremuscleactivity inwalkingwitha rider in compar-isonwithwalkingwithout.Ahorsewithnormalheighthasaweightof approximately 500kg, a rider plus saddle hardly less the 80kg.Inmore rapidmovements, up to two timesearthaccelerations (seeIntroduction)areleadingtoamultiplicationoftheweightforce,inthiscaseyielding1,000kg.Therefore,muchmoremuscleforceisneededinthetrottingandcanteringhorsewithouttheriderthaninthewalkevenwith.The difference betweenmuscle force requiredwith andwithout the rider is toominimal in relation to themuscle force re-quiredanywayforstabilisingthetrunk.

Theanteriorcantileverofthe“beam,”whichistheneckplushead,isflexeddownwards.Itsbendingmomentswillassumetheirgreatestvalues,iftheneckisstretchedorifaccelerationforcesaretransmittedthroughtheforelimbs,especiallyinthecanter.Bothrequireincreasedmuscle activities, which indeed have been observed by Kienapfel(2015).

5  | CONCLUSION

Asexpectedfromatheoreticalanalysis,inwhichthebodystemofahorseiscomparedtoaheavybeam,them.rectusisactiveatthosephasesofthestridecycle, inwhichthebendingmomentsassumetheirgreatestvalues,namelythediagonalstancephasesintrotandgallop.Them.obliquusexternusisactive,whiletorsionalforcesareactingonthebody,becausethehighestupwardacceleratingforcesaresupportedbythediagonallimbs.Them.longissimusdorsiisal-waysactiveattouchdownoftheipsilateralhindleg;itsbiomechani-calfunctionisthestoppingofthetrunkmovementandstabilisationofthetrunk.

Thismeans that the theoretical predictions based on the beamtheoryareconfirmed.

ACKNOWLEDGEMENTS

WehavetothankhugelytheWestfälischeReit-undFahrschuleandespeciallyMartinPlewaandBiancaSchwarzerforgivingtheirhorsesandrider.Also,wehavetothankBernhardGlenszczykforthegreathelpwiththelittlepilottestforthisstudy.AtlastwehavetothankJanSoerenKochforhelpinstatisticalquestionsandHans-GertKienapfelfortakingthevideotapes.

ORCID

K. Kienapfel http://orcid.org/0000-0001-5123-0242

REFERENCES

Ainsworth,D.,Smith,C.,Eicker,S.,Ducharme,N.,Henderson,K.,Snedden,K.,&Dempsey,J.(1997).Pulmonary-locomotoryinteractionsinexer-cisingdogsandhorses.Respiration Physiology,110,287–294.https://doi.org/10.1016/S0034-5687(97)00094-7

Álvarez, C., Rhodin,M., Byström,A., Back,W., &Weeren, P. R. (2009).Backkinematicsofhealthytrottinghorsesduringtreadmillversusovergroundlocomotion.Equine Veterinary Journal,41,297–300.https://doi.org/10.2746/042516409X397370

Bramble,D.,&Carrier,D.R. (1983).Runningandbreathing inmammals.Science,219,251–256.https://doi.org/10.1126/science.6849136

Carrier,D. (1990).Activityof thehypaxialmusclesduringwalking in thelizardiguanaiguana.Journal of Experimental Biology,152,453–470.

Carrier,D.(1993).Actionofthehypaxialmusclesduringwalkingandswim-minginthesalamanderdicamptodonensatus.Journal of Experimental Biology,180,75–83.

Cottriall, S., Ritruechai, P., &Wakeling, J. (2009). The effects of training aids on the longissimus dorsi in the equine back (accessed20October 2011).

Deban,S.M.,Schilling,N.,&Carrier,D.R.(2012).Activityofextrinsiclimbmuscles in dogs atwalk, trot and gallop.The Journal of Experimental Biology,215,287–300.https://doi.org/10.1242/jeb.063230

Demes,B.,&Gunther,M. (1989).Biomechanicsandallometricscaling inprimatelocomotionandmorphology.Folia Primatologica,53,125–141.https://doi.org/10.1159/000156412

Falaturi,P.(2001).Computerkinematographie(CKG)alsgeeignetesVerfahrenzurobjektivenBewegungsanalyse-BeschreibungundErgebnisse.Pfer­deheilkunde,1,30–41.https://doi.org/10.21836/PEM20010104

Gellman,K.,&Bertram,J.(2002).Theequinenuchalligament1:Structuralandmaterialproperties.Veterinary and Comparative Orthopaedics and Traumatology,15,1–6.

Gunther,M.,Ishida,H.,Kumakura,H.,&Nakano,Y.(1991).Thejumpasafastmodeoflocomotioninarborealandterrestrialbiotopes.Zeitschrift fur Morphologie und Anthropologie,78,341–372.

Hohn,B.,Preuschoft,H.,Witzel,U.,&Distler,C.(2013).Biomechanicsandfunctionalpreconditionsforterrestriallifestyleinbasaltetrapods,withspecial consideration ofTiktaalik roseae.Historical Biology,25, 167–181.https://doi.org/10.1080/08912963.2012.755677

Kienapfel,K. (2015).Theeffectofthreedifferenthead–neckpositionsontheaverageEMGactivityofthreeimportantneckmusclesinthehorse.J Anim Physiol Anim Nutr,99,132–138.http://doi.org/10.1111/jpn.12210

Konrad, P. (2011).EMG­Fibel, Eine praxisorientierte Einführung in die kine­siologische Elektromyographie,1.1thed.USA:Velamed,NoraxonINC.

Kummer,B.(1959).Biomechanik des Säugetierskelets.Berlin:deGruyter.Larson, S. (1995) Unique aspects of quadrupedal locomotion in nonhu-

manprimates.InE.Strasser,J.Fleagle,A.Rosenberger&H.Mc.Henry(Eds.),Primate locomotion, Recent advances (pp.157–173).NewYork:PlenumPress.

Licka,T.(2001).Electromyographicactivityofthelongissimusdorsimuscleinhorsesduringtrottingonatreadmill.American Journal of Veterinary Research,2,155–158.

Licka,T.,Frey,A.,&Peham,C.(2009).Electromyographicactivityofthelongis-simusdorsimusclesinhorseswhenwalkingonatreadmill.The Veterinary Journal,180,71–76.https://doi.org/10.1016/j.tvjl.2007.11.001

Loitsch,C.(1993).Kinematische Untersuchung über den Canter von Pferden (Equus caballus).Bochum:RuhrUniversitätBochum.

Milner-Brown, H., & Stein, R. (1975). The relation between the surfaceelectromyogram abd muscular force. The Journal of physiology, 246,549–569.https://doi.org/10.1113/jphysiol.1975.sp010904

Nickel, R., Schummer, A., Seiferle, E., & Frewein, J.(2004). Lehrbuch der Anatomie der Haustiere, Band I: Bewegungsapparat, 8. Stuttgart: un-veränd.Aufl.Parey.

Preuschoft, H. (1976). Funktionelle Anpassung evoluierender Systeme.5. Arbeitsgespräch zu Phylogenetik und Systematik. In G. Altmann,

Page 10: The biomechanical construction of the horse's body and ...€¦ · by several researchers (Gellman & Bertram, 2002; Nickel, Schummer, Seiferle, & Frewein, 2004; Slijper, 1946; Zschokke,

10  |     KIENAPFEL Et AL.

J.Dörjes,P.Dullemeijer,J.L.Franzen,M.Grasshoff,W.F.Gutmann,H. Heine, G. W. Hoffmann, W. Lehfeldt, D. Mollenhauer, D. S.Peters & H. Preuschoft (Eds.), Evoluierende Systeme I und II. 4. und 5. Arbeitsgespräch zu Fragen der Phylogenetik und Systematik in der Außenstelle Lochmühle, 1.-4.4.1974 und 10.-13.3.1975. 1-202, 45Abb.,1976.Franfurt:KramerVerlag,ISBN3-7829-1062-1.

Preuschoft, H. (1985). On the quality and magnitude of mechanicalstresses inthe locomotorsystemduringrapidmovements.Zeitschrift für Morphologie und Anthropologie,75,245–262.

Preuschoft,H. (Ed.), (1987)Studien zu den Bewegungen von Sportpferden. Warendorf: Wissenschaftliche Publikation. Deutsche ReiterlicheVereinigungVol.9.Verl.d.Dt.Reiterl.Vereinigung.

Preuschoft, H., & Fritz, M. (1977). Mechanische Beanspruchungen imBewegungsapparat von Springpferden. Fortschritte der Zoologie, 24,75–97.

Preuschoft,H.,&Günther,M.M. (1994).Biomechanics andbody shapein primates compared with horses. Zeitschrift für Morphologie und Anthropologie,80,149–165.

Preuschoft, H., Hohn, B., Distler, C.,Witzel, U., & Sick, H. (2005). Ribsand rib cages in terrestrial vertebrates: Their mechanical functionand stressing, analysed with the aid of FESA. Journal of Vertebrate Paleontology,31(suppl3),101.

Preuschoft,H.,&Klein,N. (2013).Torsion andbending in theneck andtail of sauropoddinosaurs and the function of cervical ribs: Insightsfromfunctionalmorphologyandbiomechanics.PLoS ONE,8,e78574.https://doi.org/10.1371/journal.pone.0078574

Preuschoft, H., Witzel, U., Hohn, B., Schulte, D., & Distler, C. (2007)Biomechanicsoflocomotionandbodystructureinvaranidswithspe-cialemphasisontheforelimbs.InH.-G.Horn,W.Böhme&U.Krebs(Eds.), Proceedings of the “Third Multidisciplinary World Conference on Monitor Lizards”. Mertensiella, advances in monitor research III (pp.59–78).Bonn. https://www.sauropod-dinosaurs.uni-bonn.de/publika-tionen(accessed21October2016).

Ritter,D.(1996).Axialmusclefunctionduringlizardlocomotion.Journal of Experimental Biology,199,2499–2510.

Ritter,D.,Nassar,P.,Fife,M.,&Carrier,D.(2001).Epaxialmusclefunctionintrottingdogs.Journal of Experimental Biology,204,3053–3064.

Robert, C., Audigie, F., Valette, J., Pourcelot, P., & Denoix, J. (2001).Effectsof treadmill speedon themechanicsof theback in the trot-ting saddlehorse.Equine Veterinary Journal,33, 154–159. https://doi.org/10.1111/j.2042-3306.2001.tb05380.x

Robert, C., Valette, J., Degueurced, C., & Denoix, J. (1999). Correlationbetween surface electromyography and kinematics of the hindlimbof horses at trot on a treadmill.Cells Tissues Organs,165, 113–122.https://doi.org/10.1159/000016681

Robert,C.,Valette,J.,&Denoix,J.(2000).Surfaceelectromyographicanal-ysisofthenormalhorselocomotion:Apreliminaryreport.Conference on Equine Sports Medicine and Science,32,80–85.

Robert,C.,Valette,J.,&Denoix,J.(2001).Theeffectoftreadmillinclinationandspeedontheactivityofthreetrunkmusclesinthetrottinghorse.Equine Veterinary Journal,33,466–472.

Robert, C., Valette, J., Pourcelot, F., Audigie, J., & Denoix, J. (2002).Effects of trotting speed on muscle activity and kinematics in

saddlehorses. Equine Veterinary Journal, 34, 295–301. https://doi.org/10.1111/j.2042-3306.2002.tb05436.x

Schilling,N.,&Carrier,D. (2009).Functionoftheepaxialmusclesduringtrotting.The Journal of Experimental Biology,212,1053–1063.https://doi.org/10.1242/jeb.020248

Slijper,E.J.(1946).Comparative biologic­anatomical investigations on the ver­tebral column and spinal musculature of mammals.Amsterdam:North-HollandPublishingCompany.

Sloet van Oldruitenborgh-Oosterbaan, M., & Clayton, H. (1999).Advantages and disadvantages of track vs. treadmill tests. Equine Exercise Physiology,31,645–647.

Stern, J.,Wells, J.,Vangor,A., & Fleagle, J. (1977). Electromyography ofsomemusclesof theupper limb inAtelesandLagothrix.Yearbook of Physical Anthropology,20,498–507.

vonScheven,C.(2010).The anatomy and function of the equine thoracolumbar Longissimus dorsi muscle.München:Ludwig-Maximilians-Universität.

Wakeling,J.,Ritruechai,P.,Dalton,S.,&Nankervis,K. (2007).Segmentalvariation in theactivityandfunctionof theequine longissimusdorsimuscleduringwalkandtrot.Equine and Comparative Exercise Physiology,4,95–103.

Witte,H.,Lesch,C.,Preuschoft,H.,&Loitsch,C.(1995a).DieGangartender Pferde: Sind S chwingungsmechanis- men entscheidend? Teil I:Pendelschwingungen der Beine bestimmen den Schritt. Pferdeheil­kunde,11(3),199–206.https://doi.org/10.21836/PEM19950305

Witte,H.,Lesch,C.,Preuschoft,H.,&Loitsch,C.(1995b).DieGangartender Pferde: Sind Schwingungsmecha- nismen entscheidend? TeilII: Federschwingungen bestimmen den Thab und den Galopp.Pferdeheilkunde,11(4),265–272.

Witzel,U.,Mannhardt,J.,Goessling,R.,deMichaelis,P.,&Preuschoft,H.(2011).Finiteelementanalysesandvirtualsynthesisofbiologicalstruc-tures and their application to sauropod skulls. InN.Klein,K.Remes,C. Gee and M. Sander. (Eds.), Biology of the Sauropod dinosaurs: Understanding the life of giants (pp. 171–181). Bloomington: IndianaUniversityPress,ISBN:978-0-253-35508-9.

Zschokke,E.(1892).Untersuchungen über das Verhältnis der Knochenbild ung zur Statik und Mechanik des Vertebratenskelettes.Zürich:OrellFüssli.

Zsoldos, R., Kotschwar,A., Rodriguez, C., Peham, C., & Licka, T. (2010).Activity of the equine rectus abdominis and oblique external ab-dominalmusclesmeasuredby surfaceEMGduringwalkand trotonthe treadmill. Equine Veterinary Journal, 42, 523–529. https://doi.org/10.1111/j.2042-3306.2010.00230.x

How to cite this article:KienapfelK,PreuschoftH,WulfA,WagnerH.Thebiomechanicalconstructionofthehorse`sbodyandactivitypatternsofthreeimportantmusclesofthetrunkinthewalk,trotandcanter.J Anim Physiol Anim Nutr. 2017;00:1–10. https://doi.org/10.1111/jpn.12840