Th St-course 10

Embed Size (px)

Citation preview

  • 8/6/2019 Th St-course 10

    1/130

  • 8/6/2019 Th St-course 10

    2/130

  • 8/6/2019 Th St-course 10

    3/130

  • 8/6/2019 Th St-course 10

    4/130

  • 8/6/2019 Th St-course 10

    5/130

  • 8/6/2019 Th St-course 10

    6/130

  • 8/6/2019 Th St-course 10

    7/130

  • 8/6/2019 Th St-course 10

    8/130

  • 8/6/2019 Th St-course 10

    9/130

  • 8/6/2019 Th St-course 10

    10/130

  • 8/6/2019 Th St-course 10

    11/130

  • 8/6/2019 Th St-course 10

    12/130

  • 8/6/2019 Th St-course 10

    13/130

  • 8/6/2019 Th St-course 10

    14/130

  • 8/6/2019 Th St-course 10

    15/130

  • 8/6/2019 Th St-course 10

    16/130

  • 8/6/2019 Th St-course 10

    17/130

  • 8/6/2019 Th St-course 10

    18/130

  • 8/6/2019 Th St-course 10

    19/130

  • 8/6/2019 Th St-course 10

    20/130

  • 8/6/2019 Th St-course 10

    21/130

  • 8/6/2019 Th St-course 10

    22/130

  • 8/6/2019 Th St-course 10

    23/130

  • 8/6/2019 Th St-course 10

    24/130

  • 8/6/2019 Th St-course 10

    25/130

  • 8/6/2019 Th St-course 10

    26/130

  • 8/6/2019 Th St-course 10

    27/130

  • 8/6/2019 Th St-course 10

    28/130

  • 8/6/2019 Th St-course 10

    29/130

  • 8/6/2019 Th St-course 10

    30/130

  • 8/6/2019 Th St-course 10

    31/130

  • 8/6/2019 Th St-course 10

    32/130

  • 8/6/2019 Th St-course 10

    33/130

  • 8/6/2019 Th St-course 10

    34/130

  • 8/6/2019 Th St-course 10

    35/130

  • 8/6/2019 Th St-course 10

    36/130

  • 8/6/2019 Th St-course 10

    37/130

  • 8/6/2019 Th St-course 10

    38/130

  • 8/6/2019 Th St-course 10

    39/130

  • 8/6/2019 Th St-course 10

    40/130

  • 8/6/2019 Th St-course 10

    41/130

  • 8/6/2019 Th St-course 10

    42/130

  • 8/6/2019 Th St-course 10

    43/130

  • 8/6/2019 Th St-course 10

    44/130

  • 8/6/2019 Th St-course 10

    45/130

  • 8/6/2019 Th St-course 10

    46/130

  • 8/6/2019 Th St-course 10

    47/130

  • 8/6/2019 Th St-course 10

    48/130

  • 8/6/2019 Th St-course 10

    49/130

  • 8/6/2019 Th St-course 10

    50/130

  • 8/6/2019 Th St-course 10

    51/130

  • 8/6/2019 Th St-course 10

    52/130

  • 8/6/2019 Th St-course 10

    53/130

  • 8/6/2019 Th St-course 10

    54/130

  • 8/6/2019 Th St-course 10

    55/130

  • 8/6/2019 Th St-course 10

    56/130

  • 8/6/2019 Th St-course 10

    57/130

  • 8/6/2019 Th St-course 10

    58/130

  • 8/6/2019 Th St-course 10

    59/130

  • 8/6/2019 Th St-course 10

    60/130

  • 8/6/2019 Th St-course 10

    61/130

  • 8/6/2019 Th St-course 10

    62/130

  • 8/6/2019 Th St-course 10

    63/130

  • 8/6/2019 Th St-course 10

    64/130

  • 8/6/2019 Th St-course 10

    65/130

  • 8/6/2019 Th St-course 10

    66/130

  • 8/6/2019 Th St-course 10

    67/130

  • 8/6/2019 Th St-course 10

    68/130

  • 8/6/2019 Th St-course 10

    69/130

  • 8/6/2019 Th St-course 10

    70/130

  • 8/6/2019 Th St-course 10

    71/130

  • 8/6/2019 Th St-course 10

    72/130

  • 8/6/2019 Th St-course 10

    73/130

  • 8/6/2019 Th St-course 10

    74/130

  • 8/6/2019 Th St-course 10

    75/130

  • 8/6/2019 Th St-course 10

    76/130

  • 8/6/2019 Th St-course 10

    77/130

  • 8/6/2019 Th St-course 10

    78/130

  • 8/6/2019 Th St-course 10

    79/130

  • 8/6/2019 Th St-course 10

    80/130

  • 8/6/2019 Th St-course 10

    81/130

  • 8/6/2019 Th St-course 10

    82/130

  • 8/6/2019 Th St-course 10

    83/130

  • 8/6/2019 Th St-course 10

    84/130

  • 8/6/2019 Th St-course 10

    85/130

  • 8/6/2019 Th St-course 10

    86/130

  • 8/6/2019 Th St-course 10

    87/130

  • 8/6/2019 Th St-course 10

    88/130

  • 8/6/2019 Th St-course 10

    89/130

  • 8/6/2019 Th St-course 10

    90/130

  • 8/6/2019 Th St-course 10

    91/130

  • 8/6/2019 Th St-course 10

    92/130

  • 8/6/2019 Th St-course 10

    93/130

  • 8/6/2019 Th St-course 10

    94/130

  • 8/6/2019 Th St-course 10

    95/130

  • 8/6/2019 Th St-course 10

    96/130

  • 8/6/2019 Th St-course 10

    97/130

  • 8/6/2019 Th St-course 10

    98/130

  • 8/6/2019 Th St-course 10

    99/130

  • 8/6/2019 Th St-course 10

    100/130

  • 8/6/2019 Th St-course 10

    101/130

  • 8/6/2019 Th St-course 10

    102/130

  • 8/6/2019 Th St-course 10

    103/130

  • 8/6/2019 Th St-course 10

    104/130

  • 8/6/2019 Th St-course 10

    105/130

  • 8/6/2019 Th St-course 10

    106/130

  • 8/6/2019 Th St-course 10

    107/130

  • 8/6/2019 Th St-course 10

    108/130

  • 8/6/2019 Th St-course 10

    109/130

  • 8/6/2019 Th St-course 10

    110/130

  • 8/6/2019 Th St-course 10

    111/130

  • 8/6/2019 Th St-course 10

    112/130

  • 8/6/2019 Th St-course 10

    113/130

    CHAPTER 8. SPECIAL TOPICS 113

    ii. Unperturbed problem

    H1( p,q) = H10 ( p,q) = H1 p( p,q) is neglectedexact solution:

    z 10 () = X 1 d 1 e H 10 ( p,q )(unperturbed 1-p partition funct. corresp. interesting d.f.)

    a 0 =1

    z 10 () X 1 d 1 e H 10 ( p,q ) a( p,q)(unperturbed 1-p average for observable associated with the interesting d.f.)

    where:( p,q) = canonical coord.

    X 1 = phase sub-spaced 1 = inf. no. statescorresp. interesting d.f.

    iii. Perturbed problem

    1-p. Hamiltonian corresp. to the interesting d.f.

    H1( p,q) = H10 ( p,q) + H1 p( p,q)total 1-p. partition function corresp. the interesting d.f. :

    z 1() = X 1 d 1 e H 1 ( p,q ) = X 1 d 1 e [H 10 ( p,q )+ H 1 p ( p,q )]Obs. z

    1() cannot be exactly computed

    estimation in cond. H1 p( p,q) gives small contribution=approx expression in terms of power series of unperturbed averages of perturb. Hamiltonian

    z 1() = X 1 d 1 e H 10 ( p,q ) e H 1 p ( p,q )e H

    1 p =

    n =0

    nn! H1 p

    n = 1 H1 p + 2

    2 H1 p2 + . . .

    z 1() = z10 ( , . . . ) e

    H 1 p

    0

    = z 10 () 1

    H1 p +

    2

    2 H1 p

    2 + . . .0

    = z 10 () 1 H1 p 0 + 2

    2 H1 p

    20 + . . .

    cond. validity for perturbation series:

    1 H1 p 02 H1 p2

    0 n H1 pn

    0n +1 H1 p

    n +10

    = H1 p 0 = 1 st order term 2 H1 p

    20 &

    2 H1 p20 = 2

    nd order terms

  • 8/6/2019 Th St-course 10

    114/130

    CHAPTER 8. SPECIAL TOPICS 114

    iv. Termodynamic perturbation series in 2nd order

    contribution of the interesting d.f. to 1-p partition function:

    z 1() 2 z 10 () 1 H1 p 0 +2

    2 H1 p2

    0

    ln z 1 ] ln z 10 + ln 1 H1 p 0 +2

    2 H1 p2

    0

    consistent approx. in 2 nd order:

    ln 1 H1 p 0 +2

    2 H1 p

    20

    = xln(1 + x) 2 x

    x2

    2

    H1 p

    0+

    2

    2 H1 p

    2

    0 1

    2

    H1 p

    0+

    2

    2 H1 p

    2

    0

    2

    { H 1 p 0 }2 H1 p 0 +

    2

    2 H1 p2

    0 2

    2 H1 p 02

    ln z 1 ] 2 ln z 10

    0th order H1 p 0 1st order

    + 2

    2 H1 p

    20 H1 p 0

    2

    2nd orderthermod. potential (Massieu function):

    kB = N ln z1 ] 2 N ln z

    10 + N () H

    1 p 0 + N

    2

    2 H1 p

    20 H

    1 p 0

    2

    kB 20kB

    + 1kB

    +2kB

    where:

    0kB

    = N ln z 10

    1kB

    = N () H1 p 02kB = N

    2

    2 H1 p

    2

    0 H1 p 0

    2

    Obs. perturbation series for thermod. potential

    perturbation series for state eqs. & thermod. coeff.(corresp. to contribution of the interesting d.f.)Since the perturbation theory was applied to an internal degree of freedom, the interesting

    thermodynamical consequences will imply only the internal energy and the entropy.

  • 8/6/2019 Th St-course 10

    115/130

    CHAPTER 8. SPECIAL TOPICS 115

    8.2 Weak non-ideal gasesA. General results

    a) weak non-ideal gas (imperfect gas)= system of gas type composed by particles with weak interactions

    mechanical denition of the system:-syst. have translations (& internal d.f.) s = 3 + g+ weak pair-wise self-interactionscanonical cond. : ( T,V,N ) & no external elds

    Hamiltonian:

    H(p , q) =N

    j =1

    12M

    P 2j + w(R j ) + Hint1 (pj , qj ) +(1 ,N )

    j,l( j

  • 8/6/2019 Th St-course 10

    116/130

    CHAPTER 8. SPECIAL TOPICS 116

    iii. internal partition functions

    R g D i dg pj dg qjhg e H int1 (p j ,q j ) = z int1 () (1-particle internal partition function)=

    N

    j =1

    R g

    D i

    dg pj dg qjhg

    e Hint1 (p j ,q j ) = z int1 ()

    N

    iv. integrals over position vectors of CMs

    R 3 d3R 1 R 3 d3R N exp N j =1 w(R j ) +(1 ,N )

    j,l( j

  • 8/6/2019 Th St-course 10

    117/130

    CHAPTER 8. SPECIAL TOPICS 117

    B. Ursell-Meyer method for evaluation conguration integral

    a) 2-particle interaction potential energy:

    v(r ) = , r < d (repulsion hard-core)= nite < 0 , d < r < r 0 (weak attraction)

    0 , r > r 0 (negligible interaction)

    v(r ) v(r )

    rrr 0r 0 dd

    plot of typical 2-particle interaction potential (left)& plot of idealized potential with hard-core approximation (right)

    physical interpretation: short range interaction (range of potential = r0 ) weak attractive interaction ( v < 0) for d < r < r 0 impenetrable micro-systems ( hard-core)

    cond. weak non-ideality: |v(r )| 1 for r > d

    Obs. ideal gas case: Q0( ,V,N ) =1

    V N

    V

    d3R 1

    V

    d3R N = 1

    b) Ursell function: f (r ) e v (r ) 1f (r )f (r )

    rr r 0r 0dd

    11plot of typical Ursell function (left)

    & plot of approximated Ursell function using hard-core approx. (right)

    in present case:f (r ) =

    1 , r < d= nite > 0 , d < r < r 0

    0 , r > r 0 for r > d (weak attraction region):

    f (r )

    1

    v(r ) +

    1

    v(r )

    1

  • 8/6/2019 Th St-course 10

    118/130

    CHAPTER 8. SPECIAL TOPICS 118

    ideal case: f 0(r ) = e v 0 (r ) 1 v0 ( r )=0 = 0

    expressing canonical exponential of 2-particle exponential in terms of Ursell function:e v (r ) = 1 + f (r ) hard-core approx. :

    v(r ) == + , r < d= nite < 0 , r > d

    = e v ( r ) =

    = 0 , r < d= 1 + f (r ) , r > d [f (r )1 ]

    accessible volume: V = V N bwhere: b 23 d3 (sphere volume v0 = 43 d3)

    Obs. NbV N V

    b1

    conguration integral:

    Q( ,V,N ) 1

    V N V d3R 1 V d3R N exp (1 ,N )

    j,l( j d )for r > d : f (r )1 (=power expansion)notations: r jl |R j R l | & f jl f (r jl )

    exp (1 ,N )

    j

  • 8/6/2019 Th St-course 10

    119/130

    CHAPTER 8. SPECIAL TOPICS 119

    c) Ursell approximation

    integrations r > d = V d3R j (where: V = V N b)f (r jl )1 , for r jl > d = approx. 1

    st order

    Q( ,V,N ) 1 1V N V d3R 1 V d

    3R N 1 +(1 ,N )

    j

  • 8/6/2019 Th St-course 10

    120/130

    CHAPTER 8. SPECIAL TOPICS 120

    C. Deduction of thermodynamic state equations

    Z ( ,V,N ) = Z 0( ,V,N ) Q( ,V,N ) 1

    N !2M h2

    3/ 2

    z int1 () V N

    1 N V

    b +N V

    aN

    kB

    ( ,V,N ) =ThL

    ln Z ( ,V,N ) =ThL

    ln Z 0( ,V,N ) + ln Q(,V,N )

    =0kB

    ( ,V,N ) +1kB

    ( ,V,N )

    0kB

    ( ,V,N ) =ThL

    ln Z 0( ,V,N ) = N lneV N

    2M h2

    3/ 2

    z int1 ()

    1kB

    ( ,V,N ) =ThL

    ln Q( ,V,N ) =N 2

    V a b

    kB

    ( ,V,N ) =0kB

    ( ,V,N ) +1kB

    ( ,V,N )

    = N lneV

    N

    2M

    h2

    3/ 2

    z int1 () +N 2

    V a

    b

    Obs. dkB

    = U d + P dV dN

    i. pressure state eq.

    P =

    V kB ,N N

    1V

    +N 2

    V 2(b a )

    1 + x x11

    1 xP

    N

    V 1 +

    N

    V b

    N 2

    V 2a

    NkB T

    V

    1

    1 N V b N 2

    V 2a

    P +N 2

    V 2a (V N b) N k B T (van der Waals state eq.)

    ii. caloric state eq.

    U =

    kB N

    32

    ln z int1 () N 2

    V a

    U 0(, N ) = N

    3

    2

    ln z int1 ()

    N u 0()

    U ( ,V,N ) = N u0() N 2

    V a (van der Waals caloric state eq.)

    Obs. U ( ,V,N ) = N u ,V N

    where: u(, v) = u0() av

  • 8/6/2019 Th St-course 10

    121/130

    CHAPTER 8. SPECIAL TOPICS 121

    8.3 Ising modelsA. General resultsIsing model = lattice system with magnetic moments having only 2 orientations

    (up and down) [classical approx. for spins]

    magnetic moment for site j : mj = m0 j

    wherem0 = value of intrinsic magnetic momentj = 1 , orientation number ( j = 1 , N )

    state of N -particle system = conguration of magnetic moments {}= ( 1 , . . . , N )discrete statesno. cong. N = 2 N

    interactions:

    self-interactions of nearest neighbouring magnetic moments (exchange type)

    E int{ } =

    mj ml =

    J j l

    where: J m20 (= exchange integral)

    . . . = summation over nearest neighbouring pairs

    external (with a magnetic eld B):E ext{ } =

    j

    mj B= j

    m0 Bj j

    H j

    where: H m0 Btotal energy (corresponding to a conguration):

    E { } = E int{ } + E ext{ } =

    J j l

    j

    H j

    canonical partition function

    Z (; N, H ) ={ }

    e E { } ={ }

    exp

    J j l + j

    H j

    where{ }

    = summation over all congurations

    thermodynamic potential (Massieu function):

    kB

    =ThL

    ln Z

    Obs. dkB

    = U d + . . .dipolar magnetic moment:

    M=j

    mj = m0j

    j = M = m0j

    j =m0Z

    { }

    e E { }j

    j

  • 8/6/2019 Th St-course 10

    122/130

    CHAPTER 8. SPECIAL TOPICS 122

    Obs.{ }

    e E { }j

    j ={ }

    e J j l e H j jj

    j

    =1

    H

    { }

    e J j l + H j j

    =1

    Z

    H

    specic magnetization:

    M ThL MN =1N

    m0Z

    1

    Z H

    =m0N

    H

    ln Z =m0N

    H

    kB

    B. 1-dimensional Ising model with periodic boundary conditions

    model 1-dimensional lattice (chain) with periodic boundary cond. : N + j = jand attractive self-interactions (only between nearest neighbouring sites): J > 0

    E { } = J N

    j =1j j +1 H

    N

    j =1j

    = J 1 2 + 2 3 + . . . + N 1 N + N 1 H 1 + 2 + . . . + N 1 + 2 + . . . + N =

    12

    1 + 2 + 1 + 2 . . . + 1 + 2 + 1 + 2

    E { } = N

    j =1J j j +1 +

    H 2

    j + j +1

    transfer matrix method (Krammers & Wannier)Z ( ; N, H ) =

    1 = 1 N = 1e

    Nj =1 { J j j +1 +

    H2 ( j + j +1 )}

    =1 = 1

    N = 1

    e{ J 1 2 + H2 (1 + 2 )} e{ J N 1 +

    H2 (N + 1 )}

    transfer matrix:

    P e{ J + H2 ( +

    )} , & = 1

    P = P ++ P + P + P = e

    J + H e J e J e J H

    1 23N

    1 N

    B

    Z =

    1 2

    N

    P 1 2 P 2 3 P N 1 N P N 1

    = 1 2

    N

    P 1 2 P 2 3 P N 1 N P N 1=

    1

    PN 1 1

    tr PN

    where: tr M

    M = matrix trace (sum of diagonal elements)

  • 8/6/2019 Th St-course 10

    123/130

    CHAPTER 8. SPECIAL TOPICS 123

    theorem canonical partition function can be expressed in terms of eigenvalues of transfermatrix

    Z = N + + N

    where are the eigenvalues of matrix PProof:

    a. P = symmetric matrix= S = unitary diagonalizing matrix for P, so that

    P P0 = S P S 1 =p+ 00 p

    (diagonal matrix)

    b. PN can be expressed in terms of PN 0 :

    P = S 1 P0 S = PN = S 1 P0 S S 1 = I P0 S = I

    . . . S 1 = I P0 S

    = S 1 P0 P0 . . . P0

    = P N0

    S

    =S

    1

    P

    N 0

    S

    c. trace is invariant to unitary transformation:

    tr PN = tr S 1 PN 0 S=

    , , S 1 P

    N 0 S

    = ,

    S S 1

    PN 0

    A B =

    A B

    =

    S S 1

    = I PN 0

    =

    PN 0

    = tr PN 0

    d. structure of PN 0 :

    P20 =p+ 00 p

    p+ 00 p

    = p2+ 00 p2

    ...

    PN 0 =pN 1+ 0

    0 pN 1p+ 00 p

    = pN + 00 pN

    Z = tr PN = tr PN 0 = p

    N + + p

    N

    e. eigenvalue equation for transfer matrix:

    P v = v =

    P v = v

    P v = 0

    (P ++ ) v+ + P + v = 0P + v+ + ( P ) v = 0

  • 8/6/2019 Th St-course 10

    124/130

    CHAPTER 8. SPECIAL TOPICS 124

    cond. for non-trivial solution:

    det P I = 0 (characteristic eq.) = solution = + & f. the eigenvalues of P are the diagonal elements of P0 :

    S

    (eigenvalue eq.) =

    S

    P

    v = S

    v =

    S

    P

    S 1

    = P 0

    S

    v

    = v0

    = S

    v

    = v0

    P0 v0 = v0

    i.e. P0 & P have the same eigenvalues ( = invar. unitary transformation)

    explicit form P0 =p+ 00 p

    = eigenvalue eqs. :

    p+ v0+ = v0+ p v0 = v0

    =( p+ ) v0+ = 0( p ) v0 = 0

    cond. for non-trivial solutions:

    0 = det P0 I = p+ 00 p = ( p+ )( p )

    0 = 0

    p+ = + p =

    consequence:

    Z = tr PN = tr PN 0 = pN + + p

    N =

    N + +

    N

    eigenvalues of the transfer matrix:

    det P0 I =P ++

    P +

    P + P =e J + H

    e J

    e J e J H = e J + H e J H e 2 J = 2 e J + H + e J + H + e 2 J e 2 J = 2 2 e J cosh(H ) + 2 sinh(2 J )

    = 0 ; 2 2 b + c = 0 = = b b2 c = e J cosh(H ) e 2 J cosh2 (H ) 2 sinh(2J )

    = e J cosh(H ) cosh2(H ) 2 e 2 J sinh(2 J ) Thermodynamic limit

    Z = N + + N =

    N + 1 +

    +

    N

    kB

    =ThL

    ln Z = N limN

    ln Z N N

    = N limN

    N ln + + ln 1 ++

    N

    N

    = N ln + + limN

    1

    N ln 1 +

    +

    N

  • 8/6/2019 Th St-course 10

    125/130

    CHAPTER 8. SPECIAL TOPICS 125

    kB

    = N ln + = N ln e J cosh(H ) + cosh2(H ) 2 e 2 J sinh(2 J )= N J + ln cosh(H ) + cosh2(H ) 2 e 2 J sinh(2 J )

    magnetic state equationM =

    m0N

    H

    kB

    =m0N

    N

    sinh( H ) +2 cosh(H ) sinh( H )

    2 cosh2(H ) 2 e 2 J sinh(2 J )cosh(H ) + cosh2(H ) 2 e 2 J sinh(2 J )

    = m0 cosh2 (H ) 2 e 2 J sinh(2 J ) + cosh( H )cosh(H ) +

    cosh2(H ) 2 e 2 J sinh(2 J )

    sin(H )

    cosh2(H ) 2 e 2 J sinh(2 J )

    M = m0sin(H )

    cosh2 (H ) 2 e 2 J sinh(2 J )consequences:

    i. spontaneous magnetization

    M 0 = M B=0

    = M H =0

    = 0 , T

    ii. specic magnetic susceptibility

    M

    B 0

    B= = limB 0

    M

    B=

    H = m 0 Bm0 lim

    H 0

    M H

    Taylor expansion: M = M H =0

    +M H H =0

    H + O(H 2 )

    = m0M H H =0

    = m20 cosh(H )

    cosh2(H ) 2 e 2 J sinh(2 J ) sinh( H )2 cosh(H ) sinh( H )

    2 cosh2(H ) 2 e 2 J sinh(2 J )3/ 2

    H =0

    = m20

    1 2 e 2 J

    sinh(2 J )1 2 e 2 J sinh(2 J ) = 1 2 e 2 J e2 J e 2 J = e 4 J

    = m20e 4 J

    = m20 e2 J

    =m20

    kB T e

    2 J k B T

    Obs. no phase transition at nite T

    but T 0 (virtual phase trans. at T = 0)

    T

  • 8/6/2019 Th St-course 10

    126/130

    CHAPTER 8. SPECIAL TOPICS 126

    caloric state equation in the absence of magnetic eld (B= 0 H = 0)+ H =0 = e

    J cosh(H ) + e 2 J cosh2(H ) 2 sinh(2J ) H =0= e J + e 2 J 2 sinh(2J )

    e2 J 2 sinh(2J ) = e

    2 J e 2 J e 2 J = e 2 J = e J = e J + e J = 2 cosh( J )

    0kB

    = N ln + = N ln 2 cosh(J )

    U 0 =

    0kB

    = N J sinh( J )

    cosh(J )= N J tanh( J )

    C 0 = U 0T

    = U 0

    T

    = kB 2 U 0

    = kB 2 N J J cosh2(J

    )= Nk B

    J cosh(

    J )

    2

    C. 2-dimensional Ising model (Onsager solution)lattice with periodic boundary conds. thorus

    Onsager solution at zero magnetic eld

    cI (, H = 0) =2

    kB J coth(2 J )2

    2 K 1() 2 E 1() (1 )2

    + K 1()

    where:

    2 sinh(2J )cosh

    2

    (2J ) 2 tanh 2(2J ) 1

    K 1 () / 20 d 1 2 sin2 (complete elliptic integral of the 1st kind)E 1() / 20 d 1 2 sin2 (complete elliptic integral of the 2nd kind)

    asimptotic behavior near the critical point:

    cI (, H = 0) T T c2

    kB2J

    kB T

    2

    ln 1 T T c

    + lnkB T c2

    J 1

    4

    Obs. logarithmic singularity at T T chowever u I (, H = 0) = continuous = = 0 (no latent heat)presence of weak magnetic eld: Yang solution for spontaneous magnetization:

    M I (, H = 0) == 0 , for T > T c

    = m0 1 1

    sinh 4(2J )1/ 8

    , T < T c

    The 2-dimensiohnal Ising model is the only known interacting model that is exactly solvable& exhibits a phase transitiondifferent approximations: mean eld

    Bragg-Williams & Bethe-Peierlsfor 3-dimensionhal case: no exact solution is known

  • 8/6/2019 Th St-course 10

    127/130

    CHAPTER 8. SPECIAL TOPICS 127

    8.4 Theorem of energy equipartitionA. Preliminary remarks

    classical system in canonical cond. : {T,N, (V ), . . .} canonical coord. (mechanical):

    (p , q) = ( p1 , . . . , p f ; q1 , . . . , qf ) (x1 , . . . , x f , x f 1 , . . . , x 2f ) = ( x )denition domain for canonical coord. : x j x

    (m)j , x

    (M)j = D j

    2 types: a) unbounded x(m)j = & x(M)j = + = D j = Rex. : momenta, elongation (for vibrations)b) bounded x(m)j = nite & x

    (M)j = nite =

    D j = niteex. : angular position coord. (for rotations), position coord. CM

    Obs. it is necessary to use a Hamiltonian that is a derivable function(with respect to canonical coord.)

    =restriction to box domain for position coord. CM cannot be described bysingular potential w(R )

    phase space: D=2f

    j =1

    Dj

    innitesimal no. states: d =df p df q

    Gh f =

    d2f x

    Ghf Hamiltonian: H(p , q) H(x )properties: i. possib. cyclic position coord. (but Hdepends on all momentum coord.)ii. H(x ) = diff. funct. ( x )iii. asymptotic property :

    H(x ) = E is unbounded above with respect to some canonical coord.if x j = coord. having asymptotic property

    = H(x ) x j x (m)j & x (M)j + examples of coordinates having asymptotic property:

    all momentum coord. , some position coord.

    B. Equipartition lemma

    if x i = non-cyclic coord. with asymptotic property , i.e. H(x ) + forx i x

    (m)i

    x i x(M)i

    = xj H(x )

    x i= ij kB T , x j

    Proof:

    Z =

    X

    d e H =1

    Gh f D 1

    dx1

    D 2 f

    dx2

    f e H (x ) (can. part. funct.)

    F =1Z X d e H F = 1Z 1Ghf D 1 dx1 D 2 f dx2f e H ( x ) F (x ) (can. average)

    x j Hx i

    =1Z X d e H x j Hx i

    x i

    x j e H =x jx i

    e H + x j () Hx i

    e H = ij e H x j Hx i

    e H

    =

    e H x j Hx i

    = ij1

    e H

    1

    x ixj e H

  • 8/6/2019 Th St-course 10

    128/130

    CHAPTER 8. SPECIAL TOPICS 128

    xj

    Hx i

    = ij1

    1Z X d e H 1 1Z X d x i xj e H

    ij1

    1Z X d e H

    =Z

    = ij1

    X d x i x j e H= 1Gh f D 1dx1 D i 1dx i 1 D i +1 dxi+1 D 2 f dx2f D i dx i x i xj e H

    J iJ i D idxi x i x j e H = x

    (M)i

    x (m)idx i

    x i

    x j e H = xj e Hx (M)i

    x (m)i=

    as .pr .0

    = 0

    xj Hx i

    = ij1

    C. Equipartition theorem of energy

    conditions for Hamiltonian (of classical system):

    I. H(x ) = sum of independent terms

    H(x ) =a

    Ha (y a )

    where: x = ( . . . , y a , . . .) set of all canonical coordinates decomposed in disjointed sub-sets

    y a = sub-set of sa canonical coordinates

    II. Ha (y a ) has sa (sa ) canonical. coord. having asymptotic property

    separation of canonical coord. in each term of Hamiltonian:

    group of coord. having asymptotic property: y a (x(a )

    1 , . . . , x(a )s a )

    group of coord. without asymptotic property: y a (x(a )s a +1 , . . . , x

    (a )s a )

    = y a = ( x(a )1 , . . . , x

    (a )s a , x

    (a )s a +1 , . . . , x

    (a )s a ) (y a , y a )

    III. Ha (y a ) = homogeneous function degree ha with respect to the set of coord. havingasymptotic property ( y a ):Ha ( y a , y a ) = Ha (y a , y a ) , R +

    H=a

    s aha

    kB T (equipartition theorem)

    Proof:prop. III Ha (y a , y a ) = h.f. ha with respect to variab. y a (x

    (a )1 , . . . , x

    (a )s a )

    =Euler rel. :s a

    i=1

    x(a )i Hax (a )i

    = ha Haprop. I (decomposability of H)

    Hax (a )i

    = H

    x (a )i

  • 8/6/2019 Th St-course 10

    129/130

    CHAPTER 8. SPECIAL TOPICS 129

    prop. II + lemma:

    H=pr . Ia

    Ha =Eulera

    1ha

    s a

    i=1

    x(a )i Hax (a )i

    =a

    1ha

    s a

    i=1

    x(a )i Hax (a )i

    x(a )i Hax (a )i

    = x(a )i H

    x (a )i=

    lemmakB T , for all i = 1 , . . . , s a

    =a

    1ha

    s a kB T

    D. Particular cases

    a) Hamiltonian = kinetic part + potential part: H(p , q) = Hc(p , q ) + H p(q )where: i. potential Hamiltonian H p(q ) H p(q1 , . . . , ql ) depends only on position coord. having asymptotic property ( l coord.) h.f. h p with respect to all coord.

    ii. kinetic Hamiltonian Hc(p , q ) Hc( p1 , . . . , p f ; ql+1 , . . . , qf ) depends on all momentum coord. ( f coord.)a part of position coord. (that are absent in H p) h.f. hc with respect to all momentum coord.(but possible position coord. dont produce homog. properties)

    equipartition theorem

    H=f hc

    +l

    h pkB T

    ex. : lattice N atomic systems + harmonic approx.

    H=N

    i=1 a = x,y,z

    12M i

    p2ia +12

    (1 ,N )

    i.j a,b = x,y,z

    D ia,jb (x ia x0ia )(x jb x0jb )

    where: pia & x ia = Cartesian momentum & position coord. of micro-system iM i = microsystem massD ia,jb = characteristic constant of self-interactions between micro-systems

    Hc depends on 3 N momentum coord. (h.f. 2)H p depends on 3 N momentum coord. (h.f. 2)f = 3 N , l = 3 N , hc = h p = 2

    H= 3 N k B T (Dulong-Petit law)b) ideal classical system (ideal gas / ideal lattice) composed by N identical micro-systems

    H(p , q) =N

    j =1H1( pj , qj )

    where H1( pj , qj ) = Hamiltonian of -system j (s = no. d.f. of -syst. )H1( p,q) = H1c( p1 , . . . , p s ; qg+1 , . . . , q s ) + H1 p(q1 , . . . , qg )

    properties H1:i. H1 p(q1 , . . . , q g ) independent on momentum coord. dependent on some position coord. [no. of coord. = g s] h.f. h p with respect to all variab. all position coord. present in H1 p have asymptotic property

  • 8/6/2019 Th St-course 10

    130/130

    CHAPTER 8. SPECIAL TOPICS 130

    ii. H1c( p1 , . . . , p s ; qg+1 , . . . , qs ) depends on all momentum coord. & on some position coord.(but these position coord. are absent in Hc) h.f. hc with respect to all momentum variab.(but unnecessary homogeneity properties with respect to possible position coord.)

    all momentum coord. have asymptotic property

    (equipartition theorem)

    H=N

    j =1

    shc

    +g

    h pkB T = N

    shc

    +g

    h pkB T

    =1-p. average energy

    = HN

    =shc

    +g

    h pkB T

    particular: 2-atomic ideal gas in approx. harmonic vibrations decoupled to rotations

    H1 =1

    2M P 2 +

    12I

    p2 + p2

    sin2 +

    12m

    p2r +m 2

    2u2r

    =1

    2M P 2x +

    12M

    P 2y +1

    2M P 2z +

    12I

    p2 +1

    2I sin2 p2 +

    12m

    p2r +m 2

    2u2r

    s = 6 , g = 1 , hc = h p = 2

    =72

    kB T

    Obs.

    behavior of kinetic 1-p. Hamiltonian with respect to polar coord.

    Hc = funct.( ) , 0 Hc 0, = = coord. with asympt. prop. =

    H

    = kB T

    but H= homogeneous function with respect to