38
TeV Particle Astro physics II 1 Are there EHE signals? Shigeru Yoshida

TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida

Embed Size (px)

Citation preview

TeV Particle Astrophysics II

1

Are there EHE signals?

Shigeru Yoshida

TeV Particle Astrophysics II

2

Outline

• EHE CR fluxes – What’s going on?• Revisit EHE particles models • A different approach – Neutrinos!• GZK + 100 GeV ?

TeV Particle Astrophysics II

3

EHE CR fluxes

Compiled byS.Yoshida for ICRC 2005

Taken fromB.M.Connolly et al 2006

TeV Particle Astrophysics II

4

TeV Particle Astrophysics II

5

Energy estimation

• AGASA(SD) Rcore 600~1000m• HiRes(FD) Rcore < Rmoliere ~70m

Even if detector calibration is perfect…

FD

SD

TeV Particle Astrophysics II

6

Hybrid – SD+FD

P.Sommers for Auger collab.(ICRC 2005)

FD-SD Correlation exists!

ABSOLUTE value of Energy ??

Fluctuation playsa visible role in the end

TeV Particle Astrophysics II

7

Really discrepancy?

B.M. Connolly et al PRD 2006

• Poor Stats --- N(>100EeV) ~ only 11 events• Energy Uncertainty --- Escale ~ 30%

Bayes Factor Test

BF using AGASA and Auger Spectrum

BF using AGASA and HiRes1 Spectrum

data

MC from a single hypothesis

TeV Particle Astrophysics II

8

Physics may be responsible

• EGMF complicates particle trajectories• Source distribution may not be isotropic • Fluctuation in the spectra and intensities of the source - “cosmic variance”

TeV Particle Astrophysics II

9

Propagation in EGMF

Sigl, Lemoine, Biermann, Astropart.Phys. 1999Delay time [yr]

Ene

rgy

[EeV

]

0.3G pancake

E-1/3

E-1

(bohm diffusion)

E-2

(rectilinear)

TeV Particle Astrophysics II

10

Propagation in EGMFD

elay

tim

e [y

r]

Energy [EeV]

More detailed EGMF modelfollowing Large Scale Structure

Sigl, Miniati, Enelin, PRD 2004

TeV Particle Astrophysics II

11

Spectrum fluctuated!

B 100 nG

Sigl, Lemoine, Biermann, Astropart.Phys. 1999

TeV Particle Astrophysics II

12

Spectrum fluctuated!

B 300 nG!More pronounced GZK feature

Sigl, Lemoine, Biermann, Astropart.Phys. 1999

TeV Particle Astrophysics II

13

Astrophysical sources in Large Scale Structures

Sigl, Miniati, Enelin, PRD 2004

EGMF Baryon Density = Source Density

uG

nG

Observer20Mpc20Mpc

TeV Particle Astrophysics II

14

Astrophysical sources in Large Scale Structures

Sigl, Miniati, Enelin, PRD 2004

EHE Sky map

TeV Particle Astrophysics II

15

Astrophysical sources in Large Scale Structures

With EGMF~ uG

Without EGMF

Armengaud, Sigl, Miniati,PRD 2005

Intrinsic fluctuation due to• source intensities• primary spectrum• source density• observer’s location in LSS

TeV Particle Astrophysics II

16

“Favored” Scenario• Source density 2.4x10-5 Mpc-3

• Need LSS? Yes• Observer’s location Void• Mean spectral index -2.4• B at the observer 8.2 pG

So Many Unknown Parameters to fit poor data….

But allows many OTHER possibilities….

TeV Particle Astrophysics II

17

Top Down model never dies

Beyond the Standard ModelBeyond the Standard Model

Top-Down neutrinosdecays/interaction of massive particles

(topological defects, SUSY, micro black hole, …)

The main energy range: E ~ 1011-15 GeV

XX

TeV Particle Astrophysics II

18

Top Down model never dies

suppressed by (unknown) URB

Cut-off feature

Sigl, Lee, Bhattacharjee, Yoshida, PRD 1999

TeV Particle Astrophysics II

19

Top Down model never dies

Sigl, Lee, Bhattacharjee, Yoshida, PRD 1999

A bunch of

Recycling in100 GeV region

TeV Particle Astrophysics II

20

(EHE) Photons in EBL

EM cascades lead tothe diffuse -ray BGin the GeV range

URB

CMB

IR/O

Transparent

GeVEHEdE

dNE

dE

dNE 22

Energy Conservation

TeV Particle Astrophysics II

21

EHE astrophysics“Everything is transient”

“Nothing is certain”

Unknown EGMF strength Unknown EGMF configuration Unknown location of us relative to EGMF halo Unknown source spectra Unknown source distribution Unknown source intensity Large energy scale uncertainty Extremely low flux May or may not have a GZK cutoff

TeV Particle Astrophysics II

22

Neutrinos – The Last Crusader

• Forget about EGMF stuff

• Propagate cosmological distances – no local effects

• EHE -rays ? - It depends on unknown URB!

TeV Particle Astrophysics II

23

GZK

seXp K '7.2

The standard scenarioThe standard scenario

EHE cosmic-ray induced neutrinos

The main energy range: E ~ 109-10 GeV

EHE-CR

e

TeV Particle Astrophysics II

24

GZK

Yoshida, Teshima, Prog.Theo.Phys. 1993

))1(()1( 2

5

0

max

zEJzdzm

z

TeV Particle Astrophysics II

25

GZK – it’s robust

Compiled by A. Ishihara

Yoshida, Teshima. 1993

Engel, Seckel, Stanev 2001

TeV Particle Astrophysics II

26

GZK – parameter dependences

Yoshida, Teshima, Prog.Theo.Phys. 1993

Kalashev et al PRD 2002

Emax, E- J(E>10 EeV)m, Zmax J(E<1EeV)

TeV Particle Astrophysics II

27

GZK – Strong Evolution case

Yoshida, Dai, Jui, Sommers ApJ 1997

Hard primary proton spectrum +strong evolution of sources

Unlikely case, but• Flux >> Waxman.Bahcall• GeV diffuse OK with EGRAT• Reachable even by present detectors.

TeV Particle Astrophysics II

28

UHE/EHE fluxes

GZK (hard, high Emax) - Kalashev et al 2002GZK (strong evolution) - ibidGZK (standard) - Yoshida Teshima 1993TD - Sigl et al 1999Zburst – Yoshida et al 1998

TeV Particle Astrophysics II

29

ANITA constraints

Barwick et al PRL 2006(projected)

Bound from the 2003 flight.

Ruled out Z-burst

TeV Particle Astrophysics II

30

IceCube constraints

Yoshida, Ishibashi, Miyamoto, PRD 2004

~5 yr constraints

Look for downgoingor horizontal events.

TeV Particle Astrophysics II

31

IceCube EHE

100 TeV 9 EeV

TeV Particle Astrophysics II

32

IceCube EHE

IceCube Preliminary

GZK 0.35 events/year

GZK 0.31 events/year

Atmospheric 0.033 events/year

GZKGZK

Atmospheric

GZKGZK

Atmospheric

A.Ishihara, S.Yoshida for the IceCube collaboration

TeV Particle Astrophysics II

33

EHE Neutrinos + 100GeV -ray

• channel have its own drawback low statistics, poor pointing resolutions…

• channel compensates

Arrival direction

Local UHECR source VHE (Ferrigno,Blasi,Marco, Astro.Phys.2005)(Gabici, Aharonian, PRL 2006)

TeV Particle Astrophysics II

34

(EHE) Photons in EBL

URB

CMB

IR/O

Transparent

GeV

EHEEHE

dE

dNE

dE

dNE

dE

dNE

2

22

Energy Conservation

Cooling down to 100 GeV

TeV Particle Astrophysics II

35

A “point” source contribution to the diffuse flux

dE

dJ

dE

dJ

czrz

dE

dF

dE

dFdV

dE

dJ

1m2

2

11

2

3m

max3

1

365

max220

m

z1z111z1hMpc10101

23

m

zt)1(tR

z1

4

1

Diffuse Flux Flux from A source

Source density

Zmax ~4 m~4 Z~2 (cosmological distances) dE

dJH

dE

dF3

01

365

100Mpc10107

“R-2”

TeV Particle Astrophysics II

36

ICTs for point sources?Takenfrom W. Hofman 2006

= 2x10-7 Mpc-3

= 2x10-9 Mpc-3

Note:AGASA clusterslocal ~10-4~10-5

Too few as UHRCR sources

TeV Particle Astrophysics II

37

A “multi-particle” campaign

I would like a Munich beer..

Helles ?

What are the right ascension/

declination?

TeV Particle Astrophysics II

38

Summary

EHE signals are Extremely High Epicurean money/time (your career) consuming to explore Hard to interpret data. Large Scale Structure? ~ 10-5 Mpc-3? Neutrino may be a rescue Top Down model produces easily-reachable signals. GZK detection is a probe to cosmological sources.

-- Anita, Auger (>10EeV) IceCube (100 PeV-EeV) Search for 100 GeV ’s with ICTs is worth to try