24
TEST REPORT Universal Bench – Regular GAR Test R1234yf vs. R134a on PQ35 AC loop SANDEN Technical Centre (Europe) GmbH Am Taubenbaum 35-37 61231 Bad Nauheim GERMANY L A T E X

Testreport GAR Test R1234yf - DuPont · PDF fileGAR Test R1234yf vs. R134a ... 1.1 log p,h–Diagramm from R134a and R1234yf . . . . . . . . . . a ... C Internal HX inlet temperature

  • Upload
    trannhi

  • View
    238

  • Download
    2

Embed Size (px)

Citation preview

T E S T R E P O R T

Universal Bench – Regular

GAR Test R1234yf vs. R134aon PQ35 AC loop

SANDEN Technical Centre (Europe) GmbHAm Taubenbaum 35-37

61231 Bad NauheimGERMANY

LATEX

Project Number ..................... 0107 - 452

Responsible engineer ............. Christian Spiegel

Customer ............................... TCE engineering

Test period ............................ January / February 2008

Date ....................................... 15.02.2008

———————————— ————————————B. Zeitvogel, Test Manager Europe C. Spiegel, Test Engineer

ii

Setup Information

System:

VW Golf V (Loop PQ35)

Refrigerant:

R134aR1234yf

Compressor:

Type SANDEN, PXE16Model #0000S/N 6210807699

Evaporator:

only Evaporator (no HVAC)

System Charge:

R134a 618gR1234yf 610g

SP-10 110ml

iii

Contents

1 Objective of Tests 1

2 Test Constructions 1

3 Symbols, Units and Abbreviation 2

4 Sensor List 44.1 Refrigerant side . . . . . . . . . . . . . . . . . . . . . . . . . 44.2 Air Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Execution of tests 55.1 Charge Determination . . . . . . . . . . . . . . . . . . . . . . 65.2 Sensor verification test . . . . . . . . . . . . . . . . . . . . . 75.3 Test Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 85.4 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.4.1 Test series I R134a . . . . . . . . . . . . . . . . . . . 85.4.2 Test series II R1234yf . . . . . . . . . . . . . . . . . . 85.4.3 Test series III R1234yf TXV . . . . . . . . . . . . . . 9

6 Results 9

7 Summary 17

A Fluiddata a

iv

List of Figures

2.1 AC–System Golf V Loop: PQ35 . . . . . . . . . . . . . . . . 14.1 AC–cycle with sensor position . . . . . . . . . . . . . . . . . 45.1 Charge determination R134a & R1234yf . . . . . . . . . . . . 65.2 Sensor verification test . . . . . . . . . . . . . . . . . . . . . 76.1 Air temperature evaporator outlet . . . . . . . . . . . . . . . 96.2 Cooling capacity air side . . . . . . . . . . . . . . . . . . . . 106.3 Cooling capacity refrigerant side . . . . . . . . . . . . . . . . 106.4 COP air side . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.5 COP refrigerant side . . . . . . . . . . . . . . . . . . . . . . 116.6 Superheat evaporator out . . . . . . . . . . . . . . . . . . . . 126.7 Superheat compressor in . . . . . . . . . . . . . . . . . . . . 126.8 Subcooling TXV in . . . . . . . . . . . . . . . . . . . . . . . 136.9 Mechanical power compressor . . . . . . . . . . . . . . . . . . 136.10 Refrigerant massflow . . . . . . . . . . . . . . . . . . . . . . 146.11 Evaporation pressure . . . . . . . . . . . . . . . . . . . . . . 146.12 Discharge pressure . . . . . . . . . . . . . . . . . . . . . . . . 156.13 Delta pressure condenser . . . . . . . . . . . . . . . . . . . . 156.14 Condenser inlet temperature . . . . . . . . . . . . . . . . . . 166.15 Evaporator outlet temperature . . . . . . . . . . . . . . . . . 166.16 Body temperature . . . . . . . . . . . . . . . . . . . . . . . . 171.1 log p,h–Diagramm from R134a and R1234yf . . . . . . . . . . a1.2 log p,h–Diagramm from R134a . . . . . . . . . . . . . . . . . b

v

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 1

1 Objective of Tests

Target is to compare the new “Global alternative refrigerant” (GAR) R1234yffrom DuPont and Honeywell with the actual refrigerant R134a.The comparison will be regarding a real “Drop-in”.

2 Test Constructions

The tests were conducted on the Universal Bench - Regular in TCE.The following pictures are showing the setup of the system.

(a) System overview (b) Sensor grid condenser out

(c) Sensor grid evaporator in (d) Sensor grid evaporator out

Figure 2.1: AC–System Golf V Loop: PQ35

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 2

3 Symbols, Units and Abbreviation

Note: All pressures are absolute pressures!

Symbol Unit Explanation

pV 1 bar Suction pressurepV 2 bar Discharge pressurepc1 bar Condenser inlet pressurepc2 bar Condenser outlet pressurepo1 bar Evaporator inlet pressurepo2 bar Evaporator outlet pressurepE1 bar Expansion valve inlet pressurepcc bar Crank case pressurepHX1 bar Internal HX inlet pressure high pressure sidepHX2 bar Internal HX outlet pressure high pressure sidepHX3 bar Internal HX inlet pressure low pressure sidepHX4 bar Internal HX outlet pressure low pressure side

tV 1◦C Saturated temperature based on pV1

tV 1h◦C Suction temperature

tV 2◦C Saturated temperature based on pV2

tV 2h◦C Discharge temperature

tc1◦C Saturated temperature based on pc1

tc1h◦C Condenser inlet temperature

tc2◦C Saturated temperature based on pc2

tc2u◦C Condenser outlet temperature

to1u◦C Evaporator inlet temperature

to2◦C Saturated temperature based on po2

to2h◦C Evaporator outlet temperature

tE1◦C Saturated temperature based on pE1

tE1u◦C Expansion valve inlet temperature

tcc◦C crank case temperature

tHX1u◦C Internal HX inlet temperature high pressure side

tHX2u◦C Internal HX outlet temperature high pressure side

tHX3h◦C Internal HX inlet temperature low pressure side

tHX4h◦C Internal HX outlet temperature low pressure side

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 3

ϕcL1 % r.H. Relative humidity condenser inletϕcL2 % r.H. Relative humidity condenser outletϕoL1 % r.H. Relative humidity evaporator inletϕoL2 % r.H. Relative humidity evaporator outlet

tcL1◦C Condenser inlet air temperature

tcL2◦C Condenser outlet air temperature

toL1◦C Evaporator inlet air temperature

toL2◦C Evaporator outlet air temperature

dtc1h K Superheat condenser inletdtc2u K Sub cooling condenser outletdtE1u K Sub cooling expansion valve inletdto2h K Superheat evaporator outletdtV 1h K Superheat compressor inletdtV 2h K Superheat compressor inletdpoL Pa Differential air pressure over HVAC

QoR W; kW Cooling capacity refrigerant sideQoL W; kW Cooling capacity air sideCOPR 1 COP refrigerant sideCOPL 1 COP air sidePV W; kW Power consumption compressorU0 V Voltage evaporator/HVAC blowerI0 A; mA Current evaporator/HVAC blowernV 1/min Compressor revolution speedMV Nm Compressor torque

mcL kg/h Mass flow air condensermoL kg/h Mass flow air evaporatormR kg/h Mass flow refrigerant

Abbreviation Explanation

COP Coefficient of performanceSC Sub coolingSH Super heatPWM Pulse width modulationHVAC Heating ventilation and air conditioning unit

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 4

4 Sensor List

All sensors and measurements according to TCE specification.

4.1 Refrigerant side

Pressure and temperature are measured inside of the pipes and at the samepoint. The mass flow is measured in the liquid line after the condenser.Other construction variational from the standard is explained below.

pV2

tV2h

pcc

pV1tV1h

pc1

tc1h

pc2

tc2u

pE1tE1u

po1to1

po2

to2h

tcc

Figure 4.1: AC–cycle with sensor position

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 5

This test set–up included the following sensors:

Compressor inlet: pressure & temperatureCompressor outlet: pressure & temperatureCondenser inlet: pressure & temperatureCondenser outlet: pressure & temperatureExpansion valve inlet: pressure & temperatureEvaporator outlet: pressure & temperature

4.2 Air Side

Air temperature measurement designed with thermocouple (TC) grids at theheat exchangers including one PT100 sensor. Humidity inlet and outlet ismeasured each with one sensor.

Condenser inlet: PT100Condenser outlet: PT100, 12×TCEvaporator inlet: PT100, 4×TCEvaporator outlet: PT100, 12×TC

5 Execution of tests

The tests have been conducted according to the following specifications.These conditions were used for the previous GAR tests, too.The data handling and interpretation is realized in MS Excel. The durationof the test is 30 minutes with constant conditions and the logging rate is 1Hz. The outcome of the average calculation is the result.Between the change from R134a to R1234yf the system was not flushed andthe oil was not changed. The first R1234yf test series were made as real“Drop-in” with no modification on hardware.

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 6

5.1 Charge Determination

The amount of refrigerant was verified by a charge determination using thefollowing conditions:

Evaporator side:

Air inlet temperature: toL1 = 40 ◦C

Air inlet humidity: ϕoL1 = 50 % r.H.

Air mass flow: moL = 350 kg/h

Condenser side:

Air inlet temperature: tcL1 = 40 ◦C

Air mass flow: mcL = 2200 kg/h

Compressor speed: nV = 2500 1/min

Charge determination R134a

0

5

10

15

20

25

30

400 450 500 550 600 650

charge [g]

sup

erh

eat

/ su

bco

olin

g [

K]

dtV1h (SH before compressor) dto2h (SH after evaporator) dtE1u (SC before TXV) dtc2u (SC after condenser)

(a) R134a

Charge determination R1234yf

0

5

10

15

20

25

30

35

40

350 400 450 500 550 600 650

charge [g]

sup

erh

eat

/ su

bco

olin

g [

K]

dtV1h (SH before compressor) dto2h (SH after evaporator) dtE1u (SC before TXV) dtc2u (SC after condenser)

(b) R1234yf

Figure 5.1: Charge determination R134a & R1234yf

Refrigerant charge:

• R134a: 618g

• R1234yf: 610g

• (Original PQ35 system charge R134a: 525g)

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 7

5.2 Sensor verification test

This test is to check all sensors of the system according to the C4 QMS testprocess. The air is fully conditioned and only the compressor is not running.

Sensor verification

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900

time [s]

tem

pera

ture

[ºC

]

10

15

20

25

30

35

40

rela

tive

hum

idity

[%]

tcL1tcL2avg tcL2toL1toL2phi cL1phi cL2phi oL1phi oL2

Figure 5.2: Sensor verification test

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 8

5.3 Test Condition

Test nV mcL tcL1 moL toL1 ϕoL1 toL2 (target)

No. 1/min kg/h ◦C kg/h ◦C % r.H. ◦C

1.1 800 750 25 175 25 50 8,01.2 1500 1200 25 175 25 50 8,01.3 2500 2200 25 175 25 50 8,02.1 800 750 25 350 25 50 8,02.2 1500 1200 25 350 25 50 8,02.3 2500 2200 25 350 25 50 8,03.1 800 750 40 175 25 50 8,03.2 1500 1200 40 175 25 50 8,03.3 2500 2200 40 175 25 50 8,04.1 800 750 40 350 40 50 min4.2 1500 1200 40 350 40 50 min4.3 2500 2200 40 350 40 50 min

5.4 Test procedure

Target for all tests was to reach 8 ◦C evaporator air outlet temperature (toL2).This was reached by setting the PWM-signal of the ECV. To avoid the slip-stick effect of the wobble plate, which occurred by small angle changes, thePWM-signal was interrupted for a second.

5.4.1 Test series I R134a

This test series is used as a base line for comparison.

5.4.2 Test series II R1234yf

This test series is demonstrating a real “Drop-in” R1234yf.

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 9

5.4.3 Test series III R1234yf TXV

For the third test series the TXV setting was changed. The screw of theTXV was turned two thirds to the right to reach 3 K superheat evaporatoroutlet at test condition 3.2.

6 Results

The results are showing a big deviation between cooling capacity calculatedover refrigerant side (QoR) and air side (QoL). Herefrom is the deviation inCOP large, too. This applies to the tests with part load (1.1 – 3.3). Thecause is a wet outlet out of the evaporator. The calculation is based on a dryoutlet. Hence, the enthalpy difference is bigger. In the tests with high load(4.1 – 4.3) the difference between QoR and QoL is small. For a comparisonof the cooling capacity the air side has to be used.

Air temperature evaporator outlet

0

2

4

6

8

10

12

14

16

18

20

22

tem

pera

ture

[ºC

]

R134a 8,2 7,8 7,7 8,0 7,7 8,0 7,9 7,6 7,9 18,6 12,6 10,6

R1234yf 8,4 8,5 8,4 7,9 7,8 8,1 8,0 7,6 7,9 19,1 14,2 11,9

R1234yf TXV 8,0 8,5 8,3 7,6 7,7 8,2 8,1 7,9 7,9 20,1 15,0 12,4

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.1: Air temperature evaporator outlet

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 10

Cooling capacity air side

0

1

2

3

4

5

6

7

8

cool

ing

capa

city

[kW

]

R134a 1,21 1,26 1,28 2,48 2,54 2,48 1,25 1,26 1,23 4,64 6,28 6,78

R1234yf 1,18 1,16 1,19 2,48 2,52 2,47 1,24 1,29 1,24 4,52 5,94 6,49

R1234yf TXV 1,20 1,17 1,18 2,56 2,54 2,40 1,21 1,26 1,27 4,30 5,74 6,41

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.2: Cooling capacity air side

Cooling capacity refrigerant side

0

1

2

3

4

5

6

7

8

cool

ing

capa

city

[kW

]

R134a 3,09 2,99 3,12 3,78 3,90 3,86 3,04 3,07 3,38 4,41 5,91 7,50

R1234yf 1,53 1,44 1,49 2,19 2,34 2,34 1,53 1,71 1,96 4,13 5,51 6,60

R1234yf TXV 1,12 1,07 1,10 2,34 2,25 2,27 1,09 1,11 1,17 3,90 5,46 6,48

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Faulty calculation of the cooling capacity due to a wet refrigerant outlet out of the evaporator. The calculation is based on a dry outlet and therefore the enthalpy different is to big.

Figure 6.3: Cooling capacity refrigerant side

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 11

COP air side

0

1

2

3

4

5

CO

P [1

]

R134a 2,42 1,91 1,39 2,76 2,59 2,23 1,40 1,25 0,99 2,49 2,07 1,74

R1234yf 3,28 2,27 1,61 4,35 3,65 2,91 2,14 1,74 1,25 2,63 2,02 1,76

R1234yf TXV 3,87 2,79 1,90 3,88 3,79 2,89 2,69 2,17 1,67 2,49 2,01 1,81

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.4: COP air side

COP refrigerant side

0

1

2

3

4

5

6

7

CO

P [1

]

R134a 6,18 4,53 3,39 4,20 3,98 3,48 3,42 3,04 2,73 2,37 1,95 1,92

R1234yf 4,24 2,83 2,01 3,84 3,39 2,76 2,63 2,32 1,98 2,40 1,87 1,79

R1234yf TXV 3,60 2,56 1,78 3,54 3,37 2,73 2,41 1,91 1,54 2,26 1,91 1,83

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Faulty calculation of the cooling capacity due to a wet refrigerant outlet out of the evaporator. The calculation is based on a dry outlet and therefore the enthalpy different is to big.

Figure 6.5: COP refrigerant side

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 12

Superheat evaporator out

0

2

4

6

8

10

12

14

∆ te

mpe

ratu

re [K

]

R134a 0,3 0,0 0,4 0,2 0,2 0,4 0,5 0,3 0,2 7,7 5,8 4,4

R1234yf 0,0 0,0 0,0 0,9 1,5 1,5 0,0 0,0 0,0 11,3 11,3 9,6

R1234yf TXV 1,9 3,6 4,8 5,8 5,8 6,7 3,0 2,8 0,4 13,5 13,6 13,0

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Test condition 3.2 used for modification of TXV-setting. TXV-screw turned two thirds (2/3) to the right to reach a super heat of 3 K.

Figure 6.6: Superheat evaporator out

Superheat compressor in

0

5

10

15

20

25

30

35

∆ te

mpe

ratu

re [K

]

R134a 0,7 0,4 0,8 1,3 1,0 1,8 1,1 1,0 0,7 17,8 19,5 12,6

R1234yf 0,6 0,6 0,7 14,8 14,9 15,6 1,7 1,7 3,6 22,1 25,7 26,7

R1234yf TXV 21,6 24,1 25,6 19,3 19,5 20,0 30,9 33,4 31,4 24,8 28,4 30,2

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.7: Superheat compressor in

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 13

Subcooling TXV in

0

2

4

6

8

10

12

∆ te

mpe

ratu

re [K

]

R134a 1,9 1,6 3,0 7,8 6,6 4,9 4,3 4,1 3,4 7,7 9,2 9,4

R1234yf 4,9 3,6 3,0 7,6 6,3 4,4 6,3 5,1 4,4 7,4 9,5 10,1

R1234yf TXV 5,5 3,4 1,9 8,4 6,3 4,2 5,6 3,9 2,8 9,2 11,3 11,6

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.8: Subcooling TXV in

Mechanical power compressor

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Pow

er [k

W]

R134a 0,50 0,66 0,92 0,90 0,98 1,11 0,89 1,01 1,24 1,86 3,03 3,90

R1234yf 0,36 0,51 0,74 0,57 0,69 0,85 0,58 0,74 0,99 1,72 2,94 3,69

R1234yf TXV 0,31 0,42 0,62 0,66 0,67 0,83 0,45 0,58 0,76 1,73 2,85 3,55

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.9: Mechanical power compressor

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 14

Refrigerant massflow

0

50

100

150

200

250

mas

sflo

w [k

g/h]

R134a 69,8 66,9 67,9 89,3 88,8 85,1 81,2 79,0 85,4 138,9 178,8 206,3

R1234yf 42,4 39,5 40,5 63,6 65,5 64,3 51,5 56,4 63,6 159,4 207,6 225,3

R1234yf TXV 30,6 28,8 29,3 66,5 61,1 59,9 35,2 35,6 38,1 150,2 197,1 211,6

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.10: Refrigerant massflow

Evaporation pressure

0

1

2

3

4

5

6

pres

sure

[bar

]

R134a 3,74 3,70 3,67 3,52 3,49 3,51 3,78 3,76 3,69 5,00 3,89 3,35

R1234yf 4,10 4,10 4,09 3,88 3,82 3,84 4,02 3,97 3,96 5,01 4,07 3,53

R1234yf TXV 3,81 3,90 3,85 3,69 3,73 3,78 3,94 3,84 3,88 4,92 3,96 3,43

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.11: Evaporation pressure

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 15

Discharge pressure

0

5

10

15

20

25

pres

sure

[bar

]

R134a 8,64 8,22 7,80 11,16 9,80 8,61 14,08 12,85 11,99 24,23 21,91 18,00

R1234yf 8,53 7,94 7,65 10,18 9,15 8,27 13,15 12,23 11,72 21,10 20,53 17,34

R1234yf TXV 8,47 7,84 7,47 10,60 9,00 8,17 12,56 11,79 11,24 22,31 20,48 17,17

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.12: Discharge pressure

Delta pressure condenser

0,00

0,20

0,40

0,60

0,80

1,00

∆ p

ress

ure

[bar

]

R134a 0,22 0,19 0,18 0,20 0,20 0,23 0,20 0,17 0,21 0,37 0,55 0,81

R1234yf 0,07 0,05 0,06 0,11 0,13 0,14 0,05 0,05 0,10 0,44 0,65 0,93

R1234yf TXV 0,05 0,05 0,06 0,12 0,12 0,13 0,04 0,03 0,04 0,36 0,63 0,85

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.13: Delta pressure condenser

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 16

Refrigerant temperature condenser inlet

0

20

40

60

80

100

tem

pera

ture

[ºC

]

R134a 34,5 32,5 31,1 44,2 39,4 35,2 53,3 49,6 46,9 94,3 97,6 85,9

R1234yf 33,6 30,9 29,6 48,4 47,2 47,5 50,8 47,8 46,1 84,3 88,6 83,3

R1234yf TXV 46,4 49,5 52,4 53,6 50,4 50,6 65,7 67,8 67,2 89,3 90,8 86,6

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.14: Condenser inlet temperature

Refrigerant temperature evaporator outlet

0

5

10

15

20

25

30

tem

pera

ture

[ºC

]

R134a 7,2 6,6 6,8 5,3 5,2 5,6 7,8 7,4 6,7 23,5 13,9 8,1

R1234yf 8,3 8,3 8,2 7,5 7,6 7,8 7,5 7,1 7,0 26,1 19,4 13,3

R1234yf TXV 8,0 10,3 11,2 10,8 11,2 12,5 10,1 9,1 7,0 27,8 20,8 15,8

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.15: Evaporator outlet temperature

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 17

Body temperature

0

20

40

60

80

100

tem

pera

ture

[ºC

]

R134a 15,3 20,0 38,2 35,1 41,6 50,9 35,2 43,8 53,6 78,6 83,7 80,8

R1234yf 29,0 34,6 47,2 46,7 52,6 61,9 49,5 53,5 61,8 71,9 78,3 81,0

R1234yf TXV 47,8 58,1 68,6 49,9 54,8 63,6 64,1 71,5 78,0 76,2 79,7 83,2

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

Figure 6.16: Body temperature

7 Summary

A real “Drop-in” with R1234yf is showing promising results. Especially inpart load condition the COP is better than the base line with R134a.

The increasing of super heat results in a better COP in part load condi-tion. For full load the COP was equal but the cooling capacity was worse.

After the changing of the TXV setting the evaporator outlet temperaturewas unstable. This caused a wavering super heat, in other words hunting.

Investigation with a dedicated TXV for R1234yf will be the next test. Fur-ther activities are planed by running a PQ35 pool car with R1243yf.

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 a

A Fluiddata

log p,h-Diagramm R134a / R1234yf

1

10

100

150 200 250 300 350 400 450 500Enthalpy [kJ/kg]

Pre

ssur

e [b

ar]

R1234yf

R134a

Figure 1.1: log p,h–Diagramm from R134a and R1234yf

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.

SANDEN Technical Centre (Europe) GmbH – Test DepartmentGAR Test R1234yf vs. R134aProject-Nr.: 0107–452 Name: C. Spiegel Date: 15.02.2008 b

Enth

alp

y [

kJ/

kg]

14

01

60

18

02

00

22

02

40

26

02

80

30

03

20

34

03

60

38

04

00

42

04

40

46

04

80

50

05

20

54

05

60

Pressure [Bar]

0,5

0

0,6

0

0,7

0

0,8

0

0,9

01

,00

1,0

0

2,0

0

3,0

0

4,0

0

5,0

0

6,0

0

7,0

0

8,0

0

9,0

01

0,0

0

20

,00

30

,00

40

,00

50

,00

s = 1,70

s = 1,75

s = 1,80

s = 1,85

s = 1,90

s = 1,95

s = 2,00 s =

2,05 s = 2,10

s = 2,15

s = 2,20 s =

2,25

-40

-40-3

0

-20

-20-1

0

0

0

10

20

20

30

40

405

0

60

607

0

80

80

90

10

0

10

0

12

01

40

16

0

0,0015

0,00

20

0,00

30

0,0

040

0,0

050

0,0

060

0,0

070

0,0

080

0,0

090

0,0

10

0,0

15

0,0

20

0,0

30

0,0

40

0,0

50

0,0

60

0,0

70

0,0

80

0,0

90

0,1

0

0,1

5

0,2

0

0,3

0

0,4

0

0,5

0

0,6

0

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

x =

0,1

00

,20

0,3

00

,40

0,5

00

,60

0,7

00

,80

0,9

0

s =

1,0

01

,20

1,4

01

,60

v= 0

,002

0

v= 0

,003

0

v= 0

,004

0

v= 0

,006

0

v= 0

,008

0

v= 0

,010

v= 0

,015

v= 0

,020

v= 0

,030

v= 0

,040

v= 0

,060

v= 0

,080

v= 0

,10

v= 0

,15

v= 0

,20

DT

U,

Dep

artm

ent

of

Ener

gy E

ngin

eeri

ng

s in

[kJ/

(kg K

)].

v in [

m^3/k

g].

T in [

ºC]

M.J

. S

ko

vru

p &

H.J

.H K

nudse

n.

06-1

0-1

1

R134a

Ref

:D

.P.W

ilso

n &

R.S

.Bas

u,

AS

HR

AE

Tra

nsa

ctio

ns

1988,

Vo

l. 9

4 p

art

2.

Figure 1.2: log p,h–Diagramm from R134a

Copyright of Sanden Technical Centre (Europe) GmbH.Copying, distribution or disclosure to third parties is strictly prohibited.