8
79 * AGH University of Science and Technology, Cracow, Department of Process Control; [email protected] MECHANICS Vol. 25 No. 2 2006 Waldemar R¥CZKA * TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS SUMMARY The paper shows the structure of a mechanical spring with controllable stiffness and outlines the temperature con- trol systems solutions. This spring was developed in the Department of Process Control, AGH University of Scien- ce and Technology (AGH-UST). Its main components are bars made from shape memory alloy (SMA). The uni- que properties of SMA are outlined. Of particular importance are parameters that affect the spring special beha- viour. The spring was tested in an experimental set-up and the compiled test results are provided. Chosen results was shown for different excitations and working temperatures. Obtained results show that the spring built using SMA has many interesting features. It is clear that the spring changes its stiffness during changing working tem- perature. Unfortunately spring stiffness has nonlinear behaviour so that in the paper was proposed a nonlinear mathematical model of the spring. Model was developed having in mind its usage. It was built for designing a controller spring stiffness. Keywords: shape memory alloy, spring BADANIA LABORATORYJNE SPRʯYNY O STEROWANEJ SZTYWNOCI W artykule przedstawiono konstrukcjê mechaniczn¹ sprê¿yny o sterowanej sztywnoci, jak równie¿ uk³ady steruj¹- ce jej temperatur¹. Sprê¿ynê tê opracowano w Katedrze Automatyzacji Procesów Akademii Górniczo-Hutniczej w Krakowie. G³ównym elementem sprê¿yny s¹ prêty wykonane z metalu z pamiêci¹ kszta³tu SMA (Shape Memory Alloy). W artykule skrótowo przedstawiono podstawowe w³aciwoci SMA, przy czym zwrócono szczególn¹ uwagê na parametry istotne dla w³asnoci sprê¿yny. Sprê¿ynê przebadano na stanowisku laboratoryjnym. Wybrane wyniki przedstawiono w niniejszym artykule. Badania przeprowadzono dla ró¿nych wymuszeñ i temperatur. Otrzymane wyniki pokazuj¹, ¿e sprê¿yna zbudowana z SMA ma wiele interesuj¹cych w³aciwoci m.in. to, ¿e sztywnoæ sprê- ¿yny zmienia siê wraz ze zmian¹ jej temperatury pracy. Niestety charakterystyki sprê¿yny s¹ nieliniowe, dlatego zaproponowano nieliniowy model matematyczny. Model zosta³ zbudowany na potrzeby syntezy regulatora sztywno- ci sprê¿yny. S³owa kluczowe: metal z pamiêci¹ kszta³tu, sprê¿yna 1. INTRODUCTION Springs are mechanical elements often employed in ma- chines as structural components, energy-accumulating de- vices or the elements controlling the dynamic characteris- tics of the system. There are linear progressive springs (also referred to as “hard”) and constant force degressive springs (“soft”) [6, 3]. Springs are key components of vibrating sys- tems. Generally, spring stiffness together with the mass of an object, which usually remains beyond our on-line control, determine the natural frequency of vibrations of mechanical systems. In vibrations isolation systems springs are utilised to shape the frequency characteristics; that is why most di- verse spring embodiments are available to make use of dif- ferent spring properties. Since it is sometimes necessary to change the characteristics of the whole plant or its selected sub-system, the stiffness coefficient has to be precisely con- trolled. Such springs enable us to design vibration isolation systems that afford controlled variations of plant characteris- tics. The control of the stiffness coefficient is achieved through the incorporation of an additional unit comprising elastic elements or pneumatic springs and springs made from materials with controllable properties, such as shape memory alloys (SMA). When ordinary (e.g. steel) springs are added, the changes in the stiffness coefficient are discrete whilst the addition of pneumatic or SMA springs leads to smooth, continuous variations of this parameter. This paper shows the structure and the control strate- gy for a spring with controllable stiffness, supported by the test results. Such spring allows the design of vibrating systems 1) with controllable dynamic characteristics. This group includes vibration-reduction and vibration-genera- tion systems. Variation of the stiffness coefficient allows for modification of natural frequencies which extends the ap- plicability range of such systems and in some cases enables the implementation of solutions which so far have remained impracticable for technical reasons. The only parameter of the vibrating systems that could be modified so far was the damping ratio. When springs with controllable stiffness are employed, another key parameter can be varied easily: stiff- ness coefficient. Stiffness of a metal spring depends on its shape, dimen- sions, and metal properties, particularly the Young modulus of the spring material. While a designed spring is being fab- ricated, it is given a proper shape and dimensions. In practi- cal applications geometric parameters of springs are not modified while they remain in service. Though one can 1) The term vibrating systems refers to vibrating mechanical sys- tems, i.e. those comprising mass, elastic and damping elements.

TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

Embed Size (px)

Citation preview

Page 1: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

79

���������� �����������

� ��������������������� �!"��#�� �$�%�� ��&%'�( ��)�����*������������ +&� �,- . $#��!/�(

���������� �����������

0 !�) �12�34��

"�"���56�*1���0�"��5�"1577�87�"�66��

�������

��� ��� ����� �� ������������ ��� ��� �� ������������������� ��� ��������� ����������� �� ���� ������������� ������� ��������������� �������� ��� ����� ��� ��!� ���������"������#������$��%&���� ��������� ������� ��� ��������� '�%&����(�� )��� � ��� ���������� �� � ��� � �� ����� � �� ������ ����� '���(�� �� ����*�� ��������� ��� ���� �� ���������+�� � ������ �� ������ ��� �� � � ����� � �� ����� �� ������� ���� �� � � ������ �� ������� � �� ����� ��� �� ,������ �� ������ ��� �� �������� ���� ������� �� ��� ����� #���� ������� �� ����� ���� �������� ,��� ������ ��� ���-���� ���� ������ +�� ���� ������� ���� � �� �� ������� ������ ��������� ��� ��� ���������� � ������ )�� ��� �� �� � �� �� ������� � ���� ���� ��������� ������� � ������ ���-���� ����� ����� �������� ���� ������� ��������� �� ������ �� � ����� ��� � �� ��� �� � ��� � �� �������� � ������ �� �� ��� �� ����� ��� �� �������� ����� � �� � ����� ���� ��� ����� ���� �� ��� )�� � �� ������ ���� �������� ���������������������������

�������.� � �������� ����$� ������

/�!�0)��1�/+���+��203��"�45�0��+���3�+6�032��7��60+8#)

6� ���-��� ��9��� ������ -������-�:;��� ���9�<� ���;=���� �� ����� �:� �9�����>��$� : -� �?���=� �-@ ��� ����:<��� ::� ���� ���<�� ���;=��;� �;� ��� ��� ��� �� A ���9� ����� ��9 �:�� "����?�� �- ����� %?����9��&�����9:��A� -����� %@?����� ������ ���;=���� �<� ��;��� ��-�� �� 9��� ��� 9� � ��;��<� -�9� @��� ���� '� ������������(��6� ���-��� �-�?����� ��9��� ������ ����� �����@ >����>��� ���$� ��9�� �9��� 9��?����� �9�9�?��<� �� �;� �� � ����� ��������� ��@ ���>��� ���;=����� ���;=��;���9� � ���� � �� �����-�� � ��� ����:�����6��� ������-���9��� ������ �� ����:�9��� ���-���� / � �� � ��9���� �9���� �� � �?=���� �����9B� �� ���� ����� +��9�� �����-�� ��- 9�:<$� =� ���;=�� � 9����� � � 9� ����� ����� ������:<�����@ >����>��������� ��$� =� �9�����>C� ���;�=���� 9���� � ��;� �� 9� 9� 9�� �<� ::� ���� ����� �� ���� 0������ � � -������-�� ���;=���� �<� ��������$� �� ���9 �������� ��� ���������������� �� ���9��������� 9��� @� 9����� ��� � � ����9��� ����9�� ���� ��� � �9������>��� ���;=����

���� ��������.��� �� 9�� ��;��<�-�9� @��$� ���;=��

�� ����������

Springs are mechanical elements often employed in ma-chines as structural components, energy-accumulating de-vices or the elements controlling the dynamic characteris-tics of the system. There are linear progressive springs (alsoreferred to as “hard”) and constant force degressive springs(“soft”) [6, 3]. Springs are key components of vibrating sys-tems. Generally, spring stiffness together with the mass ofan object, which usually remains beyond our on-line control,determine the natural frequency of vibrations of mechanicalsystems. In vibrations isolation systems springs are utilisedto shape the frequency characteristics; that is why most di-verse spring embodiments are available to make use of dif-ferent spring properties. Since it is sometimes necessary tochange the characteristics of the whole plant or its selectedsub-system, the stiffness coefficient has to be precisely con-trolled. Such springs enable us to design vibration isolationsystems that afford controlled variations of plant characteris-tics. The control of the stiffness coefficient is achievedthrough the incorporation of an additional unit comprisingelastic elements or pneumatic springs and springs madefrom materials with controllable properties, such as shapememory alloys (SMA). When ordinary (e.g. steel) springsare added, the changes in the stiffness coefficient are discrete

whilst the addition of pneumatic or SMA springs leads tosmooth, continuous variations of this parameter.

This paper shows the structure and the control strate-gy for a spring with controllable stiffness, supported bythe test results. Such spring allows the design of vibratingsystems1) with controllable dynamic characteristics. Thisgroup includes vibration-reduction and vibration-genera-tion systems. Variation of the stiffness coefficient allows formodification of natural frequencies which extends the ap-plicability range of such systems and in some cases enablesthe implementation of solutions which so far have remainedimpracticable for technical reasons. The only parameter ofthe vibrating systems that could be modified so far was thedamping ratio. When springs with controllable stiffness areemployed, another key parameter can be varied easily: stiff-ness coefficient.

Stiffness of a metal spring depends on its shape, dimen-sions, and metal properties, particularly the Young modulusof the spring material. While a designed spring is being fab-ricated, it is given a proper shape and dimensions. In practi-cal applications geometric parameters of springs are notmodified while they remain in service. Though one can

9: �������;�<���� � ��� =����� ���<����������� � >

��� ������� ������ ��� ��� ���������������� �

Page 2: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

80

������������

���� !"#$��%� !"� �&�#!��#''�('��� $$!���

�� ����

���# ��� �!*#���� *��(���������"��)?)@ �!���� ���

�� ����

��)(� ���������/ ��

imagine a spring whose shape or dimensions would be var-ied smoothly and continuously, the spring structure wouldhave to be very complex. Modification of spring shape anddiameter is not viewed as an effective stiffness control strat-egy. However, application of SMA springs affords us themeans to modify the spring stiffness via the control of theYoung modulus. The Young modulus of SMA spring mate-rials varies with the change in the temperature of an alloy[2, 4]. There are some materials which change their pro-perties under the action of other physical phenomena, forexample magnetic fields.

SMA springs were investigated by Wang Z. G. (severalpublications: [9, 10]) and [1] who concentrated on manu-facturing techniques, spring properties and control strate-gies. Toi et al. [8] did the FEM modelling of helical springs.All these papers concerned helical springs, widely appliedas drive elements in motor industry, household appliancesand in various control valves. Vibration reduction by theuse of SMA composites has been explored extensively.SMA strips or plates might be glued to structural elementsto change their properties and behaviour. The applicationsof SMAs to vibration reduction were explored by Williams[12, 13], who studied one degree of freedom (1-DOF) and2-DOF systems and patented a SMA string to be applied invibration control systems [2, 11].

This study focuses on the structure of controllable-stiff-ness springs which might be utilised in vibration reductionsystems, for example in the driver seats. It is a flat spring,designed to shape the dynamic characteristics of the systems."#� �(���$ �� ) !� ���) ���-� A��� ��/) �� B��CDEF%

"�CD�F%�/C�F �!�C����F*�"#���)+� F)� ��0"F.The characteristic transformation temperatures for this alloyare: Mf = 30oC, Ms = 45oC, As = 50oC, Af = 70oC. Mecha-nical properties of this alloy are summarised in Table 1.

The properties of spring steel are given for comparison.If the Young modulus for austenite is twice the value for

martensite, the stiffness coefficient of a SMA spring can bemodified through the control of temperature of the springmaterial, affording us the means to change the stiffness co-efficient even by 100F. For the considered alloy NTC01the spring stiffness for the SMA austenite (high-tempera-ture) phase should be no less than 200F of the value at themartensite (low-temperature) phase.

�� ������������������

Springs are widely applied constructional elements andhence various types are available, including helical, ring,disk, diaphragm, flat springs. Several spring embodimentswere analysed, taking into account the manufacturing costs,repair procedures, replacement of elastic elements, the pres-ence of elastic elements after thermal treatment or untreat-ed, modifications of alloy composition. Of particular im-portance were: complexity of the manufacturing process,heating potentials, maximum deflection ±30 mm, the rangeof stiffness controllability and applicability range of com-posite materials.

For the purpose of comparison, calculations are per-formed for several types of Nitonol (NTC01) springs andfor springs made of steel 65G. The bars considered all hadthe circular cross-section and identical geometric parame-ters: length l = 180 mm, diameter d = 4.6 mm. Several springtypes were considered: a cylindrical helical spring (a singlecoil 57.3 mm in diameter), a spring in the shape of a cantile-ver rod, a spring in the shape of a supported beam, a springin the form of a tensile bar. The calculations were performedfor the spring steel 65G for comparison, and for two phasesof Nitinol (austenite, martensite). In order that the results becomparable, the equivalent state of stress is always taken,no matter what the type of stress.

Results are compiled in Table 2.

Parameter name Martensite Austenite 65G

Young modulus 15 GPa 30 GPa 211 GPa

Ultimate Tensile Stress 1000 MPa 650 MPa 800 MPa

Spring type Spring material

Young modulus

[GPa]

Equivalent stress [MPa]

Maximal load [N]

Maximal displacement

[mm]

Stiffness [N/m]

NTC01 austenite 30 340 227 s = 63.7 3571 NTC01 martensite 15 340 227 s = 127 1785

Cylindrical helical

Steel 65G 211 419 279,8 s = 11 2529 NTC01 austenite 30 650 34,5 f = 101.7 339

NTC01 martensite 15 650 34,5 f = 203.5 170 Cantilever

bar Steel 65G 211 800 42,5 f = 17.8 2386

NTC01 austenite 30 650 138 f = 25.4 5427 NTC01 martensite 15 650 138 f = 50.9 2713,5

Supported beam

Steel 65G 211 800 170 f = 4.46 38169 NTC01 austenite 30 650 10802 y = 3.9 2769800

NTC01 martensite 15 650 10802 y = 7.8 1384900 Tensile

bar Steel 65G 211 800 13295 y = 0.68 19481000

Page 3: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

81

���������� �����������

bars each. Test results for the latter case are elaborated inthe further sections. It is readily apparent that the stiffnesscoefficient of such set can be varied over a very wide range.Even for one configuration of bars the stiffness coefficientchanges by 100F during the martensite-to-austenite phasetransition. This modification is smooth and each intermedi-ate value of the stiffness parameter can be achieved.

�� ����������������

Since the stiffness of a SMA spring changes as the result ofthe change of temperature of a spring material, the follow-ing heating strategies were considered:

�� �������� ���� �G�������������������������

�� ��������� ������������� �G�����������������

������������������� ������ ��������� �����������

������������ �G�������������������������

��� ��� ������� ���������� ������ �� ����� ������

�������������������������������� ���������� ��

�G���������������� �������������������� ��

� ��������������������!������������������������

�����"������������������������������������������

�� � ����������� �� ����� ���� ��� ����� ��� �����

�����������������H ������ �����������������

����������� ������������������������ ��������

������������������ �������� ������������������

������ ��� �������������������� ��� ����I��

���� ��������������� ����������

�� !������� ���������� ������ ���� ������ "�����������

� �������!������������� ���� ���������������� ��

���������� �������������������������������

��������������������H

#� ����������

$� �����������

J� ������������

!������������������������������������� � ������

�������������������������� ������ �����������

�����������������

�� %�������������������������������������������

����������� ���������������������������������

� �����������������������������������������

�������� �������� �����������������������

������������� ����������� �������������������� ���

������������������� �����������������������

��� ������� ����������� ����� ���� ������ �������

������������������I����� ��������������!����

��������� ��� ������������������������������

������������������� ���������� ����� ���������

G�� ���������������

�� ����

�K )( �������(���$���������

Number of bars Stiffness k for martensite [N/m]

Stiffness k for austenite [N/m]

1 2713,5 5427

12 32561 65122

14 37988 75976

It is readily apparent that the spring in the shape ofa cantilever rod is the softest whilst that in the shape ofa tensile bar seems the hardest. It has been found out thatspring stiffness depends on its shape and material proper-ties. The comparison of springs made from NTC01 andfrom steel 65G suggests that the stiffness of NTC01 springsis by one order of magnitude smaller, though the major ad-vantage of NTC01 is that the stiffness of springs made fromthis material may changed even by 100F during an austen-ite-martensite phase transition. A spring in the shape ofa supported beam is selected from among spring embodi-ments shown in Table 2 (see Fig. 1). The fabricated springprototype (Fig. 2) consists of 6 SMA bars.

The spring shown in Figure 2 is designed such that itsbasic stiffness can be easily modified through changing thenumber of bars (rods) or through the replacing its bars forthose made from different alloys. Springs can operate insets, connected in series or in parallel. Table 3 provides thestiffness values for SMA springs made from SMA materialswholly composed from the austenite or martensite phase.

Table 3 compiles the ultimate stiffness values, stiffnessparameters for a spring comprising one SMA bar and fora set of two springs connected in parallel, each having sixbars and the set of two parallel SMA springs, with seven

��������(���$�&��#������ �!���������CAC$���� ���&

���������#�) ���!� $� )�� ���(���$B�����+ �*

Page 4: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

82

0 !�) �12�34�

"�"���56�*1���0�"��5�"1577�87�"�66��

���������� ���$� �)���CAC$���� ���&

��������8 ��-��#�)����#� ��/ ��������)����(���$

��)(�� �/�������� ��������"�����$�� �!A$���� ���&

�����

����

���

���

Heating methods utilising microwave and induction arerejected due to large costs of heating equipment. The indi-rect resistance method was chosen here because of lowcosts and simplicity of its implementation. The heating ele-ments are in the shape of plates (Fig. 3), with the powerrating 150 W for the supplying voltage 24 V. Figure 4shows the block diagram of an actuating system for springtemperature control. The system comprises two voltage-controlled power regulators and four transformers supply-ing the heating plates so the temperature of SMA bars canbe controlled from any device generating voltage signals inthe range 0÷10V: a PC with a measurement and controlcard, a generator or a potentiometer voltage divider.

�����������������

Springs were tested in the experimental set-up shown inFigure 5, in the Laboratory of Dynamic Systems and Struc-tures [5] of the Department of Process Control AGH-UST.It consists of an electrohydraulic pulsator used to generatevarious types of exciting signals (sine, square and randomexcitations). The pulsator is controlled from a microproces-sor equipped with a DSP processor. This set-up allows forstatic and dynamic testing of 1-DOF and several DOFsstructures. The spring considered in this study was testedaccordingly.

The main purpose of the testing programme was to estab-lish the static and quasi-static characteristics of the spring.The spring, or rather two springs connected in parallel, weretested as shown schematically in Figure 6.

Figure 7 shows the springs (4) ready for tests and theforce sensor (5). The blocked upper platform (1) is connect-ed mechanically with one end of springs via the force sen-sor (5) and the platform (2) whilst the motion of the springsbodies is induced by an electro-hydraulic pulsator viathe lower platform (3).

������#�) ������#�)��# ��� �����)���/��/���)A/((��

( ����)%�A( ����)%&A �&��( ����)

Page 5: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

83

���������� �����������

This configuration enables us to implement nearly allspring deflection patterns. Measurements of relative dis-placement of springs, displacement of platform (3) with re-spect to platform (1) corresponding to spring deflection,force generated by the spring and temperature of SMA bars

yield the static and dynamic characteristics of the spring.Force measurements were taken with an force transducer(5), displacements were measured with a Micropulse LinearTransducer. Bar temperature measurements were taken witha thermocouple mounted at the bar midspan, that is at thepoint where maximal deflections would occur.

The main aim of the tests was to find a functional rela-tionship between the force generated by a spring and itsdeflection or temperature.

Two groups of characteristics were acquired:

)* ����������)(�� �/���������� ��!�� ������%

�* ���������(���$!�� ������ ������ ����)(�� �/���

������ !"��#$��%�&'�!�%(!��) !�" *$%�*%�+�) �"% *

These characteristics were obtained for spring deflectionbeing constant. The deflection was preset by a cylinder ina hydraulic pulsator and remained constant throughout thisstage of testing: 5, 10 or 15 mm. Temperature of SMA barswas varied in the range 20÷150oC (Fig. 8).

Thus obtained characteristics are shown in Figures 8and 9.

A temperature – force relation is shown in Figure 8. Thesampling frequency was 100 samples/s, measured quanti-ties were archived with the use of a PC. Figure 9 shows theforce – temperature relationship for the deflection value 5,10, 15 mm. It was assumed that at 20oC the force generatedby the spring should be 0 N, hence we get the force varia-tion due to the temperature change.

It appears (see Fig. 9) that force generated by a spring(when deflection remains constant) is strongly affected bytemperature. This dependency is nonlinear, involving a hys-teresis. Spring deflection remains constant, hence the forcegenerated by the spring results from the change of its stiff-ness coefficient.

���,�6����D$���� ��!+��#��(���$B * �!��)(�� �/��B+*���#��/����������)�%����(���$!�� ������)�C))

�����-��(���$&��#������ + ������������ !���������

����K�

*

+*

Page 6: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

84

0 !�) �12�34�

"�"���56�*1���0�"��5�"1577�87�"�66��

�����.�(���$��������#��/����������)(�� �/��%����(���$+��!��$�%)�%)�C))

������/��6 )� ����# � �������������#��(���$DL�B�*

���!��( ��)����%)�%)�%&�C)) �!��)(�����

���� � !"��#$��$'!*�+�) �"% *

�%�" *$%�*%�%�&'�!�%(!�

These characteristics were obtained for temperatures thatremained constant throughout the whole test procedure.The temperature levels were: 22, 70, 80, 85, 90, 95, 100oC.Slow-changing low-frequency sine excitations were ap-plied, with the amplitude 5, 15, 25, 30 mm. Measurementsof temperature, displacement and force were taken in thesame manner as in the test a). Figures 10 and 11 show theforce vs. spring deflection relationship for various levels ofultimate deflection (amplitude of the exciting signal) andfor selected spring temperatures.

The force – deflection curves shown in Figure 12 suggestthat spring stiffness strongly depends on the temperature ofSMA bars. By changing this temperature, we are able tomodify the stiffness of the spring set (two springs eachhaving 6 SMA bars) in the range 26 000÷54 000 N/m.

The range of the stiffness coefficient achieved throughtemperature changes was determined experimentally. Thusobtained ultimate stiffness values were compared with pre-dicted (computed) ones, provided in Table 3.

It seems that experimental values are lower than thosefound analytically ones by nearly 20'. A through scrutinyof characteristics in Figures 10 and 11 leads us to the con-clusion that spring stiffness depends on the deflection w andthe direction of its action.

Page 7: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

85

�()� *!)�+� �$,*��$$--.

���������6 )� ����# � ����������DL�B�*����K��� ���� )( ��/!���%)�%)�%&�C))

�!��)(�� �/��)����

����������# � �������������#��(���$DL�B�*%��)(�����%)����

�� ���0�������

Spring force in the function of temperature, for spring de-flection is hysteretic (Fig. 9). Therefore hysteretic model ofthe spring based on hyperbolic tangent was proposed in theform shown below.

Hyperbolic operator on T function at t was defined as:

( ) ( )0

( )( ) = ⋅ +∫ �

t

a bF T t y h t u t dt y (1)

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( ) 0.5 1 tanh / 2

0.5 1 tanh / 2

a

a

h t sign T t k T t x k a

sign T t k T t x k a

′= ⋅ + ⋅ ⋅ − − ⋅ +

′+ ⋅ − ⋅ ⋅ − + ⋅

(2)

where:a, k, xa , ya , yb – parameters of hysteresis,

T – temperature.

�������0�����

It is readily apparent that the stiffness coefficient of SMAsprings can be controlled. The properties of a spring con-sidered in this paper can be controlled by electric methods.The variability range of controlled stiffness is really wide,amounting to even 100'. Tests revealed that spring charac-teristics are nonlinear. Ultimate spring behaviours dependon the SMA composition and spring construction. Springswith controllable stiffness might be employed in vibrationisolation systems, e.g. in Frahm absorbers [7].

Page 8: TESTING OF A SPRING WITH CONTROLLABLE STIFFNESS

86

/� �����01)23 �(��!*456 �70!*4/!��)5*�0588 98(��!66*(��

:$; 9�I�����C2��C��������C��H������� � ��� ���� ��������/���<����7/*#M=M�!�9*=J�-#�-MJ>.�J

:J; 9��������9�H�� ��������������/���<����7/*#MMN�!�9*=J��-#�#$JN=�=

:>; ������C%�(�� /�C����� 9�������C0�O�HC������ ��� � ���� ������������������$--$

:,; 3�����<�� O��5������0��7 ��� O�H����������������������������� ��������������������������!+�<��P�Q������ ������0�����I�%��R���P���?�3���S��3�������������R#MMM���#-J@##$

:.; 3��� O�H��������������������3������4������#MM.� !�9*=J�=.J#-�-.�,

:N; 0T�<��/�H������������������������ ���E��F������������������7SP���<��� 4�������������$$�<�J�$--J����J=M@JM>

:=; ���CU��8��CO�9������C��HC ������!���������� �����"�������������#$����� %�"�������� &���'���� �"� ������ ��� � ���� � (�������������� )�������� ��� ����������� �� � =$� !����H $-@$#� $-->����#.=,@#.MJ

:M; /��C2�4�� 2�CV� ��� 6��CV�%�� 8��C8�9�� 2��C��� ���C8�7��

/��C8���H %������ �"� )�*�� ���� � )����� � ��������� � ����!+�������������������������(��� J>,�$--J����$>M@$,>

:#-; /��2�4��2�V����6�U�W��/��8���H)������������� �!"�"���� ��� )�*�������� ������ ��� � ���� �� ������������� ����$--,����#MM@$-,

:##; /� ����3� ��)���4����9�������0�O�HF������������������,�������7����������HA�.$M--JN�7� ��������X��#=��������$--#

:#$; /� ���� 3�� )��� 4�� 9������� 0�H ������'��-����'�� ���������,�������������� ����� ��O����� ����������+��������$>M",��$--$����=J,@=>=

:#J; /� ����3� ��)���4�)�����9�������0�H% ���������������"����������� ����� �������'��������'�������������������O����� ����������+��������$=-�$--,����$##@$J>

The main shortcoming is that the stiffness values of SMAsprings are by an order of magnitude lower than for steel.Besides, NTC01 have poorer fatigue endurance than springsteel 65G. These features have to be considered while ex-ploring potential applications of SMA springs. On the other,smooth and easy change of the SMA spring stiffness re-mains its chief benefit.

This unique property makes controllable springs appro-priate for many diverse fields of applications, including vi-bration reduction systems where they can be easily tuned tovariable operating conditions.

At the present stage the research on SMA spring stiffnessseems a relatively easy task. Novel, improved SMA materi-als displaying new properties facilitate the design process,manufacturing, operation and maintenance of controllable-stiffness springs.

Acknowledgements

The research work was supported by Polish government asa part of the research program No 4T07A 04129 conductedin 2005–2008.

��)�!�*"�$

:#; � ������C%��C0����4�HC��������� �*�������.�����-����.���/*)�GH0��-������������"�������� ���$--$