Test4_StudyGuide.pdf

  • Upload
    mssss

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 8/17/2019 Test4_StudyGuide.pdf

    1/3

    MA 242-001: Calculus III, NCSU, Summer II 2015

    Test 4 Study Guide

    Test 4 covers sections 13.1 - 13.5, 10.5, 12.6.

    Treat the sample tests and practice problems as additional review,  not  as a complete representa-tion of the questions you’ll be given on the exam-  you are responsible for all material we covered (i.e., all learning objectives below).

    13.1 - Vector Fields

    •  Know the definition of a vector field on  R2 and  R3.

    •  Define a conservative vector field  Fand its potential function.

    Supplemental Homework Problems: 1-7 odd, 11-17 odd, 21-25 odd, 29, 31Extra Practice Problems: 6, 14, 18, 24, 26, 32

    13.2 - Line Integrals

    •  Define a line integral along a path  C .

    •  Evaluate the line integral of  f (x,y,z ) along  C  =  r(t).

    •  Parameterize curves such as circles and line segments.

    •   For curve  C  given by  r(t),  a ≤ t ≤ b,

     C 

    f (x,y,z )  ds =

       ba

    f  (r(t))r  dt.

    •  Evaluate line integrals of vector fields  F. For curve  C  given by  r(t),  a ≤ t ≤ b, C 

    F · dr =

       ba

    F(r(t)) · r(t)  dt

    .

    •   If  F  = P i  + Q  j  + R k, then C 

    F · dr =

     C 

    P dx + Q dy + R dz 

    .

    •  Find the work done moving a particle along a path through a vector field.

    Supplemental Homework Problems: 1-17 odd, 16, 19, 21, 22, 33, 35, 36, 39-41Extra Practice Problems: 2, 4, 6, 8, 14, 20, 34

  • 8/17/2019 Test4_StudyGuide.pdf

    2/3

    MA 242-001, NCSU, Summer II 2015 - Test 4 Study Guide page 2

    13.3 - The Fundamental Theorem for Line Integrals

    Theorem 1.  Let  C  be a smooth curve given by  r(t),  a ≤ t ≤ b. Let  f  be a differentiable function of two or three variables where  ∇f   is continuous on  C . Then 

     C 

    ∇f   · dr =  f (r(b)) − f (r(a))

    .

    Theorem 2.   Let  F be a vector field that is continuous on an open connected region

    D. If 

     C 

    F · ds is independent of path, then F is conservative.

    Theorem 3.   If  F  is a conservative vector field, then  P y  = Qx.

    Theorem 4.   Let  F   = P   i   + Q   j  on an open, simply connected set   D. If   P y   =   Qx, then  F   is conservative.

    •   Identify open, connected and simply connected sets

    •  Test if a two-dimensional vector field is conservative.

    •  Find the potential function  f  of conservative vector field  F.

    Supplemental Homework Problems: 1-23 odd, 10, 14, 20, 31, 33, 34, 35Extra Practice Problems: 4, 6, 8, 12, 18, 19*, 24, 25*, 28*, 32

    13.4 - Green’s Theorem

    Theorem 5.   Let   C  be a positively-oriented, piecewise smooth, simple closed curve in the   xy-plane bounding  D. If  P   and  Q  have continuous partial derivatives on an open region containing D, then   

    P dx + Q dy =

     D

    (Qx − P y)   dA

    .

    •   State Green’s Theorem.

    •  Use Green’s Theorem to find the area of a region  D  bounded by  C .

    A(D) =  C 

    −x dy =  C 

    y dx = 1

    2 C 

    x dy − y dx

    .

    Supplemental Homework Problems: 7, 13, 17

  • 8/17/2019 Test4_StudyGuide.pdf

    3/3

    MA 242-001, NCSU, Summer II 2015 - Test 4 Study Guide page 3

    13.5 - Curl and Divergence of Vector Fields

    •   curl(F) =  ∇× F  = (Ry − Qz) i  + (P z − Rx) j  + (Qx − P y) k

    •  Find the curl of  F.

    •  Test if a 3-dimensional vector field  F  is conservative.

    •  Find the potential function  f  of conservative vector field  F.

    •  Determine whether a vector field  F  is the curl of another vector field.

    Theorem 6.  curl (  ∇f ) = 0 

    Theorem 7.   If   F   is a vector field defined on   R3 whose component functions have continuous partial derivatives and curl( F) = 0, then  F  is conservative.

    Theorem 8.   If  F   is a vector field whose component functions have continuous second partials,then div(curl(  F)) = 0.

    Supplemental Homework Problems: 1-7 odd, 13-17 odd*, 18Extra Practice Problems: 4, 6, 14, 16, 19*, 25*

    10.5 - Parametric Surfaces

    •   Parameterize surfaces in cylindrical and spherical coordinates.

    •   Parameterize  z  =  f (x, y),  y =  f (x, z ), or  x =  f (y, z ).

    Supplemental Homework Problems: 1-5 odd, 24,13-25 oddExtra Practice Problems: 2, 4, 6, 20, 22, 26

    12.6 - Surface Area

    •  Find the area of a parameterized surface.

    •   If parametric surface  S  is given by the equation  r(u, v) = x(u,v)  i  + y(u,v)  j  + z(u,v)  k,where (u,v) are over the domain  D, then the surface area of  S   is

    A(S ) =

     D

    ru × rv  dA

    where ru  = xu   i + yu  j  + zu  k,  rv  = xv   i + yv   j  + zv  k.Supplemental Homework Problems: 1-11 odd, 6Extra Practice Problems: 2, 4, 7, 10