27
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto, G. Ruscica, M.C. Sutera, B. Wojtsekhowski

Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Embed Size (px)

DESCRIPTION

The Continuous Electron Beam Accelerator Facility The high resolution and high luminosity (polarized) CEBAF electron beam: -Current: up to 200 µA -Energy: up to 6 GeV -Energy resolution : 2.5* Duty factor: 100% (continuous beam) -3 Experimental halls: A, B and C JLab, Newport News (VA)

Citation preview

Page 1: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab

F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto, G. Ruscica, M.C. Sutera, B.

Wojtsekhowski

Page 2: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

OUTLINE-JLab facility-Super BigBite Spectrometer-GEM Tracker-Mainz Test Beam Facility-Experimental Data

Page 3: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

The Continuous Electron Beam Accelerator Facility

The high resolution and high luminosity(polarized) CEBAF electron beam:-Current: up to 200 µA-Energy: up to 6 GeV -Energy resolution : 2.5*10-5

-Duty factor: 100% (continuous beam)-3 Experimental halls: A, B and C

JLab, Newport News (VA)

Page 4: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

CEBAF UPGRADE Two superconducting linear accelerators (LINACs) Arches with Magnets that form a circuit of 1.4 KmElectrons Energy of 10.9 GeV for Hall A, B, C and 12 GeV for new Hall DCurrents Sum: 5 μA for Hall D and 85 μA for the others

Searching for exotic MesonsProton and Neutron structure

Nucleus StructureParity Violation

Research fields

Page 5: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

SUPER BIGBITE SPECTROMETER 1/3

-High Luminosity: 8 x 1038 cm-2s-1

-Forward angle (down to 6°)-Large Momentum Range (2-10 GeV/c)-Moderate angular acceptance (64 mrad) -High rate capability (1 MHz/cm2)

Flexibility:use the same detectors indifferent experimental setup

Page 6: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

SUPER BIGBITE SPECTROMETER 2/3

1st tracker 2nd tracker 3rd tracker

Tracking Detector Configuration

HCAL

(X,Y) x2 (X,Y) x2

(X,Y) x2 (X,Y) x2

(U,V) x2

(U,V) x2(U,V) x2

Number of Layers

Area (cm2)

First Tracker 6 40*150Second Tracker 4 50*200Third Tracker 4 50*200HCAL 2 80*300

Page 7: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Silicon tracker 10 x 20 cm2

Dipole Two GEM planes 40 x 150 cm2

CH4 polarimeterSecond GEM trackerSecond CH4 polarimeter

Third GEM tracker

Calorimeter

Resistant to shock Rate > 5 ∙105 Hz/mm2

Nominal spatial resolution of 60 μmReadout flexibilityLow Cost

Why GEM detector?

SUPER BIGBITE SPECTROMETER 3/3

Page 8: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

GEM FOILGas Electron Multiplier

GEM foil: 50 μm Kapton + few μm copper on both sides with70 μm holes, 140 μm pitch

Strong electrostaticfield in the GEM holes

VGEM = 500 V → E ≈ 100 kV/cm

P = 140 μmD = 70 μm d = 50 μm

Page 9: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Multi-GEM Detectors

CathodeDrift Region (3 mm)GEM FoilInduction Region (1 mm)Anode (readout plane)Maximum Gain 103

CathodeDrift Region (3 mm)GEM FoilTransfer Region (2 mm)Induction Region (1 mm)Anode (readout plane)Maximum Gain 106

Single-GEM Triple-GEM

Page 10: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

GEM Prototype

GEM Prototype (10x10 cm2) built and tested at I.S.S. Roma

Assembling the GEM chambers parts requires a careful quality control at several check points and specific tools for gluing, heating, testing, cleaning

Page 11: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Assembling the first 40x50 cm2 module

11

Stretching

Gluing the nextframe with spacers

Tendigem made in Catania

Page 12: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

12

FULLY equipped GEM module

• 18 front-end cards

• 2304 channels

(front end cards on the othe side)

• 7 independente HV levels

Page 13: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

-Three GEM Chambers: 10x10 cm2

-Electron Beam energy 400 – 800 MeV

-Strip distance 0.4 mm

-Chamber distance 50 cm

-Carbon Target

-Lead glass and Plastic Scintillators

Beam test @ MAINZ 1/2Electron beam produced at MAMI (MAinz MIkrotron) at the Nuclear Physics Institute of Mainz

MAMI is a continuous wave accelerator

Page 14: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Beam test @ MAINZ 2/2

By using APV 25 chips, it is possible to register different parts of the signal (every 25 ns), event by event.

-Different run performed: with beam without beam (pedestal)

-Different angles between the electron beam and the plane of the GEM chambers

-Different HV settings

-Different Chamber positions

Page 15: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

DATA ANALYSIS

-More than 50 beam run analyzed

-Study of the Pedestal

-Study of the Signal

-Study of the Clusters

-Beam Profile reconsctruction

-Tracking and Efficiency evaluation

Page 16: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

SIGNAL OBTAINED BY USING A 90Sr SOURCE

ID RUN HV ID CHAMBER

218 2750 V 0 (FRONT)233 3950 V 1 (MIDDLE)240 3950 V 2 (BACK)

FRONT CHAMBER

MIDDLE CHAMBER

Page 17: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

PEDESTAL RUN STUDY

ADC mean value obtained each 100 events in a single pedestal run: values change in different samples!IDEA: we decide to create a pedestal for each beam run by using the adc mean values of 200 events for all samples (1200 values).

Page 18: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

signal

New pedestal

Beam run before the pedestal suppression

Beam run after pedestal suppression

SIGNAL

signal

ADC(A.U.)

Strips

1 strip = 0,4 mm

Page 19: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

SIGNAL IN DIFFERENT SAMPLES

SAMPLE 1 SAMPLE 2 SAMPLE 3

SAMPLE 4 SAMPLE 5 SAMPLE 6

Page 20: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

SIGNAL SHAPESignal shape:

- τ1 and τ2 are the slope and falling time of the signal, respectively;- t0 is the stop time;- A is the Amplitude;

Signal Amplitude for different strips.

Peak around strip # 200 (ok!) and more or less 0 in all the others.

2

0

1

0

1 tttt

eeA

Page 21: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

STUDY OF THE CLUSTERS 1/2

A tree is filled, event by event, with different informations for each beam run:-Number of clusters;-Number of strips for each cluster;-Index of the first strip of each cluster;-ADC sum of each cluster;-Centroid of each cluster;

CLUSTERS NUMBER STRIPS NUMBER OF EACH CLUSTER

RUN #446 – 300 EVENTS – SAMPLE 2: from 0.25 to 0.50 ns

Page 22: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Centroids plot Adc sums of single cluster vs strip

VERY LOW PILE-UP!

STUDY OF THE CLUSTERS 2/2

Page 23: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

Examples of CENTROID EVALUATION for 2 RUN with different Energy

ABOUT 4-6 mm400 MeV 800 MeV

Beam Profile

Page 24: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

TRACKING AND EFFICIENCY1/2

Z

X

-POSSIBLE EVENT IF THERE IS A CLUSTER IN ALL CHAMBERS

-HIT POSITION WITH σ FOR EACH CHAMBER

-WE CONSIDER X = a*Z + b with a and b obtained by linear fit

-BY USING P0 (x0, y0) and P1 (x1,y1) WE OBTAIN a AND b

-WE CONSIDER P3 (x3,y3) and if lx3 -az3 –bl<σ3 THAN THE SIGNAL OF THE 3 CHAMBERS BELONGS TO THE SAME PARTICLE OTHERWISE IT IS REJECTED

Page 25: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

TRACKING AND EFFICIENCY 2/2

EFFICIENCY=NUMBER OF EVENTS IN TRAJECTORY

NUMBER OF EVENTS (TRIGGER)

RESULTS FOR A RUN WITH HV = 3950 V

ID CHAMBER POSITION EFFICIENCY

0 Z=0 95%

1 Z=50 CM 85%

2 Z=100 CM 85%

Page 26: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

CONCLUSIONS:

-GEM Tracker operated stably during the test at Mainz-Study of pedestal and signal-Study of clusters-Beam Profile was reconsctructed-Preliminary Efficiency was evaluated -GEM Tracker is a complex detector and improvement is still in progress

Page 27: Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,

THANKS FOR YOUR ATTENTION