21
Test Beam at IHEP,CA S ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES will be upgraded as BEPC / BES , it is necessary to do beam test for prototypes of sub-detectors to be used at BES . After two years of construction, the Test Beams E1 E2 and E3 have been established successfully based on BEPC LINAC at IHEP, CAS. In December 2003, technical appraisal approved the Test Beam work. The Test Beam has been operating smoothly, several experimental results have been obtained based on them. Also, the Test Beam is necessary to search for more applications.

Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Embed Size (px)

Citation preview

Page 1: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Test Beam at IHEP,CASZHANG Liang sheng, Test Beam Group

Introduction

BEPC/BES will be upgraded as BEPC / BES , it is Ⅱ Ⅱ Ⅲnecessary to do beam test for prototypes of sub-detectors to be used at BES . After two years of construction, the Test Beams ⅢE1 , E2 and E3 have been established successfully based on BEPC LINAC at IHEP, CAS. In December 2003, technical appraisal approved the Test Beam work. The Test Beam has been operating smoothly, several experimental results have been obtained based on them. Also, the Test Beam is necessary to search for more applications.

Page 2: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

E1, E2, E3 Beams

Among them, E1 is for Beijing Slow Positron Facility specially; E2 can be a primary electron or positron beam respectively, and it forms a secondary particle field as the E2 beam hit a fixed target; E3 is based on E2 and used offering a single particle beam of e / or / / p

respectively. The momentum of E3 beam can be adjusted continuously, that is available from 0.2 to 1.1GeV/c for , 0.4 to 0.9GeV/c for and 0.5 to 1GeV/c for protons, with error < 1%. By means of MWPCs, spatial resolution of the hit position of an E3 beam particle is about 0.2 to 0.4 mm; counting rate of negative E3 beam can be adjusted up to about 3 – 4 per second.

π e

e

Page 3: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

BEPC LINAC outputs pulsed 1.3GeV/c electron or positron beam, each pulse is 2.5 ns wide, its repetition frequency is 12.5Hz; for electron beam, it is about 0.8 x electrons/second.

As an 1.3GeV/c electron/positron beam hit a fixed target, possible reactions to be happened at the target and afterwards are as follows:

1, electro-production or photo-production of : e + p + n + e; e + n + p + e; e + p +p + e; + n + p ; + p + p ; + p + n ; 2, production via resonance:

1110

o o

;,

)1520(

)1440(

)1232(

NN

N

Nn

Page 4: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

3, production due to decaying:

+ , ;

4, electromagnetic shower and so on;

So, the secondary particles will be , , protons,

neutrons and so on.

o

e ,

Figure 1 shows the layout of the Test Beams E1, E2 and E3. We use quadruple magnets LQ1, LQ2 to collect thosecharged particles with production angle of about , useanalytic magnets D1, D2 to select those charged particles withnecessary sign and momentum, use Cherenkov counter toselect electrons, scintillate counters to measure TOF. Then

015

Page 5: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

we make coincidence/veto for signals respectively fromCherenkov counter and scintillate counters to select/excludeelectrons. During offline analysis, we separate pion/protonaccording to TOF. So, most particles can be identified. Meanwhile, the intensity of the E3 beam has been reducedto less than 1/pulse, that means most non-empty pulsescontain one particle, furthermore, we use MWPCs to excludethose pulses with more than 1 particles according to hitposition and amplitude distribution to get “single particlebeam” .

Page 6: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Central momentum of the E3 beam can be represented as:

; where B be the field of D2 magnet, the radius of E3 beam bending in the field of D2. It can be calculated according to the formula: ; where the effective length of D2, the turning angle of E3 beam in the field of D2. In order to increase the momentum accuracy, we measure B, and many times to reduce the error, they are all at now, and expected momentum error is 0.44% according to .

; )2/(2

1 SineffL;

Momentum accuracy

)()(299792.0)/(0 mTeslaBcGeVp

effL

410

effL

2

1

)2/sin(

)2/cos(

0

0

0 eff

eff

L

L

B

B

P

P

Page 7: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

We also made measurements many times to select theapplied current for D1 to meet the momentum for D1 withthat of D2 (the stability of power supply is better than 2* ). Furthermore, we use an alternative way to confirm themomentum: measuring the TOF difference for an electronand a proton to calculate the momentum, and use Monte-Carlo simulation to correct TOF of proton, this is owing to itsenergy loss in air, the momentum difference obtained fromthese two ways(D2 field and TOF difference) is only 0.12%,so, the momentum error less than 1% is believable.

410

Page 8: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.1, Layout of E1,E2,E3 beams

Page 9: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.2, Beam spot of E2

Page 10: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.3,MWPC, electronics and data acquisition system(in part)

MWPC

Pre-Amp. and Main Amp.

CAMAC

TWISTED PAIRCABLE 30m

C-205

Page 11: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.4, X distribution of hit positions in MWPC

Page 12: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.5, Y distribution of hit positions in MWPC

Page 13: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.6,TOF of E3 beam 500MeV/c

1 2 5 1 5 0 1 7 5 2 0 0 2 2 5 2 5 0 2 7 5 3 0 0 3 2 5 3 5 0 3 7 5 4 0 0 4 2 5 4 5 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

N

C h a n n e l s ( 2 p e r b i n )

5 0 0 M e V / c , e + , + , p2 F o l d , S 1 - - S 2 ( 5 2 4 c m )2 0 0 3 - 0 7 1 5 - 1 9 3 8e + - - C e n t e r : 1 8 6 . 8 1 ; F W H M : 5 . 0 2 + - - C e n t e r : 1 9 8 . 1 6 ; F W H M : 3 . 8 9p - - C e n t e r : 3 9 5 . 8 7 ; F W H M : 2 1 . 3 1

P e, ,

Page 14: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.7, Amplitude distribution of MWPC outputs

Page 15: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.8, Amplitude vs. x, y coordinates of induced signals from MWPC cathode

Page 16: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.9,Residual distribution, calculated according to three hit positions in three MWPCs respectively due to an E3 particle p

assing through them, 2 0.4mm

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 50000

50

100

150

200

250

300

350

MWPC2(MWPC7)For 1.1GeV/c electron injectionFWHM=224um, =95um

Num

ber

of e

vent

s

Y-Residual(um)

Page 17: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.10, Dose rate in vicinity of E3 beam (E3 on)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 40

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

Co

un

t p

er

se

co

nd

(E

-2)

X ( c m ) D i r e c t i o n ( F r o m t h e B e a m C e n t r e L i n e )

2 0 0 3 - 0 7 - 1 4R u n n i n g a t 6 0 0 M e V / c P o s i t i v e P a r t i c l e

Page 18: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Applications of the Test Beams

The Test Beams have been operating smoothly and several

applications have been realized, such as:

BT001: Beam test for prototypes of barrel TOF counter to

be used at BES , the Test Beam group together withⅢBES -TOF group in the IHEP;Ⅲ For example, we have obtained:Scintillator Attenuation length(cm) BC408*4 : 171.8±37.1

BC408*5 : 217.5±66.56BC408*6 : 240.6±16.9BC404*5 : 288.7±55.2

Page 19: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

Fig.11, Time Resolution vs. Hit Position (very preliminary)

Page 20: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

BT002: Beam test of prototypes of end-cup TOF counter to

be used at BES , together with BES -TOF group in theⅢ ⅢUniversity of Science and Technology of China (USTC);

BT003: Research of biological effect due to irradiation of

wheat seeds in the secondary particle field formed by E2

beam. It is a cooperative research project together with the

Chinese Academy of Agricultural Sciences, supported by the

National Natural Foundation of Sciences of China.

Page 21: Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for

BT004: Checkup of photo-emission of an E3 beam electron with certain momentum in a Cherenkov detector, compared with that of an E3 with the same momentum;

BT005: Beam test of prototypes of CsI(Tl) electromagnetic calorimeter together with its preamplifier, cooperated with BES -ECAL grⅢoup in the IHEP; The total data acquisition for beam test of both barrel and end-cup TOF prototypes and for test of Beijing Slow Positron Facility has been accumulated to 662 hours in the first three months of 2004.

The available momentum region of the Test Beam E3 is supplementary to other test beams in the world. We hope that more institutions and collaborations can use the Test Beam.