21
INSTITUTO TECNOLÓGICO SUPERIOR DE GUASAVE Ingeniería Industrial INVESTIGACIÓN DE OPERACIONES II PERIODO AGO-DIC 2012 7mo SEMESTRE UNIDAD II “LINEAS DE ESPERA” OCTUBRE 2012

Teoria de Colas Mm1

Embed Size (px)

Citation preview

Page 1: Teoria de Colas Mm1

INSTITUTO TECNOLÓGICO SUPERIOR DE GUASAVE

Ingeniería Industrial

INVESTIGACIÓN DE OPERACIONES II

PERIODO AGO-DIC 2012

7mo SEMESTRE

UNIDAD II “LINEAS DE ESPERA”

OCTUBRE 2012

Page 2: Teoria de Colas Mm1

TEORIA DE COLAS

UN SERVIDOR, COLA INFINITA, FUENTE INFINITA

Page 3: Teoria de Colas Mm1

Se trata de modelos descriptivos de situaciones en las que se producen esperas. Estas situaciones son muy frecuentes en el contexto organizativo, y pueden encontrarse en diversas situaciones. Algunas de estas son muy evidentes:

TEORÍA DE COLAS

Page 4: Teoria de Colas Mm1

COLA

LLEGADAS

UN SERVIDOR, COLA INFINITA, FUENTE INFINITA

SELECCIÓN

SERVIDORFUENTE

SISTEMA DE SERVICIO

Es el tipo más sencillo de estructura y existen fórmulas directas para resolver el problema con distribución normal de patrones de llegada y de servicio. Cuando las distribuciones no son normales se resuelve con simulaciones

Page 5: Teoria de Colas Mm1

MODELOS DE TEORÍA DE COLAS

Notación para Modelos de Cola A,B,C,):(D,E,F)

A: distribución de arribos (M=Poisson – D=Determinista – E=Erlang). B: distribución de salidas (M=Poisson – D=Determinista – E=Erlang). C: Número de servidores en paralelo.D: Disciplina del servicio. E: Número máximo de clientes permitidos en el sistema (en cola + en servidores). F: Población

Page 6: Teoria de Colas Mm1

MODELO DE LA COLA INFINITA, FUENTE INFINITA Y UNA UNIDAD DE SERVICIO

Para este modelo se considera lo siguiente:

1.- Las llegadas son aleatorias y provienen de una distribución de probabilidad de Poisson o de Markov.

2.- Se supone que el tiempo de servicio es también una variable aleatoria que sigue una distribución exponencial o de Markov. Se supone además que los tiempos de servicios son independientes entre sí e independientes del proceso de llegada.

3.- Sólo hay una unidad de servicio.

4.- La disciplina de cola se basa en el principio FIFO (primero en llegar primero en salir) y no hay un límite para el tamaño de la cola.

5.- Las tasas de llegadas y de servicio no cambian con el tiempo. El proceso ha estado en operación el tiempo suficiente para eliminar los efectos de las condiciones iniciales.

Page 7: Teoria de Colas Mm1

L= l / (m - l)

Lq = l 2 / [m(m - l)] Wq = l / [m(m - l)]

W = 1 / (m - l)

FórmulasAnálisis de la cola

Longitud Promedio de la Cola

Tiempo de EsperaPromedio en la Cola

Análisis del sistema

Longitud Promedio del Sistema

Tiempo de EsperaPromedio en el Sistema

Page 8: Teoria de Colas Mm1

Utilización de la instalación de servicio

Pn = [1 - (l / m)] (l/ m)n

r = l / m

Pw = l / m

P0 = 1- (l / m)

Probabilidad de que existan n clientes en el sistema.

Probabilidad de que no existan clientes en el sistema

Probabilidad de que un cliente que llega deba esperar para ser atendido

Tasa de uso de cada servidor (porcentaje del tiempo que cada servidor es ocupado)

P n>k = r k+1 Probabilidad de que el estado del sistema tenga un valor mayor que un determinado valor k.

Page 9: Teoria de Colas Mm1

EJEMPLO

Page 10: Teoria de Colas Mm1

Manolo Giménez, reconocido miembro del gremio de los profesionales de la reparación de vehículos está preocupado por la marcha de su negocio: las expectativas son demasiado buenas y el taller parece demasiado pequeño. Para ver qué puede hacer para resolver el problema, le pide ayuda a un experto en teoría de colas. Después de una primera entrevista con el sr. Manolo acerca de las expectativas de su negocio, obtiene la siguiente información:

Las llegadas al taller se producirán de forma aleatoria, según una ley Poisson de media 4 llegadas al día ( para este ejemplo, 1 día = 8 horas de jornada laboral)

El tiempo que se tarda en reparar los automóviles sigue una ley exponencial de media 1.75 hrs. (esto es 1 hora y 45 minutos)

El Sr. Manolo cuenta con un solo equipo para reparar los automóviles

Además del coche que esta reparando, solo caben 3 coches mas en el taller. Si llegan más, debe estacionarlos en la vía pública, con el siguiente deterioro en la calidad de servicio.

Los coches se retiran del taller inmediatamente después de ser reparados

Page 11: Teoria de Colas Mm1

Con estos datos, el sr. Manolo demanda al experto un análisis inicial de la situación. Más concretamente, le pregunta:

a) ¿Qué fracción del tiempo estará el taller en funcionamiento?

b) ¿Cuál es el número promedio de clientes en espera de reparación de su vehículo (suponiendo un coche en reparación por cliente)?

c) ¿Cuál es el número promedio de coches esperando a ser reparados?

d) ¿Cuál es la probabilidad de que deban estacionarse coches en la calle?

e) ¿Cuánto tiempo trascurrirá, por termino medio, desde que el coche llega al taller hasta que se acaba la reparación

f) ¿Cuánto tiempo transcurrirá, por termino medio, desde que el coche llega al taller hasta que comienza la reparación?

Page 12: Teoria de Colas Mm1

a) ¿Qué fracción de tiempo estará el taller en funcionamiento?

La pregunta se responde hallando el factor de utilización del sistemas, que

para el modelo de Kendall es igual al parámetro r. Para ello necesitamos las tasas de llegada y servicio

Por lo que el factor de utilización valdrá:

El taller funciona el 87.5 % de tiempo. Se trata de un factor de utilización muy elevado, que hace prever valores de tiempo de servicio y de unidades en el sistema bastante elevados.

Page 13: Teoria de Colas Mm1

b) ¿Cuál es el número promedio de clientes de espera de reparación de su vehículo (suponiendo un coche en reparación por cliente)?

Lo que aquí se nos pide es el número promedio total de vehículos en el sistema, estén en cola (tanto dentro como fuera del taller) o en servicio. Dicho valor se obtiene a partir del parámetro L, que vale:

L= l / (m - l) L= 0.5 / (.5714 - 0.5 ) = 7

De modo que el número promedio de unidades en el sistema (en este caso, de coches en el taller) es de 7. El resultado obtenido con la fórmula se expresa en unidades (en este caso, coches).

Page 14: Teoria de Colas Mm1

c) ¿Cuál es el número promedio de coches esperando a ser reparados?

Ahora nos piden los coches en espera, tanto si están dentro como fuera del taller:

El número promedio de unidades en cola (en este caso, de coches en espera para ser reparados) es de 6. 125. Recordemos que es número promedio de unidades, por lo que puede ser un número no entero.

Nótese que L- Lq = 0.875: es inferior a uno porque el sistema no está funcionando todo el tiempo. Como se ha visto en a), funciona el 87.5 % del tiempo como promedio.

Page 15: Teoria de Colas Mm1

d) ¿Cuál es la probabilidad de que deban estacionarse coches en la calle?Tendremos coches en la calle cuando el estado del sistema sea superior a 4 (estado 4 3 coches en espera, y uno en reparación). De hecho, se nos pide la probabilidad:

Page 16: Teoria de Colas Mm1

e) ¿Cuánto tiempo transcurrirá, por termino medio, desde que el coche llega al taller hasta que se acaba la reparación?

Por lo que se pregunta es por el tiempo medio que pasa una unidad en el sistema(en espera y reparación). En el modelo de Kendall, viene dado por la expresión:

Así, el tempo promedio que pasará una unidad en el sistema, desde que entra hasta que ha sido servida es de 14 hrs. En este caso, representa el tiempo que pasará, por término medio, desde que el coche llega al taller hasta que concluye la reparación. El valor de W tiene como unidades la unidad de tiempo en que estén expresadas l y µ. Como estas magnitudes, en este caso, están expresadas en llegadas por hora y servicios por hora, respectivamente, W estará expresada en horas.

Page 17: Teoria de Colas Mm1

f) ¿Cuánto tiempo transcurrirá, por termino medio, desde que el coche llega al taller hasta que comienza la reparación?

El valor pedido viene representado por el parámetro Wq (tiempo medio de espera en cola):

Page 18: Teoria de Colas Mm1

Esto indica que una unidad que llegue al sistema estará en espera un tiempo promedio de 12.25 horas, esto es 12 horas y 15 minutos. Para Wq son aplicadas las mismas observaciones relativas a las unidades que las hechas para W. En este caso, esto nos permite afirmar que un coche que llega al taller tarda en promedio de 12 horas y 15 minutos en entrar a ser reparado.

Page 19: Teoria de Colas Mm1

CW= Costo de esperar por período para cada unidad

L= Cantidad promedio de unidades en el sistema

Cs= Costo de servicio por período para cada canal

K= Cantidad de canales

TC= Costo total por período

ANÁLISIS ECONÓMICO DE LAS LÍNEAS DE ESPERA

TC=CwL+CsK

Page 20: Teoria de Colas Mm1

Cantidad promedio de llegadas por período (tasa media de llegada) 0.75 lamdaCantidad promedio de servicios por período (tasa media de servicios) 1mu

Características operativas:

1 Probabilidad de que no hayan unidades en el sistema, Po 0.25 25%2 Cantidad promedio de unidades en la línea de espera, Lq 2.25 clientes3 Cantidad promedio de unidades en el sistema, L 3 clientes4 Tiempo promedio que pasa una unidad en la línea de espera,Wq 3 minutos5 Tiempo promedio que pasa una unidad en el sistema,W 4 minutos

6Probabilidad de que una unidad que llega tenga que esperar por el servicio, Pw 0.75 75%

Costo directo asociado con la operación del canal de servicio 7 CsCosto del tiempo de espera del cliente 10 Cw

Cantidad de canales 1 K

Costo total: ¿? Dólares por hora

EJEMPLO

TC=CwL+CsK

TC=(10)(3)+(7)(1) TC= 30+ 7 TC = 37 Dólares/ hora

Page 21: Teoria de Colas Mm1

INTEGRANTES

Anguiano Higuera Juan Gerardo

Lugo Rubio Sandra Guadalupe

Martínez Luque Brianda

Montoya García Edgar Javier

Orduño Gutiérrez Irving

Valenzuela Ramírez Luis Manuel

Valle Gutiérrez Horacio Herberto