39
Nanopharmaceutical Research Group Department of Pharmaceutical Science Faculty of Pharmacy USB

Teknologi Partikel

Embed Size (px)

DESCRIPTION

farfis

Citation preview

  • Nanopharmaceutical Research Group Department of Pharmaceutical Science

    Faculty of Pharmacy USB

  • More than 75 % all materilas are in particulate form

    The particles may be solid, liquid and gaseous

  • Micromeritics is the science of small particles. It is the study of a number

    of characteristics, including

    paRticle size and size distribution,

    shape, angle of repose, porosity, true

    volume, apparent density ANd

    bulkiness.

    Size and surface area can be related

    1. The physical, chemical and

    pharmacologial of a drug

    2. The partile size of a drug can affect

    its release from dosage forms

    3. The viewpoints a both physical

    stability

  • Size range and number or

    weight particles

    Shape and surface area

    Polydisperse

  • The sphere thats very easy

    Diameter

    The degree of asymmetri particles increases

    equivalent spherical diameter

    ds, dv, dp, dst

  • n : the number of particle, d : The equivalent diameter p : index size (p 1 = the particle length, p 2 = surface, p 3 = volume. The value of index : p positive ( arithmetic), p negative (harmonic) and p zero ( geometric)

    Edmundson Equation

    Arithmetic, Geomteric and Harmonic

    Average Particle Size

    For a colletion particle : ndf, f : frequency index has value 0, 1,2 and 3

    The size frequency distribution is expresed total number, length, surface

    and volume particle

  • Particle Size Distribution

    The number or weight vs the size range or mean particle size, so called frequency distribution curve. For example (Sinko (2006), Martins Physical Pharmacy and Pharmaceutical Science, p 444)

  • The following data at above, we can calculate the average diameter of the particles i.e dln, dsn, dvn, dsl dvs and dwm

    Mode

  • Other method to representing the data is to plot cumulative percentage over or under particular size with particle size

  • Cont..

  • When the data in Figure 18-2 (taken from Table 18-6) are plotted as frequency versus the logarithm of the particular diameter, a typicall bell-shaped curve. A size distribution fitting this pattern is spoken as a log normal distribution, in contrast to the normal distribution show in Figure 18-1

  • The logarithm of the particle size vs the cumulative percent frequency on a probability scale

    dg/50 : geometric mean diameter

    g : geometric standart deviation

    g : 50 %

    16 % .

    g : 50 %

    84% .

  • Number and Weight Distribution

    Hatch and Choate Equation

    The number distribution can be convert to a weight distribution and vice versa

  • 0,8791

  • Particle Number

    The number of particles per unit weight (N) or therm dvn

  • Microscopy, sieving, sedimentation , LD, PCS, SEM, TEM and the determination of particle volume

    Methods for Determining Particles Size

  • Cont.. MICROSCOPIC METHOD(OPTICAL MICROSCOPY)

    Uses an ordinary microscope for particle measurement in the range of 0.2 m to 100 m.

    Presence of agglomeration and particles of more than one component may be detected

    The diameter is obtained only from two dimensions: length and breadth, the thickness/depth in not measured.

    The microscopic method can include counting not fewer than 200 particles in a single plane using calibrated ocular on a microscope.

  • Cont..

  • SIEVING - uses standard sieves; generally used for grading coarser particles. May be employed for screening materials as fine as 44 m (No. 325 sieve)

    A carefully weighed sample of the powder is paced on the top sieve, and after the sieves are shaken for a predetermined period of time. The powder retained on each sieves is weighed

    Sieving errors can arise : sieve loading, duration and intensity of agitation

  • US Sieve Standart

  • Sedimentation Stokes Law

    v :

    =

    2 0

    18 0 or dst =

    18 0

    Spheres fallin freely and at a constant rate

    Irregularly shaped particle s as long as diameter is relative particle size equivalent to that of sphere

    The particles mus not be aggregated or clumped

    Flow of medium dispersion laminar / streamline

  • MICROMERITICS FACTORS AFFECTING FLOW PROPERTIES

    1. PARTICLE SIZE AND SHAPE 250-2000m = free flowing

    75 250 m = flow freely or cause problem depending on shape

    Very fine particles (less than 10 m) = do not flow freely as large particles

    Particle shape and flow properties

    Spherical shape flow better than needle particles

    Elongated or flat particles tend to pack resulting to high porosity powders

    2. POROSITY AND DENSITY High density, low porosity = FREE FLOWING

    3. SURFACE ROUGHNESS Leads to poor flow characteristics

  • BENTUK PARTIKEL DAN LUAS PERMUKAAN

    1. BENTUK PARTIKEL Sferis luas permukaan minimum persatuan volume

    Luas permukaan = . d2 dan Volume = 3

    6

    Dengan konstanta perbandingan maka : luas permukaan = s . dp

    2 = . ds2

    (s : faktor luas permukaan, ds : diameter permukaan ekivalen)

    volume = v . dp3 =

    2

    6

    (v : faktor volume, ds : diameter volume ekivalen)

    Jadi sferis s = .ds2/dp2 = 3,142 dan v = .dv3/6dp3 = 0,524

  • 2. LUAS PERMUKAAN SPESIFIK

    Permukaan spesifik : luas permukaan per satuan volume (Sv) atau persatuan berat (Sw)

    Persamaan diturunkan dari persamaan luas permukaan dan volume, untuk partikel asimetris maka :

    Sv =

    =

    . 2

    .3

    Sv =

    n : jumlah partikel

    Sw =

    : densitas partikel

    substitusi Sv pada Sw , maka Sw =

    dvs : diameter volume permukaan

    Jika sferis atau mendekati sferis, maka Sw = 6

    karena bentuk sferis s / v = 6

  • Contoh.

  • SIFAT TURUNAN SERBUK

    1. POROSITAS

    Volume bulk (ruahan) =Vb

    Vb Vb

    Serbuk tanpa pori-pori internal atau ruang-ruang kapiler, volume ruahan adl vol sebenarnya + vol ruang antara

    partikel (vol kosong= v)

    v = Vb - Vp

    Vp : volume sebenarnya

  • Porositas/kekosongan () : rasio volume kosong (V) dengan volume ruahan (Vb), dinyatakan dlm persen x 100. Persamaan :

    =

    = 1 -

  • 2. PENGATURAN SUSUNAN

    Serbuk sferis

    terapat/rhombohedral = 26%

    renggang/kubik/terbuka = 48%

    Serbuk sejati/umumnya serbuk farmasi : 30-50%

    Serbuk flokulat/agregat : 30-50%

    Serbuk kristalin dg tekanan 100.000 lb/inci2 = < 1%

  • 3. DENSITAS PARTIKEL

    Densitas () = massa / volume

    Volume partikel padat cukup sulit ditentukan karena

    1. partikel mengandung retakan mikroskopis

    2. pori-pori dalam

    3. ruang kapiler

  • Ada 3 jenis densitas yaitu :

    1. Densitas sebenarnya (). Densitas bahan padat sesungguhnya

    dimana terdapat pori-pori intrapartikel dan rongga partikel

    yg lebih besar dari dimensi molekuler, atom dan kisi kristal.

    Alat : densitometer helium

  • 2. Densitas granul (g). Densitas bahan padat yg ditentukan

    dengan pemindahan merkuri yg tidak berpenetrasi ke dalam

    pori-pori yang lebih kecil dari 10 m.

    Alat : densitometer merkuri

  • 3. Densitas ruahan (b). Massa suatu serbuk dibagi dengan

    volume ruahan. Volume ruahan diukur dengan gelas ukur

    100 ml tanpa diketuk (untapped volume).

    Alat : Tap density tester

    densitas ruahan dipengaruhi : PSD, bentuk partikel, agegrasi

  • Jika volume ruahan dihitung setelah dilakukan ketukan (tapped) disebut densitas mampat/Bj mampat/ tapped density. Standar ketukan adalah 10, 500 dan 1250 ketukan

    Tapped density (Bj mampat) =

    Porositas intrapartikel (ip). Dihitung dengan mengetahui

    densitas sebenarnya dan densitas granul.

    inrapartikel = 1 -

    = 1-

    Porositas antarruang/porositas kosong (k). Vol relatif bagian kosong antarruang terhadap vol ruahan serbuk. Dihitung jika densitas ruahan dan densitas granul diketahui

    antarruang= 1 -

    = 1-

  • Porositas total (total). Serbuk berpori tersusun dari bagian kosong antara partikel dan juga pori-pori. Sehingga total :

    total =

    = 1 -

    (Vb : vol bulk, Vp : vol bhn padat)

    Dimana Vp = w/ dan Vb = w / b (w : berat/massa serbuk) Substitusi kedua persamaan diatas diperoleh porositas total sbb:

    total = 1 -

    atau total 1 -

  • 4. KERUAHAN

    Merupakan ukuran volume ruahan dan kebalikan densitas

    ruahan. Keruahan meningkat dengan bertambahnya ukuran

    suatu partikel.

    5. SIFAT ALIRAN

    Dipengaruhi : ukuran partikel, bentuk partikel, tekstur suatu

    partikel dan densitas.

    Partikel fine dg ukuran 1-10 m sifat aliran jelek karena gaya

    kohesi antara partikel besar atau sama dengan gaya gravitasi.

    Kelembaban juga menyebabkan sifat aliran berkurang.

    Serbuk dgn densitas tinggi dan porositas dalam rendah akan

    lebih mudah mengalir

    Tekstur permukaan yg tdk rata /kasar menyebabkan terjadi

    gesekan dan perlekatan shg serbuk tdk mengalir bebas.

  • 6. SUDUT DIAM/SUDUT ISTIRAHAT ( = phi)

    Sudut maksimum antara permukaan gundukan serbuk dan bidang horisontal. Sebagai fungsi gaya gesek antar partikel yg menghasilkan permukaan dengan sudut berada dala kesetimbangan dg gaya gravitasi .

    Tangen sudut diam = koefisien gesekan ()

    tan = atau tan = h/r

    (h tinggi serbuk, r : jari-jari gundukan serbuk) Sudut diam kecil serbuk mudah mengalir dan sebaliknya.

    Semakin kasar/tidak beraturan permukaan partikel , semakin

    besar sudut istirahat maka sifat aliran semakin menurun.

  • Thank you Dreams and Endeavors