16
1 dismus la cattura del movimento – 1 TECNOLOGIE PER LA RIABILITAZIONE Prof. Aurelio Cappozzo Dipartimento di Scienze del Movimento Umano e dello Sport Laboratorio di Bioingegneria Istituto Universitario di Scienze Motorie - Roma AA 2005-2006 Università degli Studi di Napoli "Federico II“ Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica lezione # 5 la “cattura del movimento” dismus la cattura del movimento – 2 Both movement and morphology are represented the movement requires time variant information about the pose the morphology may be time-invariant Let’s separate the two problems !! Y g X g Z g t 1 t 2 t 3 t k . . . dismus la cattura del movimento – 3 movement data acquisition/estimation (variables) anatomical data acquisition/estimation (parameters) Data collection Y g X g Z g t 1 t 2 t 3 t k . . . dismus la cattura del movimento – 4 Data collection movement data acquisition/estimation (variables) Y g X g Z g t 1 t 2 t 3 t k . . .

TECNOLOGIE PER LA RIABILITAZIONE - Ingegneria … · TECNOLOGIE PER LA RIABILITAZIONE ... (three Cartesian coordinates - X g, Y g, Z ... Definition of two orthogonal axes in that

Embed Size (px)

Citation preview

1

dismus la cattura del movimento – 1

TECNOLOGIE PER LA RIABILITAZIONE

Prof. Aurelio Cappozzo

Dipartimento di Scienze del Movimento Umano e dello SportLaboratorio di Bioingegneria

Istituto Universitario di Scienze Motorie - Roma

AA 2005-2006

Università degli Studi di Napoli "Federico II“

Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica

lezione # 5la “cattura del movimento”

dismus la cattura del movimento – 2

Both movement and morphology are represented

the movement requires time variant information about the pose

the morphology may be time-invariant

Let’s separate the two problems !!

Yg

XgZg

t1t2

t3 tk

. . .

dismus la cattura del movimento – 3

movement data acquisition/estimation (variables)

anatomical data acquisition/estimation (parameters)

Data collection

Yg

XgZg

t1t2

t3 tk

. . .

dismus la cattura del movimento – 4

Data collection

movement data acquisition/estimation (variables)

Yg

XgZg

t1t2

t3 tk

. . .

2

dismus la cattura del movimento – 5

The term pose alludes to the location in space of a body

The description of the pose

Yg

XgZg

dismus la cattura del movimento – 6

In order to describe the pose of the bone, we substitute a complex morphology

with a simple and time invariant morphology (rigid body hypothesis)

The description of the pose

Yg

XgZg

dismus la cattura del movimento – 7

In order to describe the pose of the bone, we substitute a complex morphology

with a simple and time invariant morphology (rigid body hypothesis)

The description of the pose

Local system of reference(Local frame)

Global system of reference(Global frame)

Yg

XgZg

yl

xl

zl

dismus la cattura del movimento – 8

Motion capture

For each bone involved in the analysis,and in each sampled instant of time,

motion capture providestwo vectors,

i.e., six scalar quantities

zl

Yg

XgZg

Ol

lg t

lg�xl

yl

orientation vector

[ ] k,...,j;lzjg

lyjg

lxjg

ljg 1== θθθ�

[ ] k,...,j;ttt lzjg

lyjg

lxjg

ljg 1==t

position vector

This is, normally, done in an indirect fashion

3

dismus la cattura del movimento – 9

Estimate of the instantaneous bone pose using

the reconstructed instantaneous position of markers

orientation vector

[ ] kjlzjg

lyjg

lxjg

ljg ,...,1; == θθθ�

[ ] kjttt lzjg

lyjg

lxjg

ljg ,...,1; ==t

position vector

[ ] kjcippp zijg

yijg

xijg

ijg ,...,;,...,; 11 ===p

position vectors

Minimal set up: three non-aligned markers

dismus la cattura del movimento – 10

Stereophotogrammetry

Given a point in motion in the 3-D laboratory space (marker),

stereophotogrammetry provides its position vector

(three Cartesian coordinates - Xg, Yg, Zg) in each sampled instant of time.

Yg

ZgXg

dismus la cattura del movimento – 11

Stereophotogrammetry

Given a point in motion in the 3-D laboratory space (marker),

stereophotogrammetry provides its position vector

(three Cartesian coordinates - Xg, Yg, Zg) in each sampled instant of time.

dismus la cattura del movimento – 12

Camera

Nodal point (N)

Principal plane

Optical axis

4

dismus la cattura del movimento – 13

Camera and object point

Nodal point (N)

Principal plane

Optical axis

Object point

dismus la cattura del movimento – 14

Camera and object point

Nodal point (N)

Principal plane

Optical axis

Object point

dismus la cattura del movimento – 15

Camera, object and image points

Nodal point (N)

Principal plane

Optical axis

Image point

Object point

dismus la cattura del movimento – 16

Image point

chip CCD

Image pane

5

dismus la cattura del movimento – 17

Stereophotogrammetry

N1

P

N2

dismus la cattura del movimento – 18

recording phase

Stereophotogrammetry

N1

P

N2

dismus la cattura del movimento – 19

recording phase

Stereophotogrammetry

N1

P

N2

dismus la cattura del movimento – 20

PN1

N2

recording phase

Stereophotogrammetry

6

dismus la cattura del movimento – 21

PN1

N2

reconstruction phase

Stereophotogrammetry

dismus la cattura del movimento – 22

PN1

N2

reconstruction phase

Stereophotogrammetry

dismus la cattura del movimento – 23

PN1

N2

reconstruction phase (with errors)

Stereophotogrammetry

dismus la cattura del movimento – 24

Object point position reconstruction has been achieved by using the following information:

• Global camera position and orientation• Local position of the nodal points

• Local position of the image points measured variable (time variant)

P

N1

N2

reconstruction phase

Stereophotogrammetry

calibration parameters (time invariant)

7

dismus la cattura del movimento – 25

Analytical stereophotogrammetry

Measured variables

Object point global coordinates

Calibration parameters

Mathematical model

dismus la cattura del movimento – 26

Position and orientation of a camera

N

y

z

x

Yg

XgZg

dismus la cattura del movimento – 27

pp

gθθθθp

N

y

z

x

Position and orientation of a camera

Yg

XgZg

pp (3 numbers)

gθθθθp (3 numbers)

parameters

dismus la cattura del movimento – 28

pp

gθθθθp

N

y

z

x

Position and orientation of a camera

Yg

XgZg

d

pp (3 numbers)

gθθθθp (3 numbers)

d (1 number)

parameters

8

dismus la cattura del movimento – 29

N

y

z

x

Image coordinates

yp

data

xp

ypxp

Yg

XgZg

dismus la cattura del movimento – 30

Mathematical model X, Y, Z

pp1, gθθθθp1, d1, pp2, gqp2, d2

xp1, yp1, xp2, yp2

Analytical stereophotogrammetry

dismus la cattura del movimento – 31

X, Y, Z

pp1, gθθθθp1, d1, pp2, gqp2, d2

xp1, yp1, xp2, yp2

System calibration

Mathematical model

dismus la cattura del movimento – 32

Calibration object

The control points (markers) are located in known positions. The system of reference with respect to which their location is given becomes the stereophotogrammetric global frame.

Y

Z

X

9

dismus la cattura del movimento – 33

Courtesy of NIH

Calibration object

dismus la cattura del movimento – 34

After a first approximation calibration using a simple and stationary calibration object, the markers mounted on a rigid wand are tracked while moving within the measurement volume.Calibration parameters are iteratively modified while optimizing an objective function.

Y

ZX

So named “dynamic calibration”

dismus la cattura del movimento – 35

So named “dynamic calibration”

Courtesy of NIHdismus la cattura del movimento – 36

X, Y, Z

pp1, gθθθθp1, d1, pp2, gqp2, d2

xp1, yp1, xp2, yp2

System calibration

Mathematical model

10

dismus la cattura del movimento – 37

The experiment

In each sampled instant of time

X, Y, Z

pp1, gθθθθp1, d1, pp2, gqp2, d2

xp1, yp1, xp2, yp2 Mathematical model

dismus la cattura del movimento – 38http://www.charndyn.com/Products/Products_Intro.html

Active markers

dismus la cattura del movimento – 39

The movement analysis laboratory

Yg

Xg

Zg

pg

Marker trajectory reconstruction

dismus la cattura del movimento – 40

Determination of the instantaneous bone pose using

the reconstructed instantaneous position of markers

?

orientation vector

[ ] kjlzjg

lyjg

lxjg

ljg ,...,1; == θθθ�

[ ] kjttt lzjg

lyjg

lxjg

ljg ,...,1; ==t

position vector

[ ] kjcippp zijg

yijg

xijg

ijg ,...,;,...,; 11 ===p

position vectors

11

dismus la cattura del movimento – 41

Yg

Xg

ZgB

A

C

A simple example

the position vectors or three non-aligned markers are given

dismus la cattura del movimento – 42

Yg

Xg

Zg

A

B

C

Determination of the pose of a local set of axes

dismus la cattura del movimento – 43

Yg

Xg

Zg

A

B

C

1. Definition of a plane2. Definition of two orthogonal axes on that plane3. The third axis is orthogonal to the former two axes

Determination of the pose of a local set of axes

dismus la cattura del movimento – 44

Yg

Xg

Zg

A

B

C

yl

zl

1. Definition of a plane2. Definition of two orthogonal axes in that plane3. The third axis is orthogonal to the former two axes

Determination of the pose of a local set of axes

12

dismus la cattura del movimento – 45

Yg

Xg

Zg

A

B

C

yl

zl xl

1. Definition of a plane2. Definition of two orthogonal axes on that plane3. The third axis is orthogonal to the former two axes

Determination of the pose of a local set of axes

Appendix

dismus la cattura del movimento – 46

Determination of the instantaneous bone pose using

the reconstructed instantaneous position of markers

This local frame is referred to as marker-cluster technical frame

yc

zc

xc

dismus la cattura del movimento – 47

Determination of the poses of the marker-cluster technical frames

mathematicaloperatoryg

xg

zg

orientation vector

[ ] kjczjg

cyjg

cxjg

cjg ,...,1; == θθθ�

[ ] kjttt czjg

cyjg

cxjg

cjg ,...,1; ==t

position vector

[ ] kjcippp zijg

yijg

xijg

ijg ,...,;,...,; 11 ===p

position vectors

yc

zc

yc

xc

zc

yc

xc

zcC=3

Minimal set up: three non-aligned markers

xc

dismus la cattura del movimento – 48

Determination of the poses of the marker-cluster technical frames

yg

xg

zg

orientation vector

[ ] kjczjg

cyjg

cxjg

cjg ,...,1; == θθθ�

[ ] kjttt czjg

cyjg

cxjg

cjg ,...,1; ==t

position vector

[ ] kjcippp zijg

yijg

xijg

ijg ,...,;,...,; 11 ===p

position vectors

yc

xczc

yc

xc

zc

yc

xc

zcC>3

Redundant set up

mathematicaloperator

13

dismus la cattura del movimento – 49

Determination of the poses of the marker-cluster technical frames

yg

xg

zg

orientation matrix

k,...,jcjg 1; =R

[ ] kjttt czjg

cyjg

cxjg

cjg ,...,1; ==t

position vector

[ ] kjcippp zijg

yijg

xijg

ijg ,...,;,...,; 11 ===p

position vectors

yc

xczc

yc

xc

zc

yc

xc

zcC>3

Redundant set up

mathematicaloperator

dismus la cattura del movimento – 50

fine della lezione # 5

dismus la cattura del movimento – 51

TECNOLOGIE PER LA RIABILITAZIONE

Prof. Aurelio Cappozzo

Dipartimento di Scienze del Movimento Umano e dello SportLaboratorio di Bioingegneria

Istituto Universitario di Scienze Motorie - Roma

AA 2005-2006

Università degli Studi di Napoli "Federico II“

Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica

Appendixrigid-body pose determination

dismus la cattura del movimento – 52

A

B

C

yg

xg

zg

The rigid body

14

dismus la cattura del movimento – 53

A

B

C

yg

xg

zg

Apg

Bpg

Cpg

Point position vectors

dismus la cattura del movimento – 54

ylA

B

Cj

yg

xg

zg

Bpg

Apg

( )BA

BA

ppppj

gg

gg

−−=

Frame unity vectors determination

dismus la cattura del movimento – 55

yl

xl

A

C

yg

xg

zg

Bpg

Apg

( )( ) jpp

jppi×−×−=

BC

BCgg

ggi

B

Cpg

Frame unity vectors determination

j

dismus la cattura del movimento – 56

yl

zl xl

A

C

yg

xg

zg

jik ×=

Bj

ik

Frame unity vectors determination

15

dismus la cattura del movimento – 57

yl

zl xl

A

C

yg

xg

zg

kjiR =lg

k

Bj

i

Bpg

Frame orientation-matrix and position vector determination

cg

lg pt =

dismus la cattura del movimento – 58

���

���

=

lglglg

lglglg

lglglg

zzyzxz

zyyyxy

zxyxxx

lg

coscoscoscoscoscoscoscoscos

θθθθθθθθθ

R

Frame orientation-matrix and direction cosines

kjiR =lg

lg

lg

lg

xz

xy

xx

lg

coscoscos

θθθ

=i

lg

lg

lg

yz

yy

yx

lg

coscoscos

θθθ

=j

lg

lg

lg

zz

zy

zx

lg

coscoscos

θθθ

=kyg

xg

zg

yl

zl xl

k

j

i

dismus la cattura del movimento – 59

���

���

=

lglglg

lglglg

lglglg

zzyzxz

zyyyxy

zxyxxx

lg

coscoscoscoscoscoscoscoscos

θθθθθθθθθ

R [ ]lzg

lyg

lxg

lg θθθ=�

Frame orientation-vector determination

yg

xg

zg

yl

zl xl

k

j

i lg�

dismus la cattura del movimento – 60

( ) ( ) ( )[ ]

( )

( )

( )baba

baba

baba

bababa

babababababa

yxxybza

xzzxbya

zyyzbxa

zzyyxx

\

yxxyxzzxzyyzb

a

coscossin

coscossin

coscossin

coscoscoscoscoscoscoscoscos

tn

θθθ

θθ

θθθ

θθ

θθθ

θθ

θθθθθθθθθ

−=

−=

−=

���

−++−+−+−

=

2

2

2

1

21222

���

���

=

bababa

bababa

bababa

zzyzxz

zyyyxy

zxyxxx

ba

coscoscoscoscoscoscoscoscos

θθθθθθθθθ

R [ ]bza

bya

bxa

ba θθθ=�

Relationship between orientation matrix and orientation vector

Given two frames “a” and “b”

16

dismus la cattura del movimento – 61

yl

zlxl

A

B

C

yg

xg

zg

Apg

Bpg

Cpg

In summary

ApgBpg

Cpg

Given the marker position vectors in the global frame:

We were able to estimate the position and orientation vectors of the local frame (marker cluster frame):

[ ] czg

cyg

cxg

cg θθθ=�

[ ] czg

cyg

cxg

cg ttt=t

In addition, the orientation matrix has been presented and its relationship with the orientation vector found.

dismus la cattura del movimento – 62

yl

zlxl

yg

xg

zg

In summary

The orientation of a rigid body can therefore be described by a position vector

cg�

or by an orientation matrix

lgR

dismus la cattura del movimento – 63

The end of Appendix