13
JAN CREMERS * ENVIRONMENTAL IMPACT OF MEMBRANE AND FOIL MATERIALS AND STRUCTURES STATUS QUO AND FUTURE OUTLOOK WPŁYW MEMBRAN ORAZ MATERIAŁÓW I STRUKTUR FOLIOWYCH NA ŚRODOWISKO – STATUS QUO I PERSPEKTYWY Abstract In early times and until the 1970s most of the membrane structures built were meant to be temporary. This applies to early Roman shading systems, military, nomad and circus tents, as well as to Frei Otto’s early oeuvres. The global building sector as a whole, is of great importance with regard to a future sustainable use of our planet’s resources: Here, approx. 50% of all primary resources and 40% of all primary energy are used, and 30% of all green house gases are produced. Also, the sector is responsible for up to 40% of all solid waste 1 . This paper 2 provides an overview on the complex aspects of environmental impacts of membrane materials and structures, and how to meassure them using life cycle assessment methodology. It briefly shows where this kind of information is used (e.g., for building assessment systems/rating schemes) and finally indicates the current status in the membrane sector. Keywords: Membranes, PTFE/glass, ETFE Foil, PVC/PES, Photovoltaics (PV), Life Cycle Assessment (LCA), Grey Energy, Environmental Product Declaration (EPD), Building Assessment Systems, Building Rating Schemes Streszczenie Aż do 1970 roku większość konstrukcji membranowych było traktowanych jako tymczasowe. Odnosi się to do wczesnych rzymskich systemów osłon przeciwsłonecznych, wojskowych, pasterskich i cyrkowych namiotów, jak również do wcze- snych konstrukcji Freia Otto. Globalny sektor budowlany jawi się jako niezwykle istotny w kwestii przyszłego zrównowa- żonego wykorzystania zasobów naszej planety. Jest odpowiedzialny za wykorzystanie około 50% pierwotnych zasobów naturalnych, 40% pierwotnej energii i za produkcję 30% gazów cieplarnianych. Z nim jest związana również produkcja 30% stałych odpadów. Artykuł stanowi kompleksowy przegląd aspektów wpływów środowiskowych materiałów i konstrukcji membranowych, jak również porusza zagadnienie sposobu ich charakterystyki metodą oceny ich cyklu życiowego. Wskazuje również, gdzie taka informacja jest wykorzystywana (np. w systemach oceny budowlanej, metodach klasyfikacji) i ostatecz- nie ocenia obecny status sektora membran. Słowa kluczowe: membrany, PTFE/szkło, folie ETFE, PVC/PES, ogniwa fotowoltaiczne, ocena cyklu życiowego (LCA), szara energia, deklaracja produktu środowiskowego (EPD), systemy oceny budynków, systemy klasyfikacji budynków * Prof. Ph.D. Eng. Jan Cremers, University of Applied Sciences, Stuttgart. 1 According to M. Atif, Chairman IEA Buildings & Communities, CISBAT 2007. 2 This paper builds on material partly published before in [1–4], it reflects the status on the subject of mid 2013. TECHNICAL TRANSACTIONS ARCHITECTURE 7-A/2014 CZASOPISMO TECHNICZNE ARCHITEKTURA

TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

JANCREMERS*

ENVIRONMENTALIMPACTOFMEMBRANEANDFOILMATERIALSANDSTRUCTURES

–STATUS QUOANDFUTUREOUTLOOK

WPŁYWMEMBRANORAZMATERIAŁÓWISTRUKTURFOLIOWYCHNAŚRODOWISKO–STATUS QUO

I PERSPEKTYWYA b s t r a c t

Inearlytimesanduntilthe1970smostofthemembranestructuresbuiltweremeanttobetemporary.ThisappliestoearlyRomanshadingsystems,military,nomadandcircustents,aswellastoFreiOtto’searlyoeuvres.Theglobalbuildingsectorasawhole,isofgreatimportancewithregardtoafuturesustainableuseofourplanet’sresources:Here,approx.50%ofallprimaryresourcesand40%ofallprimaryenergyareused,and30%ofallgreenhousegasesareproduced.Also,thesectorisresponsibleforupto40%ofallsolidwaste1.Thispaper2providesanoverviewonthecomplexaspectsofenvironmentalimpactsofmembranematerialsandstructures,andhowtomeassurethemusinglifecycleassessmentmethodology.Itbrieflyshowswherethiskindofinformationisused(e.g.,forbuildingassessmentsystems/ratingschemes)andfinallyindicatesthecurrentstatusinthemembranesector.

Keywords: Membranes, PTFE/glass, ETFE Foil, PVC/PES, Photovoltaics (PV), Life Cycle Assessment (LCA), Grey Energy, Environmental Product Declaration (EPD), Building Assessment Systems, Building Rating Schemes

S t r e s z c z e n i e

Ażdo1970rokuwiększośćkonstrukcjimembranowychbyłotraktowanychjakotymczasowe.Odnosisiętodowczesnychrzymskichsystemówosłonprzeciwsłonecznych,wojskowych,pasterskichicyrkowychnamiotów,jakrównieżdowcze-snychkonstrukcjiFreiaOtto.Globalnysektorbudowlanyjawisięjakoniezwykleistotnywkwestiiprzyszłegozrównowa-żonegowykorzystania zasobównaszej planety. Jest odpowiedzialny zawykorzystanie około50%pierwotnych zasobównaturalnych,40%pierwotnejenergiiizaprodukcję30%gazówcieplarnianych.Znimjestzwiązanarównieżprodukcja30%stałychodpadów.Artykułstanowikompleksowyprzeglądaspektówwpływówśrodowiskowychmateriałówikonstrukcjimembranowych,jakrównieżporuszazagadnieniesposobuichcharakterystykimetodąocenyichcyklużyciowego.Wskazujerównież,gdzietakainformacjajestwykorzystywana(np.wsystemachocenybudowlanej,metodachklasyfikacji)iostatecz-nieoceniaobecnystatussektoramembran.

Słowa kluczowe: membrany, PTFE/szkło, folie ETFE, PVC/PES, ogniwa fotowoltaiczne, ocena cyklu życiowego (LCA), szara energia, deklaracja produktu środowiskowego (EPD), systemy oceny budynków, systemy klasyfikacji budynków

* Prof.Ph.D.Eng.JanCremers,UniversityofAppliedSciences,Stuttgart.1 AccordingtoM.Atif,ChairmanIEABuildings&Communities,CISBAT2007.2 Thispaperbuildsonmaterialpartlypublishedbeforein[1–4],itreflectsthestatusonthesubjectofmid2013.

TECHNICAL TRANSACTIONSARCHITECTURE

7-A/2014

CZASOPISMO TECHNICZNEARCHITEKTURA

Page 2: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

40

1. Introduction, key environmental issues affecting architectural fabric structures and the global picture

Increasingenergyefficiencyintheoperationofbuildingsisamajorchallengeofourtime.Thisnormallyreferstotheenergydemand(non-renewable)torunthebuilding.Butwealsohavetofocusontheenergyconsumption(“greyenergy”)andenvironmentalimpactofthematerialsandstructuresusedforourbuildings,withregardtotheirfulllifecycle,fromtheproductiontorecyclingordisposal.Thismeans,toaddthetopicsoflimitedresources,wasteandenvironmentalimpactsofmaterialsandprocessestothebalancesheetandtherefore,totheagenda.It is important tounderstandthat theeffectsofourplanningdecisionsextenddeeply into thefuture.Andwith increasingenergyefficiency, therelative impactof‘greyenergy’ofbuildingmaterialsandprocessesbecomesmuchmoreimportant(cp.Ill.2).

Mostbuildingsusingfoilandcoatedtextilematerialstodayaremeanttolastfordecades.Themembraneindustryisproudtoalsoofferthisperspectivetoitsclientswhentheyembarkonitsmaterialsandstructures.Inparallel,theplanet’sresourcesareshrinkingandbecomemoreandmorecontestedandhard-fought.Comparedtootherindustrybranches,thebuildingsectorisstilllackingefficiencyintheuseofmaterialsandrationalizationbecausetheoverallrecyclingrateisverylow.

Withregardtothemembraneindustryweseeatwo-faceddiscussion:Ontheonehand,weapplypolymersthatuseoftheenormousamountsofenergyfortheirpro-duction.Theycontainahighamountofprimaryenergyinrelationtotheirmassandemissionsfromsomeofthematerials,canpresentdangersfortheenvironmentandusers.Thisisaglobalissue:Membranematerialsaperceivedasbeingpartoftheworldofpolymers(“plastics”).Andplasticdebrisiseverywhere–onlandandatsea,andondifferentscales:frombigandvisiblethingslikePETbottlesandplasticbagstoextremelysmall,sand-sizedthingswhichgetintothefoodchainandbecomeathreattomanyanimals(fish,birdsandothers).Andincontrasttoacommonexpectation,polymersintheenvironmentareaverylonglastingtypeofmaterial.

Ontheotherhand,theyhaveanundoubtedpotentialforgeneratingresourceandenergysavingsthroughtypesofconstructionthatutilisethesematerialsveryefficiently.

2. Traditional reasoning why membrane strcutures are beneficial to the environment

Whenitisarguedthatmembranestructuresandmaterialsareenvironmentiallyfriendly,people commonly refer to the very low mass per area of membrane material. There isasignificantweightreductioncomparedtoalternativetransparentortranslucentmaterials:

ETFEfoil ~0,5kg/m2

coatedfabric <1,8kg/m2

PC/PMMA(6–8mm) ~5kg/m2

glass(10mm,laminated) ~25kg/m2

membrane/foilvs.PC ~1:3upto1:10membrane/foilvs.glass ~1:10upto1:50

Page 3: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

41

But therearemorereasonswhy theuseofmembranematerialpotentially reduces theweightofabuildingstructurepersquaremeter:Theuseofmembranesasacovermaterialallowforhighdeflectionwithintheprimarystruc-ture.Thisapplies to thebuidlingenvelope, i.e. facades,butmostofall toroofstructures.Membranematerialsthemselvesarefarlighterthanrigidalternativematerials.Thisleadstoareductionofdownloads,alsoincombinationwithsnowloadsandthustoalighterprimarystructure.Comparedtoothertranslucentmaterials,secondarystructurescanbesignificantlyreduced (due to larger spanpotential and/or reduced safety issues).Typically, increaseofsecondarysteelofanon-membranesolution3:100–200%.

Combiningmembranematerialswithcablestructures,offerahighpotentialforfurtheroptimizing: Soft membrane materials allow for larger deflections compared to glass orpolycarbonate(PC).Theyallowforlargespanwidthsofmaintrusses.Noexpansion/movementjointsareneededwithinmembranecoveringcomparedtorigidsolutions.Membranecablestructurescanbedesignedtobevirtuallymaintenancefreedependingontheproperchoiceofmaterials(e.g.,aluminiumextrusions,stainlesssteelfittings),installationprocedures,etc.Thismightbeakeybenefit,aslatermaintenanceworkonconventionalstructurestendtobeagreatdealandeffort(forexample,attheinterfaceoftrussesandcoveringmaterials).Thesebenefitsofcombinedcableandmembranestructuresarecommonlyusedandhaveleadtoagreatvarietyofprojectsusingthistechnology(cp.Ill.1).

Here,someselectedstadiumexamplesarelisted.Whenlookingattheresultingfiguresfor roofarea relatedweight,differentboundaryconditionshave tobe taken intoaccount:Differences in size of the roof, in applying snow loads (Maracana: none,Warsaw: veryhigh),additionalloads(videoscreencubeatWarsaw)orfixed/retractableroofstructure.Asaresult,theweightfiguresprovidedcannotbecomparedonetoone.Thesampleprojectsalsoshowveryclearlythatthe‘engineeringintelligence’ofastructure,additionallyholdsahighpotentialtosaveweight(andthereforedrasticallyreducesitsenvironmentalimpact).

Otheraspectsofmembranestructuresalsohaveaninfluenceonthelifecycleassessmentofamembranestructure.Theseare,forexample,theexpectedlife-time,demandoncleaningandmaintenance:• Servicelife-timeofdifferentpotentialcovermaterials:

– Polycarbonate(inchallengingclimatelikeMiddle-East,Brasil)<15years, – PTFE/glass,ETFEfoil~30years, – Glasslastslonger,butrequirescomplexandcostlysub-structure, – Metalsheetroofsarecheap,butnottranslucentandthereforerequireartificiallighting,alsomaintenanceforwaterproofing,

• Cleaning/Maintenance; – PTFE/glassandETFEfoilare‘self-cleaning’(ifthereisrain), – othermaterialswhichrequirecleaning(water,energy,cleaningagents),mightleadtofasteraging(PC,forexample),

– GlassandPCroofsmightneedsignificantlymoremaintenanceafter10–15yrs,com-paredtoPTFE/glassandETFE(mainlyduetoagingofthewatertightjoints,ascom-paredtoahomogeneousmembranesurface).

3 Samplecalculationbasedon:Maintrussesatadistanceof15m,membranearches~10kg/m2, PC incl.sec.struct.~30kg/m2.

Page 4: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

42

Ill.1.Comparisonofselectedstadiaprojects:Weightofroofstructureperarea.DataSource:HightexGmbHandKnutGöppert,sbp–SchlaichBergermannundPartner(5–2013)

OlympicStadium,Berlin(2004) •27000m²PTFE-coatedglassfabric,28000m²Meshfabric,6000m²glass

•cantileveredstructure,twomembranelayers•weightofsupportstructureexcludingcladding(33000m²roof)

~106kg/m2

GottliebDaimlerStadium,Stuttgart(1993) •34000m²PVC-coatedpolyesterfabric•spoked-wheelstructure,secondaryarchstructure

•weightofsupportstructureexcludingcladding(incl.compressionring)

~91kg/m2

StadiumMárioFilho(Maracanã),RiodeJaneiro(2013)

•43800m²PTFE-coatedglassfabric/roofarea45500m²

•steelandcablestructure2900t+840t=3740t•weightofsupportstructureexcludingcladding(incl.compressionring)

~82kg/m2

NationalStadium,Warsaw(2011) •55000m²PTFE-coatedglassfabric,10000m²PVC-coatedpolyesterfabric

•spoked-wheelstructure,secondaryarchstructure,largeretractableroof

•weightofsupportstructureexcludingcladding,includingpillarsandfacadesubstructure

~200kg/m2

Page 5: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

43

Inthediscussionoflifecycleassessment,energyefficiencyetc.,theaspectofamaterialortechnology’sperformance,mustnotbeforgotten.Thisrepresentstheonesideofthecoinwhichcouldbecalled‘value’(vs.‘price’ontheotherside).Theperformanceispartofthe‘use’stage(cp.Ill.3).Here,membranematerialsprovidealotofpotentialwhichcannotbedescribedhere(e.g.,lighttransmissioninabroadrange,highstrength,durability,etc.,cp.[5]).Thisincludesinnovativefunctionalcoatingsonmembranes(e.g., transparentlow-E-coatings),evenactivesolartechnologywhichcanbeintegratedincoatedtextilesandETFEfoils(cp.Ill.4).

Ill.2.TheRelevanceofconstructionmaterialsgrows (source:J.Cremers/PEInternational2012)

Ill.3.AspectsandImportanceoftheUseStageforMembraneMaterialsandStructures (source:J.Cremers)

Page 6: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

44

Ill.4.FlexiblePVintegratedonETFE(left) andPTFE/glass(right)

(source:J.Cremers/HightexGmbH)

Ill.5.ShoppingMallDolceVitaTejo,desginedbyPromotorioArchitects.Realizedandlow-E-ETFE-developmentbyHightexGmbH.Photograph:HightexGmbH,Bernau

2. Life Cycle Assessment (LCA)

In2011,anewTensinetworkinggrouphasbeenfoundedbyaninitiativeoftheauthor,whichfocuseson thesubjectofLifeCycleAssessment(LCA)in themembrane industry.The aimof this group is to review the current status onmembranematerials and typicalmembrane structureswith regard to LCA issues,which can be used as a key evaluationcriterion,intheobjectificationofthediscussiononmembranematerialsthattheindustryisbasedon.TheLCAapproachaimsforatransparentevaluationofthecomplexenvironmentalimpactsofproductsandprocessesinvolved.Itlooksatthestagesofmaterialorstructure’slife,suchasobtainingtherawmaterials,production,processingandtransport,andalsouse,reuse and disposal if applicable. LCAmeasures environmental impact across a range ofissuessuchasimpact:onairquality,onwaterusageandwaterquality,ontoxicitytohumanlife and to ecosystem functioning, on impact on globalwarming aswell as resource use (cp. Ill. 6). There are not only “cradle-to-grave” assessments that investigate the entirelifecycleofaproduct,butalso“cradle-to-gate”assessmentsthatconsideronlythelifeofaproductuptothetimeitleavesthefactory.DINENISO14040describestheLCAmethodwhichcanbesplitintofourphases:definitionofgoalandscope,inventoryanalysis,impactassessment and interpretation.Finally, all results like reports anddeclarations have to bescrutinisedbyanindependentgroupofexperts,whichisessential,ifcomparativestatements,e.g.,withrespecttorivalproducts,aretobemadeortheresultstobepublicized.

Page 7: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

45

3. Environmental Product Declarations (EPD)

Drafting a product LCA is a time-consuming and expensive process that is generallycarriedoutfortheproductmanufactureroragroupofmanufacturersbyaspecialistcompany.Theecologicalcharacteristicsofaproductarecommunicated in the formofenvironmentaldeclarations.According to the ISO14020 family, these environmental product declarations(EPD)areclassifiedassocalled“typeIII”environmentallabels,whicharehighlyregulated.Here,themostimportantenvironmentalimpactsofproductsaredescribedsystematicallyandindetail.Thestartingpoint isaproductLCA,but further indicatorsspecific to theproduct(e.g.,contaminationoftheinteriorair)arealsoincluded.Inthisformofdeclaration,itisnottheindividualresultsofmeasurementsthatarecheckedbyindependentinstitutes,butratherconformitywiththeproductcategoryrules(PCR)drawnuptoensureanequivalentdescriptionwithin thatproductcategory.AnEPDdescribesaproduct throughout itsentire lifecycle–allrelevantenvironmentalinformation(cp.Ill.7.Theyarethirdpartyverifiedandguaranteereliabilityoftheinformationprovided.CalculationRulesforEPDsaredefinedbyEPDprogramholders–forbuildingproducts,EN15804isintroducedasarespectivestandardinEurope.

Lifecycleimpactassessmentindicators

Globalwarmingpotential(GWP)Depletionpotentialofthestratosphericozonelayer(ODP)Acidificationpotentialoflandandwater(AP)Eutrophicationpotential(EP)Summersmogpotential(POCP)Abioticdepletionofnonfossilresources(ADPelements)Abioticdepletionoffossilresources(ADPfossilfuels)

Energyindicators Nonrenewableprimaryenergy,excludingfeedstockInputofnonrenewablefeedstockTotalinputofnonrenewableprimaryenergyRenewableprimaryenergy,excludingfeedstockInputofrenewablefeedstockTotalinputofrenewableprimaryenergy

Waterindicator Inputofnetfreshwater

Useofrecycledmaterials InputofsecondarymaterialInputofrenewablesecondaryfuelsInputofnonrenewablesecondaryfuels

Wasteindicators HazardouswastedisposedNonhazardouswastedisposedRadioactivewastedisposed

Exportedmaterials Componentsforre-useMaterialsforrecyclingMaterialsforenergyrecoveryExportedenergy

Ill.6.LifeCycleImpactAssessment/EnvironmentalIndicatorsaccordingtoEN15804 (source:J.Cremers,EN15804)

Page 8: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

46

EPDshelpinearlyplanningstage,theyshowenvironmentalperformanceofaproductoraproductgroup,theyareoftenusedinpoliticaldiscussionandcanbeabasisforacompany’sinternalbenchmarkandimprovement.

Ill.6.EPDFramework–EN15804(Systemboundaryandmodularityofproductlifecycle).TypesofEPDwithrespecttolifecyclestagescoveredandlifecyclestagesandmodulesforthebuilding

assessment(source:JanCremers/PEInternational)

Ill.7.SampleResultofDGNBassessmentandinteractionofcriteriawithEPDs (source:DGNB/PEInternational)

Page 9: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

47

4. Impact of LCA to the Membrane Sector

Thereareanumberofdriverstopre-activelyaddresstheLCAissuenow,forexample:• Building assessment systems with country-specific priorities for indicating the build-

ing’s,likeforexample,LEED(LeadershipinEnergyandEnvironmentalDesign),BREE-AM(BuildingResearchEstablishmentEnvironmentalAssessmentMethod)andDGNB(DeutscheGesellschaft fürNachhaltigesBauen/GermanSustainableBuildingCouncil).Thelatter,wasoneofthefirstmethodstoprescribeacertificationsystemthatlooksattheentirelifecycleofabuildingandalsoincludesatypeofbuildingLCAbasedonEPDsoftheindividualconstructionproducts(cp.Ill.8).Thisputsthefocusofplanners,usersandinvestorstotheenvironmentalimpactofawholebuilding(includingtheLCAsofcon-structionproducts).“GreenBuilding”isahighlygrowingmarketshare.

• Competitive situation by comparingmembranematerials and structures to alternativeswithLCAdataavailable.

• Defenceagainstprejudicesbasedonmissing,insufficient,misleadingorwrongLCAdata.• Customersawareness.Communication,onenvironmentalproductperformance,gainsim-

portanceformanufacturersandwillstrengthencustomerrelationship.• LCAdatawillbecomemoreandmoreimportantintenderingandawardprocedures.This

alsoappliestotheuseforConstructionProductRegulation(CPR).• Existingandfuturelegalregulationsonwasteconcerningthebuildingindustry.

Although,theimportanceofthevarioussustainabilitycriteriamayvary,issuesconsideredtobeimportantinclude:• Energyandcarbondioxideemissions(frombuildingoperation).• Materialsandresourceuse(includingembodiedenergy).• Wasteminimisation,includingrecycling.• Transport(inrelationtotheuseofthebuilding).• Waterconservationanduse(withinthebuilding).• Landuseandecology.• Minimisingpollution.• Constructionandbuildingmanagement(includingsecurity).• Healthandwell-beingwithinthebuilding.

Materialandbuildingcomponentselectionhasadirectimpactonthebuildingdesignandperformance,andhenceaffectstheoperationalenergyuseandthehealthandwell-beingofitsoccupants.Therefore,themembraneindustryneedstoquantifythesebenefitsinordertomaximiseitssustainabilitycredentials.

5. Additional Political Background Information

WiththeadventoftheEuropeansinglemarketforconstructionproducts,theEuropeanCommissionbecameconcerned thatnationalEPDschemesandbuilding levelassessmentschemes would represent a barrier to trade across Europe. The EU therefore, soughtamandatefromtheEUMemberStatestodevelopEuropeanstandardsfortheassessmentofthesustainabilityperformanceofconstructionworksandofconstructionproducts.ThismandateiscalledCEN/TC350.From2010,Europeanstandardsbegantoemergefromthis

Page 10: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

48

processandStandardBSEN15804waspublishedinFebruary2012providingcorerulesforconstructionproductEPD.

TheConstructionProductsDirectiveof1989,wasoneofthefirstDirectivesfromtheEUCommissiontocreateacommonframeworkfortheregulationsonbuildingsandconstructionproducts.IthasbeenreplacedbytheConstructionProductsRegulation(CPR)andislegallybindingthroughouttheEU.TheCPRincludesrequirementsforthesustainableuseofnaturalresources,thereductionofgreenhousegasemissionsoverthelifecycleandtheuseofEPDforassessingand reporting the impactsofconstructionproducts. If anEUMemberStatewishestoregulateintheseareasofsustainability,itmustuseEuropeanstandardswheretheyexistwhenregulatingandmustwithdrawnationalstandards.Thismeans,thatinthecaseoftheCPR,aMemberStatemustusetheCEN/TC350suiteofstandards.

AnEPDprovidesrobustandconsistent informationthatcanbeusedinbuildinglevelassessmentsandtheguideelaboratesonthevarietyofwaysthatthiscanbedone.Inaddition,anumberofbuildingleveltoolsareemergingaimedatimprovingdecisionsat thedesignstage by combining embodied environmental impact data and whole life cost data (i.e.,economic)andlinkthemtoBIM(BuildingInformationModelling)data.

AcrossEurope,thevariousenvironmentalratingschemesareseekingtoharmonisethewaysinwhichtheyassessproductsandbuildings.Increasingly,modelsareemergingtolinkembodiedimpactswithoperationaldatathusenablingabetterunderstandingofthetrade-offbetweenoperationalandembodiedimpacts,andintime,benchmarksfordifferenttypesofbuildingswillemerge.Allofwhichcontributesgreatlytothegoalofalowcarbon,moreresourceefficient,sustainablebuiltenvironment[7].

6. Current status on LCA on membrane materials and structures

With regard to the status on scientific research on LCA onmembranematerials andstructures,itcanbestatedthatsomerecentpublicationsaddresstheissue[1,4,5,12–19],butthenumberofpublicationsisstillverylow.Also,andmaybemostimportantly,itbecomesobviousfromastudyonexistingliteraturethatthereseemstobeahighuncertaintyintheusability of the LCA data worked with. For example, the values for‚ total input of nonrenewableprimaryenergy’forETFEfoilthatcanbefound,differsignificantly:From26.5MJ/kg[16:325]to210MJ/kg[15].ThevaluesprovidedintheonlyEPDonETFEpublishedsofar4isevenhigher(>300MJ/kg).WhereasthedatasituationonPCV/PESiscomparablysatisfying,therestillishardlyanydataavailableonPTFE/glass.

With regard to fullLCAandEPDs, there are some forerunners, for example, there isafirstcompanyspecificEPDonETFEbythecompaniesVECTORFOILTEC,NOWOFOLand DYNEON (mentioned before). For PVC/PES, LCA-information has been alreadyprovidedin2009provided5bySERGEFERRARIandwascompiledbyEVEAaccordingtoISO14040.ThiscompanyisalsostronglypromotingarecyclingprocessforPVC/PEScalled

4 EPD-VND-2011111-E, 10-2011, Source: Institut Bauen und Umwelt e.V., Webpage: http://ibu-umwelt.de[5-2013].

5 Life cycle assessment of PRECONTRAINT®1002S according to ISO14040 (byEVEA, 2009)(source:SergeFerrari).

Page 11: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

49

“TEXILOOP”,whichisalreadyinoperationforyearsalreadyandwhichhelpstoimproveLCA-values.A specificwebsite for the recycling process [10] shows the potential of thesubjectformarketingincludingacomparison-tooltoshowthebenefitagainstanincinerationscenario(conventionalend-of-life).

Thecurrentstatus(mid2013)onthesubjectofrecyclingofthemostimportantmembranematerials isas follows:ForPVC/PESthere isa recyclingprocessavailablewhich isalsoinuse(e.g., theTEXYLOOPprocesswhich isalsoopentoFerrari’scompetitors).ETFE,as a copolymer, can be recycled in principle. Currently, we see only downcycling fromETFEfoilcut-offsandwastetoETFEtubessuchasdirt,dust,etc.,wouldlimittheopticalandmechanical properties of the ETFE foil. For PTFE/glass there is a lab-scale process(developedbyDyneon/3MandBayreuthUniversity),whichiscommerciallynotactivesofar,butshowsthefuturepotential.Currently,PTFE/glass,beinganinertmaterial,iscurrentlylandfilled.

Onthelevelofstructuretypes,thereisverylittlepublishedinformationavailablesofar.Somesingleproject-basedcalculationshavebeencarriedout,butduetothelackofproperLCAdata,theyaredifficulttoassessandcompare.Oneexampleforthisappoachhasbeenconductedwithin a largeR&D-project, inwhich the author has been involved in6.Here,acomparingcalculationonprimaryenergy intensityhasbeencarriedout foraglass-roofvs.anETFE-cushion-roof includingspecificlyoptimisedsteelsub-structures(roofareaofapprox.27×33.5m):

Massincl.substructure PrimaryEnergy“invest” (excl.operationandreplacment)

Glass-roof 180t 1270000kWh

Steelandsubstructure 114t 880000kWh

Glazinglayer 66t 390000kWh

ETFE-roof 80 t 693 000 kWh

Steelandsubstructure 78t 640000kWh

ETFE-cushions 1.3t 53000kWh

Inbothscenarios,thereisaneedformaintenance,repairandtypicalreplacementduringtheperiodofoperation.Additionally,theETFE-roofvarianthasaquasiconstantenergydemandforthecushionairsupplysystem(keeping-upinternalpressureanddehumidification).Thisdemandhighly depends on project-specific issues, i.e., fabrication quality (seam tightness), cushiongeometry, typeofclamping,air supplysystem(w/oaircirculation). In thestudy, theenergydemandthereforehasbeenconsideredinthreedifferentvariants(3.65/7.3/11kWh/m2a).Thesignificanceofthisassumptiononan80-year-LCAcalculationisdepictedinIll.9.

6 Cp.projectwebsiteathttp://www.mesg.info[6-2013].

Page 12: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

50

Ill.8.LCA-resultsofETFEandglassroofvariantsofMESGproject7

R e f e r e n c e s

[1] CremersJ.,Energy Issues and Environmental Impact of Membrane and Foil Materials and Structures – Status Quo and Future Outlook, Conference sb13 munich,ImplementingSustainability–BarriersandChances,April2013,Germany,Proceedings.

[2] Cremers J.,Environmental Impact of Membrane Materials and Structures – Status Quo., Tensinet Symposium 2013 [Re]thinking lightweight structures, Proceedings,MimarSinanFine-ArtUniversity,Istanbul,May2013,447-456.

[3] CremersJ.,Environmental Impact of Membrane Materials and Structures – the new Tensinet Working Group on Life Cycle Assessment (LCA) for Membranes,TensiNewsNewsletter23–Sept2012,NewletteroftheEuropeanbasedNetworkfortheDesignandRealisationofTensileStructures,www.tensinet.com,2012,12-14.

[4] Knippers J.,CremersJ.,GablerM.,LienhardJ.,Construction Manual for Polymers + Membranes, Institut für internationaleArchitektur-Dokumentation,Munich/ NewYork:DETAIL/BIRKHÄUSER,2011,cp.Chapter7,124-131.

[5] MollaertM.,Environmental aspects in textile architecture,TeniNet/VrijeUniversiteitBrussel,TRA2003.

7 Source:originalgraphbyKlausPuchta(LHR)publishedin[8,German],thisupdatedversionin[9,English].

Page 13: TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE...of materials (e.g., aluminium extrusions, stainless steel fittings),installation procedures, etc. This might be a key benefit,as later

51

[6] CremersJ.,Soft skins – innovative foil and textile architecture’, Proceedings,vol. I, 21–29, IX-th International Scientific Conference “New building technologies anddesignproblems”,TechnicalUniversityofCracow,Poland,2011.

[7] Anderson J., Thornback J., A guide to understanding the embodied impacts of construction products,ConstructionProductsAssociation,2012.

[8] ManaraJ.etal.,Schlussbericht des BMWi-geförderten Projekts “Membrankon-struk-tionen zur energetischen Sanierung von Gebäuden”(“MESG”).F12B2437,TIBHan-nover,2012,10-15.

[9] LangW.,RamppT.,PuchtaK.,CremersJ.,Examination of Membrane Structures in Building Exteriors Using Typological and Constructive Considerations, StructuralMembranes2013,VI InternationalConferenceonTextileCompositesand InflatableStructures,Proceedings,Munich,2013.

[10] Website for the Texyloop process by Serge Ferrari SA, http://www.texyloop.com(capturedin4.12.2012).

[11] CremersJ.,Kapitel ‘Textiles for insulation systems, control of solar gains and thermal losses and solar systems’ im Buch ‘Textiles, polymers and composites for buildings’ (Ed.byGPohl),WoodheadPublishing/UK,351-374.

[12] MonticelliC.etal.,Life cycle assessment of textile façades, beyond the current cladding systems,TensinetSymposium2013[Re]thinkinglightweightstructures,Proceedings,MimarSinanFine-ArtUniversity,Istanbul,May2013,467-476.

[13] Chilton J., Pezeshzadeh S.,Afrin S., Embodied energy in ETFE foil construction, Tensinet Symposium 2013 [Re]thinking lightweight structures, Proceedings,MimarSinanFine-ArtUniversity,Istanbul,May2013,457-466.

[14] FournierF.,LCAofprecontraint,compositemembranes&Texylooprecyclingcasesstudies.TensinetSymposium2013[Re]thinking lightweightstructures,Proceedings,MimarSinanFine-ArtUniversity,Istanbul,May2013,487-496

[15] MonticelliC.etal.,Environmental load of ETFE cushions and future ways for their self-sufficient performances,DomingoA.andLazaroC.(eds.),EvolutionandTrendsinDesign,AnalysisandConstructionofShellandSpatialStructures,ProceedingsoftheInternationalAssociationforShellandSpatialStructures(IASS)Symposium2009,UniversidadPolitecnicadeValencia,Spain,2009,754-766

[16] Robinson-GaylesS. et al.,ETFE foil cushions in roofs and atria,Construction andBuildingMaterials,Elsevier,15,2001,323-327

[17] AshbyM.F.etal.,Materials: Engineering, Science,ProcessingandDesign,Butterworth-Heinemann,2007.

[18] FernandezJ.,Materials Architecture Emergent Materials for Innovative Buildings and Ecological Construction,Elsevier,Oxford2006,169.

[19] MonticelliC.,Environmental assessment of ultralight roof structures built with new materials: the case of the ETFE cushions,ProceedingsofIASSWG18Colloquium,2010.