66

Technical Standard and Commentaries for Port and Harbour Facilities in Japan

  • Upload
    rajmagi

  • View
    88

  • Download
    5

Embed Size (px)

DESCRIPTION

39 Pages only

Citation preview

Page 1: Technical Standard and Commentaries for Port and Harbour Facilities in Japan
Page 2: Technical Standard and Commentaries for Port and Harbour Facilities in Japan
Page 3: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

The Overseas Coastal Area Development Institute of Japan

3-2-4 Kasumigaseki, Chiyoda-ku, Tokyo, 100-0013, Japan

Copyright © 2002 by The Overseas Coastal Area Development Institute of Japan

Printed by Daikousha Printing Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval systems,

transmitted in any form or by any means, electric, mechanical, photocopying, recording or otherwise,

without the prior written permission of the publisher.

Original Japanese language edition published by the Japan Ports and Harbours Association.

Printed in Japan

Page 4: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PREFACE

-i-

PrefaceThis book is a translation of the major portion of the Technical Standards and Commentaries of Port

and Harbour Facilities in Japan (1999 edition) published by the Japan Port and Harbour Association,stipulated by the Ordinance of the Minister of Transport, which was issued in April 1999. The translationcovers about two thirds of the Japanese edition.

Japanese islands have a long extension of coastline, measuring about 34,000 km, for the total land areaof some 380,000 square kilometers. Throughout her history, Japan has depended on the ports and harborson daily living and prosperity of people there. Japan did not develop extensive inland canal systems asfound in the European Continent because of its mountainous geography, but rather produced many harborsand havens along its coastline in the past. Today, the number of officially designated commercial ports andharbors amounts to about 1,100 and the number of fishing ports exceeds 3,000.

After 220 years of isolation from the world civilization from the 17th to 19th centuries, Japan began tomodernize its society and civilization rapidly after the Meiji revolution in 1868. Modern technology of portand harbor engineering has been introduced by distinguished engineers from abroad and learned by manyambitious and capable young engineers in Japan. Ports of Yokohama, Kobe, and others began toaccommodate large ocean-going vessels in the late 19th century as the Japanese economy had shown arapid growth.

Japanese engineers had drafted an engineering manual on design and construction of port and harborfacilities as early as in 1943. The manual was revised in 1959 with inclusion of new technology such asthose of coastal engineering and geotechnical engineering, which were developed during the SecondWorld War or just before it. The Japanese economy that was utterly destroyed by the war had begun torebuild itself rapidly after the 1950s. There were so many demands for the expansion of port and harborfacilities throughout Japan. Engineers were urged to design and construct facilities after facilities. Japanhas built the breakwaters and the quays with the rate of about 20,000 meters each per year throughout the1960s, 1970s, and 1980s.

Such a feat of port development was made possible with provision of sound engineering manuals. TheMinistry of Land, Infrastructure and Transport (formerly the Ministry of Transport up to January 2001)which was responsible for port development and operation, revised the basic law on ports and harbors in1974 so as to take responsibility for provision of technical standards for design, construction, andmaintenance of port and harbor facilities. The first official technical standards and commentaries for portand harbor facilities were issued in 1979, and published by the Japan Port and Harbour Association forgeneral use. The technical standards were prepared by a technical committee composed of governmentengineers within the former Ministry of Transport, including members of the Port and Harbour ResearchInstitute and several District Port Construction Bureaus that were responsible for design and constructionin the field. Its English version was published by the Overseas Coastal Area Development Institute in1980, but it introduced only the skeleton of the Japanese version without giving the details.

The Technical Standards and Commentaries for Port and Harbor Facilities in Japan have been revisedin 1988 and 1999, each time incorporating new technological developments. The present Englishtranslation endeavors to introduce the newest edition of 1999 to the port and harbor engineers overseas. Itis a direct translation of essential parts of Japanese edition. Many phrases and expressions reflect thecustomary, regulatory writings in Japanese, which are often awkward in English. Some sentences aftertranslation may not be fluent enough and give troubles for decipher. The editors in charge of translationrequest the readers for patience and generosity in their efforts for understanding Japanese technology inport and harbor engineering.

With the globalization in every aspect of human activities, indigenous practices and customs are forcedto comply with the world standards. Technology by definition is supposed to be universal. Nevertheless,each country has developed its own specialty to suit its local conditions. The overseas readers may findsome of Japanese technical standards strange and difficult for adoption for their usage. Such conflicts intechnology are the starting points for mutual understanding and further developments in the future. Theeditors wish wholeheartedly this English version of Japanese technical standards be welcomed by theoverseas colleagues and serve for the advancement of port and harbor technology in the world.

January 2002

Y. Goda, T. Tabata and S. YamamotoEditors for translation version

Page 5: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-ii-

Page 6: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-iii-

CONTENTS

Preface

Part I GeneralChapter 1 General Rules .................................................................................................................................................1

1.1 Scope of Application .............................................................................................................................11.2 Definitions ...............................................................................................................................................21.3 Usage of SI Units...................................................................................................................................2

Chapter 2 Datum Level for Construction Work.........................................................................................................4

Chapter 3 Maintenance....................................................................................................................................................5

Part II Design ConditionsChapter 1 General .............................................................................................................................................................7Chapter 2 Vessels..............................................................................................................................................................9

2.1 Dimensions of Target Vessel...............................................................................................................92.2 External Forces Generated by Vessels ...........................................................................................16

2.2.1 General .....................................................................................................................................162.2.2 Berthing.....................................................................................................................................16

[1] Berthing Energy..................................................................................................................16[2] Berthing Velocity ................................................................................................................17[3] Eccentricity Factor..............................................................................................................20[4] Virtual Mass Factor ............................................................................................................21

2.2.3 Moored Vessels .......................................................................................................................22[1] Motions of Moored Vessel..................................................................................................22[2] Waves Acting on Vessel.....................................................................................................22[3] Wind Load Acting on Vessel ..............................................................................................23[4] Current Forces Acting on Vessel........................................................................................24[5] Load-Deflection Characteristics of Mooring System ..........................................................25

2.2.4 Tractive Force Acting on Mooring Post and Bollard..................................................................25Chapter 3 Wind and Wind Pressure ..........................................................................................................................28

3.1 General..................................................................................................................................................283.2 Wind.......................................................................................................................................................293.3 Wind Pressure......................................................................................................................................30

Chapter 4 Waves..............................................................................................................................................................324.1 General..................................................................................................................................................32

4.1.1 Procedure for Determining the Waves Used in Design.............................................................324.1.2 Waves to Be Used in Design ....................................................................................................324.1.3 Properties of Waves..................................................................................................................33

[1] Fundamental Properties of Waves .....................................................................................33[2] Statistical Properties of Waves...........................................................................................37[3] Wave Spectrum..................................................................................................................38

4.2 Method of Determining Wave Conditions to Be Used in Design .................................................404.2.1 Principles for Determining the Deepwater Waves Used in Design ...........................................404.2.2 Procedure for Obtaining the Parameters of Design Waves ......................................................41

4.3 Wave Hindcasting................................................................................................................................424.3.1 General .....................................................................................................................................424.3.2 Wave Hindcasting in Generating Area ......................................................................................424.3.3 Swell Hindcasting......................................................................................................................46

4.4 Statistical Processing of Wave Observation and Hindcasted Data.............................................474.5 Transformations of Waves .................................................................................................................49

4.5.1 General .....................................................................................................................................494.5.2 Wave Refraction........................................................................................................................494.5.3 Wave Diffraction........................................................................................................................52

[1] Diffraction ...........................................................................................................................52[2] Combination of Diffraction and Refraction..........................................................................69

4.5.4 Wave Reflection ........................................................................................................................70

Page 7: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-iv-

[1] General .............................................................................................................................. 70[2] Reflection Coefficient ......................................................................................................... 71[3] Transformation of Waves at Concave Corners, near the Heads of Breakwaters,

and around Detached Breakwaters ................................................................................... 724.5.5 Wave Shoaling.......................................................................................................................... 744.5.6 Wave Breaking ......................................................................................................................... 75

4.6 Wave Runup, Overtopping, and Transmission............................................................................... 804.6.1 Wave Runup ............................................................................................................................. 804.6.2 Wave Overtopping .................................................................................................................... 844.6.3 Wave Transmission .................................................................................................................. 90

4.7 Wave Setup and Surf Beat ................................................................................................................ 914.7.1 Wave Setup .............................................................................................................................. 914.7.2 Surf Beat................................................................................................................................... 92

4.8 Long-Period Waves and Seiche ....................................................................................................... 934.9 Waves inside Harbors ........................................................................................................................ 94

4.9.1 Calmness and Disturbances..................................................................................................... 944.9.2 Evaluation of Harbor Calmness ................................................................................................ 94

4.10 Ship Waves .......................................................................................................................................... 94

Chapter 5 Wave Force ................................................................................................................................................. 1005.1 General ............................................................................................................................................... 1005.2 Wave Force Acting on Upright Wall ............................................................................................... 100

5.2.1 General Considerations .......................................................................................................... 1005.2.2 Wave Forces of Standing and Breaking Waves ..................................................................... 101

[1] Wave Force under Wave Crest........................................................................................ 101[2] Wave Force under Wave Trough..................................................................................... 105

5.2.3 Impulsive Pressure Due to Breaking Waves .......................................................................... 1065.2.4 Wave Force on Upright Wall Covered with Wave-Dissipating Concrete Blocks..................... 1095.2.5 Effect of Alignment of Breakwater on Wave Force ................................................................. 1105.2.6 Effect of Abrupt Change in Water Depth on Wave Force ....................................................... 1105.2.7 Wave Force on Upright Wall near Shoreline or on Shore........................................................111

[1] Wave Force at the Seaward Side of Shoreline .................................................................111[2] Wave Force at the Landward Side of Shoreline ...............................................................111

5.2.8 Wave Force on Upright Wave-Absorbing Caisson ..................................................................1115.3 Mass of Armor Stones and Concrete Blocks................................................................................ 112

5.3.1 Armor Units on Slope.............................................................................................................. 1125.3.2 Armor Units on Foundation Mound of Composite Breakwater ............................................... 117

5.4 Wave Forces Acting on Cylindrical Members and Large Isolated Structures ......................... 1195.4.1 Wave Force on Cylindrical Members...................................................................................... 1195.4.2 Wave Force on Large Isolated Structure ................................................................................ 121

5.5 Wave Force Acting on Structure Located near the Still Water Level........................................ 1225.5.1 Uplift Acting on Horizontal Plate near the Still Water Level .................................................... 122

Chapter 6 Tides and Abnormal Water Levels....................................................................................................... 1276.1 Design Water Level........................................................................................................................... 1276.2 Astronomical Tide ............................................................................................................................. 1286.3 Storm Surge ....................................................................................................................................... 1286.4 Tsunami .............................................................................................................................................. 1306.5 Seiche ................................................................................................................................................. 1336.6 Groundwater Level and Permeation .............................................................................................. 135

Chapter 7 Currents and Current Force ................................................................................................................... 1387.1 General ............................................................................................................................................... 1387.2 Current Forces Acting on Submerged Members and Structures .............................................. 1387.3 Mass of Armor Stones and Concrete Blocks against Currents ................................................. 140

Chapter 8 External Forces Acting on Floating Body and Its Motions ........................................................... 1428.1 General ............................................................................................................................................... 1428.2 External Forces Acting on Floating Body ...................................................................................... 1438.3 Motions of Floating Body and Mooring Force............................................................................... 145

Chapter 9 Estuarine Hydraulics ................................................................................................................................ 1489.1 General ............................................................................................................................................... 148

Chapter 10 Littoral Drift .................................................................................................................................................. 15410.1 General ............................................................................................................................................... 15410.2 Scouring around Structures............................................................................................................. 16110.3 Prediction of Beach Deformation.................................................................................................... 163

Page 8: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-v-

Chapter 11 Subsoil...........................................................................................................................................................16711.1 Method of Determining Geotechnical Conditions.........................................................................167

11.1.1 Principles.................................................................................................................................16711.1.2 Selection of Soil Investigation Methods ..................................................................................16811.1.3 Standard Penetration Test ......................................................................................................168

11.2 Physical Properties of Soils .............................................................................................................16811.2.1 Unit Weight of Soil...................................................................................................................16811.2.2 Classification of Soils ..............................................................................................................16911.2.3 Coefficient of Permeability of Soil ...........................................................................................169

11.3 Mechanical Properties of Soils ........................................................................................................17011.3.1 Elastic Constants ....................................................................................................................17011.3.2 Consolidation Properties .........................................................................................................17011.3.3 Shear Properties .....................................................................................................................173

11.4 Angle of Internal Friction by N-value ..............................................................................................17511.5 Application of Soundings Other Than SPT....................................................................................17611.6 Dynamic Properties of Soils.............................................................................................................178

11.6.1 Dynamic Modulus of Deformation ...........................................................................................17811.6.2 Dynamic Strength Properties ..................................................................................................180

Chapter 12 Earthquakes and Seismic Force...........................................................................................................18212.1 General................................................................................................................................................18212.2 Earthquake Resistance of Port and Harbor Facilities in Design ................................................18212.3 Seismic Coefficient Method .............................................................................................................18412.4 Design Seismic Coefficient ..............................................................................................................18412.5 Seismic Response Analysis.............................................................................................................19012.6 Seismic Deformation Method ..........................................................................................................192

Chapter 13 Liquefaction .................................................................................................................................................19513.1 General................................................................................................................................................19513.2 Prediction of Liquefaction.................................................................................................................19513.3 Countermeasures against Liquefaction .........................................................................................199

Chapter 14 Earth Pressure and Water Pressure ...................................................................................................20014.1 Earth Pressure ...................................................................................................................................20014.2 Earth Pressure under Ordinary Conditions ...................................................................................200

14.2.1 Earth Pressure of Sandy Soil under Ordinary Conditions .......................................................20014.2.2 Earth Pressure of Cohesive Soil under Ordinary Conditions ..................................................201

14.3 Earth Pressure during Earthquake .................................................................................................20214.3.1 Earth Pressure of Sandy Soil during Earthquake....................................................................20214.3.2 Earth Pressure of Cohesive Soil during Earthquake...............................................................20414.3.3 Apparent Seismic Coefficient ..................................................................................................204

14.4 Water Pressure ..................................................................................................................................20514.4.1 Residual Water Pressure ........................................................................................................20514.4.2 Dynamic Water Pressure during Earthquake..........................................................................205

Chapter 15 Loads .............................................................................................................................................................20715.1 General................................................................................................................................................20715.2 Deadweight and Surcharge .............................................................................................................20715.3 Static Load..........................................................................................................................................207

15.3.1 Static Load under Ordinary Conditions ...................................................................................20715.3.2 Static Load during Earthquake................................................................................................20815.3.3 Unevenly Distributed Load ......................................................................................................20815.3.4 Snow Load ..............................................................................................................................208

15.4 Live Load ............................................................................................................................................20915.4.1 Train Load ...............................................................................................................................20915.4.2 Vehicle Load ...........................................................................................................................20915.4.3 Cargo Handling Equipment Load ............................................................................................20915.4.4 Sidewalk Live Load .................................................................................................................209

Chapter 16 Coefficient of Friction................................................................................................................................21016.1 General................................................................................................................................................210

Part III MaterialsChapter 1 General ......................................................................................................................................................... 211

1.1 Selection of Materials........................................................................................................................ 211

Page 9: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-vi-

1.2 Safety of Structural Elements.......................................................................................................... 211Chapter 2 Steel............................................................................................................................................................... 212

2.1 Materials ............................................................................................................................................. 2122.2 Steel Meterial Constants Used in Design Calculation................................................................. 2122.3 Allowable Stresses............................................................................................................................ 212

2.3.1 General ................................................................................................................................... 2122.3.2 Structural Steel ....................................................................................................................... 2122.3.3 Steel Piles and Steel Pipe Sheet Piles ................................................................................... 2132.3.4 Steel Sheet Piles .................................................................................................................... 2142.3.5 Cast Steel and Forged Steel................................................................................................... 2142.3.6 Allowable Stresses for Steel at Welded Zones and Spliced Sections .................................... 2142.3.7 Increase of Allowable Stresses............................................................................................... 215

2.4 Corrosion Control .............................................................................................................................. 2162.4.1 General ................................................................................................................................... 2162.4.2 Corrosion Rates of Steel Materials ......................................................................................... 2162.4.3 Corrosion Control Methods..................................................................................................... 2172.4.4 Cathodic Protection Method ................................................................................................... 217

[1] Range of Application........................................................................................................ 217[2] Protective Potential .......................................................................................................... 218[3] Protective Current Density ............................................................................................... 219

2.4.5 Coating Method ...................................................................................................................... 220[1] Extent of Application ........................................................................................................ 220[2] Applicable Methods.......................................................................................................... 220[3] Selection of Method ......................................................................................................... 220

Chapter 3 Concrete ....................................................................................................................................................... 2213.1 General ............................................................................................................................................... 2213.2 Basics of Design Based on the Limit State Design Method....................................................... 2213.3 Design Based on Allowable Stress Method.................................................................................. 2233.4 Concrete Materials............................................................................................................................ 2243.5 Concrete Quality and Performance................................................................................................ 2253.6 Underwater Concrete ....................................................................................................................... 227

Chapter 4 Bituminous Materials ................................................................................................................................ 2284.1 General ............................................................................................................................................... 2284.2 Asphalt Mat ........................................................................................................................................ 228

4.2.1 General ................................................................................................................................... 2284.2.2 Materials ................................................................................................................................. 2284.2.3 Mix Proportioning.................................................................................................................... 229

4.3 Paving Materials................................................................................................................................ 2294.4 Sand Mastic Asphalt ......................................................................................................................... 229

4.4.1 General ................................................................................................................................... 2294.4.2 Materials ................................................................................................................................. 2304.4.3 Mix Proportioning.................................................................................................................... 230

Chapter 5 Stone ............................................................................................................................................................. 2315.1 General ............................................................................................................................................... 2315.2 Rubble for Foundation...................................................................................................................... 2315.3 Backfilling Materials .......................................................................................................................... 2315.4 Base Course Materials of Pavement ............................................................................................. 232

Chapter 6 Timber ........................................................................................................................................................... 2336.1 Quality of Timber ...............................................................................................................................233

6.1.1 Structural Timber .................................................................................................................... 2336.1.2 Timber Piles............................................................................................................................ 233

6.2 Allowable Stresses of Timber.......................................................................................................... 2336.2.1 General ................................................................................................................................... 2336.2.2 Allowable Stresses of Structural Timber................................................................................. 233

6.3 Quality of Glued Laminated Timber ............................................................................................... 2336.3.1 Allowable Stress for Glued Laminated Timber ....................................................................... 233

6.4 Joining of Timber...............................................................................................................................2336.5 Maintenance of Timber..................................................................................................................... 233

Chapter 7 Other Materials........................................................................................................................................... 2347.1 Metals Other Than Steel .................................................................................................................. 2347.2 Plastics and Rubbers........................................................................................................................ 2347.3 Coating Materials .............................................................................................................................. 236

Page 10: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-vii-

7.4 Grouting Materials .............................................................................................................................2377.4.1 General ...................................................................................................................................2377.4.2 Properties of Grouting Materials .............................................................................................237

Chapter 8 Recyclable Resources .............................................................................................................................2388.1 General................................................................................................................................................2388.2 Slag......................................................................................................................................................2388.3 Coal Ash..............................................................................................................................................2398.4 Crashed Concrete .............................................................................................................................240

Part IV Precast Concrete UnitsChapter 1 Caissons .......................................................................................................................................................241

1.1 General................................................................................................................................................2411.2 Determination of Dimensions ..........................................................................................................2421.3 Floating Stability ................................................................................................................................2421.4 Design External Forces ....................................................................................................................243

1.4.1 Combination of Loads and Load Factors ................................................................................2431.4.2 External Forces during Fabrication .........................................................................................2491.4.3 External Forces during Launching and Floating......................................................................2491.4.4 External Forces during Installation..........................................................................................2501.4.5 External Forces after Construction..........................................................................................250

[1] Outer Walls.......................................................................................................................250[2] Bottom Slab......................................................................................................................251[3] Partition Walls and Others................................................................................................253

1.5 Design of Members ...........................................................................................................................2541.5.1 Outer Wall ...............................................................................................................................2541.5.2 Partition Wall ...........................................................................................................................2541.5.3 Bottom Slab.............................................................................................................................2541.5.4 Others .....................................................................................................................................255

1.6 Design of Hooks for Suspension by Crane ...................................................................................255Chapter 2 L-Shaped Blocks........................................................................................................................................256

2.1 General................................................................................................................................................2562.2 Determination of Dimensions ..........................................................................................................2562.3 Loads Acting on Members ...............................................................................................................257

2.3.1 General ...................................................................................................................................2572.3.2 Earth Pressure ........................................................................................................................2582.3.3 Converted Loads for Design Calculation.................................................................................258

2.4 Design of Members ...........................................................................................................................2592.4.1 Front Wall................................................................................................................................2592.4.2 Footing ....................................................................................................................................2592.4.3 Bottom Slab.............................................................................................................................2592.4.4 Buttress ...................................................................................................................................260

2.5 Design of Hooks for Suspension by Crane ...................................................................................260Chapter 3 Cellular Blocks ............................................................................................................................................261

3.1 General................................................................................................................................................2613.2 Determination of Dimensions ..........................................................................................................261

3.2.1 Shape of Cellular Blocks .........................................................................................................2613.2.2 Determination of Dimensions ..................................................................................................261

3.3 Loads Acting on Cellular Blocks......................................................................................................2623.3.1 General ...................................................................................................................................2623.3.2 Earth Pressure of Filling and Residual Water Pressure..........................................................2623.3.3 Converted Loads for Design Calculation.................................................................................264

3.4 Design of Members ...........................................................................................................................2643.4.1 Rectangular Cellular Blocks ....................................................................................................2643.4.2 Other Types of Cellular Blocks................................................................................................265

Chapter 4 Upright Wave-Absorbing Caissons......................................................................................................2674.1 General................................................................................................................................................2674.2 External Forces Acting on Members ..............................................................................................2674.3 Design of Members ...........................................................................................................................269

Chapter 5 Hybrid Caissons .........................................................................................................................................2705.1 General................................................................................................................................................2705.2 Determination of Dimensions ..........................................................................................................270

Page 11: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-viii-

5.3 Design External Forces.................................................................................................................... 2715.4 Design of Members........................................................................................................................... 271

5.4.1 Section Force.......................................................................................................................... 2715.4.2 Design of Composite Slabs .................................................................................................... 2715.4.3 Design of SRC Members ........................................................................................................ 2715.4.4 Design of Partitions................................................................................................................. 2715.4.5 Design of Corners and Joints ................................................................................................. 2715.4.6 Safety against Fatigue Failure ................................................................................................ 272

5.5 Corrosion Control .............................................................................................................................. 272

Part V FoundationsChapter 1 General ......................................................................................................................................................... 273Chapter 2 Bearing Capacity of Shallow Foundations ........................................................................................ 274

2.1 General ............................................................................................................................................... 2742.2 Bearing Capacity of Foundation on Sandy Ground ..................................................................... 2742.3 Bearing Capacity of Foundation on Clayey Ground .................................................................... 2752.4 Bearing Capacity of Multilayered Ground ..................................................................................... 2762.5 Bearing Capacity for Eccentric and Inclined Loads ..................................................................... 277

Chapter 3 Bearing Capacity of Deep Foundations ............................................................................................. 2803.1 General ............................................................................................................................................... 2803.2 Vertical Bearing Capacity................................................................................................................. 2803.3 Lateral Bearing Capacity.................................................................................................................. 281

Chapter 4 Bearing Capacity of Pile Foundations ................................................................................................ 2844.1 Allowable Axial Bearing Capacity of Piles..................................................................................... 284

4.1.1 General ................................................................................................................................... 2844.1.2 Standard Allowable Axial Bearing Capacity............................................................................ 2844.1.3 Ultimate Axial Bearing Capacity of Single Piles...................................................................... 2854.1.4 Estimation of Ultimate Axial Bearing Capacity by Loading Tests ........................................... 2854.1.5 Estimation of Ultimate Axial Bearing Capacity by Static Bearing Capacity Formulas ............ 2864.1.6 Examination of Compressive Stress of Pile Materials ............................................................ 2884.1.7 Decrease of Bearing Capacity Due to Joints .......................................................................... 2884.1.8 Decrease of Bearing Capacity Due to Slenderness Ratio ...................................................... 2884.1.9 Bearing Capacity of Pile Group .............................................................................................. 2884.1.10 Examination of Negative Skin Friction .................................................................................... 2904.1.11 Examination of Settlement of Piles ......................................................................................... 291

4.2 Allowable Pulling Resistance of Piles ............................................................................................ 2914.2.1 General ................................................................................................................................... 2914.2.2 Standard Allowable Pulling Resistance .................................................................................. 2924.2.3 Maximum Pulling Resistance of Single Pile............................................................................ 2924.2.4 Examination of Tensile Stress of Pile Materials...................................................................... 2934.2.5 Matters to Be Considered for Obtaining Allowable Pulling Resistance of Piles...................... 293

4.3 Allowable Lateral Bearing Capacity of Piles ................................................................................. 2934.3.1 General ................................................................................................................................... 2934.3.2 Estimation of Allowable Lateral Bearing Capacity of Piles ..................................................... 2954.3.3 Estimation of Pile Behavior Using Loading Tests ................................................................... 2954.3.4 Estimation of Pile Behavior Using Analytical Methods ........................................................... 2954.3.5 Consideration of Pile Group Action......................................................................................... 3014.3.6 Lateral Bearing Capacity of Coupled Piles ............................................................................. 301

4.4 Pile Design in General...................................................................................................................... 3044.4.1 Load Sharing .......................................................................................................................... 3044.4.2 Load Distribution..................................................................................................................... 3054.4.3 Distance between Centers of Piles.........................................................................................3054.4.4 Allowable Stresses for Pile Materials...................................................................................... 305

4.5 Detailed Design ................................................................................................................................. 3064.5.1 Examination of Loads during Construction ............................................................................. 3064.5.2 Design of Joints between Piles and Structure ........................................................................ 3074.5.3 Joints of Piles.......................................................................................................................... 3084.5.4 Change of Plate Thickness or Materials of Steel Pipe Piles................................................... 3084.5.5 Other Points for Caution in Design ......................................................................................... 308

Chapter 5 Settlement of Foundations ..................................................................................................................... 3105.1 Stress in Soil Mass ........................................................................................................................... 3105.2 Immediate Settlement....................................................................................................................... 310

Page 12: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-ix-

5.3 Consolidation Settlement .................................................................................................................3105.4 Lateral Displacement ........................................................................................................................3125.5 Differential Settlements ....................................................................................................................312

Chapter 6 Stability of Slopes ......................................................................................................................................3146.1 General................................................................................................................................................3146.2 Stability Analysis................................................................................................................................315

6.2.1 Stability Analysis Using Circular Slip Surface Method ............................................................3156.2.2 Stability Analysis Assuming Slip Surfaces Other Than Circular Arc Slip Surface...................316

Chapter 7 Soil Improvement Methods.....................................................................................................................3187.1 General................................................................................................................................................3187.2 Replacement Method........................................................................................................................3187.3 Vertical Drain Method .......................................................................................................................318

7.3.1 Principle of Design ..................................................................................................................3187.3.2 Determination of Height and Width of Fill................................................................................319

[1] Height and Width of Fill Required for Soil Improvement ..................................................319[2] Height and Width of Fill Required for Stability of Fill Embankment ..................................319

7.3.3 Design of Drain Piles...............................................................................................................319[1] Drain Piles and Sand Mat.................................................................................................319[2] Interval of Drain Piles .......................................................................................................320

7.4 Deep Mixing Method .........................................................................................................................3227.4.1 Principle of Design ..................................................................................................................322

[1] Scope of Application.........................................................................................................322[2] Basic Concept ..................................................................................................................323

7.4.2 Assumptions for Dimensions of Stabilized Body.....................................................................323[1] Mixture Design of Stabilized Soil......................................................................................323[2] Allowable Stress of Stabilized Body .................................................................................324

7.4.3 Calculation of External Forces ................................................................................................3257.5 Lightweight Treated Soil Method ....................................................................................................326

7.5.1 Outline of Lightweight Treated Soil Method ............................................................................3267.5.2 Basic Design Concept.............................................................................................................3267.5.3 Mixture Design of Treated Soil................................................................................................3277.5.4 Examination of Area to Be Treated .........................................................................................3287.5.5 Workability Verification Tests ..................................................................................................328

7.6 Replacement Method with Granulated Blast Furnace Slag........................................................3287.6.1 Principle of Design ..................................................................................................................3287.6.2 Physical Properties of Granulated Blast Furnace Slag ...........................................................328

7.7 Premixing Method..............................................................................................................................3297.7.1 Principle of Design ..................................................................................................................329

[1] Scope of Application.........................................................................................................329[2] Consideration for Design..................................................................................................329

7.7.2 Preliminary Survey ..................................................................................................................3297.7.3 Determination of Strength of Treated Soil...............................................................................3307.7.4 Mixture Design of Treated Soil................................................................................................3307.7.5 Examination of Area of Improvement......................................................................................331

7.8 Active Earth Pressure of Solidified Geotechnical Materials........................................................3337.8.1 Scope of Application ...............................................................................................................3337.8.2 Active Earth Pressure .............................................................................................................333

[1] Outline ..............................................................................................................................333[2] Strength Parameters ........................................................................................................334[3] Calculation of Active Earth Pressure................................................................................334[4] Case of Limited Area of Subsoil Improvement .................................................................335

7.9 Sand Compaction Pile Method (for Sandy Subsoil).....................................................................3367.9.1 Principle of Design ..................................................................................................................3367.9.2 Sand Volume to Be Supplied ..................................................................................................3367.9.3 Design Based on Trial Execution ............................................................................................338

7.10 Sand Compaction Pile Method (for Cohesive Subsoil) ...............................................................3397.10.1 Principle of Design ..................................................................................................................339

[1] Scope of Application.........................................................................................................339[2] Basic Concept ..................................................................................................................339

7.10.2 Strength and Permeability of Sand Piles.................................................................................3397.10.3 Shear Strength of Improved Subsoil .......................................................................................3397.10.4 Stability Analysis .....................................................................................................................3407.10.5 Examining Consolidation.........................................................................................................341

Page 13: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-x-

Part VI Navigation Channels and BasinsChapter 1 General ......................................................................................................................................................... 345

Chapter 2 Navigation Channels ................................................................................................................................ 3462.1 General ............................................................................................................................................... 3462.2 Alignment of Navigation Channel .................................................................................................. 3462.3 Width of Navigation Channel........................................................................................................... 3472.4 Depth of Navigation Channel .......................................................................................................... 3482.5 Length of Navigation Channel at Harbor Entrance...................................................................... 3482.6 Calmness of Navigation Channel ................................................................................................... 348

Chapter 3 Navigation Channels outside Breakwaters ....................................................................................... 3503.1 General ............................................................................................................................................... 3503.2 Width of Navigation Channel........................................................................................................... 3503.3 Depth of Navigation Channel .......................................................................................................... 350

Chapter 4 Basins............................................................................................................................................................ 3514.1 General ............................................................................................................................................... 3514.2 Location and Area of Basin ............................................................................................................. 351

4.2.1 Location .................................................................................................................................. 3514.2.2 Area of Basin Used for Anchorage or Mooring ....................................................................... 3514.2.3 Area of Basin Used for Ship Maneuvering.............................................................................. 352

[1] Turning Basin................................................................................................................... 352[2] Mooring / Unmooring Basin ............................................................................................. 353

4.3 Depth of Basin ................................................................................................................................... 3534.4 Calmness of Basin ............................................................................................................................ 3534.5 Timber Sorting Pond......................................................................................................................... 354

Chapter 5 Small Craft Basins..................................................................................................................................... 355

Chapter 6 Maintenance of Navigation Channels and Basins .......................................................................... 3556.1 General ............................................................................................................................................... 355

Part VII Protective Facilities for HarborsChapter 1 General ......................................................................................................................................................... 357

1.1 General Consideration ..................................................................................................................... 3571.2 Maintenance....................................................................................................................................... 357

Chapter 2 Breakwaters ................................................................................................................................................ 3582.1 General ............................................................................................................................................... 3582.2 Layout of Breakwaters...................................................................................................................... 3582.3 Design Conditions of Breakwaters ................................................................................................. 3592.4 Selection of Structural Types .......................................................................................................... 3592.5 Determination of Cross Section ...................................................................................................... 362

2.5.1 Upright Breakwater ................................................................................................................. 3622.5.2 Composite Breakwater ........................................................................................................... 3632.5.3 Sloping Breakwater................................................................................................................. 3632.5.4 Caisson Type Breakwater Covered with Wave-Dissipating Concrete Blocks ........................ 364

2.6 External Forces for Stability Calculation........................................................................................ 3642.6.1 General ................................................................................................................................... 3642.6.2 Wave Forces........................................................................................................................... 3652.6.3 Hydrostatic Pressure .............................................................................................................. 3652.6.4 Buoyancy ................................................................................................................................ 3652.6.5 Deadweight............................................................................................................................. 3652.6.6 Stability during Earthuakes ..................................................................................................... 365

2.7 Stability Calculation........................................................................................................................... 3652.7.1 Stability Calculation of Upright Section................................................................................... 3652.7.2 Stability Calculation of Sloping Section .................................................................................. 3692.7.3 Stability Calculation of Whole Section .................................................................................... 3692.7.4 Stability Calculation for Head and Corner of Breakwater ....................................................... 369

2.8 Details of Structures ......................................................................................................................... 3702.8.1 Upright Breakwater ................................................................................................................. 3702.8.2 Composite Breakwater ........................................................................................................... 3712.8.3 Sloping Breakwater................................................................................................................. 372

Page 14: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-xi-

2.8.4 Caisson Type Breakwater Covered with Wave-Dissipating Concrete Blocks.........................3722.9 Detailed Design of Upright Section.................................................................................................3722.10 Breakwaters for Timber-Handling Facilities ..................................................................................372

2.10.1 Breakwaters for Timber Storage Ponds and Timber Sorting Ponds .......................................3722.10.2 Fences to Prevent Timber Drifting ..........................................................................................373

2.11 Storm Surge Protection Breakwater...............................................................................................3732.12 Tsunami Protection Breakwater ......................................................................................................373

Chapter 3 Other Types of Breakwaters ..................................................................................................................3763.1 Selection of Structural Type.............................................................................................................3763.2 Gravity Type Special Breakwaters..................................................................................................377

3.2.1 General ...................................................................................................................................3773.2.2 Upright Wave-Absorbing Block Breakwater ............................................................................378

[1] General.............................................................................................................................378[2] Crest Elevation .................................................................................................................378[3] Wave Force ......................................................................................................................379

3.2.3 Wave-Absorbing Caisson Breakwater ....................................................................................379[1] General.............................................................................................................................379[2] Determination of Target Waves to Be Absorbed..............................................................380[3] Determination of Dimensions for Wave-Absorbing Section .............................................380[4] Wave Force for Examination of Structural Stability ..........................................................380[5] Wave Force for Design of Structural Members ................................................................380

3.2.4 Sloping-Top Caisson Breakwater............................................................................................380[1] General.............................................................................................................................380[2] Wave Force ......................................................................................................................381

3.3 Non-Gravity Type Breakwaters .......................................................................................................3823.3.1 Curtain Wall Breakwater .........................................................................................................382

[1] General.............................................................................................................................382[2] Wave Force ......................................................................................................................384[3] Design of Piles .................................................................................................................384

3.3.2 Floating Breakwater ................................................................................................................384[1] General.............................................................................................................................384[2] Selection of Design Conditions ........................................................................................385[3] Design of Mooring System ...............................................................................................385[4] Design of Floating Body Structure....................................................................................386

Chapter 4 Locks..............................................................................................................................................................3884.1 Selection of Location.........................................................................................................................3884.2 Size and Layout of Lock ...................................................................................................................3884.3 Selection of Structural Type.............................................................................................................389

4.3.1 Gate ........................................................................................................................................3894.3.2 Lock Chamber.........................................................................................................................389

4.4 External Forces and Loads Acting on Lock...................................................................................3894.5 Pumping and Drainage System ......................................................................................................3894.6 Auxiliary Facilities ..............................................................................................................................389

Chapter 5 Facilities to Prevent Shoaling and Siltation .......................................................................................3905.1 General................................................................................................................................................3905.2 Jetty .....................................................................................................................................................390

5.2.1 Layout of Jetty.........................................................................................................................3905.2.2 Details of Jetty.........................................................................................................................391

5.3 Group of Groins .................................................................................................................................3925.4 Training Jetties...................................................................................................................................392

5.4.1 Layout of Training Jetties ........................................................................................................3925.4.2 Water Depth at Tip of Training Jetty .......................................................................................3935.4.3 Structure of Training Jetty .......................................................................................................393

5.5 Facilities to Trap Littoral Transport and Sediment Flowing out of Rivers.................................3935.6 Countermeasures against Wind-Blown Sand ...............................................................................394

5.6.1 General ...................................................................................................................................3945.6.2 Selection of Countermeasures................................................................................................394

Chapter 6 Revetments..................................................................................................................................................3966.1 Principle of Design ............................................................................................................................3966.2 Design Conditions .............................................................................................................................3966.3 Structural Stability..............................................................................................................................3986.4 Determination of Cross Section ......................................................................................................3986.5 Details..................................................................................................................................................398

Page 15: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-xii-

Part VIII Mooring FacilitiesChapter 1 General ......................................................................................................................................................... 401

1.1 General Consideration ..................................................................................................................... 4011.2 Maintenance of Mooring Facilities.................................................................................................. 401

Chapter 2 Dimensions of Mooring Facilities.......................................................................................................... 4022.1 Length and Water Depth of Berths................................................................................................. 4022.2 Crown Heights of Mooring Facilities............................................................................................... 4052.3 Ship Clearance for Mooring Facilities ............................................................................................ 4052.4 Design Water Depth ......................................................................................................................... 4052.5 Protection against Scouring............................................................................................................. 4062.6 Ancillary Facilities.............................................................................................................................. 406

Chapter 3 Structural Types of Mooring Facilities ................................................................................................ 407

Chapter 4 Gravity Type Quaywalls .......................................................................................................................... 4084.1 Principle of Design ............................................................................................................................ 4084.2 External Forces and Loads Acting on Walls ................................................................................. 4084.3 Stability Calculations......................................................................................................................... 410

4.3.1 Items to Be Considered in Stability Calculations .................................................................... 4104.3.2 Examination against Sliding of Wall........................................................................................ 4104.3.3 Examination Concerning Bearing Capacity of Foundation ..................................................... 4114.3.4 Examination Concerning Overturning of Wall ......................................................................... 4114.3.5 Examination on Soft Foundation............................................................................................. 411

4.4 Stability Calculations of Cellular Concrete Blocks ....................................................................... 4124.5 Effects of Backfill ...............................................................................................................................4134.6 Detailed Design ................................................................................................................................. 414

Chapter 5 Sheet Pile Quaywalls ...............................................................................................................................4155.1 General ............................................................................................................................................... 4155.2 External Forces Acting on Sheet Pile Wall ................................................................................... 415

5.2.1 External Forces to Be Considered.......................................................................................... 4155.3 Design of Sheet Pile Wall ................................................................................................................ 417

5.3.1 Setting Level of Tie Rod ......................................................................................................... 4175.3.2 Embedded Length of Sheet Piles ........................................................................................... 4175.3.3 Bending Moment of Sheet Piles and Reaction at Tie Rod Setting Point ................................ 4185.3.4 Cross Section of Sheet Piles .................................................................................................. 4195.3.5 Consideration of the Effect of Section Rigidity of Sheet Piles ................................................ 419

5.4 Design of Tie Rods ........................................................................................................................... 4245.4.1 Tension of Tie Rod ................................................................................................................. 4245.4.2 Cross Section of Tie Rod........................................................................................................ 424

5.5 Design of Wale .................................................................................................................................. 4255.6 Examination for Circular Slip ........................................................................................................... 4255.7 Design of Anchorage Work.............................................................................................................. 426

5.7.1 Selection of Structural Type of Anchorage Work.................................................................... 4265.7.2 Location of Anchorage Work .................................................................................................. 4265.7.3 Design of Anchorage Work..................................................................................................... 427

5.8 Detailed Design ................................................................................................................................. 4285.8.1 Coping .................................................................................................................................... 4285.8.2 Fitting of Tie Rods and Wale to Sheet Piles ........................................................................... 4295.8.3 Tie Rod ................................................................................................................................... 4295.8.4 Fitting of Tie Rods to Anchorage Work................................................................................... 429

5.9 Special Notes for Design of Sheet Pile Wall on Soft Ground..................................................... 429Chapter 6 Sheet Pile Quaywalls with Relieving Platform ................................................................................. 431

6.1 Scope of Application ......................................................................................................................... 4316.2 Principles of Design .......................................................................................................................... 4316.3 Determination of Height and Width of Relieving Platform .......................................................... 4316.4 Earth Pressure and Residual Water Pressure Acting on Sheet Piles ...................................... 4326.5 Design of Sheet Pile Wall ................................................................................................................ 432

6.5.1 Embedded Length of Sheet Piles ........................................................................................... 4326.5.2 Cross Section of Sheet Piles .................................................................................................. 433

6.6 Design of Relieving Platform and Relieving Platform Piles........................................................ 4336.6.1 External Forces Acting on Relieving Platform ........................................................................ 4336.6.2 Design of Relieving Platform .................................................................................................. 4336.6.3 Design of Piles........................................................................................................................ 434

Page 16: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-xiii-

6.7 Examination of Stability as Gravity Type Wall ..............................................................................4346.8 Examination of Stability against Circular Slip................................................................................435

Chapter 7 Steel Sheet Pile Cellular-Bulkhead Quaywalls ................................................................................4367.1 Principle of Design ............................................................................................................................4367.2 External Forces Acting on Steel Sheet Pile Cellular-Bulkhead Quaywall ................................4377.3 Examination of Wall Width against Shear Deformation ..............................................................438

7.3.1 General ...................................................................................................................................4387.3.2 Equivalent Width of Wall .........................................................................................................4397.3.3 Calculation of Deformation Moment........................................................................................4397.3.4 Calculation of Resisting Moment.............................................................................................440

7.4 Examination of Stability of Wall Body as a Whole........................................................................4437.4.1 General ...................................................................................................................................4437.4.2 Modulus of Subgrade Reaction...............................................................................................4437.4.3 Calculation of Subgrade Reaction and Wall Displacement.....................................................443

7.5 Examination of Bearing Capacity of the Ground ..........................................................................4487.6 Examination against Sliding of Wall ...............................................................................................4487.7 Examination of Displacement of Wall Top.....................................................................................4487.8 Examination of Stability against Circular Slip................................................................................4497.9 Layout of Cells and Arcs ..................................................................................................................4497.10 Calculation of Hoop Tension............................................................................................................4497.11 Design of T-Shaped Sheet Pile.......................................................................................................450

7.11.1 General ...................................................................................................................................4507.11.2 Structure of T-Shaped Sheet Pile ...........................................................................................450

7.12 Detailed Design..................................................................................................................................4517.12.1 Design of Pile to Support Coping ............................................................................................4517.12.2 Design of Coping.....................................................................................................................451

Chapter 8 Steel Plate Cellular-Bulkhead Quaywalls ..........................................................................................4528.1 Scope of Application .........................................................................................................................4528.2 Placement-Type Steel Plate Cellular-Bulkhead Quaywalls ........................................................452

8.2.1 Principle of Design ..................................................................................................................4528.2.2 External Forces Acting on Steel Plate Cellular-Bulkhead .......................................................4538.2.3 Examination of Wall Width against Shear Deformation ..........................................................4538.2.4 Examination of Stability of Wall Body as a Whole...................................................................4548.2.5 Examination of Bearing Capacity of the Ground .....................................................................4558.2.6 Examination of Stability against Circular Slip..........................................................................4558.2.7 Determination of Thickness of Steel Plate of Cell Shell ..........................................................4558.2.8 Layout of Cells and Arcs .........................................................................................................4568.2.9 Detailed Design.......................................................................................................................456

8.3 Embedded-Type Steel Plate Cellular-Bulkhead Quaywalls........................................................4568.3.1 Principle of Design ..................................................................................................................4568.3.2 External Forces Acting on Embedded-Type Steel Plate Celluler-Bulkhead............................4578.3.3 Examination of Wall Width against Shear Deformation ..........................................................4578.3.4 Examination of Stability of Wall Body as a Whole...................................................................4588.3.5 Examination of Bearing Capacity of the Ground .....................................................................4588.3.6 Examination against Sliding of Wall ........................................................................................4588.3.7 Examination of Displacement of Wall Top ..............................................................................4588.3.8 Examination of Stability against Circular Slip..........................................................................4588.3.9 Layout of Cells and Arcs .........................................................................................................4588.3.10 Determination of Plate Thickness of Cell Shell and Arc Section.............................................4588.3.11 Joints and Stiffeners................................................................................................................4598.3.12 Detailed Design.......................................................................................................................459

Chapter 9 Open-Type Wharves on Vertical Piles................................................................................................4609.1 Principle of Design ............................................................................................................................4609.2 Layout and Dimensions ....................................................................................................................462

9.2.1 Size of Deck Block and Layout of Piles...................................................................................4629.2.2 Dimensions of Superstructure.................................................................................................4629.2.3 Arrangement of Fenders and Bollards ....................................................................................463

9.3 External Forces Acting on Open-Type Wharf ...............................................................................4639.3.1 Design External Forces...........................................................................................................4639.3.2 Calculation of Fender Reaction Force.....................................................................................464

9.4 Assumptions Concerning Sea Bottom Ground.............................................................................4649.4.1 Determination of Slope Inclination ..........................................................................................4649.4.2 Virtual Ground Surface............................................................................................................465

9.5 Design of Piles ...................................................................................................................................465

Page 17: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-xiv-

9.5.1 General ................................................................................................................................... 4659.5.2 Coefficient of Horizontal Subgrade Reaction.......................................................................... 4659.5.3 Virtual Fixed Point................................................................................................................... 4669.5.4 Member Forces Acting on Individual Piles.............................................................................. 4669.5.5 Cross-Sectional Stresses of Piles........................................................................................... 4689.5.6 Examination of Embedded Length for Bearing Capacity ........................................................ 4689.5.7 Examination of Embedded Length for Lateral Resistance...................................................... 4689.5.8 Examination of Pile Joints....................................................................................................... 4689.5.9 Change of Plate Thickness or Material of Steel Pipe Pile ...................................................... 468

9.6 Examination of Earthquake-Resistant Performance ................................................................... 4699.6.1 Assumption of Cross Section for Earthquake-Resistant Performance Examination .............. 4709.6.2 Examination Method of Earthquake-Resistant Performance.................................................. 4709.6.3 Determination of Seismic Motion for Examination of Earthquake-Resistant Performance..... 4719.6.4 Examination of Load Carrying Capacity Using Simplified Method.......................................... 4739.6.5 Examination of Load Carrying Capacity Using Elasto-Plastic Analysis .................................. 475

9.7 Design of Earth-Retaining Section ................................................................................................. 4779.8 Examination of Stability against Circular Slip ............................................................................... 4779.9 Detailed Design ................................................................................................................................. 478

9.9.1 Load Combinations for Superstructure Design....................................................................... 4789.9.2 Calculation of Reinforcing Bar Arrangement of Superstructure.............................................. 4789.9.3 Design of Pile Head ................................................................................................................ 478

Chapter 10 Open-Type Wharves on Coupled Raking Piles............................................................................... 48010.1 Principle of Design ............................................................................................................................ 48010.2 Layout and Dimensions.................................................................................................................... 481

10.2.1 Size of Deck Block and Layout of Piles .................................................................................. 48110.2.2 Dimensions of Supersutructure .............................................................................................. 48110.2.3 Arrangement of Fenders and Bollards.................................................................................... 481

10.3 External Forces Acting on Open-Type Wharf on Coupled Raking Piles.................................. 48110.3.1 Design External Forces .......................................................................................................... 48110.3.2 Calculation of Fender Reaction Force .................................................................................... 481

10.4 Assumptions Concerning Sea Bottom Ground............................................................................. 48110.4.1 Determination of Slope Inclination .......................................................................................... 48110.4.2 Virtual Ground Surface ........................................................................................................... 481

10.5 Determination of Forces Acting on Piles and Cross Sections of Piles ..................................... 48110.5.1 Horizontal Force Transmitted to Heads of Coupled Raking Piles........................................... 48110.5.2 Vertical Load Transmitted to Heads of Coupled Raking Piles ................................................ 48310.5.3 Pushing-In and Pulling-Out Forces of Coupled Raking Piles ................................................. 48310.5.4 Cross-Sectional Stresses of Piles........................................................................................... 483

10.6 Examination of Strength of Wharf in the Direction of Its Face Line .......................................... 48410.7 Embedded Length of Raking Pile ................................................................................................... 48410.8 Design of Earth-Retaining Section ................................................................................................. 48410.9 Examination of Stability against Circular Slip ............................................................................... 48410.10 Detailed Design ................................................................................................................................. 484

Chapter 11 Detached Pier ............................................................................................................................................. 48511.1 Scope of Application ......................................................................................................................... 48511.2 Principle of Design ............................................................................................................................ 48511.3 Design of Detached Pier .................................................................................................................. 485

11.3.1 Layout and Dimensions .......................................................................................................... 48511.3.2 External Forces and Loads..................................................................................................... 48511.3.3 Design of Piers ....................................................................................................................... 48611.3.4 Design of Girder...................................................................................................................... 486

11.4 Ancillary Equipment .......................................................................................................................... 48611.5 Detailed Design ................................................................................................................................. 486

11.5.1 Superstructure ........................................................................................................................ 48611.5.2 Gangways.............................................................................................................................. 486

Chapter 12 Floating Piers .............................................................................................................................................. 48712.1 Scope of Application ......................................................................................................................... 48712.2 Principle of Design ............................................................................................................................ 48812.3 Design of Pontoon............................................................................................................................. 488

12.3.1 Dimensions of Pontoon........................................................................................................... 48812.3.2 External Forces and Loads Acting on Pontoon ...................................................................... 48812.3.3 Stability of Pontoon................................................................................................................. 48812.3.4 Design of Individual Parts of Pontoon..................................................................................... 489

12.4 Design of Mooring System............................................................................................................... 490

Page 18: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-xv-

12.4.1 Mooring Method ......................................................................................................................49012.4.2 Design of Mooring Chain.........................................................................................................490

[1] Design External Forces ....................................................................................................490[2] Setting of Chain................................................................................................................490[3] Diameter of Chain ............................................................................................................490

12.4.3 Design of Mooring Anchor.......................................................................................................492[1] Design External Forces ....................................................................................................492[2] Design of Mooring Anchor................................................................................................492

12.5 Design of Access Bridge and Gangway ........................................................................................49212.5.1 Dimensions and Inclination .....................................................................................................49212.5.2 Design of Access Bridge and Gangway..................................................................................49312.5.3 Adjusting Tower ......................................................................................................................493

Chapter 13 Dolphins ........................................................................................................................................................49413.1 Principle of Design ............................................................................................................................49413.2 Layout..................................................................................................................................................49413.3 External Forces Acting on Dolphins ...............................................................................................49513.4 Pile Type Dolphins ............................................................................................................................49513.5 Steel Cellular-Bulkhead Type Dolphins .........................................................................................49513.6 Caisson Type Dolphins.....................................................................................................................496

Chapter 14 Slipways and Shallow Draft Quays......................................................................................................49714.1 Slipways ..............................................................................................................................................497

14.1.1 Principle of Design ..................................................................................................................49714.1.2 Location of Slipway .................................................................................................................49714.1.3 Dimensions of Individual Parts................................................................................................497

[1] Elevations of Individual Parts ...........................................................................................497[2] Slipway Length and Background Space...........................................................................498[3] Water Depth .....................................................................................................................498[4] Gradient of Slipway ..........................................................................................................498[5] Basin Area........................................................................................................................498

14.1.4 Front Wall and Pavement........................................................................................................499[1] Front Wall .........................................................................................................................499[2] Pavement .........................................................................................................................499

14.2 Shallow Draft Quay ...........................................................................................................................499Chapter 15 Air-Cushion Vehicle Landing Facilities ...............................................................................................500

15.1 Principle of Design ............................................................................................................................50015.2 Location...............................................................................................................................................50115.3 Air-Cushion Vehicle Landing Facilities...........................................................................................50115.4 Dimensions of Individual Parts ........................................................................................................501

Chapter 16 Mooring Buoys and Mooring Posts......................................................................................................50216.1 Mooring Buoys ...................................................................................................................................502

16.1.1 Principle of Design ..................................................................................................................50216.1.2 Tractive Force Acting on Mooring Buoy ..................................................................................50316.1.3 Design of Individual Parts of Mooring Buoy ............................................................................504

[1] Mooring Anchor ................................................................................................................504[2] Sinker and Sinker Chain...................................................................................................504[3] Ground Chain ...................................................................................................................505[4] Main Chain .......................................................................................................................506[5] Floating Body ...................................................................................................................507

16.2 Mooring Posts ....................................................................................................................................507Chapter 17 Other Types of Mooring Facilities.........................................................................................................508

17.1 Quaywall of Wave-Absorbing Type ................................................................................................50817.1.1 Principle of Design ..................................................................................................................50817.1.2 Determination of Structural Form ............................................................................................508

17.2 Cantilever Sheet Pile Quaywall .......................................................................................................50917.2.1 Principle of Design ..................................................................................................................50917.2.2 External Forces Acting on Sheet Pile Wall..............................................................................51017.2.3 Determination of Cross Section of Sheet Piles ....................................................................... 51117.2.4 Determination of Embedded Length of Sheet Piles ................................................................ 51117.2.5 Examination of Displacement of Sheet Pile Crown................................................................. 51117.2.6 External Forces during Construction.......................................................................................51217.2.7 Detailed Design.......................................................................................................................512

17.3 Sheet Pile Quaywall with Batter Anchor Piles ..............................................................................51217.3.1 Principle of Design ..................................................................................................................512

Page 19: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-xvi-

17.3.2 External Forces Acting on Sheet Pile Wall with Batter Anchor Piles ...................................... 51317.3.3 Calculation of Horizontal and Vertical Forces Acting on Connecting Point ............................ 51317.3.4 Determination of Cross Sections of Sheet Pile and Batter Anchor Pile.................................. 51317.3.5 Determination of Embedded Lengths of Sheet Pile and Batter Anchor Pile........................... 51317.3.6 Detailed Design ...................................................................................................................... 513

17.4 Sheet Pile Quaywall with Batter Piles in Front ............................................................................. 51417.4.1 Principle of Design.................................................................................................................. 51417.4.2 Layout and Dimensions .......................................................................................................... 51517.4.3 Design of Sheet Pile Wall ....................................................................................................... 51517.4.4 Design of Open-Type Superstructure ..................................................................................... 51517.4.5 Embedded Length .................................................................................................................. 51617.4.6 Detailed Design ...................................................................................................................... 516

17.5 Double Sheet Pile Quaywall ............................................................................................................ 51617.5.1 Principle of Design.................................................................................................................. 51617.5.2 External Forces Acting on Double Sheet Pile Quaywall ......................................................... 51717.5.3 Design of Double Sheet Pile Quaywall ................................................................................... 517

Chapter 18 Transitional Parts of Quaywalls ............................................................................................................ 51918.1 Principle of Design ............................................................................................................................ 51918.2 Transitional Part Where Frontal Water Depth Varies.................................................................. 51918.3 Transitional Part Where Quaywalls of Different Type Are Connected ..................................... 51918.4 Outward Projecting Corner .............................................................................................................. 519

Chapter 19 Ancillary Facilities...................................................................................................................................... 52019.1 General ............................................................................................................................................... 52019.2 Mooring Equipment........................................................................................................................... 52019.3 Mooring Posts, Bollards, and Mooring Rings ............................................................................... 520

19.3.1 General ................................................................................................................................... 52019.3.2 Arrangement of Mooring Posts, Bollards and Mooring Rings................................................. 52119.3.3 Tractive Force of Vessel ......................................................................................................... 52119.3.4 Structure ................................................................................................................................. 522

19.4 Fender System .................................................................................................................................. 52219.4.1 General ................................................................................................................................... 52219.4.2 Arrangement of Fenders......................................................................................................... 52319.4.3 Berthing Energy of Vessel ...................................................................................................... 52319.4.4 Selection of Fender................................................................................................................. 523

19.5 Safety Facilities ................................................................................................................................. 52519.5.1 General ................................................................................................................................... 52519.5.2 Skirt Guard.............................................................................................................................. 52519.5.3 Fence and Rope ..................................................................................................................... 52519.5.4 Signs or Notices...................................................................................................................... 52519.5.5 Curbing ................................................................................................................................... 52519.5.6 Fire Fighting Equipment and Alarm Systems ......................................................................... 525

19.6 Service Facilities ...............................................................................................................................52519.6.1 General ................................................................................................................................... 52519.6.2 Lighting Facilities .................................................................................................................... 52519.6.3 Facilities for Passenger Embarkation and Disembarkation .................................................... 52519.6.4 Vehicle Ramp ......................................................................................................................... 52619.6.5 Water Supply Facilities ........................................................................................................... 52619.6.6 Drainage Facilities .................................................................................................................. 52619.6.7 Fueling and Electric Power Supply Facilities .......................................................................... 52619.6.8 Signs or Notices...................................................................................................................... 527

19.7 Stairways and Ladders..................................................................................................................... 52719.8 Lifesaving Facilities........................................................................................................................... 52719.9 Curbing ............................................................................................................................................... 52719.10 Vehicle Ramp..................................................................................................................................... 52719.11 Signs, Notices and Protective Fences ........................................................................................... 527

19.11.1 General ................................................................................................................................... 52719.11.2 Provision of Signs ................................................................................................................... 52719.11.3 Types and Location of Signs .................................................................................................. 52819.11.4 Position of Sign....................................................................................................................... 52819.11.5 Structure of Sign ..................................................................................................................... 52919.11.6 Materials ................................................................................................................................. 53019.11.7 Maintenance and Management .............................................................................................. 53019.11.8 Protective Fences ................................................................................................................... 53019.11.9 Barricades............................................................................................................................... 531

Page 20: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-xvii-

19.12 Lighting Facilities ...............................................................................................................................53119.12.1 General ...................................................................................................................................53119.12.2 Standard Intensity of Illumination ............................................................................................531

[1] Definition ..........................................................................................................................531[2] Standard Intensity of Illumination for Outdoor Lighting ....................................................531[3] Standard Intensity of Illumination for Indoor Lighting .......................................................532

19.12.3 Selection of Light Source ........................................................................................................53219.12.4 Selection of Lighting Equipment..............................................................................................534

[1] Outdoor Lighting...............................................................................................................534[2] Indoor Lighting..................................................................................................................534

19.12.5 Design of Lighting ...................................................................................................................53519.12.6 Maintenance and Management...............................................................................................537

[1] Inspections .......................................................................................................................537[2] Cleaning and Repair.........................................................................................................538

Chapter 20 Aprons ...........................................................................................................................................................54020.1 Principle of Design ............................................................................................................................54020.2 Type of Apron.....................................................................................................................................540

20.2.1 Width ......................................................................................................................................54020.2.2 Gradient ..................................................................................................................................54020.2.3 Type of Pavement ...................................................................................................................540

20.3 Countermeasures against Settlement of Apron............................................................................54020.4 Load Conditions.................................................................................................................................54120.5 Design of Concrete Pavement ........................................................................................................541

20.5.1 Design Conditions ...................................................................................................................54120.5.2 Composition of Pavement .......................................................................................................54220.5.3 Joints.......................................................................................................................................54520.5.4 Tie-Bar and Slip-Bar................................................................................................................54720.5.5 End Protection.........................................................................................................................547

20.6 Design of Asphalt Pavement ...........................................................................................................54720.6.1 Design Conditions ...................................................................................................................54720.6.2 Composition of Pavement .......................................................................................................54820.6.3 End Protection.........................................................................................................................551

20.7 Design of Concrete Block Pavement..............................................................................................55120.7.1 Design Conditions ...................................................................................................................55120.7.2 Composition of Pavement .......................................................................................................55220.7.3 Joints.......................................................................................................................................553

Chapter 21 Foundation for Cargo Handling Equipment.......................................................................................55421.1 Principle of Design ............................................................................................................................55421.2 External Forces Acting on Foundation...........................................................................................55421.3 Design of Foundation with Piles......................................................................................................555

21.3.1 Concrete Beam .......................................................................................................................55521.3.2 Bearing Capacity of Piles ........................................................................................................555

21.4 Design of Foundation without Piles ................................................................................................55621.4.1 Examination of Effects on Wharf.............................................................................................55621.4.2 Concrete Beam .......................................................................................................................556

Part IX Other Port FacilitiesChapter 1 Port Traffic Facilities .................................................................................................................................559

1.1 General................................................................................................................................................5591.1.1 Scope of Application ...............................................................................................................5591.1.2 Operation and Maintenance of Facilities for Land Traffic........................................................559

1.2 Roads ..................................................................................................................................................5591.2.1 General ...................................................................................................................................5591.2.2 Design Vehicles ......................................................................................................................5591.2.3 Roadways and Lanes..............................................................................................................5591.2.4 Clearance Limit .......................................................................................................................5601.2.5 Widening of Roads at Bends...................................................................................................5611.2.6 Longitudinal Slope...................................................................................................................5611.2.7 Level Crossings.......................................................................................................................5621.2.8 Pavement ................................................................................................................................5621.2.9 Signs .......................................................................................................................................563

1.3 Car Parks ............................................................................................................................................5641.3.1 General ...................................................................................................................................564

Page 21: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-xviii-

1.3.2 Size and Location ................................................................................................................... 5641.4 Railways ............................................................................................................................................. 5671.5 Heliports.............................................................................................................................................. 5671.6 Tunnels ............................................................................................................................................... 567

1.6.1 General ................................................................................................................................... 5671.6.2 Principle of Planning and Design............................................................................................ 5671.6.3 Depth of Immersion ................................................................................................................ 5681.6.4 Structure and Length of Immersed Tunnel Elements ............................................................. 5681.6.5 Ventilation Towers .................................................................................................................. 5681.6.6 Access Roads......................................................................................................................... 5691.6.7 Calculation of Stability of Immersed Tunnel Section .............................................................. 5691.6.8 Design of Immersed Tunnel Elements.................................................................................... 5691.6.9 Joints ...................................................................................................................................... 5701.6.10 Control and Operation Facilities ............................................................................................. 570

1.7 Bridges................................................................................................................................................ 5701.7.1 General ................................................................................................................................... 5701.7.2 Design Requirements ............................................................................................................. 5701.7.3 Structural Durability ................................................................................................................ 5711.7.4 Fender System ....................................................................................................................... 571

Chapter 2 Cargo Sorting Facilities ........................................................................................................................... 5732.1 General ............................................................................................................................................... 5732.2 Cargo Sorting Areas ......................................................................................................................... 5732.3 Quay Sheds ....................................................................................................................................... 5732.4 Cargo Handling Equipment ............................................................................................................. 573

2.4.1 General ................................................................................................................................... 5732.4.2 Oil Handling Equipment .......................................................................................................... 5742.4.3 Operation and Maintenance of Cargo Handling Equipment ................................................... 574

2.5 Timber Sorting Areas........................................................................................................................ 5742.6 Sorting Facilities for Marine Products ............................................................................................ 5752.7 Sorting Facilities for Hazardous Cargo.......................................................................................... 575

Chapter 3 Storage Facilities ....................................................................................................................................... 5763.1 General ............................................................................................................................................... 5763.2 Yards for Dangerous Cargo and Oil Storage Facilities ............................................................... 5763.3 Other Storage Facilities.................................................................................................................... 576

Chapter 4 Facilities for Ship Services ..................................................................................................................... 5774.1 General ............................................................................................................................................... 5774.2 Water Supply Facilities..................................................................................................................... 577

Chapter 5 Facilities for Passenger ........................................................................................................................... 5785.1 Facilities for Passenger Boarding................................................................................................... 578

5.1.1 General ................................................................................................................................... 5785.1.2 Structural Types...................................................................................................................... 5785.1.3 Design of Facilities for Passenger Boarding........................................................................... 5785.1.4 Ancillary Facilities ................................................................................................................... 578

5.2 Passenger Building ........................................................................................................................... 5795.2.1 General ................................................................................................................................... 5795.2.2 Design of Passenger Buildings............................................................................................... 5795.2.3 Ancillary Facilities ................................................................................................................... 579

Part X Special Purpose WharvesChapter 1 Container Terminals ................................................................................................................................. 581

1.1 Principle of Design ............................................................................................................................ 5811.2 Design of Mooring Facilities ............................................................................................................ 582

1.2.1 Length and Water Depth of Berths ......................................................................................... 5821.2.2 Mooring Equipment................................................................................................................. 5821.2.3 Fender System ....................................................................................................................... 583

1.3 Design of Land Facilities.................................................................................................................. 5831.3.1 Apron ...................................................................................................................................... 5831.3.2 Container Cranes.................................................................................................................... 5831.3.3 Container Yard........................................................................................................................ 5831.3.4 Container Freight Station........................................................................................................ 5831.3.5 Maintenance Shop.................................................................................................................. 583

Page 22: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

CONTENTS

-xix-

1.3.6 Administration Building............................................................................................................5831.3.7 Gates.......................................................................................................................................5831.3.8 Ancillary Facilities....................................................................................................................583

Chapter 2 Ferry Terminals ..........................................................................................................................................5842.1 Principle of Design ............................................................................................................................5842.2 Design of Mooring Facilities.............................................................................................................585

2.2.1 Length and Water Depth of Berths..........................................................................................5852.2.2 Mooring Equipment .................................................................................................................5852.2.3 Fender System........................................................................................................................5862.2.4 Protection Works against Scouring .........................................................................................586

2.3 Design of Vehicle Ramp...................................................................................................................5862.3.1 Width, Length, Gradient, and Radius of Curvature .................................................................5862.3.2 Ancillary Facilities and Signs...................................................................................................5862.3.3 Design of Moving Parts ...........................................................................................................586

2.4 Facilities for Passenger Boarding ...................................................................................................5862.4.1 Width, Length, Gradient, and Ancillary Facilities.....................................................................5872.4.2 Design of Moving Parts ...........................................................................................................587

2.5 Design of Other Facilities .................................................................................................................5872.5.1 Roads......................................................................................................................................5872.5.2 Passageways ..........................................................................................................................5872.5.3 Car Parks ................................................................................................................................5872.5.4 Passenger Terminals ..............................................................................................................5882.5.5 Safety Equipment....................................................................................................................588

Part XI MarinasChapter 1 Introduction ..................................................................................................................................................589Chapter 2 Main Dimensions of Target Boats ........................................................................................................590Chapter 3 Navigation Channels and Basins..........................................................................................................591

3.1 General................................................................................................................................................5913.2 Navigation Channels.........................................................................................................................5913.3 Mooring Basins ..................................................................................................................................591

Chapter 4 Protective Facilities ...................................................................................................................................592Chapter 5 Mooring Facilities.......................................................................................................................................593

5.1 General................................................................................................................................................5935.2 Design Conditions for Mooring Facilities .......................................................................................5935.3 Floating Piers .....................................................................................................................................595

5.3.1 General ...................................................................................................................................5955.3.2 Structure..................................................................................................................................5955.3.3 Examination of Safety .............................................................................................................5955.3.4 Structural Design.....................................................................................................................5965.3.5 Mooring Method ......................................................................................................................5965.3.6 Access Bridges .......................................................................................................................596

5.4 Ancillary Facilities ..............................................................................................................................5975.5 Lifting / Lowering Frame Facilities ..................................................................................................597

Chapter 6 Facilities for Ship Services......................................................................................................................5986.1 General................................................................................................................................................5986.2 Land Storage Facilities .....................................................................................................................598

Chapter 7 Land Traffic Facilities................................................................................................................................599

INDEX

Page 23: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-xx-

Page 24: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

Part I General

Page 25: Technical Standard and Commentaries for Port and Harbour Facilities in Japan
Page 26: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART I GENERAL

-1-

Part I General

Chapter 1 General Rules

1.1 Scope of ApplicationThe Ministerial Ordinance stipulating the Technical Standards for Port and Harbour Facilities(Ministry of Transport Ordinance No. 30, 1974; hereafter referred to simply as the Ministerial Ordinance)and the Notification stipulating the Details of Technical Standards for Port and Harbour Facilities(Ministry of Transport Notification No. 181, 1999; hereafter referred to simply as the Notification), both ofwhich have been issued in line with Article 56-2 of the “Port and Harbour Law”, shall be applied to theconstruction, improvement, and maintenance of port and harbor facilities.

[Commentary]

(1) The Ministerial Ordinance and the Notification (hereafter collectively referred to as the Technical Standards)apply not to the port and harbor facilities stipulated in Article 2 of the “Port and Harbour Law”, but rather tothe port and harbor facilities stipulated in Article 19 of the Port and Harbour Law Enforcement Order.Accordingly the Technical Standards also apply to facilities like navigation channels, basins, protectivefacilities and mooring facilities of the marinas and privately owned ports, which are found in outside of thelegally designated port areas.

(2) Since the Technical Standards covers a wide rage of facilities, there will be cases where the items shown in theTechnical Standards may be inadequate for dealing with planning, designing, constructing, maintaining orrepairing of a particular individual structure of a port or harbor. There is also possibility that new items may beadded in the future in line with technical developments or innovations. With regard to matters for which thereare no stipulations in the Technical Standards, appropriate methods other than those mentioned in the TechnicalStandards may be adopted, after confirming the safety of a structure in consideration using appropriate methodssuch as model tests or trustworthy numerical calculations (following the main items of the Technical Standards).

(3) Figure C- 1.1.1 shows the statutory structure of the Technical Standards.

Fig. C- 1.1.1 Statutory Structure of the Technical Standards for Port and Harbour Facilities

(4) This document is intended to help individuals concerned with correct interpretation of the Technical Standardsand to facilitate right application of the Ministerial Ordinance and the Notification. This document is made up ofthe main items, along with reference sections marked Commentary and Technical Notes, which supplementthe main items. The texts in large letters are the main items that describe the parts of the Notification and thebasic items that must be obeyed, regarding the items related to the Notification. The sections markedCommentary mainly give the background to and the basis for the Notification, etc. The sections markedTechnical Notes provide investigation methods and/or standards that will be of reference value, when executingactual design works, specific examples of structures, and other related materials.

(5) Design methods can be broadly classified into the methods that use the safety factors and the methods that usethe indices based on probability theory, according to the way of judging the safety of structures.

A safety factor is not an index that represents the degree of safety quantitatively. Rather, it is determinedthrough experience to compensate for the uncertainty in a variety of factors. In this document, the safety factorsindicate values that are considered by experience to be sufficiently safe under standard conditions. Dependingon the conditions, it may be acceptable to lower the values of safety factors, but when doing so it is necessary tomake a decision using prudent judgement based on sound reasoning.

In the case that the probability distributions of loads and structure strengths can be adequately approximated,it is possible to use a reliability design method. Unlike the more traditional design methods in which safetyfactors are used, a reliability design method makes it possible to gain a quantitative understanding of the

Port and Harbour Law Enforcement Order Port and Harbour Law EnforcementRegulations

The Notification

Port and Harbour Law

[Article 56-2]

(technical standards for

port and harbour facilities)

Port and Harbour Law

Enforcement Order

[Article 19]

(stipulation of facilities covered)

Port and Harbour Law

Enforcement Regulations

[Article 28]

(stipulation of facilities excluded

from coverage)

The Technical Standards

The Ministerial Ordinance

Page 27: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-2-

likelihood of the failure of structure in question and then to keep the likelihood below a certain allowable value.With a reliability design method, design is carried out by using the partial safety factors and reliability indices.Formally speaking, the limit state design method can be classified as one form of reliability design method.

1.2 DefinitionsThe terms used in the Notification are based on the terminology used in the Ministerial Ordinance; inaddition, the meanings of the following terms as stipulated in the law or notification are cited.

(1) Dangerous articles: This term refers to those that are designated in the Notification stipulating the“Types of Hazardous Goods” for the “Port Regulation Law Enforcement Regulations” (Ministryof Transport Notification No. 547, 1979).

(2) Datum level for construction work: This is the standard water level used when constructing,improving or maintaining port and harbor facilities, and is equal to the chart datum level (specificallythe chart datum for which the height is determined based on the provisions of Article 9 (8) of the“Law for Hydrographic Activities” (Law No. 102, 1950)). However, in the case of port and harborfacilities in lakes and rivers for which there is little tidal influence, in order to ensure the safe use ofthe port or harbor in question, the datum level for construction work shall be determined whileconsidering the conditions of extremely low water level that may occur during a drought season.

[Commentary]

In addition to the terms defined above, the meanings of the following terms are listed below.

(1) Super-large vessel: A cargo ship with a deadweight tonnage of 100,000 t or more, except in the case of LPGcarriers and LNG carriers, in which case the gross tonnage is 25,000 t or more.

(2) Passenger ship: A vessel with a capacity of 13 or more passengers.(3) Pleasure boat: A yacht, motorboat or other vessel used for sport or recreation.

1.3 Usage of SI Units

[Commentary]

In line with the provisions in the “Measurement Law” (Law No. 51, May 20, 1992), with the aim of executing asmooth switchover to SI units, the Ministry of Agriculture, Forestry and Fisheries, the Ministry of Transport and theMinistry of Construction have concluded to use the International System of Units in their public work projectsstarting from April 1999.

Page 28: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART I GENERAL

-3-

Table C- 1.3.1 Conversion Factors from Conventional Units to SI Units

Number Quantity Non-SI units SI units Conversion factor

1 Length µ m 1µ = 1µm

2 Mass kgf•s2/m kg 1kgf•s2/m = 9.80665kg

3 Acceleration Gal m/s2 1Gal = 0.01m/s2

4Force

kgf N 1kgf = 9.80665N

5 dyn N 1dyn = 10µN

6 Moment of a force kgf•m N•m 1kgf•m = 9.80665N•m

7Pressure

kgf/cm2

Pa

N/mm2

1kgf/cm2

= 9.80665 × 104Pa= 9.80665 × 10-2MPa

1kgf/cm2

= 9.80665 × 10-2N/mm2

8 mHg Pa 1mHg = 133.322kPa

9 Stress kgf/cm2

Pa

N/mm2

1kgf/cm2

= 9.80665 × 104Pa= 9.80665 × 10-2MPa

1kgf/cm2

= 9.80665 × 10-2N/mm2

10Work (energy)

kgf•m J 1kfg•m = 9.80665J

11 erg J 1erg = 100nJ

12 Power PSHP W 1PS = 735.499W

1HP = 746.101W

13 Quantity of heat cal JW•s

1cal = 4.18605J1cal = 4.18605W•s

14 Thermal conductivity cal/(h•m•ºC) W/(m•ºC) 1cal/(h•m•ºC)

= 0.001163W/(m•ºC)

15 Heat conduction coefficient cal/(h•m2•ºC) W/(m2•ºC) 1cal/(h•m2•ºC)

= 0.001163W/(m2•ºC)

16 Specific heat capacity cal/(kg•ºC) J/(kg•ºC) 1cal/(kg•ºC)

= 4.18605J/(kg•ºC)

17 Sound pressure level - dB 1phon = 1dB

Page 29: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-4-

Chapter 2 Datum Level for Construction Work

[Commentary]

The datum level for port and harbor construction work is the standard water level that shall form the basisfor the planning, design, and construction of facilities. The chart datum level shall be used as the datumlevel for construction work.

[Technical Notes]

(1) Chart Datum LevelThe chart datum level is set as the level below the mean sea level by the amount equal to or approximatelyequivalent to the sum of the amplitueds of the four major tidal constituents (M2, S2, K1, and O1 tides), which areobtained from the harmonic analysis of tidal observation data. Here M2 is the principal lunar semi-diurnal tide,S2 is the principal solar semi-diurnal tide, K1 is the luni-solar diurnal tide, and O1 is the principal lunar diurnaltide.

Note that the heights of rocks or land marks shown on the nautical charts are the elevation above the meansea level, which is the long-term average of the hourly sea surface height at the place in question. (In the casethat the observation period is short, however, corrections for seasonal fluctuations should be made whendetermining the mean sea level.) The difference in height between the chart datum level and the mean sea levelis referred to as Z0.

(2) International Marine Chart DatumThe International Hydrographic Organization (IHO) has decided to adopt the Lowest Astronomical Tide (LAT)as the international marine chart datum, and issued a recommendation to this effect to the HydrographicDepartments in various countries throughout the world in June 1997. The LAT is defined as the lowest sea levelthat is assumed to occur under the combination of average weather conditions and generally conceivableastronomical conditions. In actual practice, tide levels for at least 19 years are calculated using harmonicconstants obtained from at least one year’s worth of observations, and then the lowest water level is taken as theLAT.

However, in the case of Japan, the chart datum level is obtained using the old method described in (1) above(approximate lowest water level). There will be no switchover to the LAT in the near future in Japan, but it isplanned to meet the IHO recommendation by stating the difference between the LAT and the chart datum levelin tide tables published by the Hydrographic Department of Maritime Safety Agency, Ministry of Land,Infrastructure, and Transport, Japan.

Page 30: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART I GENERAL

-5-

Chapter 3 Maintenance

In order to maintain the functions of port and harbor facilities at a satisfactory service level and to preventdeterioration in the safety of such facilities, comprehensive maintenance including inspections,evaluations, repairs, etc. shall be carried out, in line with the specific characteristics of the port or harbor inquestion.

[Commentary](1) “Maintenance” refers to a system consisting of a series of linked activities involving the efficient detection of

changes in the state of serviceability of the facilities and the execution of effective measures such as rationalevaluation, repair, and reinforcement.

(2) Port and harbor facilities must generally remain in service for long periods of time, during which the functionsdemanded of the facilities must be maintained. It is thus essential not only to give due consideration wheninitially designing the structures in question, but also to carry out proper maintenance after the facilities havebeen put into service.

(3) A whole variety of data concerning maintenance (specifically, inspections, checks, evaluations, repair,reinforcement work, etc.) must be recorded and stored in a standard format. Maintenance data kept in goodsystematic order is the basic information necessary for carrying out appropriate evaluation of the level ofsoundness of the facilities in question, and executing their maintenance and repairs. At the same time themaintenace data is useful when taking measures against the deterioration of the facilities as a whole and wheninvestigating the possibility in the life cycle cost reduction of the facilities.

(4) When designing a structure, it is necessary to give due consideration to the system of future maintenance and toselect the types of structures and the materials used so that future maintenance will be easily executed, whilereflecting this aspect in the detailed design.•

[Technical Notes](1) The concepts of the terms relating to maintenance are as follows:

(2) With regard to the procedure for maintenance, it is a good idea to draw up a maintenance plan for each structurewhile considering factors like the structural form, the tendency to deteriorate and the degree of importance, andthen to implement maintenance work based on this plan.

(3) For basic and common matters concerning maintenance, refer to the “Manual for Maintenance and Repair ofPort and Harbor Structures”.

Maintenance

Inspection / checking: • • • •Activities to investigate the state of a structure, the situation regarding damage and the remaining level of function, along with related administrative work: mainly composed of periodic and special inspections

Evaluation: • • • • • • • • • • • • • • • Evaluation of the level of soundness based on the results of inspection / checking, and judgement of the necessity or otherwise of repairs etc.

Maintenance: • • • • • • • • • • • • •Activities carried out with the aim of holding back the physical deterioration of a structure and keeping its function within acceptable levels.

Repair / reinforcement: • • Activities in which a structure that has deteriorated physically and/or functionally is partially reconstructed in order to restore the required function and/or structure.

Page 31: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-6-

Page 32: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

Part II Design Conditions

Page 33: Technical Standard and Commentaries for Port and Harbour Facilities in Japan
Page 34: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-7-

Part II Design Conditions

Chapter 1 General

In designing port and harbor facilities, the design conditions shall be chosen from the items listed below bytaking into consideration the natural, service and construction conditions, the characteristics of materials,the environmental impacts, and the social requirements for the facilities.

(1) Ship dimensions(2) External forces produced by ships(3) Winds and wind pressure (4) Waves and wave force(5) Tide and extraordinary sea levels(6) Currents and current force(7) External forces acting on floating structures and their motions(8) Estuarine hydraulics and littoral drift(9) Subsoil

(10) Earthquakes and seismic force(11) Liquefaction(12) Earth pressure and water pressure(13) Deadweight and surcharge(14) Coefficient of friction(15) Other necessary design conditions

[Commentary]The design conditions should be determined carefully, because they exercise great influence upon the safety,functions, and construction cost of the facilities. The design conditions listed above are just those that have a largeinfluence on port and harbor facilities. They are generally determined according to the results of surveys and tests.Thus, the design conditions should be precisely determined upon full understanding of the methods and results ofsuch investigations and tests. In the case of temporary structures, the design conditions may be determined whileconsidering also the length of service life.

[Technical Notes]

(1) In designing port and harbor facilities, the following matters should be taken into consideration.

(a) Functions of the facilitiesSince facilities often have multiple functions, care should be exercised so that all functions of the facilities willbe exploited fully.

(b) Importance of the facilitiesThe degree of importance of the facilities should be considered in order to design the facilities by takingappropriate account of safety and broad economic implications. The design criteria influenced by importanceof facilities are those of environmental conditions, design seismic coefficient, lifetime, loads, safety factor,etc. In determining the degree of importance of the facilities, the following criteria should be taken intoconsideration.• Influence upon human lives and property if the facilities are damaged.• Impact on society and its economy if the facilities are damaged.• Influence upon other facilities if the facilities are damaged.• Replaceability of the facilities.

(c) LifetimeThe length of lifetime should be taken into account in determining the structure and materials of the facilitiesand also in determining the necessity for and extent of the improvement of the existing facilities. Lifetime ofthe facilities should be determined by examinig the following:

• Operational function of the facilitiesThe number of years until the facilities can no longer be usable due to the occurrence of problems in termsof the function of the facilities, for example the water depth of a mooring basin becoming insufficient owingto the increase in vessel size.

• Economic viewpoint of the facilitiesThe number of years until the facilities become economically uncompetitive with other newer facilities(unless some kind of improvements are carried out).

Page 35: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-8-

• Social function of the facilitiesThe number of years until the functions of the facilities that constituted the original purpose becomeunnecessary or until different functions are called for the facilities due to new port planning etc.

• Physical property of the facilitiesThe number of years until it is no longer possible to maintain the strength of materials composing thestructures at the specified level due to processes such as corrosion or weathering of these materials.

(d) Encounter probabilityThe encounter probability is intimately linked with the lifetime length. The encounter probability E1 isobtained using equation (1.1.1) 1)

(1.1.1)where

L1: lifetime length: return period

(e) Environmental conditionsNot only the wave, seismic, topographical and soil conditions, which have direct influences on the design ofthe facilities, but also the water quality, bottom material, animal and plant life, atmospheric conditions andrising sea level due to global warming should be taken into consideration.

(f) MaterialsIt is necessary to consider the physical external forces, deterioration, lifetime, structural type, constructionworks, cost, and influence on the environment and landscape when selecting the materials. It is most importantto ensure the reguired quality. In recent years, in addition to more traditional materials, new materials such asstainless steels, titanium and new rubbers, and recycled materials such as slag, coal ash and dredged sedimenthave begun to be used.

(g) Construction methodIn order to carry out design rationally, it is necessary to give sufficient consideration to the constructionmethod.

(h) Work accuracyIt is necessary to carry out design considering the accuracy of construction works that can be maintained inactual projects.

(i) Construction periodIn the case that the construction period is stipulated, it is necessary to give consideration both to the design andthe construction method, in order that it will be possible to complete construction work within the stipulatedperiod. The construction period is generally determined by things like the availability of the materials, theconstruction equipment, the degree of difficulty of construction, the opening date and the natural conditions.

(j) Construction costs etc.Construction costs consist of the initial investment costs and maintenance costs. All of these costs must beconsidered in design and construction. When doing this, it is necessary to consider the early use of thefacilities and to secure an early return on investment. There is also a design approach that the facilities are putinto service step by step as the construction progresses, while ensuring the safety of service / construction.Note also that the initial investment costs mentioned here include compensation duties.

When carrying out design etc., due consideration must be given to things like the structural type and theconstruction method, since the construction costs will depend on these things.

[Reference]1) Borgman, L. E.: “Risk criteria”, Proc. ASCE, Vol. 89, No. WW3, 1963, pp.1-35.

E1 1 1 1 T1��� �L1

��

T1

Page 36: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-9-

Chapter 2 Vessels

2.1 Dimensions of Target Vessel (Notification Article 21)The principal dimensions of the target vessel shall be set using the following method:

(1) In the case that the target vessel can be identified, use the principal dimensions of that vessel.

(2) In the case that the target vessel cannot be identified, use appropriate principal dimensions determinedby statistical methods.

[Technical Notes](1) Article 1, Clause 2 of the Ministerial Ordinance stipulates that the “target vessel” is the vessel that has the

largest gross tonnage out of those that are expected to use the port or harbor facilities in question. Accordingly,in the case that the target vessel can be identified, the principal dimensions of this vessel should be used.

(2) In the case that the target vessel cannot be identified in advance, such as in the case of port and harbor facilitiesfor public use, the principal dimensions of the target vessel may be determined by referring to Table T- 2.1.1. Inthis table, the tonnages (usually either gross or deadweight tonnage) are used as representative indicators.

(3) Table T- 2.1.1 lists the “principal dimensions of vessels for the case that the target vessel cannot be identified”by tonnage level. These values have been obtained through methods such as statistical analysis 1),2), and theymainly represent the 75% cover ratio values for each tonnage of vessels. Accordingly, for any given tonnage,there will be some vessels that have principal dimensions that exceed the values in the table. There will also bevessels that have a tonnage greater than that of the target vessel listed in the table, but still have principaldimensions smaller than those of the target vessel.

(4) Table T- 2.1.1 has been obtained using the data from “Lloyd’s Maritime Information June ’95” and “NihonSenpaku Meisaisho” (“Detailed List of Japanese Vessels”; 1995 edition). The definitions of principaldimensions in the table are shown in Fig. T- 2.1.1.

(5) Since the principal dimensions of long distance ferries that sail over 300km tend to have different characteristicsfrom those of short-to-medium distance ferries, the principal dimensions are listed separately for “long distanceferries” and “short-to-medium distance ferries.”

(6) Since the principal dimensions of Japanese passenger ships tend to have different characteristics from those offoreign passenger ships, the principal dimensions are listed separately for “Japanese passenger ships” and“foreign passenger ships”.

(7) The mast height varies considerably even for vessels of the same type with the same tonnage, and so whendesigning facilities like bridges that pass over navigation routes, it is necessary to carry out a survey on the mastheights of the target vessels.

(8) In the case that the target vessel is known to be a small cargo ship but it is not possible to identify precisely thedemensions of the ship in advance, the principal dimensions of “small cargo ships” can be obtained by referringto Table T- 2.1.2. The values in Table T- 2.1.2 have been obtained using the same kind of procedure as those inTable T- 2.1.1, but in the case of such small vessels there are large variations in the principal dimensions and soparticular care should be exercised when using Table T- 2.1.2.

(9) TonnageThe definitions of the various types of tonnage are as follows:

(a) Gross tonnageThe measurement tonnage of sealed compartments of a vessel, as stipulated in the “Law Concerning theMeasurement of the Tonnage of Ships”. The “gross tonnage” is used as an indicator that represents the sizeof a vessel in Japan’s maritime systems. Note however that there is also the “international gross tonnage”,which, in line with the provisions in treaties etc., is also used as an indicator that represents the size of a vessel,but mainly for vessels that make international sailings. The values of the “gross tonnage” and the“international gross tonnage” can differ from one another; the relationship between the two is stipulated inArticle 35 of the “Enforcement Regulations for the Law Concerning the Measurement of the Tonnage ofShips” (Ministerial Ordinance No. 47, 1981).

(b) Deadweight tonnageThe maximum weight, expressed in tons, of cargo that can be loaded onto a vessel.

(c) Displacement tonnageThe amount of water, expressed in tons, displaced by a vessel when it is floating at rest.

(10) For the sake of consistency, equation (2.1.1) shows the relationship between the deadweight tonnage (DWT) andthe gross tonnage (GT) for the types of vessels that use the deadweight tonnage as the representative indicator 1).For each type of vessels, the equation may be applied if the tonnage is within the range shown in Table T- 2.1.1.

Page 37: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-10-

Cargo ships: GT = 0.541DWTContainer ships: GT = 0.880DWTOil tankers: GT = 0.553DWTRoll-on/roll-off vessels: GT = 0.808DWT

whereGT : gross tonnage

DWT : deadweight tonnage

(11) Tables T-2.1.3 to T-2.1.6 list the frequency distribution of the principal dimensions of general cargo ships, bulkcargo carriers, container ships, and oil tankers, which were analyzed by the Systems Laboratory of Port andHarbour Research Institute (PHRI) using the data from “Lloyd’s Maritime Informations Services (June ’98)”.

Fig. T- 2.1.1 Definitions of Principal Dimensions of Vessel

Table T- 2.1.1 Principal Dimensions of Vessels for the Case That the Target Vessel Cannot Be Identified

1. Cargo ships

2. Container ships

Deadweight tonnage (DWT) Length overall (L) Molded breadth (B) Full load draft (d)

1,000 ton2,0003,0005,000

10,00012,00018,00030,00040,00055,00070,00090,000

100,000150,000

67 m8394

109137144161185200218233249256286

10.9 m13.114.616.819.921.023.627.529.932.332.338.139.344.3

3.9 m4.95.66.58.28.69.6

11.011.812.913.714.715.116.9

Deadweight tonnage (DWT) Length overall (L) Molded breadth (B) Full load draft (d)

30,000 ton40,00050,00060,000

218 m244266286

30.2 m32.332.336.5

11.1 m12.213.013.8

(2.1.1)

647

48

Fullload

draft

Length overall

Load water line

Length between perpendiculars

After perpendicular Fore perpendicularMoulded breadth

Moulded

depth

Page 38: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-11-

3. Ferries3-A Short-to-medium distance ferries (sailing distance less than 300km)

3-B Long distance ferries (sailing distance 300km or more)

4. Roll-on/roll-off vessels

5. Passenger ships5-A Japanese passenger ships

5-B Foreign passenger ships

6. Pure car carriers

Gross tonnage (GT) Length overall (L) Molded breadth (B) Full load draft (d)

400 ton700

1,0002,5005,000

10,000

50 m6372

104136148

11.8 m13.514.718.321.623.0

3.0 m3.43.74.65.35.7

Gross tonnage (GT) Length overall (L) Molded breadth (B) Full load draft (d)

6,000 ton10,00013,00016,00020,00023,000

142 m167185192192200

22.3 m25.227.328.228.228.2

6.0 m6.46.86.86.87.2

Deadweight tonnage (DWT) Length overall (L) Molded breadth (B) Full load draft (d)

400 ton1,5002,5004,0006,000

10,000

75 m97

115134154182

13.6 m16.418.520.722.925.9

11.1 m4.75.56.37.07.4

Gross tonnage (GT) Length overall (L) Molded breadth (B) Full load draft (d)

2,000 ton4,0007,000

10,00020,00030,000

83 m107130147188217

15.6 m18.521.223.227.530.4

4.0 m4.95.76.66.66.6

Gross tonnage (GT) Length overall (L) Molded breadth (B) Full load draft (d)

20,000 ton30,00050,00070,000

180 m207248278

25.7 m28.432.335.2

8.0 m8.08.08.0

Gross tonnage (GT) Length overall (L) Molded breadth (B) Full load draft (d)

500 ton1,5003,0005,000

12,00018,00025,000

70 m94

114130165184200

11.8 m15.718.821.527.030.032.3

3.8 m5.05.86.68.08.89.5

Page 39: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-12-

7. Oil tankers

Table T- 2.1.2 Principal Dimensions of Small Cargo Ships

Table T-2.1.3 Frequency Distributions of Principal Dimensions of General Cargo Ships

(a) DWT - Length overall

(b) DWT - Breadth

(c) DWT - Full load draft

Deadweight tonnage (DWT) Length overall (L) Molded breadth (B) Full load draft (d)

1,000 ton2,0003,0005,000

10,00015,00020,00030,00050,00070,00090,000

61 m7687

102127144158180211235254

10.2 m12.614.316.820.823.625.829.232.338.041.1

4.0 m4.95.56.47.98.99.6

10.912.613.915.0

Deadweight tonnage (DWT) Length overall (L) Molded breadth (B) Full load draft (d)

500 ton700

51 m57

9.0 m9.5

3.3 m3.4

L

B

d

Page 40: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-13-

Table T-2.1.4 Frequency Distributions of Principal Dimensions of Bulk Cargo Carriers

(a) DWT - Length overall

(b) DWT - Breadth

(c) DWT - Full load draft

L

B

d

Page 41: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-14-

Table T-2.1.5 Frequency Distributions of Principal Dimensions of Container Ships

(a) DWT - Length overall

(b) DWT - Breadth

(c) DWT - Full load draft

(d) DWT - TEU

L

B

d

unknown

unknown

Page 42: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-15-

Table T-2.1.6 Frequency Distributions of Principal Dimensions of Oil Tankers

(a) DWT - Length overall

(b) DWT - Breadth

(c) DWT - Full load draft

L

B

d

Page 43: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-16-

2.2 External Forces Generated by Vessels

2.2.1 GeneralThe external forces acting on the mooring facilities when a vessel is berthing or moored shall bedetermined using an appropriate method, considering the dimensions of the target vessel, the berthingmethod and the berthing velocity, the structure of the mooring facilities, the mooring method and theproperties of the mooring system, along with the influence of things like the winds, waves and tidalcurrents.

[Commentary]

(1) The following loads acting on mooring facilities should be considered when a vessel is berthing or moored:

a) Loads caused by berthing of a vesselb) Loads caused by motions of a moored vessel

When designing mooring facilities, the berthing force must be considered first. Then the impact forces andtractive forces on the mooring facilities due to the motions of the moored vessel, which are caused by the waveforce, wind force and current force, should be considered. In particular, for the cases of the mooring facilities inthe ports and harbors that face out onto the open sea with long-period waves expected to come in, of thoseinstalled in the open sea or harbor entrances such as offshore terminals, and of those in the harbors where vesselsseek refuge during storms, the influence of the wave force acting on a vessel is large and so due considerationmust be given to the wave force.

(2) As a general rule, the berthing forces acting on the mooring facilities should be calculated based on the berthingenergy of the vessel and using the load-deflection characteristics of the fenders.

(3) As a general rule, the tractive forces and impact forces generated by the motions of a moored vessel should beobtained by carrying out a numerical simulation of vessel motions taking into account the wave force acting onthe vessel, the wind force, the current force, and the load-deflection characteristics of the mooring system.

2.2.2 Berthing

[1] Berthing Energy (Notification Article 22, Clause 1)It shall be standard to calculate the external force generated by berthing of a vessel with the followingequation:

(2.2.1)

In this equation, , , V, , , , and represent the following:: berthing energy of vessel (kJ = kN•m): mass of vessel (t)

V: berthing velocity of vessel (m/s): eccentricity factor: virtual mass factor: softness factor (standard value is 1.0): berth configuration factor (standard value is 1.0)

[Commentary]

In addition to the kinetic energy method mentioned above, there are also other methods of estimating the berthingenergy of a vessel: for example, statistical methods, methods using hydraulic model experiments, and methods usingfluid dynamics models 3). However, with these alternative methods, the data necessary for design are insufficient andthe values of the various constants used in the calculations may not be sufficiently well known. Thus, the kineticenergy method is generally used.

[Technical Notes]

(1) If it is assumed that a berthing vessel moves only in the abeam direction, then the kinetic energy is equal to. However, when a vessel is berthing at a dolphin, a quaywall, or a berthing beam equipped with

fenders, the energy absorbed by the fenders (i.e., the berthing energy of the vessel) will become considering the various influencing factors, where .

(2) The vessel mass is taken to be the displacement tonnage (DT) of the target vessel. In the case that the targetvessel cannot be identified, equation (2.2.2) 1) may be used to give the relationship between the deadweighttonnage (DWT) or the gross tonnage (GT) and the displacement tonnage (DT).

EfMsV2

2�������������� �� � CeCmCsCc�

Ef Ms Ce Cm Cs CcEf

Ms

CeCmCsCc

EsMsV 2� � 2�

Ef Es f�f Ce Cm� Cs� Cc��

Ms

Page 44: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-17-

Cargo ships (less than 10,000DWT): log (DT) = 0.550 + 0.899 log (DWT)Cargo ships (10,000DWT or more): log (DT) = 0.511 + 0.913 log (DWT)Container ships: log (DT) = 0.365 + 0.953 log (DWT)Ferries (long distance): log (DT) = 1.388 + 0.683 log (GT)Ferries (short-to-medium distance): log (DT) = 0.506 + 0.904 log (GT)Roll-on/roll-off vessels: log (DT) = 0.657 + 0.909 log (DWT)Passenger ships (Japanese): log (DT) = 0.026 + 0.981 log (GT)Passenger ships (foreign): log (DT) = 0.341 + 0.891 log (GT)Car carriers: log (DT) = 1.915 + 0.588 log (GT)Oil tankers: log (DT) = 0.332 + 0.956 log (DWT)

whereDT: displacement tonnage (amount of water, in tons, displaced by the vessel when fully loaded)GT: gross tonnage

DWT: deadweight tonnage

(3) The softness factor represents the ratio of the remaining amount of the berthing energy after energyabsorption due to deformation of the shell plating of the vessel to the initial berthing energy. It is generallyassumed that no energy is absorbed in this way and so the value of is often given as 1.0.

(4) When a vessel berths, the mass of water between the vessel and the mooring facilities resists to move out andacts just as if a cushion is placed in this space. The energy that must be absorbed by the fenders is thus reduced.This effect is considered when determining the berth configuration factor . It is thought that the effectdepends on things like the berthing angle, the shape of the vessel’s shell plating, the under-keel clearance, andthe berthing velocity, but little research has been carried out to determine it.

[2] Berthing VelocityThe berthing velocity of a vessel shall be determined based on the measurement in situ or past data ofsimilar measurements, considering the type of the target vessel, the extent to which the vessel is loaded, theposition and structure of the mooring facilities, weather and oceanographic conditions, and the availabilityor absence of tugboats and their sizes.

[Technical Notes]

(1) Observing the way in which large cargo ships and large oil tankers make berthing, one notices that such vesselscome to a temporary standstill, lined up parallel to the quaywall at a certain distance away from it. They are thengently pushed by several tugboats until they come into contact with the quay. When there is a strong windblowing toward the quay, such vessels may berth while actually being pulled outwards by the tugboats. Whensuch a berthing method is adopted, it is common to set the berthing velocity to 10 ~ 15 cm/s based on past designexamples.

(2) Special vessels such as ferries, roll-on/roll-off vessels, and small cargo ships berth under their own powerwithout assistance of tugboats. If there is a ramp at the bow or stern of such a vessel, the vessel may line upperpendicular to the quay. In these cases, a berthing method different from that for larger vessels described in (1)may be used. It is thus necessary to determine berthing velocities carefully based on actualy measured values,paying attention to the type of berthing method employed by the target vessel.

(3) Figure T- 2.2.1 shows the relationship between the vessel handling conditions and berthing velocity by vesselsize 4); it has been prepared based on the data collected through experience. This figure shows that the larger thevessel, the lower the berthing velocity becomes; moreover, the berthing velocity must be set high if the mooringfacilities is not sheltered by breakwaters etc.

(4) According to the results of surveys on berthing velocity 5),6), the berthing velocity is usually less than 10 cm/s forgeneral cargo ships, but there are a few cases where it is over 10 cm/s (see Fig. T- 2.2.2). The berthing velocityonly occasionally exceeds 10 cm/s for large oil tankers that use offshore terminals (see Fig. T- 2.2.3). Even forferries which berth under their own power, the majority berth at the velocity of less than 10 cm/s. Nevertheless,there are a few cases in which the berthing velocity is over 15 cm/s and so due care must be taken whendesigning ferry quays (see Fig. T- 2.2.4). It was also clear from the above-mentioned survey results that thedegree to which a vessel is loaded up has a considerable influence on the berthing velocity. In other words, if avessel is fully loaded, meaning that the under-keel clearance is small, then the berthing velocity tends to belower, whereas if it is lightly loaded, meaning that the under-keel clearance is large, then the berthing velocitytends to be higher.

64

44

47

44

44

8

(2.2.2)

Cs

Cs

Cc

Page 45: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-18-

Fig. T- 2.2.1 Relationship between Vessel Handling Conditions and Berthing Velocity by Vessel Size 4)

Fig. T- 2.2.2 Berthing Velocity and Displacement Tonnage for General Cargo Ships 5)

Fig. T- 2.2.3 Berthing Velocity and Displacement Tonnage for Large Oil Tankers 6)

Fig. T- 2.2.4 Berthing Velocity and Displacement Tonnage for Longitudinal Berthing of Ferries 5)

Difficult

exposed

Good berthing

exposed

Easy berthing

exposed

Difficult berthing

sheltered

Good berthing

sheltered

Difficultyofhandlingvessel/mooring

facilities

beingshelterd

ornot

Berthing velocity (cm/s)

Open type quay

Wall type quay (sheet pile, gravity types)

Berthingvelocity

(cm/s)

Displacement tonnage DT (tons)

Displacement tonnage DT (10,000 tons)

Berthingvelocity

(cm/s)

Displacement tonnage DT (tons)

Berthingvelocity

(cm/s)

Stern berthing

Bow berthing

Page 46: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-19-

According to the survey by Moriya et al., the average berthing velocities for cargo ships, container ships, andpure car carriers are as listed in Table T- 2.2.1. The relationship between the deadweight tonnage and berthingvelocity is shown in Fig. T- 2.2.5. This survey also shows that the larger the vessel, the lower the berthingvelocity tends to be. The highest berthing velocities observed were about 15 cm/s for vessels under 10,000 DWTand about 10 cm/s for vessels of 10,000 DWT or over.

Table T- 2.2.1 Deadweight Tonnage and Average Berthing Velocity

(5) Figure T- 2.2.6 shows a berthing velocity frequency distribution obtained from actual measurement records atoffshore terminals used by large oil tankers of around 200,000 DWT. It can be seen that the highest measuredberthing velocity was 13 cm/s. If the data are assumed to follow a Weibull distribution, then the probability ofthe berthing velocity below the value 13 cm/s would be 99.6%. The mean µ is 4.41 cm/s and the standarddeviation s is 2.08 cm/s. Application of the Weibull distribution yields the probability density function asexpressed in equation (2.2.3):

(2.2.3)

whereV: berthing velocity (cm/s)

From this equation, the probability of the berthing velocity exceeding 14.5 cm/s becomes 1/1000. The offshoreterminals where the berthing velocity measurements were taken had a design berthing velocity of either 15 cm/sor 20 cm/s 7).

(6) Small vessels such as small cargo ships and fishing boats come to berths by controlling their positions undertheir own power without assistance of tugboats. Consequently, the berthing velocity is generally higher than thatfor larger vessels, and in some cases it can even exceed 30 cm/s. For small vessels in particular, it is necessary tocarefully determine the berthing velocity based on actually measured values etc.

(7) In cases where cautious berthing methods such as those described in (1) are not used, or in the case of berthingof small or medium-sized vessels under influence of currents, it is necessary to determine the berthing velocitybased on actual measurement data etc., considering the ship drift velocity by currents.

(8) When designing mooring facilities that may be used by fishing boats, it is recommended to carry out designworks based on the design standards for fishing port facilities and actual states of usage.

Deadweight tonnage (DWT)

Berthing velocity (cm/s)

Cargo ships Container ships Pure car carriers All vessels

1,000 class5,000 class

10,000 class15,000 class30,000 class50,000 class

8.16.75.04.53.93.5

-7.87.24.94.13.4

--

4.64.74.4-

8.17.25.34.64.13.4

All vessels 5.2 5.0 4.6 5.0

Dead weight tonnage (DWT)

Cargo shipsContainer shipsPure car carriers

V (

cm

/s)

Poisson distribution m = 3

Poisson distribution m = 4

Weibull distribution

Normal distribution

V (cm/s)

N=738

N

Fig. T- 2.2.5 Relationship between DeadweightTonnage and Berthing Velocity

Fig. T- 2.2.6 Frequency Distribution ofBerthing Velocity 10)

f V� �

f V� �V

0.8������� V1.25�� �exp�

Page 47: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-20-

[3] Eccentricity Factor (Notification Article 22, Clause 2)The eccentricity factor shall be calculated by the following:

(2.2.4)

where l and r represent the following:l: distance from the point where the vessel touches the mooring facilities to the center of gravity of

the vessel as measured along the face line of the mooring facilities (m)r: radius of gyration around the vertical axis passing through the center of gravity of the vessel (m)

[Technical Notes]

(1) When a vessel is in the middle of berthing operation, it is not aligned perfectly along the face line of the berth.This means that after it comes into contact with the mooring facilities (fenders), it starts yawing and rolling. Thisresults in some of the vessel’s kinetic energy being used up. The amount of energy used up by rolling is smallcompared with that by yawing and can be ignored. Equation (2.2.4) thus only considers the amount of energyused up by yawing.

(2) The radious of gyration r relative to Lpp is a function of the block coefficient of the vessel and can beobtained from Fig. T- 2.2.7 8). Alternatively, one may use the linear approximation shown in equation (2.2.5) .

(2.2.5)where

r: radius of gyration; this is related to the moment of inertia around the vertical axis of the vessel bythe relationship

: length between perpendiculars (m): block coefficient; = /( Bd) ( : Volume of water displaced by the vessel (m3), B: moulded

breadth (m), d: draft (m))

(3) As sketched in Fig. T- 2.2.8, when a vessel comes into contact with the fenders F1 and F2 with the point of thevessel closest to the quaywall being the point P, the distance l from the point of contact to the center of gravity ofthe vessel as measured parallel to the mooring facilities is given by equation (2.2.6) or (2.2.7); l is taken to be

when k < 0.5 and when k > 0.5. When k = 0.5, l is taken as whichever of or that gives the highervalue of in equation (2.2.4).

(2.2.6)

(2.2.7)

Ce1

1lr��� �

� �2

���������������������

Cb

r 0.19Cb 0.11�� �Lpp�

IzIz Msr2�

LppCb Cb � Lpp �

L1 L2 L1 L2Ce

θ

Q

GB

B

A

AP

F2

F1

eLppcosθkeLppcosθ

Lpp

αLpp

Rad

ius

of

gy

rati

on

in

th

e l

on

git

ud

inal

dir

ecti

on

(r)

Len

gth

betw

een

perp

en

dic

ula

rs (

L pp)

Block coefficient Cb

Fig. T- 2.2.7 Relationship between the Radius of Gyration around the Vertical Axis and the Block Coefficient (Myers, 1969) 7)

Fig. T- 2.2.8 Vessel Berthing

L2 0.5� e 1 k�� �� Lpp �cos�

L1 0.5� ek�� �Lpp �cos�

Page 48: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-21-

where: distance from the point of contact to the center of gravity of the vessel as measured parallel to the

mooring facilities when the vessel makes contact with fender F1: distance from the point of contact to the center of gravity of the vessel as measured parallel to the

mooring facilities when the vessel makes contact with fender F2�: berthing angle (the value of � is set as a design condition; it is usually set somewhere in the range

0 ~ 10º)e: ratio of the distance between the fenders, as measured in the longitudinal direction of the vessel, to the

length between perpendiculars�: ratio of the length of the parallel side of the vessel at the height of the point of contact with the fender to

the length between perpendiculars; this varies according to factors like the type of vessel, and the blockcoefficient etc., but is generally in the range 1/3 ~ 1/2.

k: parameter that represents the relative location of the point where the vessel comes closest to the mooringfacilities between the fenders F1 and F2 ; k varies between 0 and 1, but it is generally taken at k = 0.5.

[4] Virtual Mass Factor (Notification Article 22, Clause 3) It shall be standard to calculate the virtual mass factor using the following equations:

where Cb,�, Lpp, B, and d represent the following:: block coefficient: volume of water displaced by the vessel (m3): length between perpendiculars (m)

B: moulded breadth (m)d: full load draft (m)

[Technical Notes]

(1) When a vessel berths, the vessel (which has mass ) and the water mass surrounding the vessel (which hasmass ) both decelerate. Accordingly, the inertial force corresponding to the water mass is added to that of thevessel itself. The virtual coefficient is thus defined as in equation (2.2.9).

(2.2.9)

where: virtual mass factor: mass of vessel (t): mass of the water surrounding the vessel (added mass) (t)

Ueda 8) proposed equation (2.2.8) based on the results of model experiments and field observations. The secondterm in equation (2.2.8) corresponds to in equation (2.2.9).

(2) As a general rule, the actual values of the target vessel are used for the length between perpendiculars ( ), themoulded breadth (B), and the full load draft (d). But when one of the standard ship sizes is used, one may use theprincipal dimensions given in 2.1 Dimensions of the Target Vessel. Regression equations have been proposedfor the relationships between the deadweight tonnage, the moulded breadth and the full load draft 1). It is alsopossible to use equations (2.2.10), which give the relationship between the deadweight tonnage (DWT) or thegross tonnage (GT) and the length between perpendiculars for different types of vessel 1).

Cargo ships (less than 10,000 DWT): log (Lpp) = 0.867 + 0.310 log (DWT)Cargo ships (10,000 DWT or more): log (Lpp) = 0.964 + 0.285 log (DWT)Container ships: log (Lpp) = 0.516 + 0.401 log (DWT)Ferries (long distance, 13,000 GT or less): log (Lpp) = log (94.6 + 0.00596GT)Ferries (short-to-medium distance, 6,000 t or less): log (Lpp) = 0.613 + 0.401 log (GT)Roll-on/roll-off vessels: log (Lpp) = 0.840 + 0.349 log (DWT)Passenger ships (Japanese): log (Lpp) = 0.679 + 0.359 log (GT)Passenger ships (foreign): log (Lpp) = 0.787 + 0.330 log (GT)Car carriers: log (Lpp) = 1.046 + 0.280 log (GT)Oil tankers: log (Lpp) = 0.793 + 0.322 log (DWT)

L1

L2

Cm 1 2Cb����������

dB�����

64

74

8

(2.2.8)

Cb�

LppBd����������������

Cb�

Lpp

MsMw

CmMs Mw�

Ms����������������������

CmMsMw

Mw Ms�

Lpp

644

44

74

44

48

(2.2.10)

Page 49: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-22-

(3) The volume of water displaced by the vessel is determined by dividing the displacement tonnage DT by thedensity of seawater (1.03 t/m3)

2.2.3 Moored Vessels

[1] Motions of Moored Vessel (Notification Article 23)As a general rule, the external forces generated by the motions of a moored vessel shall be calculated bycarrying out a numerical simulation of vessel motions, with the wave force acting on the vessel, the windforce, the current force due to water currents, etc. being set appropriately.

[Commentary]

(1) Vessels moored at mooring facilities situated in the open sea or near to harbor entrances, or at mooring facilitiesinside harbors for which long-period waves are expected to come in, along with vessels moored during stormyweather, are liable to be moved under the influence of loads due to waves, winds, currents, etc. In some cases,the kinetic energy due to such motions can exceed the berthing energy. In such cases, it is thus advisable to givefull consideration to the tractive forces and impact forces caused by the motions of vessels when designingbollards and fenders 10).

(2) As a general rule, the external forces generated by the motions of a vessel should be obtained by carrying out anumerical simulation of vessel motions, based on the factors such as the wave force acting on the vessel, thewind force, the current force due to currents, and the load-deflection characteristics of the mooring system.

[Technical Notes](1) As a general rule, the motions of a moored vessel should be analyzed through numerical simulation, with

consideration given to the random variations of the loads and the nonlinearity of the load-deflectioncharacteristics of the mooring system. However, when such a numerical simulation of vessel motions is notpossible, or when the vessel is moored at a system that is considered to be more-or-less symmetrical, one mayobtain the displacement of and loads on the mooring system either by using frequency response analysis forregular waves or by referring to results of an motion analysis on a floating body moored at a system that hasload-deflection characteristics of bilinear nature 11).

(2) The total wave force acting on the hull of a vessel is analyzed by dividing it into the wave exciting force due toincident waves and the radiation force that is generated as the vessel moves. The wave exciting force due toincident waves is the wave force calculated for the case that motions of the vessel are restrained. The radiationforce is the wave force exerted on the hull when the vessel undergoes a motion of unit amplitude for each modeof motions. The radiation force can be expressed as the summation of a term that is proportional to theacceleration of the vessel and a term that is proportional to the velocity. Specifically, the former can be expressedas an added mass divided by acceleration, while the latter can be expressed as a damping coefficient divided byvelocity 12). In addition, a nonlinear fluid dynamic force that is proportional to the square of the wave height actson the vessel (see 8.2 External Forces Acting on Floating Body).

(3) For vessels that have a block coefficient of 0.7 ~ 0.8 such as large oil tankers, the ship hull can be representedwith an elliptical cylinder, allowing an approximate evaluation of the wave force 13).

(4) For box-shaped vessels such as working craft, the wave force can be obtained by taking the vessel to be either afloating body with a rectangular cross section or a floating body of a rectangular prism.

[2] Waves Acting on VesselThe wave force acting on a moored vessel shall be calculated using an appropriate method, considering thetype of vessel and the wave parameters.

[Commentary]

The wave force acting on a moored vessel is calculated using an appropriate method, for example the strip method,the source distribution technique, the boundary element method, or the finite element method; the most commonmethod used for vessels is the strip method.

[Technical Notes]

(1) Wave Force by the Strip Method 11), 12)

(a) Wave force of regular waves acting on the hullThe wave force acting on the hull is taken to be the summation of the Froude-Kriloff force and the force by thewaves that are reflected by the hull (diffraction force).

Page 50: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-23-

(b) Froude-Kriloff forceThe Froude-Kriloff force is the force derived by integrating the pressure of progressive waves around thecircumference of the hull. In the case of a moored vessel in front of a quaywall, it is taken to be the summationof the force of the incident waves and the force of the reflected waves from the quaywall.

(c) Diffraction forceThe diffraction force acting on a vessel is the force that is generated by the change in the pressure field whenincident waves are scattered by the vessel’s hull. As an estimate, this change in the pressure field can bereplaced by the radiation force (the wave making resistance when the vessel moves at a certain velocitythrough a calm fluid) for the case that the hull is moved relative to fluid. It is assumed that the velocity of thevessel in this case is equal to the velocity of the cross section of the hull relative to the water particles in theincident waves. This velocity is referred to as the “equivalent relative velocity”.

(d) Total force acting on the hull as a wholeThe total wave force acting on the hull as a whole can be obtained by integrating the Froude-Kriloff force andthe diffraction force acting on a cross section of the hull in the longitudinal direction from to

.

(2) Waves Forces by Diffraction Theory 13)

In the case that the vessel in question is very fat (i.e., it has a block coefficient of 0.7 ~ 0.8), there are noreflecting structures such as quaywalls behind the vessel, and the motions of the vessel are considered to be verysmall, the vessel may be represented with an elliptical cylinder and the wave force may be calculated using anequation based on a diffraction theory 13).

[3] Wind Load Acting on VesselThe wind load acting on a moored vessel shall be determined using an appropriate calculation formula.

[Commentary]It is desirable to determine the wind load acting on a moored vessel while considering the temporal fluctuation of thewind velocity and the characteristics of the drag coefficients, which depend on the cross-sectional form of the vessel.

[Technical Notes]

(1) The wind load acting on a vessel should be determined from equations (2.2.11) ~ (2.2.13), using the dragcoefficients and in the X and Y directions and the pressure moment coefficient about the midship.

(2.2.11)

(2.2.12)

(2.2.13)

where: drag coefficient in the X direction (from the front of the vessel): drag coefficient in the Y direction (from the side of the vessel): pressure moment coefficient about the midship: X component of the wind force (kN): Y component of the wind force (kN): moment of the wind load about the midship (kN•m): density of air; (t/m3)

U: wind velocity (m/s): front projected area above the water surface (m2): side projected area above the water surface (m2): length between perpendiculars (m)

(2) It is desirable to determine the wind force coefficients , , and through wind tunnel tests or water tanktests on a target vessel. Since such experiments require time and cost, it is acceptable to use the calculationequations for wind force coefficients 14),15) that are based on wind tunnel tests or water tank tests that have beencarried out in the past.

(3) The maximum wind velocity (10-minute average wind velocity) should be used as the wind velocity U.

(4) For the front projected area above the water surface and the side projected area above the water surface, it isdesirable to use the values for the target vessel. For standard vessel sizes, one may refer to regressionequations 1).

(5) Since the wind velocity varies both in time and in space, the wind velocity should be treated as fluctuating in the

x Lpp� 2��

x Lpp 2��

Cb

CX CY CM

RX12����aU2ATCX�

RY12����aU2ALCY�

RM12����aU2ALLppCM�

CXCYCMRXRYRM�a �a 1.23 10 3���

ATAL

Lpp

CX CY CM

Page 51: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-24-

analysis of the motions of a moored vessel. Davenport 16) and Hino have proposed the frequency spectra for thetime fluctuations of the wind velocity. The frequency spectra proposed by Davenport and Hino are given byequations (2.2.14) and (2.2.15), respectively.

/

where: frequency spectrum of wind velocity (m2•s): average wind velocity at the standard height 10 m (m/s): friction coefficient for the surface defined with the wind velocity at the standard height; over the

ocean, it is considered that = 0.003 is appropriate. �: exponent when the vertical profile of the wind velocity is expressed by a power law z: height above the surface of the ground or ocean (m)

m: correction factor relating to the stability of the atmosphere; m is taken to be 2 in the case of a storm.

[4] Current Forces Acting on VesselThe flow pressure force due to tidal currents acting on a vessel shall be determined using an appropriatecalculation formula.

[Technical Notes]

(1) Current Pressure Force Due to Currents Coming onto the Bow of VesselThe current pressure force on the vessel due to currents coming onto the bow of a vessel may be calculated usingequation (2.2.16).

(2.2.16)where

: current pressure force (kN)S: wetted surface area (m2)V: flow velocity (m/s)

(2) Current Pressure Force Due to Currents Coming onto the Side of VesselThe current pressure force due to a current coming onto the side of a vessel may be calculated using equation(2.2.17).

(2.2.17)where

R: current pressure force (kN): density of seawater (t/m3) (standard value: = 1.03 t/m3)

C: current pressure coefficientV: flow velocity (m/s)B: side projected area of hull below the waterline (m2)

(3) The current pressure force due to tidal currents can in principle be divided into frictional resistance and pressureresistance. It is thought that the resistance to currents coming onto the bow of a vessel is predominantlyfrictional resistance, whereas the resistance to currents coming onto the side of a vessel is predominantlypressure resistance. However, in practice it is difficult to rigorously separate the two resistances and investigatethem individually. Equation (2.2.16) is a simplification of the following Froude equation with = 1.03,t = 15ºC and � = 0.14:

(2.2.18)where

: current pressure force (N): specific gravity of seawater (standard value: = 1.03)�: gravitational acceleration (m/s2)t: temperature (ºC)S: wetted surface area (m2)

f Su f� � 4KrU102 X2

1 X2�� �4 3������������������������������ (2.2.14)

647

48X 1200f� U10

Su f� � 2.856KrU10

2

��������������� 1f����� �

� �2

�� � �� �

5� 6�

(2.2.15)

64

74

8� 1.169 10 3�U10�

Kr�������������

� �� �� � z

10������� �� �

2m� 1�

��

Su f� �U10

KrKr

U z 10�� ���� �

Rf 0.0014SV 2�

Rf

R 0.5�0CV2B�

�0 �0

�w

Rf �w�� 1 0.0043 15 t�� ��� �SV1.825�

Rf�w �w

Page 52: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-25-

V: flow velocity (m/s)�: coefficient (� = 0.14741 for a 30m-long vessel and ��= 0.13783 for a 250m-long vessel�

(4) The current pressure coefficient C in equation (2.2.17) varies according to the relative current direction �; thevalues obtained from Fig. T- 2.2.9 may be used for reference purposes.

(5) Regarding the wetted surface area S and the side projected area below the waterline B, one may use valuesobtained from a regression equations 3) that have been derived by statistical analysis.

Fig. T- 2.2.9 Current Pressure Coefficient C

[5] Load-Deflection Characteristics of Mooring SystemWhen performing a motion analysis of a moored vessel, the load-deflection characteristics of the mooringsystem (mooring ropes, fenders, etc.) shall be modeled appropriately.

[Technical Notes]The load-deflection characteristics of a mooring system (mooring ropes, fenders, etc.) is generally nonlinear.Moreover, with regard to the load-deflection characteristics of a fender, they may show hysteresis, and so it isdesirable to model these characteristics appropriately before carrying out the motion analysis of a moored vessel.

2.2.4 Tractive Force Acting on Mooring Post and Bollard (Notification Article 79)(1) It shall be standard to take the values listed in Table 2.2.1 as the tractive forces of vessels acting on

mooring posts and bollards.

(2) In the case of a mooring post, it shall be standard to assume that the tractive force stipulated in (1) actshorizontally and a tractive force equal to one half of this acts upwards simultaneously.

(3) In the case of a bollard, it shall be standard to assume that the tractive force stipulated in (1) acts in alldirections.

Table 2.2.1 Tractive Forces of Vessels (Notification Article 79, Appended Table 12)

Gross tonnage (GT) of vessel (tons)

Tractive force acting on a mooring post (kN)

Tractive force acting on a bollard (kN)

200< GT ≦ 500 150 150500< GT ≦ 1,000 250 250

1,000< GT ≦ 2,000 350 2502,000< GT ≦ 3,000 350 3503,000< GT ≦ 5,000 500 3505,000< GT ≦ 10,000 700 500

10,000< GT ≦ 20,000 1,000 70020,000< GT ≦ 50,000 1,500 1,000

Curren

tpressure

coefficien

tC

Relative current direction ( )q

1.5

7.0

Water depth h

draft d= 1.1

Page 53: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-26-

[Commentary]

(1) “Mooring posts” are installed away from the waterline, either on or near to the mooring facilities, close to theboth ends of a berth so that they may be used for mooring a vessel in a storm. “Bollards”, on the other hand, areinstalled close to the waterline of the mooring facilities so that they may be used for mooring, berthing, orunberthing a vessel in normal conditions.

(2) Regarding the layout and names of mooring ropes to moor a vessel, see Part ⅧⅧⅧⅧ, 2.1 Length and Water Depthof Berths.

(3) Regarding the layout and structure of mooring posts and bollards, see Part ⅧⅧⅧⅧ , 19.3 Mooring Posts, Bollards,and Mooring Rings.

[Technical Notes]

(1) It is desirable to calculate the tractive force acting on a mooring post and a bollard based on the breakingstrength of the mooring ropes possessed by a vessel arriving at the berth, the meteorological and oceanographicconditions at the place where the mooring facilities are installed, and the dimensions of vessels, and if necessaryalso considering the force due to a berthing vessel, the wind pressure on a moored vessel, and the force due tomotions of a vessel 9), 11). Alternatively, it is also possible to determine the tractive force acting on a mooringpost and a bollard in accordance with (2) ~ (6) below.

(2) In the case that the gross tonnage of a vessel exceeds 5,000 tons and there is no risk of more than one mooringrope being attached to a bollard that is used for spring lines at the middle of mooring facilities for which thevessel’s berth is fixed, the tractive force acting on a bollard may be taken as one half of the value listed in Table2.2.1.

(3) The tractive force due to a vessel whose gross tonnage is no more than 200 tons or greater than 100,000 tons(i.e., a vessel that is not covered in Table 2.2.1) should be calculated by considering the meteorological andoceanographic conditions, the structure of the mooring facilities, past measurement data on tractive force, etc.The tractive force on mooring facilities at which vessels are moored even in rough weather or mooring facilitiesthat are installed in waters with severe meteorological / oceanographic conditions should also be calculated byconsidering these conditions.

(4) The tractive force acting on a mooring post has been determined based on the wind pressure acting on a vessel insuch a way that a lightly loaded vessel should be able to moor safely even when the wind velocity is 25 ~ 30m/s, with the assumption that the mooring posts are installed at the place away from the wharf waterline by theamount of vessel’s width and that the breast lines are pulled in a direction 45º to the vessel’s longitudinalaxis 17),18). The tractive force so obtained corresponds to the breaking strength of one to two mooring ropes,where the breaking strength of a mooring rope is evaluated according to the “Steel Ship Regulations” by theNippon Kaiji Kyokai. For a small vessel of gross tonnage up to 1,000 tons, the mooring posts can withstand thetractive force under the wind velocity of up to 35 m/s.

The tractive force acting on a bollard has been determined based on the wind pressure acting on a vessel insuch a way that even a lightly loaded vessel should be able to moor using only bollards in a wind of velocity up to15 m/s, with the assumption that the ropes at the bow and stern are pulled in a direction at least 25º to the vessel’saxis. The tractive force so obtained corresponds to the breaking strength of one mooring rope for a vessel ofgross tonnage up to 5,000 tons and two mooring ropes for a vessel of gross tonnage over 5,000 tons, where thebreaking strength of a mooring rope is evaluated according to the “Steel Ship Regulations” by the Nippon KaijiKyokai.

The tractive force for a bollard that is used for spring lines and is installed at the middle of a berth, for whichthe vessel’s berthing position is fixed, corresponds to the breaking strength of one mooring rope, where thebreaking strength of a mooring rope is evaluated according to the “Steel Ship Regulations” by the Nippon KaijiKyokai. Note however that, although there are stipulations concerning synthetic fiber ropes in the “Steel ShipRegulations” by the Nippon Kaiji Kyokai with regard to nylon ropes and type B vinylon ropes (both of whichare types of synthetic fiber rope), the required safety factor has been set large owing to the factors such that thereis little data on the past usage of such ropes and their abrasion resistance is low, and so both the required ropediameter and the breaking strength are large. Accordingly, in the case of berths for which the mooring vesselsuse only nylon ropes or type B vinylon ropes, it is not possible to apply the stipulations in (2) above.

In the above-mentioned tractive force calculations, in addition to the wind pressure, it has been assumed thatthere are tidal currents of 2 kt in the longitudinal direction and 0.6 kt in the transverse direction.

(5) When determining the tractive force from a small vessel of gross tonnage no more than 200 tons, it is desirableto consider the type of vessel, the berthing situation, the structure of the mooring facilities, etc. During actual

50,000< GT ≦ 100,000 2,000 1,000

Gross tonnage (GT) of vessel (tons)

Tractive force acting on a mooring post (kN)

Tractive force acting on a bollard (kN)

Page 54: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-27-

design of mooring posts and bollards for vessels of gross tonnage no more than 200 tons, it is standard to takethe tractive force acting on a mooring posts to be 150 kN and the tractive force acting on a bollard to be 50 kN.

(6) When calculating the tractive force in the case of vessels such as ferries, container ships, or passenger ships,caution should be exercised in using Table 2.2.1, because the wind pressure-receiving areas of such vessels arelarge.

[References]1) Yasuhiro AKAKURA, Hironao TAKAHASHI, Takashi NAKAMOTO: “Statistical analysis of ship dimensions for the size of

design ship”, Tech. Note of PHRI, No. 910, 1998 (in Japanese).2) Yasuhiro AKAKURA and Hironao TAKAHASHI: “Ship dimensions of design ship under given confidence limits”, Technical

Note of P.H.R.I., September 1998.3) PIANC: “Report of the International Commission for Improving the Design of Fender Systems”, Supplement to Bulletine No.

45, 1984.4) Baker, A. L. L.: “The impact of ships when berthing”, Proc. Int’l Navig. Congr. (PIANC), Rome, Sect II, Quest. 2, 1953, pp.

111-142.5) Masahito MIZOGUCHI, Tanekiyo NAKAYAMA: “Studies on the berthing velocity, energy of the ships”, Tech. Note of

PHRI, No. 170, 1973 (in Japanese).6) Hirokane OTANI, Shigeru UEDA, Tatsuru ICHIKAWA, Kensei SUGIHARA: “A study on the berthing impact of the big

tanker”, Tech. Note of PHRI, No. 176, 1974 (in Japanese).7) Shigeru UEDA: “Study on berthing impact force of very large crude oil carriers”, Rept. of PHRI, Vol. 20, No. 2, 1981, pp.

169-209 (in Japanese).8) Myers, J.: “Handbook of Ocean and Underwater Engineering”, McGraw-Hill, New York, 1969.9) Shigeru UEDA, Eijiro OOI: “On the design of fending systems for mooring facilities in a port”, Tech. Note of PHRI, No. 596,

1987 (in Japanese).10) Shigeru UEDA, Satoru SHIRAISHI: “On the design of fenders based on the ship oscillations moored to quaywalls”, Tech.

Note of PHRI, No. 729, 1992 (in Japanese).11) Shigeru UEDA: “Analytical method of motions moored to quaywalls and the applications”, Tech. Note of PHRI, No. 504,

1984 (in Japanese).12) Shigeru UEDA, Satoru SHIRAISI: “Method and its evaluation for computation of moored ship’s motions”, Rept. of PHRI,

Vol. 22, No. 4, 1983 pp. 181-218 (in Japanese).13) Yoshimi GODA, Tomotsuka TAKAYAMA, Tadashi SASADA: “Theoretical and experimental investigation of wave forces

on a fixed vessel approximated with an elliptic cylinder”, Rept of PHRI, Vol. 12, No. 4, 1994, pp. 23-74 (in Japanese).14) R. M. Isherwood: “Wind resistance of merchant ships”, Bulliten of the Royal Inst. Naval Architects, 1972, pp. 327-338.15) Shigeru UEDA, Satoru SHIRAISHI, Kouhei ASANO, Hiroyuki OSHIMA: “Proposal of equation of wind force coefficient

and evaluation of the effect to motions of moored ships”, Tech. Note of PHRI, No. 760, 1993 (in Japanese).16) Davenport, A. G.: “Gust loading factors”, Proc. of ASCE, ST3, 1967, pp. 11-34.17) Hirofumi INAGAKI, Koichi YAMAGUCHI, Takeo KATAYAMA: “Standardization of mooring posts and bollards for

wharf”, Tech. Note of PHRI, No. 102, 1970 (in Japanese).18) Iaso FUKUDA, Tadahiko YAGYU: “Tractive force on mooring posts and bollards”, Tech. Note of PHRI, No. 427, 1982 (in

Japanese).

Page 55: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-28-

Chapter 3 Wind and Wind Pressure

3.1 GeneralWhen designing port and harbor facilities, meteorological factors such as winds, air pressure, fog, rainfall,snow depth, and air temperature should be considered.

[Commentary]The effects that meteorological factors exert on the design of port and harbor facilities are as follows:

(1) Air pressure and its distribution are the factors that govern the generations of winds and storm surge.

(2) Wind is a factor that governs the generations of waves and storm surge, it exerts external forces on port andharbor facilities and moored vessels in the form of wind pressure, and it can disrupt port and harbor works suchas cargo handling.

(3) Rainfall is a factor that determines the required capacity of drainage facilities in ports and harbors, and rain canalso disrupt port and harbor works such as cargo handling.

(4) Fog is a factor that is an impediment to the navigation of vessels when they are entering or leaving a harbor, andalso decreases the productivity of port and harbor facilities.

(5) In some cases, snow load is considered as a static load acting on port and harbor facilities.

(6) Air temperature affects the stress distribution within structures of port and harbor facilities and may lead to theoccurrence of thermal stress in these structures.

[Technical Notes]

(1) In calculations concerning the generation of storm surge or waves due to a typhoon, it is common to assume thatthe air pressure distribution follows either Fujita’s equation (3.1.1) or Myers’ equation (3.1.2); the constants inthe chosen equation are determined based on actual air pressure measurements in the region of typhoons.

(Fujita’ formula) (3.1.1)

(Myers’ formula) (3.1.2)

wherep: air pressure at a distance r from the center of typhoon (hPa)r: distance from the center of typhoon (km): air pressure at the center of typhoon (hPa): estimated distance from the center of typhoon to the point where the wind velocity is maximum (km): air pressure drop at the center of typhoon (hPa); : air pressure at (hPa);

The size of a typhoon varies with time, and so and must be determined as the functions of time.

(2) With regard to wind, see 3.2 Wind.

(3) Rain is generally divided into the rain of thunderstorms that have heavy rainfall in a short period of time and therain that continues for a prolonged period of time (rain by a typhoon is a representative example of the latter).When designing drainage facilities, it is necessary to determine the intensity of rainfall both for the case wherethe amount of runoff increases very rapidly and for the case where the runoff continues for a prolonged period.In the case of sewage planning whereby the intensity of rainfall during a thunderstorm is a problem, Sherman’sformula or Talbot’s formula is used.

(Sherman’s formula) (3.1.3)

(Talbot’s formula) (3.1.4)

whereR: intensity of rainfall (mm/h)t: duration of rainfall (min)

a, b, n: constants

(4) With regard to snow load acting upon port and harbor facilities, see 15.3.4 Snow Load.

p p��p

1 r r0�� �2�����������������������������������

p pc �pr0r������ �

� �exp��

pcr0�p �p p� pc��

p� r �� p� pc �p��

r0 �p

R atn�����

R at b�������������

Page 56: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-29-

3.2 Wind (Notification Article 3, Clause 1)It shall be standard to set the wind characteristics for wave estimations and the wind characteristics as thecause of an external force on port and harbor facilities as stipulated in the following:

(1) When calculating the wind velocity and wind direction used in estimations of waves and storm surges,either the actual wind measurements or the calculated values for gradient winds are to be used, withall necessary corrections having been made for the heights of measurements, etc.

(2) The velocity of the wind acting on port and harbor facilities shall be set based on statistical data for anappropriate period in line with the characteristics of the facilities and structures.

[Technical Notes]

(1) Gradient Winds

(a) The velocity of the gradient wind can be expressed as a function of pressure gradient, radius of curvature ofisobars, latitude, and air density as in equation (3.2.1).

(3.2.1)

where: velocity of gradient wind (cm/s); in the case of an anticyclone, equation (3.2.1) gives a negative value

and so the absolute value should be taken.: pressure gradient (taken to be positive for a cyclone, negative for an anticyclone) (g/cm2/s2)

r: radius of curvature of isobars (cm): angular velocity of Earth's rotation ( );: latitude (º): density of air (g/cm3)

Before performing the calculation, measurement units should first be converted into the CGS units listedabove. Note that 1º of latitude corresponds to a distance of approximately 1.11 × cm, and an air pressureof 1.0 hPa is g/cm/s2.

(b) A gradient wind for which the isobars are straight lines (i.e., their radius of curvature in equation (3.2.1) isinfinite) is called the geostrophic wind. In this case, the wind velocity is .

(2) The actual sea surface wind velocity is generally lower than the value obtained from the gradient wind equation.Moreover, although the direction of a gradient wind is parallel to the isobars in theory, the sea surface windblows at a certain angle � to the isobars as sketched in Fig. T- 3.2.2. In the northern hemisphere, the windaround a cyclone blows in a counterclockwise direction and inwards, whereas the wind around an anticycloneblows in a clockwise direction and outwards. It is known that the relationship between the velocity of gradientwinds and that of the actual sea surface wind varies with the latitude. The relationship under the averageconditions is summarized in Table T- 3.2.1. However, this is no more than a guideline; when estimating seasurface winds, it is necessary to make appropriate corrections by comparing estimations with actualmeasurements taken along the coast and values that have been reported by vessels out at sea (the latter arewritten on weather charts).

Table T- 3.2.1 Relationship between Sea Surface Wind Speed and Gradient Wind Speed

Fig. T- 3.2.2 Wind Direction for a Cyclone (Low) and an Anticyclone (High)

(3) When selecting the design wind velocity for the wind that acts directly on port and harbor facilities and mooredvessels, one should estimate the extreme distribution of the wind velocity based on actual measurement datataken over a long period (at least 30 years as a general rule) and then use the wind velocity corresponding to therequired return period.

It is standard to take the wind parameters to be the direction and velocity, with the wind direction beingrepresented using the sixteen-points bearing system and the wind velocity by the mean wind velocity over 10minutes.

Latitude 10º 20º 30º 40º 50º

Angle � 24º 20º 18º 17º 15º

Velocity ratio 0.51 0.60 0.64 0.67 0.70

V�

r� 1� 1�p �r�

�ar2 2sin �������������������������������

� �� �� �

sin�

V�

p�r������

s 1� 7.29 10 5� s���

�a

107

103

V �p �r�� � 2�ar sin� ���

Low High

Vs Vg�

Page 57: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-30-

In the Meteorological Agency’s Technical Observation Notes No. 34, the expected wind velocities with thereturn periods of 5, 10, 20, 50, 100 and 200 years for 141 government meteorological offices have beenestimated from the ten-minute mean wind velocity data of about 35 years, under the assumption that windvelocity follows a double exponential distribution. For locations with topographical conditions different fromthat of the nearest among the above-mentioned meteorological offices, one should conduct observations for atleast one year and then conduct a comparative investigation on topographical effects in order to make it possibleto use the aforementioned estimation results.

(4) Regarding the wind velocity used in estimating storm surges and waves, it is standard to use the value at a heightof 10 m above sea level. The wind velocities obtained at government meteorological offices are the values for aheight of approximately 10 m above the ground level. Accordingly, when attempting to use such observedvalues to estimate sea surface winds, in the case that the elevations of the structural members are considerablydifferent from 10 m, it is necessary to correct the wind velocity with respect to the height. The vertical profile ofthe wind velocity is generally represented with a power law, and so in current design calculations for all kinds ofstructures, a power law is simply used: i.e.,

(3.2.2)

where: wind velocity at height h (m/s): wind velocity at height (m/s)

The value of the exponent varies with the situation with regard to the roughness near to the surface of the groundand the stability of the atmosphere. In structural calculations on land, a value of n = 1/10 ~ 1/4 is used, and it iscommon to use a value of n ≧ 1/7 out to sea.

Statistical data on wind velocity usually consider the ten-minute mean wind velocity. However, for somestructures the mean wind velocity over a shorter time period or the maximum instantaneous wind velocity maybe used, in which case it is necessary to gain an understanding of the relationship between the mean windvelocity over a certain time period and the maximum wind velocity, and also the characteristics of the gustfactor.

3.3 Wind Pressure (Notification Article 3, Clause 2)The wind pressure shall be set appropriately, giving due consideration to the situation with regard to thestructural types of the facilities and their locations.

[Technical Notes]

(1) When calculating the wind pressure acting on a moored vessel, one should refer to 2.2.3 [3] Wind Load Actingon a Vessel.

(2) In the case that there are no statutory stipulations concerning the wind pressure acting on a structure, the windpressure may be calculated using equation (3.3.1).

(3.3.1)where

p: wind pressure (N/m2)q: velocity pressure (N/m2)c: wind pressure coefficient

Equation (3.3.1) expresses the wind pressure, i.e., the force due to the wind per unit area subjected to the windforce. The total force due to the wind acting on a member or structure is thus the wind pressure as given byequation (3.3.1) multiplied by the area of that member or structure affected by the wind in a plane perpendicularto the direction in which the wind acts.

The velocity pressure q is defined as in equation (3.3.2).

(3.3.2)

whereq: velocity pressure (N/m2): density of air (kg/m3) = 1.23 kg/m3

U: design wind velocity (m/s)

The design wind velocity should be taken at 1.2 to 1.5 times the standard wind velocity (ten-minute mean windvelocity at a height of 10 m). This is because the maximum instantaneous wind velocity is about 1.2 to 1.5 timesthe ten-minute mean wind velocity.

The wind pressure coefficient varies depending on the conditions such as the shape of the member orstructure, the wind direction, and the Reynolds number. With the exception of cases where it is determined bymeans of the wind tunnel experiments, it may be set by referring to the Article 87 of the “Enforcement Order

Uh U0hh0������ �

� � n�

UhU0 h0

p cq�

q12����aU2�

�a �a

Page 58: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-31-

of the Building Standard Law” (Government Ordinance No. 338, 1950) or the “Crane Structure Standards”(Ministry of Labor Notification). With regard to wind direction, it is generally required to consider the winddirection that is most unfavorable to the structure, with the exception of cases where it has been verified thatthere exists an overwhelmingly prevailing direction of winds.

Page 59: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-32-

Chapter 4 Waves

4.1 General

4.1.1 Procedure for Determining the Waves Used in Design (Notification Article 4, Clause 1)The waves used in the investigation of the stability of protective harbor facilities and other port and harborfacilities, as well as the examination of the degree of calmness of navigation channels and basins shall beset using wave data obtained from either actual wave measurements or wave hindcasting. Wavecharacteristics shall be obtained by carrying out necessary statistical processing and by analyzing wavetransformations owing to sea bottom topography and others. It shall be standard to carry out the wavehindcasting using a method that is based on an appropriate equation for representing the relationshipbetween the wind velocity and the wave spectrum or the significant wave parameters.

[Commentary]

The size and structural form of facilities are determinedby the factors such as the height and period of the wavesthat act on them. The setting of the wave conditions to beused in design should thus be carried out carefully. Thesetting of wave conditions should be carried outseparately for “ordinary waves” (i.e., waves that occur inordinary conditions: these are required when estimatingthe harbor calmness or the net working rate of cargohandling) and “storm waves” (i.e., waves that occur instorm conditions: these are required when estimating thewave force acting on structures).

The waves that are obtained by statistically process-ing data based on either actual measurements or hindcast-ing are generally deepwater waves that are unaffected bythe sea bottom topography. Deepwater waves propagatetowards the coast, and once the waves reach to the waterdepth about one half the wavelength, they start to experi-ence the effects of topography and transform with theresult of wave height change. “Wave transformation”includes refraction, diffraction, reflection, shoaling, andbreaking. In order to determine the wave conditions at theplace where wave data is needed (for instance the placewhere a structure of interest is located), it is necessary togive appropriate consideration to such wave transforma-tions by means of numerical calculations or model exper-iments.

In the above-mentioned procedure for setting thewave conditions to be used in design, it is necessary togive sufficient consideration to the irregularity of thewaves and to treat the waves as being of random natureas much as possible.

[Technical Notes]

A sample procedure for setting the wave conditions to be used in design is shown in Fig. T- 4.1.1.

4.1.2 Waves to Be Used in DesignSignificant waves, highest waves, deepwater waves, equivalent deepwater waves and others shall be usedin the design of port and harbor facilities.

[Commentary]

The waves used in the design of structures are generally “significant waves”. The significant wave is a hypotheticalwave that is a statistical indicator of an irregular wave group. Significant waves have the dimensions that areapproximately equal to the values from visual wave observations, and so they are used in wave hindcasting. It is alsoknown that the period of a significant wave is approximately equal to the period at the peak of the wave spectrum.Because of such advantages, significant waves have been commonly used to represent wave groups. Nevertheless,depending on the purpose, it may be necessary to convert significant waves into other waves such as highest wavesand highest one-tenth waves.

Wave data

1) Actual measurement data

2) Hindcasting values

Statistical analysis

1) Ordinary waves 2) Storm waves

Wave occurrence rate of

deepwater waves

Wave transformation

Wave occurrence rate

at the place of interest

Design deepwater waves

Wave transformation

Parameters of design waves

1) Significant wave

2) Highest wave

1) Wave force acting

on structures

2) Amount of waves

overtopping at seawall

and revetments

3) Others

1) Harbor calmness

2) Net working rate,

number of working days

3) Transport energy of

incoming waves

4) Others

Fig. T- 4.1.1 Procedure for Setting the Waves to BeUsed in Design

Page 60: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-33-

[Technical Notes]

(1) Definitions of Wave Parameters

(a) Significant wave (significant wave height H1/3 and significant wave period T1/3)The waves in a wave group are rearranged in the order of their heights and the highest one-third are selected;the significant wave is then the hypothetical wave whose height and period are the mean height and period ofthe selected waves.

(b) Highest wave (highest wave height Hmax and highest wave period Tmax)The highest wave in a wave group.

(c) Highest one-tenth wave (H1/10, T1/10)The wave whose height and period are equal to the mean height and period of the highest one-tenth of thewaves in a wave group.

(d) Mean wave (mean wave height , mean period )The wave whose height and period are equal to the mean height and period of all of the waves in a wavegroup.

(e) Deepwater waves (deepwater wave height H0 and deepwater wave period T0)The waves at a place where the water depth is at least one half of the wavelength; the wave parameters areexpressed with those of the significant wave at this place.

(f) Equivalent deepwater wave height (H0�)A hypothetical wave height that has been corrected for the effects of planar topographic changes such asrefraction and diffraction; it is expressed with the significant wave height.

(2) Maximum WaveThe largest significant wave within a series of significant wave data that was observed during a certain period(for example, one day, one month, or one year) is called the “maximum wave”. In order to clearly specify thelength of the observation period, it is advisable to refer to the maximum wave such as the “maximum significantwave over a period of one day (or one month, one year, etc.)”. Moreover, when one wishes to clearly state thatone is referring to the significant wave for the largest wave that occurred during a stormy weather, the term“peak wave” is used (see 4.4 Statistical Processing of Wave Observation and Hindcasted Data). The“maximum wave height” is the maximum value of the significant wave height during a certain period; this isdifferent from the definition of the “highest wave height”.

(3) Significance of Equivalent Deepwater WavesThe wave height at a certain place in the field is determined as the result of transformations by shoaling andbreaking, which depend on the water depth at that place, and those by diffraction and refraction, which dependon the planar topographical conditions at that place. However, in hydraulic model experiments on thetransformation or overtopping of waves in a two-dimensional channel or in two-dimensional analysis by wavetransformation theory, planar topographical changes are not taken into consideration. When applying the resultsof a two-dimensional model experiment or a theoretical calculation to the field, it is thus necessary toincorporate in advance the special conditions of the place in question, namely the effects of planar topographicalchanges (specifically the effects of diffraction and refraction), into the deepwater waves for the place inquestion, thus adjusting the deepwater waves into a form whereby they correspond to the deepwater incidentwave height used for the experiment or theoretical calculation. The deepwater wave height obtained bycorrecting the effects of diffraction and refraction with their coefficients is called the “equivalent deepwaterwave height”.

The equivalent deepwater wave height at the place for which design is being carried out is given as follows:

(4.1.1)

whereKr: refraction coefficient for the place in question (see 4.5.2 Wave Refraction)Kd: diffraction coefficient for the place in question (see 4.5.3 Wave Diffraction)

4.1.3 Properties of Waves

[1] Fundamental Properties of WavesFundamental properties of waves such as the wavelength and velocity may be estimated by means of thesmall amplitude wave theory. However, the height of breaking waves and the runup height shall beestimated while considering the finite amplitude effects.

H T

H0� KdKrH0�

Page 61: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-34-

[Technical Notes]

(1) Small Amplitude Wave TheoryThe fundamental properties of waves are expressed as the functions of the wave height, period, and water depth.Various characteristics of shallow water waves as obtained as a first approximation by small amplitude wavetheory are listed below. Note that, with regard to the coordinates, the positive x direction is taken in the directionof wave travel and the positive z direction vertically upwards with z = 0 corresponding to the still water level.The water depth h is assumed to be constant and wave characteristics are assumed to be uniform in thetransverse direction (y direction).

(a) Surface elevation (displacement from still water level) (m)

(4.1.2)

where�: surface elevation (m)H: wave height (m)L: wavelength (m)T: period (s)

(b) Wavelength (m)

(4.1.3)

whereh: water depth (m)�: gravitational acceleration (m/s2)

(c) Wave velocity (m/s)

(4.1.4)

(d) Water particle velocity (m/s)

whereu: component of water particle velocity in the x direction (m/s)w: component of water particle velocity in the z direction (m/s)

(e) Water particle acceleration (m/s)

where

: component of water particle acceleration in the x direction (m/s2)

: component of water particle acceleration in the z direction (m/s2)

� x t�� �H2����

2L������x

2T������ t�� �

� �sin�

L�T2

2���������2h

L����������tanh�

C �T2������

2hL����������

tanh�L2������

2hL����������

tanh� �

(4.1.5)

644

47

444

8

u HT��������

2 z h�� �L�����������������������cosh

2hL����������

sinh�����������������������������������

2L������x

2T������ t�� �

� �sin

w HT��������

2 z h�� �L�����������������������cosh

2hL����������

sinh�����������������������������������

2L������x

2T������ t�� �

� �cos

(4.1.6)

644

47

444

8

dudt������

22HT2���������������

h2 z h�� �

L�����������������������cos

2hL����������

sinh�����������������������������������

2L������x

2T������t�� �

� �cos

dwdt�������

22HT2���������������

h2 z h�� �

L�����������������������cos

2hL����������

sinh�����������������������������������

2L������x

2T������t�� �

� �sin

dudt������

dwdt�������

Page 62: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-35-

(f) Pressure in water when wave acts (N/m2)

(4.1.7)

where�0: density of water (1.01~1.05 × 103 kg/m3 for seawater)

(g) Mean energy of wave per unit area of water surface (J)

(4.1.8)

where Ek and Ep are the kinetic and potential energy densities respectively, with Ek = Ep.

(h) Mean rate of energy transported in the direction of wave travel per unit time per unit width of wave (N •m/m/s)

W ��CG E ��nCE (4.1.9)CG ��nC (4.1.10)

whereCG: group velocity of waves (m/s)

(4.1.11)

(2) Characteristics of Deepwater Waves and Wavelength

(a) Deepwater wavesWaves in water with the depth greater than one-half the wavelength (h/L > 1/2) are called the deepwaterwaves. Various characteristics of deepwater waves may be obtained from the equations of small amplitudewave theory by letting h/L � ∞ . The wavelength L0, wave velocity C0, and group velocity CG for deepwaterwaves thus become as below. Note that the units of period T are seconds (s).

L0 = 1.56T 2(m), C0 = 1.56T (m/s)CG= 0.78T (m/s) (4.1.12)

= 1.52T (kt)= 2.81T (km/h)

As expressed in equation (4.1.12), the wavelength, wave velocity, and group velocity for deepwater wavesdepend only on the period and are independent of the water depth.

(b) Wavelength of long wavesWaves for which the wavelength is extremely long compared with the water depth (h/L < 1/25) are called thelong waves. Various characteristics of long waves may be obtained from the equations of small amplitudewave theory by taking h/L to be extremely small. The wavelength, wave velocity, and group velocity for longwaves thus become as follows:

(m) (4.1.13)

(m/s)

(3) Consideration of Finite Amplitude EffectsThe equations shown in (1) are not always accurate for general shallow water waves having a large height, andso it is sometimes necessary to use equations for finite amplitude waves. When carrying out calculations usingfinite amplitude wave equations, one should refer to “Handbook of Hydraulic Formulas” published by the JapanSociety of Civil Engineers. The amount of the errors in calculations that arise from the use of the smallamplitude wave theory varies according to the wave steepness H/L and the ratio of water depth to wavelength

. Nevertheless, the error in wave parameters is usually no more than 20 ~ 30% with the exception of thehorizontal water particle velocity u.

One of the finite amplitude effects of waves appears on the crest elevation �c relative to the wave height; theratio increases as the wave height increases. The definition of the crest elevation �c is shown at the top of Fig. T-4.1.2. This figure was drawn up based on wave profile records from the field. It shows the ratio of the highestcrest elevation obtained from each observation record to the highest wave height Hmax in that record as thefunction of relative wave height H1/3/h.

p 12����0�H

2 z h�� �L�����������������������cosh

2hL����������

cosh�����������������������������������

2L������x

2T������t�� �

� �sin �0�z��

E Ek Ep�18����0�H2� �

n 12��� 1

4hL����������

4hL����������

sinh����������������������

� �� �� �� �� �

L T �h�

C CG �h� �

h L�

Page 63: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-36-

(4) Types of Finite Amplitude Wave TheoryThe finite amplitude wave theories include the Stokeswave theory, cnoidal wave theory, and others. In theformer, the wave steepness is assumed to be relativelylow, and the wave profile is represented as a series oftrigonometric functions. A number of researchers haveproposed several approximate series solutions. In thistheory, however, convergence of the series becomesextremely poor as the water depth to wavelength ratiodecreases. This means that the theory cannot be applied ifthe water depth to wavelength ratio is too small. On theother hand, the cnoidel wave theory is obtained by a per-turbation expansion method with the water depth towavelength ratio assumed to be extremely small, mean-ing that it is valid when the water depth to wavelengthratio is small. Errors become large, however, when thewater depth to wavelength ratio increases. In addition tothese two theories, there are also the hyperbolic wavetheory, in which a cnoidal wave is approximated as anexpansion of hyperbolic functions, and the solitary wavetheory, which is the asymptotic case of the cnoidal wavetheory when the wavelength approaches to infinity. Withthe exception of solitary wave theory, the equations in allof these finite amplitude wave theories are complicated,meaning that calculations are not easy. In particular, with the cnoidal wave theory, the equations contain ellipticintegrals, making them very inconvenient to handle. If Dean’s stream function method 1), 2) is adopted, then thewave profile and water particle velocity can be obtained with good accuracy right up to the point where the wavebreaks.

(5) Application of Finite Amplitude Wave Theories to Structural DesignsNonlinear theories, which include finite amplitude wave theories, are applied to a wide variety of coastalengineering fields. However, there are still a large number of unknowns, and so, in the case of design at present,they are only applied to a limited number of fields such as those discussed below.

(a) Maximum horizontal water particle velocity umax at each elevation below the wave crestThis information is vital in the estimation of the wave force on a vertical structural member. The equationsfrom the Stokes wave theory are used when the water depth to wavelength ratio is large, and the equationsfrom solitary wave theory are used when the water depth to wavelength ratio is small. An approximatecalculation may be carried out using the following empirical equation 3):

(4.1.14)

where the coefficient � is given as listed in Table T- 4.1.2.Table T- 4.1.2 Coefficient � for Calculation of Maximum Horizontal Water Particle Velocity

(b) Wave shoalingWave shoaling, which occurs as the water depth decreases, may be calculated using a long wave theory thatincludes nonlinear terms. Alternatively, the cnoidal wave theory or hyperbolic wave theory may be applied tothis phenomenon (see 4.5.5 Wave Shoaling).

(c) Rise and drop of the mean water levelThe mean water level gradually drops as waves approach the breaking point and then rises within the breakerzone toward the shoreline, as can be calculated from the theory of nonlinear interference between waves andcurrents. This mean water level change is taken into account for the calculation of the wave height change dueto random wave breaking (see 4.5.6 Wave Breaking).

h/L � h/L �

0.030.050.070.100.14

1.501.501.431.250.97

0.20.30.50.7

0.680.490.250.27

Number ofdata points

Standarddeviation

Mean

H1/3 / h

(ηc)maxHmax

Fig. T- 4.1.2 Relationship between Maximum Crest Elevation (�c)max/Hmax and Relative Wave Height H1/3/h

umax z� �HT������� 1 �

Hh����� �

� �1 2� z h�

h������������ �� �

3�

i hcos 2 z h�� �� � L�� �2h� � L�� �sinh�������������������������������������������������������

Page 64: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-37-

(d) Air gap of offshore structuresWhen determining the amount of air gap of offshore structures above the still water level, it is advisable toconsider the relative increase in the wave crest elevation due to the finite amplitude effect such as exhibited inFig. T-4.1.12.

[2] Statistical Properties of WavesIn the design of port and harbor facilities, it shall be standard to consider the statistical properties of thewaves with regard to wave heights and periods and to use the Rayleigh distribution for the wave heights ofan irregular deepwater wave group.

[Commentary]

The assumption behind the theory of Rayleigh distribution is a precondition that the wave energy is concentrated inan extremely narrow band around a certain frequency. Problems thus remain with regard to its applicability to oceanwaves for which the frequency band is broad. Nevertheless, it has been pointed out that, so long as the waves aredefined by the zero-upcrossing method, the Rayleigh distribution can be applied to ocean waves as an acceptableapproximation.

[Technical Notes](1) Expression of Rayleigh Distribution

The Rayleigh distribution is given by the following equation:

(4.1.15)

wherep(H/H): probability density function of wave heights

H : mean wave height (m)

According to the Rayleigh distribution, the highest one-tenth wave height H1/10, the significant wave height, and the mean wave height H are related to one another by the following equations:

(4.1.16)

On average, these relationships agree well with the results of wave observations in situ.The highest wave height Hmax is difficult to determine precisely as will be discussed in (2) below, but in

general it may be fixed as in the following relationship:

~ (4.1.17)

The periods are related as follows:

≒ ~ (4.1.18)

It should be noted however that as waves approach the coast, waves with the heights greater than the breakinglimit begin to break and that their heights are reduced. Thus it is not possible to use the Rayleigh distribution forthe wave heights within the breaker zone.

(2) Occurrence Probability of the Highest Wave HeightThe highest wave height Hmax is a statistical quantity that cannot be determined precisely; it is only possible togive its occurrence probability. If the wave height is assumed to follow a Rayleigh distribution, then theexpected value Hmax of Hmax , when a large number of samples each composed of N waves are ensembled, isgiven as follows:

(4.1.20)

It should be noted, however, that when Hmax is obtained for each of a large number of samples each containingN waves, there will be a considerable number of cases in which Hmax exceeds Hmax. Thus a simple use of Hmaxas the design wave might place structures on a risky side. One can thus envisage the method in which a waveheight (Hmax)� with � = 0.05 or 0.1 is used, where (Hmax)� is set such that the probability of the value of Hmaxexceeding (Hmax)� is � (i.e., the significance level is �). The value of (Hmax)� for a given significance level � isgiven by the following equation:

(4.1.21)

p H H�� �2���

HH�����

4���

HH������ �

� � 2�

� � �� �

exp�

H1 3�

H1 10� 1.27H1 3��

H1 3� 1.60H�

Hmax 1.6�� 2.0 �H1 3�

Tmax T1 3� 1.1�� 1.3 �T

Hmax 0.706 lnN 0.57722 lnN������������������ �

� � H1 3��

Hmax� �� 0.706H1 3� lnN

ln 1 1 ��� ��� ������������������������������������ �� ��

67

8

Page 65: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

-38-

Table T- 4.1.4 lists the values obtained from this equation. Because Hmax is not a definite value but rather aprobabilistic variable, the value of Hmax / H1/3 varies greatly with N and �. However, considering the facts that thewave height only approximately follows a Rayleigh distribution and that the wave pressure formula has been derivedwhile containing a certain scatter of experimental data, it is appropriate to use Hmax = (1.6 ~ 2.0) H1/3 by neglectingthe very small or large values in the table.

Table T- 4.1.4 Relationship between Highest Wave Height Hmax and Significant Wave Height H1/3

[3] Wave SpectrumIn the design of port and harbor facilities, due consideration shall be given to the functional form of thewave spectrum and an appropriate expression shall be used.

[Technical Notes](1) General Form of Wave Spectrum

The general form of the wave spectrum is usually represented as in the following equation:

(4.1.22)

wheref: frequency�: azimuth from the principal direction of the wave

S(f,�): directional spectrum

In the above, S(f) is a function that represents the distribution of the wave energy with respect to frequency; it iscalled the “frequency spectrum”. G(f,�) is a function that represents the distribution of the wave energy withrespect to direction; it is called the “directional spreading function”.

The functions expressed in the following equations may be used for S(f) and G(f,�). The frequency spectrumof equation (4.1.23) is called the Bretschneider-Mitsuyasu spectrum, while equation (4.1.24) is called theMitsuyasu type spreading function.

(4.1.23)

(4.1.24)

where G0 is a constant of proportionality that satisfies the following normalization condition:

(4.1.25)

where �max and �min are respectively the maximum and minimum angles of deviation from the principaldirection.

The term S in equation (4.1.24) is a parameter that represents the degree of directional spreading of waveenergy. It is given by the following formulas:

:

(4.1.26)

: ≦

where fm is the frequency at which the spectrum peak appears. It may be represented in terms of the significantwave period T1/3 as in the following equation:

(4.1.27)

If the units of H1/3 and T1/3 are meters and seconds respectively, then the units of S(f,�) are m2•s.

Number of wavesN

Mode(Hmax) mode

50% significance level

(Hmax) 0.5

Mean(Hmax)

10% significance level

(Hmax) 0.1

5% significance level

(Hmax) 0.05

50100200500

1,0002,0005,000

10,000

1.40H1/31.52H1/31.63H1/31.76H1/31.86H1/31.95H1/32.05H1/32.12H1/3

1.46H1/31.58H1/31.68H1/31.81H1/31.91H1/32.00H1/32.10H1/32.19H1/3

1.50H1/31.61H1/31.72H1/31.84H1/31.94H1/32.02H1/32.12H1/32.19H1/3

1.76H1/31.85H1/31.94H1/32.06H1/32.14H1/32.22H1/32.31H1/32.39H1/3

1.86H1/31.95H1/32.03H1/32.14H1/32.22H1/32.30H1/33.39H1/32.47H1/3

S f � � � S f� �G f � � ��

S f� � 0.257H1 3� T21 3� f 5�4� 1.03 T1 3� f� �

4��� �exp�

G f � � � G0 i2S �

2���cos�

G f � � � �d�min

�max

! 1�

S Smaxf

fm������ �

� � 2.5�

� f fm"

64

74

8S Smaxf

fm������ �

� � 5� f fm

fm 1 1.05T1 3�� ���

Page 66: Technical Standard and Commentaries for Port and Harbour Facilities in Japan

PART II DESIGN CONDITIONS

-39-

(2) Value of Directional Spreading ParameterIt is standard to take a value of 10 for the maximum value Smax of the directional spreading parameter in the caseof wind waves in deep water. In the case of swell considering the process of wave decay and others, it isappropriate to take a value of 20 or more. Figure T- 4.1.4 shows a graph of approximately estimated values ofSmax against wave steepness. Judging by the value of wave steepness, it can be seen that Smax< 20 for windwaves. This graph may be used in order to set an approximate value for Smax. Goda and Suzuki 4) have proposedusing as the standard values Smax = 10 for wind waves, Smax = 25 for swell during initial decay, and Smax = 75 forswell that has a long decay distance.

(3) Change in Smax Due to RefractionThe form of the directional spreading function changes as waves undergo the refraction process. When adiffraction calculation on irregular waves is carried out using waves that have been refracted, it is thus veryimportant to consider such changes in the directional spreading function. Figure T- 4.1.5 shows the values ofSmax after waves have been refracted at a coastline with straight and parallel depth contour lines. In the figure,(�p)0 is the incident angle of the principal wave direction at the deepwater boundary, i.e., the angle between theprincipal wave direction and the line normal to the depth contours.

(4) Improved Model for Frequency SpectrumIf waves are generated in a laboratory flume using the Bretschneider-Mitsuyasu spectrum expressed by equation(4.1.23), the significant wave period of the generated waves often deviates from the target significant waveperiod. The reason for such a deviation is that the original equation (4.1.23) is given in terms of the peakfrequency fm, but this is replaced with the significant wave period T1/3 by using equation (4.1.27). Goda 54) hasthus proposed the following standard spectral form for which the significant wave period of the generated wavesdoes not deviate from the target significant wave period.

(4.1.28)

The peak frequency for equation (4.1.28) is about 8% lower than that for equation (4.1.23), the spectral densityat the peak is about 18% higher, and overall the spectrum is shifted towards the low frequency side. At the veryleast, it is advisable to use the spectral form expressed by equation (4.1.28) for the target spectrum in hydraulicmodel experiments.

(5) Relationship between Wave Spectrum and Typical Values of Wave Characteristics

(a) Wave spectrum and typical value of wave heightIf the probability density function for the occurrence of a wave height H is assumed to follow the Rayleighdistribution, then the relationship between the mean wave height H and the zeroth moment of the wave

(αp)0

h/L0

S m

ax

Fig. T- 4.1.4 Graph Showing Estimated Values of Smax against Wave Steepness

Fig. T- 4.1.5 Graph Showing the Change in Smax Due to Refraction

S f� � 0.205H1 3� T21 3� f 5�4� 0.75 T1 3� f� �

4��� �exp�