102
STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES Technical Publication No. 69 \ GROUND-WATER CONDITIONS IN TOOELE VALLEY, UTAH, 1976-78 by A. C. Razem and J. I. Steiger U.S. Geological Survey Prepared by the United States Geological Survey in cooperation with The Utah Department of Natural Resources Division of Water Rights 1981

Technical Publication No. 69 - Utah

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Technical Publication No. 69 - Utah

STATE OF UTAHDEPARTMENT OF NATURAL RESOURCES

Technical Publication No. 69

\

GROUND-WATER CONDITIONS IN TOOELE VALLEY, UTAH, 1976-78

by

A. C. Razem and J. I. SteigerU.S. Geological Survey

Prepared bythe United States Geological Survey

in cooperation withThe Utah Department of Natural Resources

Division of Water Rights

1981

Page 2: Technical Publication No. 69 - Utah
Page 3: Technical Publication No. 69 - Utah

CONTENTS

Page

Conversion factors VIAbstract 1Introduction 1

Purpose and scope 1Previous studies and acknowledgments 2Well- and spring-numbering system 2Description of the area 4

Location and physiography................................... 4Geology 6Climate and vegetation 7Population and economy 8

Ground-water hydrology 8Consolidated rocks 8Unconsolidated valley fill 9

Water-table aquifers 9Artesian aquifers 9

Ground-water areas 9Recharge 11Movement 13Discharge 15

Wells 15Springs 16Evapotranspiration 16Subsurface flow to Great Salt Lake 17

Hydraulic properties 17Storage 20

Changes in ground-water conditions, 1963-78 22Well construction and well discharge 22Water-level changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Changes in storage 26

Hydrologic budget of the artesian aquifers 26Chemical quality 28

Status in 1978 28Changes in chemical quality, 1963-78.............................. 31

Prediction of future water levels with a digital-computer model....... 33Discharge equal to the 1973-77 average discharge 34Discharge 1.5 times the 1973-77 average discharge 36Discharge double the 1973-77 average discharge 36Discharge triple the 1973-77 average discharge.................... 36

Summary and conclusions 39References cited 40Publications of the Utah Department of Natural Resources, Division

of Water Rights 86

III

Page 4: Technical Publication No. 69 - Utah

ILLUSTRATIONS[Plate is in pocket]

Plate 1. Map of Tooele Valley drainage basin showing selectedhydrologic-data-collection sites.

Page

Figure 1.

2.3.

4.

5.

6.

7.

8.

9.10.

11.

12.

13.

14.

15.

16.

Diagram showing well- and spring-number system used inUtah 3

Index map showing the location of Tooele Valley............. 5Graph showing cumulative departure from average annual pre-

cipitation at Tooele, 1897-1977 7Map showing approximate boundaries of ground-water areas in

Tooele Valley 10Map showing potentiometric surface of the artesian aquifers

in Tooele Valley, March-April 1978 14Map showing distribution of phreatophytes and specific con-

ductance of water near the water table in Tooele Valley... 18Map showing approximate thickness of sediments saturated

with freshwater in Tooele Valley...... 21Graph showing cumulative number of wells constructed and

annual discharge from wells, 1963-77 22Hydrographs of selected wells in Tooele Valley........... 24Map showing approximate change in potentiometric head in

the artesian aquifers in Tooele Valley, March-April 1963to March-April 1978 27

Triangular diagram of the percentage of the major anions inground water in Tooele Valley............................. 29

Map showing distribution of water types in the artesianaquifers and surface streams, in Tooele Valley,1977-78 30

Map showing dissolved-solids concentration of water in theartesian aquifers and surface streams in Tooele Valley1977-78 32

Map showing predicted water-level changes for the period1978-2008, assuming that well discharge is the same asthe 1973-77 average discharge 35

Map showing predicted water-level changes for the period1978-2008, assuming that well discharge is 1.5 times the1973-77 average discharge 37

Map showing predicted water-level changes for the period1978-2008, assuming that well discharge is double the1973-77 average discharge , 38

IV

Page 5: Technical Publication No. 69 - Utah

Table 1.

2.

3.4.

5.6.7.

TABLESPage

Streamflow in ephemeral and perennial streams in TooeleValley 6

Estimated average annual precipitation and ground-waterrecharge in Tooele Valley ..................................• 13

Evapotranspiration in the northern part of Tooele Valley...... 19Comparison of transmissivity values obtained from aquifer

tests and model calibration 20Records of selected wells and springs 42Water levels in selected wells, 1963-78 50Chemical analyses of water from selected wells, springs,

streams, mines, and tunnels, 1966-78 74

v

Page 6: Technical Publication No. 69 - Utah

CONVERSION FACTORS

Most values in this report are given in inch-pound units followed bymetric units. The conversion factors are shown to four significant figures.In the text, however, the metric equivalents are shown only to the number ofsignificant figures consistent with the accuracy of the value in inch-poundunits.

Metric

Square hectometer hm2

Square kilometer km2

Cubic hectometer hm3Cubic meter m3Cubic meter per m3/s

secondMeter mMeter per kilometer m/kmMillimeter mmCentimeter cmKilometer kmSquare meter m2

Square kilometer km2

Inch-pound

Unit Abbreviation(Multiply) (by)

Acre 0.4047.004047

Acre-foot acre-ft .001233

ft 3/s1233

Cubic foot .02832per second

Foot ft .3048Foot per mile ftlmi .1894Inch in. 25.40

2.540Mile mi 1.609Square foot ft2 .0929Square mile mi 2 2.590

Unit(to obtain)

Abbreviation

Chemical concentration and water temperature are given only in metricunits. Chemical concentration is given in milligrams per liter (mg/L) ofmicrograms per liter (~g/L). Milligrams per liter is a unit expressing theconcentration of chemical constituents in solution as weight (milligrams) ofsolute per unit volume (liter) of water. One thousand micrograms per liter isequivalent to one milligram per liter. For concentrations less that 7,000mg/L, the numerical value is about the same as for concentrations in parts permillion.

Water temperatureconverted to degrees°F=1.8(oC)+32.

is given inFahrenheit

VI

degrees Celsius(OF) by the

(oC), which can befollowing equation:

Page 7: Technical Publication No. 69 - Utah

GROUND-WATER CONDITIONS IN TOOELE VALLEY, UTAH, 1976-78

by

A. C. Razem and J. I. SteigerU.S. Geological Survey

ABSTRACT

Ground-water conditions in Tooele Valley, Utah, did not change signifi­cantly between 1963 and 1978. Water levels in the artesian aquifers declined2-4 feet (0.6-1.2 meters) in the Grantsville area, rose 4-12 feet (1.2-3.7meters) in the Erda area, and remained relatively stable in the north part ofthe valley. The rise of water levels in the Erda area may be related toabove-average recharge and the discharge of mine drainage.

The average annual recharge to the artesian aquifers is estimated to beabout 57,000 acre-feet (70 cubic hectometers). The maximum discharge from theartesian aquifers in 1977 was estimated to be 71, 000 acre-feet (88 cubichectometers), of which 23,000 acre-feet (28 cubic hectometers) was byevapotranspiration, 28, 000 acre-feet (35 cubic hectometers) was from wells,17,000 acre-feet (21 cubic hectometers) was from springs, and about 3,000acre-feet (4 cubic hectometers) discharged to Great Salt Lake. The differencebetween recharge and discharge represents inherent errors in estimates,particularly for recharge from precipitation and discharge by evapo­transpiration and from springs.

No large areas of significant change in water quality were observed be­tween 1963 and 1978. In two newly developed areas northwest of the mouth ofPine Canyon and north of the city of Tooele, however, wells yielded water withrelatively high sulfate and chloride concentrations, respectively.

A digital-computer model of the artesian aquifers was used to predictwater-level changes for the period 1978-2008. The model indicates that waterlevels will decline less than 5 feet (1.5 meters) in most of the valley ifwell discharge is equal to the 1973-77 average discharge, and water levelswill decline less than 15 feet (4.6 meters) in most of the valley if welldischarge is 1.5 times the 1973-77 average discharge.

INTRODUCTION

Purpose and scope

An evaluation of the ground-water resources of Tooele Valley, Utah, wasmade by the U.S. Geological Survey in 1976-78 in cooperation with the UtahDepartment of Natural Resources, Division of Water Rights. The purposes ofthe study were to determine changes in ground-water conditions since aprevious investigation in 1958-63 by Gates (1965) and to predict the effectsof future ground-water development on the hydrologic system by means of adigital-computer model.

The basic data and interpretations contained in earlier reports byThomas (1946) and Gates (1965) were used freely during this study. The

Page 8: Technical Publication No. 69 - Utah

construction of wells and test drilling since 1963, however, have yielded newinformation concerning water levels, aquifer properties, chemical quality andtemperature of ground water, and subsurface geophysical and geologic data.This new information helped in the updating and reanalysis of previousinterpretations concerning the potentiometric surface and movement of groundwater. This, together with more detailed phreatophyte mapping and arefinement of aquifer characteristics, helped in the construction of adigital-computer model that provided a better understanding of the rechargeand discharge to the aquifers.

Previous studies and acknowledgments

Earlier reports that discussed the hydrology, geology, or relatedaspects of Tooele Valley and its drainage basin include those by Gilbert(1890), Carpenter (1913), Kearney and others (1914), Gilluly (1932),unpublished reports of soil studies made by the U.S. Department of Agriculturein 1922 and the U.S. Soil Conservation Service in 1935, Rigby (1958), Johnson(1958), and Cook (1961). The first study of the ground-water resources ofTooele Valley and the most comprehensive study of ground-water geology wasmade by Thomas (1946). Gates (1962, 1963b, 1965) re-evaluated Thomas' work,reported on changes in ground-water conditions from 1941 to 1963, and beganquantitative studies in the valley.

Since Gates' studies, reports that have discussed ground water orrelated geology in Tooele Valley have been by Tooker and Roberts (1971a and b)and a series of annual reports entitled "Ground-water conditions in Utah,spring 1979", the latest of which is by Price (1979). Razem and Bartholoma(1980) describe the construction and calibration of the digital-computer modelused in this study, and Ryan, Nance, and Razem (1981) present the hydrologicdata and results of a test-drilling program that were part of this study.

The cooperation of the many well owners and landowners who permitted thecollection of hydrologic and chemical data and provided data for wells andsprings is gratefully acknowledged. Also providing data and cooperation werethe cities of Tooele and Grantsville, Tooele County, Tooele Army Depot, NorthWillow Irrigation Co., Kennecott Copper Corp., Anaconda Co., Blackhawk Resinand Chemical Co., American Salt Co., Hardy Salt Co., Flintkote Co., Terracor,and Jelco Inc.

Utah Power and Light Co. supplied power-consumption data for pumpedwells. Stoddard Water Well Drilling Co., Gardner Drilling Co., and HaleDrilling supplied data for wells.

Well- and spring-numbering system

The system of numbering wells and springs in Utah is based on thecadastral land-survey system of the U.S. Government. The number, in additionto designating the well or spring, describes its position in the land net. Bythe land-survey system, the State is divided into four quadrants by the SaltLake base line and meridian, and these quadrants are designated by theuppercase letters A, B, C, and D, indicating the northeast, northwest,southwest, and southeast quadrants, respectively. Numbers designating thetownship and range (in that order) follow the quadrant letter, and all threeare enclosed in parentheses. The number after the parentheses indicates the

2

Page 9: Technical Publication No. 69 - Utah

Sections within a township Tracts within a section

I b I aI I

b I----l-I II c II I

------d---II

(1.6 kilometers)------~

b a

c

R q W Sec. 31T~.

-----...12---6 5 ~ 3~

7 8 9 10 II 12

18 17 16 15 I~ 13

19 2~ 21 22 23 2~

"'"30 29 2~~7 26 25

31 32 33 3~"" ""'35 36Well·

6 miles 9.7 k i Iomete rs '" \

T2S

II

I B A L____I

SAl T LAK E BASE 1I NE I"Salt Lake City ,

II z I.. I, -

=- ,'"...~

II c 0 I

I, ...'" ,..--'

I II ... I, --'.. _____ J'"-----

Figure I.-Well- and spring-numbering system used in Utah.

3

Page 10: Technical Publication No. 69 - Utah

section, and is followed by three letters indicating the quarter section, thequarter-quarter fection, and the quarter-quarter-quarter section--generally 10acres (4 hm2); the letters a, b, c, and d indicate, respectively, thenortheast, northwest, southwest, and southeast quarters of each subdivision.The number after the letters is the serial number of the well or spring withina 10-acre (4-hm2) tract; the letter "S" preceding the serial number ~enotes aspring. If a well or spring cannot be located within a 10-acre (4-hm ) tract,one or two location letters are used and the serial number is omitted. Thus(C-2-4)31dad-2 designates the second well constructed or visited in theSE1/4NE1/4SE1/4 sec. 31, T. 2 S., R. 4 W. Other sites where hydrologic datawere collected are numbered in the same manner, but three letters are usedafter the section number and no serial number is used. The numbering systemis illustrated in figure 1.

Description of the area

Location and physiography

Tooele Valley is in the northeast part of Tooele County, approximately30 mi (48 km) southwest of Salt Lake City. (See fig. 2.) The valley isbounded by Great Salt Lake on the north and by m~untains ~n the three othersides. The valley includes approximately 250 mi (650 km ); but the entirestudy area, which ~ncludes th~ mountains that drain to the valley, totalsapproximately 400 mi (1,040 km ).

The eastern border of Tooele Valley is the north-trending OquirrhMountains and the boundary between the valley fill and the mountains isusually abrupt. Although the mountains are only 5-12 mi (8-19 km) wide, theyrise sharply from the valley floor at an altitude of about 5,200 ft (1,590 m)to over 10,000 ft (3,050 m) at the southeast corner of the drainage basin.

The western border of Tooele Valley is formed by the Stansbury Moun­tains, which have a more gradual contact with the valley fill. These north­trending mountains are also relatively narrow, and they reach a maximumaltitude of 11,031 ft (3,362 m) in the southwest corner of the drainage basin.

The southern border or Tooele Valley is marked by South Mountain, a rel­atively low transverse divide, and Stockton Bar, a barlike feature depositedby Lake Bonneville during the Pleistocene Epoch. These features separateTooele Valley from Rush Valley to the south.

Ephemeral and perennial streams discharge approximately 17,000 acre-ft(21 hm3) per year from the mountains bordering Tooele Valley (table 1). Theperennial streams are in Settlement Canyon in the Oquirrh Mountains and inDavenport, North and South Willow, and Box Elder Canyons in the Stansbury

1Although the basic land unit, the section, is theoretically 1 mi 2 (2.6km2) , many sections are irregular. Such sections are subdivided into 10-acre(4_hm2 ) tracts, generally beginning at the southeast corner, and the surplusor shortage is taken up in the tracts along the north and west sides of thesection.

4

Page 11: Technical Publication No. 69 - Utah

UTAH

VALLEY

,nd••~ \--------..,

mop~

JORDAN

CIl~~

I!! I"",".~

o '"f» g.. .:.,;-,

UTAH CO.

Erda

10 KILOMETERS

51', III. ! I

oI.',,' I'

VALLEY

TOOELE

Grantsvi lIe

gArea of investigation

"., " •• ,1".

Approximate boundaryof mountain range

-- ..---

>­L&J....l....l~

>

Boundary of drainagebasin

Figure 2.-Location of Tooele Valley.

5

Page 12: Technical Publication No. 69 - Utah

Mountains (pl. 1). The stream in Middle Canyon was perennial at one time;however, the water in the upper reaches of the canyon is now diverted. Exceptduring periods of extremely high runoff, the streams are diverted forirrigation before or shortly after the stream course leaves the canyons.

Table 1.--Streamflow in ephemeral and perennial streams in Tooele Valley

Drainage Average annual flowCanyon area Ephemeral Perennial

(acres) (acre-feet per year)

Box Elder 8,280 900 1

South Willow 5,630 4,8302

North Willow3,100 1Davenport 6,820

Mack900 3West 6,580

Dry4Settlement 11 ,530 4,0004Middle 9,540 1,100

Pole7,800 1,6003

BatesSwenson 740 600 3

3,100 13,930

~Estimates based on spot measurements and channel-geometry measurements.Value from gaging-station records.

3Estimates based on channel-geometry measurements and equations fromRegiou A in Hedman and Kastner (1977, p. 296).

Value from Gates (1965, p. 58).

Geology

Tooele Valley is underlain mostly by a thick sequence of unconsolidatedsediments of Tertiary and Quaternary age. The bulk of this valley fillconsists of interfingering clay, sand, and gravel, although some volcanicmaterial is present in the southeastern part of the valley. The fill wasemplaced in a complex sedimentation pattern of lake-bottom, lakeshore, stream,and alluvial-fan deposits, making it difficult to correlate beds from one partof the valley to another. An attempt at correlation was made using thegeophysical logs from two oil-test wells and eight deep test holes. A generalchange was observed in most areas at a depth between 800 and 900 ft (244 and274 m). The valley fill is much finer grained below that level than above it,and the change may mark the top of sediments of Tertiary age.

The thickness of the unconsolidated valley fill ranges from a featheredge at the margins of the valley to a possible maximum of about 7,100 ft(2,160 m) at oil-test well (C-2-5)14cab-1 in the northern part of the valley.None of eight test holes, which were drilled during 1977-78 to depths between992 and 1,524 ft (302 and 465 m), reached bedrock (see pl. 1 for locations).

6

Page 13: Technical Publication No. 69 - Utah

The Oquirrh Mountains and South Mountain are composed mainly of theOquirrh group (or Formation) of Late Mississippian, Pennsylvanian, and EarlyPermian age. This unit consists predominantly of alternating quartzite andlimestone beds, with much of the limestone containing chert. Numerousformations crop out in the Stansbury Mountains, but the thickest are theOquirrh Formation and the Tintic Quartzite of Cambrian age, which is exposedalong most of the crest of the range. The rocks in all three of the mountainranges bordering the valley have been extensively folded and faulted.

Climate and vegetation

The climate of the study area ranges from semiarid in the salt flatsnear Great Salt Lake to humid in the higher mountains. The average pre­cipitation at Tooele for the period 1897-1977 is 16.49 in. (418 mm) (fig. 3),whereas at Grantsville the ave.rage precipitation for the period 1957-77 is11.00 in. (279 mm). The normal (1941-70) mean annual air temperature atTooele is 51 of (10. 6oc), and the annual freeze-free period at Tooele is 209days (Criddle and others, 1962, p. 11).

1897-1977 average annual precipi lalian16.49 inches (418 mm)

+24

~ +16"":::>...""c'" +8I>.~

~::l::

CUZ... -

> 0_z... -C..J:::> -8::E:::>u

-16

,... c 0 0en 0 - N

'" en en en-oMen

YE AR

o...en

o

'"en

ocoen

o,...en

,...,...en

+600

-400

Figure 3.-Cumulative departure from average annual precipitation atTooele, 1897-1977.

The most common native plants in the lowland areas are greasewood (Sar­cobatus vermicuZatus), saltgrass (DistichiZis stricta) , pickleweed (A Uen­roZfea occidentaZis) , and rabbitbrush (Chrysothamnus nauseosus). Progressingupward toward the mountain slopes, sagebrush (Artemesiasp.), shadscale (Atri­pZex confertifoZia) , and juniper (,Juniperus sp.) become increasingly moredominant. In the valley areas, the dominant type of vegetation is controlledlargely by the depth to the water table, salinity of the soil and groundwater, soil type, and soil moisture.

In the mountains, the common native plants are juniper on the foothillsand lower slopes; scrub oak (Quercus gambeZii) and brush species on slopes ofsouthern exposure; pine (Pinus sp.), Douglas fir (Pseudotsuga meniesii ),spruce (Picea sp.), and quaking aspen (Populus tremuloides) on the north­facing slopes at high altitudes; and cottonwood (Populus), along streams andgullies.

7

Page 14: Technical Publication No. 69 - Utah

Unconsolidated valley fill

Ground water occurs under unconfined and confined conditions in theunconsolidated valley fill. Unconfined conditions, or water-table conditions,exist where the ground water has free access to the atmosphere through openspaces in the sediments. Confined conditions, or artesian conditions, existwhere relatively impermeable layers, usually consisting of fine material suchas clay or silt, separate the aquifer from free access to the atmosphere.

Water-table aquifers

Ground water occurs under water-table conditions in the unconsolidatedvalley fill near the mountains and in the northern part of Tooele Valley. Thewater-table aquifers near the mountains are many hundreds of feet below theland surface, the depth to water is equally great, and the aquifers supplywater to only a few wells. These deep aquifers merge downdip with artesianaquifers toward the center of the valley, and they are essentially a lateralextension of the artesian system. As such, they will be discussed in a latersection of this report.

The water-table aquifer in the northern part of the valley consists ofabout the upper 50 ft (15 m) of sediment, and the water level ranges from landsurface down to about 50 ft. No wells are known that presently obtain waterfrom the shallow water-table aquifer in the northern part of the valley,though some water-table wells were reported in the Lake Point area in 1941(U.S. Geological Survey, 1942, p. 94-96).

The main source of recharge to the shallow water-table aquifer is upwardleakage from the underlying artesian aquifers. Lesser sources are seepage ofprecipitation that falls directly on the shallow aquifer, seepage of waterthat discharges from springs, and seepage of excess irrigation water. Waterlevels obtained from shallow dug holes in the water-table aquifer indicatethat the movement of water is in the same general direction as the slope ofthe land surface.

Discharge from the shallow water-table aquifer is mostly by evapo­transpiration. (See pages 16-17 for a more detailed description of evapo­transpiration.) Lesser amounts of discharge are from seeps, possibly springs,and a small amount of that moves in the subsurface to Great Salt Lake.

Artesian aquifers

Ground-water areas

Thomas (1946, p. 161-162) and Gates (1965, p. 31-36) divided theartesian aquifers in Tooele Valley into districts based on variousgeohydrologic factors. Data obtained since 1963 indicate that the districtboundaries are not barriers to ground-water movement. In this report,therefore, the artesian aquifers in the valley fill are treated as a singleunit. The ground-water areas shown in figure 4 were chosen to show areaswhere ground-water conditions are generally similar or areas where ground­water conditions can conveniently be discussed together. The areas are notindependent of adjacent areas, and the boundary lines that separate the areasare approximate.

9

Page 15: Technical Publication No. 69 - Utah

1 2

f.

31

\,(,

4~\,\

0)"--Z...-/,- <"

I\)1 ~\\

3 Q \, R. 3 W.

.l

36

.~.0'0'/, 36 3 1 :::>

() c· g.QII

.1'011'"'"

GREAT SAL T LAKE

T.1S.

;-;s. ,

Base from U.S. Geological Surveytopographic maps

EXPLANATION.... --- Approximate boundary of

ground-water areas.Boundaries are notbarriers to ground-watermovement

______ Boundary of drainage basin

Figure ~.-Approximate boundaries of ground-water areas in Tooele Valley.

10

Page 16: Technical Publication No. 69 - Utah

The aquifers in the Erda area receive recharge from the OquirrhMountains. Many of the aquifers consist of coarse well-sorted gravels thatmay be several hundred feet thick. (See log for test hole (C-2-4)34cab-1 inRyan and others, 1981.)

Water from the Oquirrh Mountains serves as the main source of rechargeto aquifers in the Marshall-Tooele area. Additional sources of recharge areRush Valley and the Stansbury Mountains. Production from wells is highlyvariable in this area. The aquifers generally consist of clayey or sandygravel separated by clay and gravelly or sandy clay. (See logs of test holes(C-2-5)35daa-1 and (C-3-5)22dab-1 in Ryan and others, 1981.)

The Grantsville area is recharged from the Stansbury Mountains. Theaquifers in the area consist mostly of sandy layers, usually about 20 ft (6 m)thick, separated by thin clayey layers. There may be some gravel aquifers,especially in the southern part of the area. (See logs for test holes (C-2­5)31bad-1 and (C-3-5)7ccd-1 in Ryan and others, 1981.)

The aquifers in the Burmester area in the northern part of the valleyreceive water moving out of the Erda, Grantsville, and Marshall-Tooele areas.The aquifers in the Burmester area are typically thin beds of gravel or sandseparated by large thicknesses of relatively impermeable clay. (See log oftest hole (C-2-5)14cbb-1 in Ryan and others, 1981.)

The aquifers in the Lake Point area are essentially separated from therest of the valley and probably would be little affected by development in theother areas. The recharge for the aquifers in the Lake Point area is theOquirrh Mountains north of Bates Canyon (fig. 12). Aquifers in Lake Pointarea that contain freshwater are usually thin and consist of sandy gravel.They do not extend to depths over 500 ft (152 m). (See log of test hole (C-2­4)2bda in Ryan and others, 1981.)

Recharge

Recharge to the artesian aquifers is by subsurface flow from con­solidated rocks in the adjoining mountains and by lateral movement from theadjoining water-table aquifer near the mountains. Recharge to the water-tableaquifer is from precipitation that falls directly on that aquifer, seepagefrom stream channels that cross it, seepage of excess irrigation water, seep­age of discharge from mines and tunnels, and subsurface flow from consolidatedrocks. In the following discussion, the artesian aquifers and the adjoiningwater-table aquifer are treated as a hydrologic unit.

Subsurface flow from consolidated rocks along the mountain front intothe valley fill probably accounts for a large percentage of the totalrecharge. Such flow from consolidated rocks has been shown to be the largestsingle source of recharge in the nearby East Shore area (Feth and others,1966, p. 39) and the Jordan Valley (Hely and others, 1971, p. 119). Otherpossible ways by which water moves into the valley fill from consolidatedrocks are by upward leakage from bedrock along faults and by subsurface flowfrom Rush Valley.

1 1

Page 17: Technical Publication No. 69 - Utah

The southeastern and southwestern parts of the study area appear to bethe areas of greatest recharge because the precipitation is greatest there andstream-drainage areas are largest. These areas of greatest recharge extendfrom Swenson Canyon to Settlement Canyon in the southeast and from DavenportCanyon to Box Elder Canyon in the southwest. The streams in these two areasaccount f~r approximately 14,500 acre-ft (18 hm3) of the total of 16,900 acre­ft (21 hm ) of estimated streamflow (table 1). Part of this streamflow is di­verted for irrigation, but some infiltrates the unconsolidated deposits nearthe mountain fronts and eventually recharge& the aquifer system.

Thomas (1946, p. 195), Gates (1965, p. 22), and Hood (1969, p. 30-31)all indicated that water moves by subsurface flow from Rush Valley to TooeleValley, but none of them ~ere able to give a figure for the amount of flow.About 5,000 acre-ft (6 hm ) per year of recharge along the southern margin ofthe valley gave the best results for calibration of the digital-computer modelduring this study (Razem and Bartholoma, 1980), and this may be a reasonableestimate of underflow from Rush Valley.

A computation of the recharge to the aquifer system from precipitationthat falls directly on the study area was made using the precipitationcontours and the recharge area shown by Gates (1965, p. 23 and fig. 2). Ataltitudes below the recharge area, precipitation probably does not infiltrateto the artesian aquifers. Gates (1965, p. 57) states that the average annualprecipitation that falls on the recharge area and on the mountains tributaryto Tooele Valley is about 200,000 acre-ft (247 hm3). This would be themaximum available recharge to the artesian-aquifer system.

The amount of water from precipitation that actually recharges theaquifer system has been estimated using the method described by Hood andWaddell (1968, p. 22) who modified a method of Eakin and others (1951, p. 19­81). This method assumes that a fixed percentage of the average annualprecipitation recharges the ground-water reservoir. The fixed percentage isdetermined on the basis of the following factors: altitude, geology, gradientof the land surface, and the amount of precipitation. The average annualrecharge in Tooe5e Valley, using this method, was estimat~d to be about 51,000acre-ft (63 hm), with about 31,500 acre-ft (39 hm) from the OquirrhMountains; 19,300 a§re-ft (24 hm3) from the Stansbury Mountains; and less than500 acre-ft (0.6 hm ) from South Mountain (table 2).

The digital-computer model was also used to determine recharge to theaquifer system. When calibrating the model to reflect water-level changesfrom 1941 to 1918, it was found that an ~verage annual recharge fromprecipitation of about 52,500 acre-ft (65 hm ) produced the best results.This consisted of about 39,800 acre-ft (49 hm3) from the Oquirrh Mountains,12,300 acr~-ft (15 hm3) from the Stansbury Mountains, and less than 500 acre­ft (0.6 hm ) from South Mountain.

The two methods of estimating recharge indicate that the average annualrecharge from precipitation is about 52,000 acre-ft (64 hm3). Thus, with theinflow from R:.fh Valley, the total average annual recharge is about 51,000acre-ft (70 hm). Considering the type of estimates involved in both methodsof computing recharge, the total of 57,000 acre-ft (70 hm3) is believed tohave an accuracy of 10-20 percent.

12

Page 18: Technical Publication No. 69 - Utah

Table 2.-EstimateJ average annual precipitation and ground-water recharge in Tooele Valley

Estimated annual Estimated

Preci pitation precipitation annual recharge

zone Area Percentage of

(inches) (acres) Inches Acre-feet preci pitation Acre-feet

STANSBURY MOUNTAINS

11-12 700 11.5 700 1 10

12-14 8,500 13 9,200 3 300

14-16 9,000 15 11,300 3 300

16-18 5,600 17 8,000 20 1,600

18-20 6,500 19 10,300 20 2,100

20-25 8,500 22.5 15,800 33 5,200

25-30 10,200 27.5 23,400 33 7,700

30-35 1,200 32.5 3,300 33 1,100

35-40 800 37.5 2,500 33 800

>40 200 42.5 700 33 200

Subtotal 51,200 85,200 19,300

OQUIRRH MOUNTAINS

14-16 9,400 15 11,800 3 40016-18 7,400 17 10,500 20 2,10018-20 5,700 19 9,000 20 1,80020-25 11,000 22.5 20,500 33 6,80025-30 14,900 27.5 34,100 33 11,30030-35 5,800 32.5 15,700 33 5,20035-40 2,100 37.5 6,600 33 2,200

>40 1,400 42.5 5,000 33 1,700

Subtotal 57,700 113,200 31,500

SOUTH MOUNTAIN

12-14 2,800 13 3,000 3 9014-16 1,200 15 1,500 3 50

>16 30 17 40 20 10

Subtotal 4,030 4,540 150

Total 113,000 203,000 51,000(rounded)

Movement

Ground water in the valley fill in Tooele Valley generally moves atright angles to the potentiometric-surface contours shown in figure 5. Thomas(1946, fig. 10) and Gates (1965, fig. 6) showed similar contour maps for 1941and 1962, and comparison with the map for 1978 indicates little change in the

13

Page 19: Technical Publication No. 69 - Utah

T. ­1S ..

('::36 31

>.'

)..'"

1 2

'.

'\GUE4T SALT LAKE

Base from U,S. Geolollical SurveytopOllraphic maps

EXPLANATION• Observation wel I

---020-- Potentiometric contour, dashed where inferred;contour interval 20 feet (6.1 meters); datumis mean sea level

______ Boundary of drainage basin

Figure 5.-Potentiometric surface of the artesian aquifers in TooeleValley, March-April 1978.

14

Page 20: Technical Publication No. 69 - Utah

pattern of movement. The general direction of movement is from the rechargeareas--east, south, and west of the valley--northward toward Great Salt Lake.

In addition to the direction of movement indicated in figure 5, theground water in the artesian aquifers in Tooele Valley also moves verticallyupward. Such upward movement results in discharge to the water-table aquiferin the northern part of the valley.

Gates (1965, p. 24) stated that the only known barrier to ground-watermovement in the valley fill was the Occidental(?) Fault. Gates (1962, p. D79)inferred this barrier primarily because his data showed differences in thepotentiometric surface and chemical quality of the water from one side of thesuspected fault to the other. However, data from new wells that have beendrilled in the vicinity of the fault show that it is not a barrier to ground­water movement. This is indicated by the map showing the potentiometricsurface in 1978 (fig. 5) and also by the chemical data which indicate thatdifferences in chemical quality do not seem to be related to the fault butrather appear to be a function of depth. For example, wells (C-2-4)27bba-1and (C-2-4)27bac-1, which are both on the northeast side of the fault, yieldwater with specific conductances of 1,900 and 650 micromhos per centimeter at25 0 C, respectively, but the former well is 105 ft (32 m) deep and the latteris 500 ft (152.4 m) deep.

Although the fault is not a barrier to ground-water movement, itprobably exists and may be influencing ground-water movement. Figure 5 showsthat a steep hydraulic gradient occurs in the area, and although the reasonfor this in not known, the fault may be partly responsible.

Discharge

Ground water in the valley fill in Tooele Valley is discharged by wells,springs, evapotranspiration, and su~surface outflow. The total discharge in1977 was about 71,000 acre-ft (88 hm ).

Wells .--Discharge of ground water from wells in Tooele Valley in 1977was about 28,000 acre-ft (35 hm3). Gates (1965, table 1) reported that thedi~charge from wells in the valley fill in 1962 was about 21,000:f,cre-ft (26hm ). Of that amount, he estimated that 10,500 acre-ft (13 hm ) was dis­charged by 55 pumped wells for irrigation and municipal, industrial, and mili­tary supply. By 1977, 63 wells supplied water for those uses, and the totalpumpage was 17,800 acre-ft (22 hm3). The method used for estimating the dis­charge from pumped wells by using power-consumption records is the same as de­scribed by Gates (1965, p. 25).

Time constraints did not allow discharge measurements at all thehundreds of flowing wells in Tooele Valley, so an estimate was made followingthe method used by Gates (1965, p. 24). It was assumed that approximately thesame number of flowing wells existed in Tooele Valley in 1977 as in 1962, newwells having replaced ones abandoned. Discharge measurements were made at 63wells; a ratio of 1: 2 was computed showing the average discharge of thesewells as compared to their discharge in 19~2; and this ratio then was appliedto the discharge of 8,200 acre-ft (10 hm ) for all flowing wells in 1962,giving about 10,000 acre-ft (12 hm3) as t~e discharge from flowing wells in1977 . An estimate of 150 acre-ft (0.2 hm ) of water from flowing wells was

15

Page 21: Technical Publication No. 69 - Utah

made for industrial and domestic use during 1977, giving a total ofapproximately 28,000 acre-ft (35 hm3) discharged by wells in 1977.

Springs. --Discharge of ground water from springs in Tooele Valley in1977 was about 17,000 acre-ft (21 hm3). Most of the spring discharge is fromthe artesian system, but some possibly comes from the shallow water-tab3eaquifer. Thomas (1946, p. 234) estimated that about 19,500 acre-ft (25 hm )was discharged by springs in 1938-40, and Gates (1965, p. 26) stated thatabout 15,000 acre-ft (19 hm3) w~s discharged in 1962. The increase since 1962is probably due to the rise in water levels in the Erda area, which is closeto the two largest springs.

Almost all the spring discharge is from four large springs, with minoradditions from a few seeps. The large springs are Dunne's Pond Springs, (C-2­4) 1Obca-S1, Mill Pond Spring, (C-2-4) 15cac-S1, and the sources of SixmileCreek, (C-2-5)26cdc-S2, and Fishing Creek, (C-2-5)33add-S1.

Measurement devices on all but Fishing Creek are usually read on aweekly basis by Kennecott Copper Corp., and spot measurements were made over aperiod of a year at Fishing Creek. The measurements indicate ~he followingdischarges for 1977: Dunne's ~ond Springs, 6,360 acre-ft (7.8 hm ); Mi~l PondSpring, 5,340 acre-ft (6.6 hm ); Si~mile Creek, 2,780 acre-ft (3.4 hm ); andFishing Creek, 2,470 acre-ft (3.0 hm ).

Evapotranspiration.--About 23,000 acre-ft (28 hm3) of water was dis­charged by evapotranspiration from the ground-water reservoir in Tooele ValleYin 1977. This does not represent a decrease from the 40,000 acre-ft (49 hm j

)

reported by Gates (1965, p. 27); rather it represents the results of a moredetailed investigation.

Water lost by evapotranspiration is discharged from the water-tableaquifer in the northern part of the valley. Recharge to the water-tableaquifer is from upward leakage from the artesian aquifers, excess irrigationwater, precipitation, and spring flow. Therefore, an estimate of discharge byevapotranspiration from the water-table aquifer would be a good maximumapprOXimation of discharge from the artesian aquifers by upward leakage.

Evapotranspiration occurs where the water is near the land surface andincludes evaporation from bare soil surfaces and transpiration from plants.Plants that obtain their water supply mainly from the zone of ground-watersaturation are called phreatophytes. The roots of phreatophytes are known toextend as deep as 129 ft (39.3 m) (Meinzer, 1927, p. 55); but for this stUdythe only areas considered in estimating are the nonirrigated low-lying areaswhere there is a natural growth of phreatophytes and where the water table iswithin 10 ft (3.0 m) of the land surface. The reasons for these constraintsare: (1) As shown by White (1932, p. 80), van Hylckama (1974, p. E28), andR. W. Mower (oral commun., 1978, from unpublished work in Jordan Valley), therate of evapotranspiration decreases sharply with depth and is very small atdepths exceeding 10 ft (3.0 m); and (2) because of the clearing of land forfarming, there is very little natural phreatophyte growth where the depth tothe water table is greater than 10 ft.

The rate of evapotranspiration depends on many factors, including plantspecies, depth to the water table, water quality, soil type, and climate. The

16

Page 22: Technical Publication No. 69 - Utah

most common phreatophytessaltgrass, and pickleweed.species usually dominantphreatophytes were groupedfigure 6.

in Tooele Valley are greasewood, rabbitbrush,These plants usually grow in association with one

in a particular area. For this reason, theinto four associations as shown in table 4 and in

Soil type, depth to water, and water quality usually govern which plantspecies will be dominant in a particular area. Water quality also isimportant in determining the rate of consumptive water use by each species.As shown by van Hylckama (1974, p. E28), the rate of evapotranspirationdecreases as the specific conductance of the ground water increases (or waterquality deteriorates). Figure 6 shows the specific conductance of the waterin holes that were dug to the top of the water table. Because vegetation issparse in areas where the specific conductance is high, water quality was notconsidered as a factor in determining evapotranspiration rates in TooeleValley.

The area for which evapotranspiration was calculated was divided in twozones depending on whether the depth to the water table was 0-5 ft or 5-10 ft(0-1.5 m or 1.5-3.0 m). The rate of evapotranspiration (consumptive-usefactor) in each zone for each of the four vegetation associations and baresoil was derived from studies by Robinson (1970), Mower and Nace (1957), Fethand Brown (1962), and Lines (1979). Rates re ported by those authors weremodified to account for the depth to water in Tooele Valley by using figure 34of van Hylckama (1974, p. E28), in which he describes yearly water use versusdepth to water. Thus, in the 0-5 ft (0-1.5 m) zone, the rate ofevapotranspiration was decreased by 22 percent, and in the 5-10 ft (1.5-3.0 m)zone, the rate of evapotranspiration was decreased by 65 percent. Thenmultiplying the area of each type of vegetative cover by the consumptive-usefactor gave the volume of evapotranspiration for each zone (table 3).Considering the number of estimates involved in ~he computation of evapo­transpiration, the figure of 23,000 acre-ft (28 hm ) is believed to have anaccuracy of about 20 percent.

Subsurface flow to Great Salt Lake.--About 3,000 acre-ft (4 hm3) an­nually discharges by upward leakage from the artesian aquifers into Great SaltLake. Th~ dischar~ was calculated by using an average transmissivity of about1,000 ft Id (93 mid), a hydraulic gradient of about 20 ft/mi (6 m/km) , and awidth of flow of about 15 mi (24 km). Although the calculations are based onon3y a few water levels and well logs, the discharge o~ 3,000 acre-ft (3.7hm ) per year is comparable to the 4,000 acre-ft (5 hm ) per year obtainedfor the discharge to Great Salt Lake from the Jordan Valley to the east (Helyand others, 1971, p. 137).

Hydraulic properties

The hydraulic characteristics of the artesian aquifers were determinedby pumping and recovery tests at wells. The digital-computer model was alsoused to estimate transmissivity by experimenting with transmissivity valuesuntil the water-level values generated by the model came into close agreementwith the actual water-level measurements in the field. Table 4 gives acomparison between the transmissivity values obtained from aquifer tests andthe values obtained from the "best-fit" condition in the model at the samelocation. Some of the values are almost identical, and where divergences

17

Page 23: Technical Publication No. 69 - Utah

:36

>)

Base from U.S. Geological Surveytopographic maps

~Bare soil

~~.~.••~.••• Dominantly greasewood withk\ij picklew~ed and local areas~~~.~... of rabbltbrush and saltgrass

mmmDominantly pickleweed withUJlllLU local areas of mixed salt­

grass and pickleweed

1::::::::IDominantly rabbitbrush and........ saltgrass

GHE.4T SAL T LAKE

EXPLANATION~DominantlY saltgrass with~ local areas of rabbitbrush

18,500. Location of shallow water­table hole - Number isspec i f ic conductance, inmicromhos per centimeter at25°C, August or September 1977

______ Boundary of dra inage bas in

Figure G.-Distribution of phreatophytes and specific conductance ofwater near the water table in Tooele Valley.

18

Page 24: Technical Publication No. 69 - Utah

Table 3.-Evapotranspiration in the northern part of Tooele Valley

Evapotranspiration where depth to Evapotranspiration where depth to

water table is 0-5 ft (0-1.5 m) water table is 5-10 ft (1.5-3 m)

Consumptive Consumptive

use Acre-feet use Acre-feet

Vegetative cover (feet) Acres per year (feet) Acres per year

Bare soil 0.09 26,000 2,340 0.02 3,200 60

Dominantly greasewood withpickleweed and local areas ofrabbitbrush and saltgrass 1.1 6,300 6,930 .48 5,900 2,830

Dominantly pickleweed withlocal areas of mixed salt-grass and pickleweed 1.4 250 350 .63 5,800 3,650

Dominantly rabbitbrush and

saltgrass 1.0 400 400 .45 1,400 630

Dominantly saltgrass withlocal areas of rabbitbrush 1.0 970 970 .45 9,700 4,360

Subtotals 10,990 11,530

Total for all areas (rounded) 23,000

exceeded 15 percent, the aquifer tests were short or the data collected gavequestionable results. The transmissivity values obtained from the model areprobably the most realistic where water-level data are available for theprincipal artesian aquifer, and particularly where the aquifer tests and modelcalibration gave similar results.

The model indicated that t2e transmissivity of the artesian aquiferranges from about 260 ft 2/d (24 m Id) i~ the northern part of the valley nearthe lake to about 60,000 ft 2/d (5,600 mid) near the mountains in the sou~h.By contrast, field aquifer tests indicated a range from 2,100 to 56,000 ft Id(195 to 5,200 m2 /d) (table 4). The lowest and highest model values are grossestimates, being based on only a few well logs. Al though the model wascalibrated using those values, water-level data were not available to supportthem. Consequently, the calibration is not definitive near the lake and nearthe mountains.

The values of storage coefficient determined from short-term aquifertests were approximately the same as those reported by Gates (1965, p. 29 and30). Gates' average of 0.002 was used for all the valley fill, although thestorage coefficient probably varies considerably from place to place dependingon the type of sediments and the competency of the confining bed. The modeldid not give any insight about the average value of the storage coefficientbecause the aquifer had not been stressed enough to remove more than a littlewater from storage.

19

Page 25: Technical Publication No. 69 - Utah

Table 4.--Comparison of transmissivity values obtained from aquifer tests and model calibration

Method of analysis; 0, drawdown, modified Hantush (Lohman, 1972, p. 32); MN, from Gates (1965, p. 29) whoused the modified nonequilibrium method (Ferris and others, 1962, p. 98-100); R, recovery, modified Hantush

(Lohman, 1972, p. 32).

Transmissivity Transmissivity

Observation well obtained from obtained from

(P, pumped well used aquifer tests model calibration

Pumped well as observation well) Method of analysis (ft2 /d) (ft2 /d)

(C-2-4)31 bdc-3 (C-2-4)31 bcb-1 0 15,000 17,300

33aab-1 P MN 25,000 25,500

(C-2-5)35ada-1 P R 13,000 13,800

28cdc-1 P R 21,000 18,200

30dcc-1 P R 2,100 9,500

(C-3-4 )30acc-1 P MN 56,000 34,600

(C-3-5)4bbb-2 (C-3-5)5aba-1 0 18,000 26,400

Storage

The total amount of ground water in storage in the upper 1,000 ft (305m) of saturated valley f:tll in Tooele Valley is estimated to be about 13million acre-ft (16,000 hm). This was est~mated by using a specific yield of0.1 for an area of 130,000 acres (52,600 hm ) in which the upper 1,000 ft (305m) is saturated. The fill below 1,000 ft (305 m) was not considered becauseit probably is of low permeability and contains poor quality water, whichwould be extremely costly to lift from those depths. The amount of freshwater(less than 1,000 mg/L dissolved solids) in storage in the v!lley fill isestimated to be approximately 1.7 million acre-ft (2, 100 hm ). This wasestimated on the basis of the area and depth of sediments indicated in figure7 and assuming a specific yield of 0.1.

In order to withdraw all the freshwater in storage, the total thicknessof sediment saturated with freshwater would have to be completely dewatered.A more realistic estimate was made by assuming that 30 ft (9.1 m) of drawdownoccurred evenly over the area of 58,000 acres (23,470 hm ) in which freshwateroccurs. Using an average storage c~efficient of 0.002, this would indicatethat about 3,500 acre-ft (4.3 hm) of freshwater would be removed fromstorage.

Even with a drawdown of 30 ft (9.1 m), the ground-water reservoir wouldstill be, for the most part, under artesian conditions and would remainsaturated. Thus, although substantial quantities of water are in storage inthe valley fill, water-level fluctuations on the order of magnitudeexperienced in the past 30 years do not result in much water being taken from(or added to) storage because the water in the principal aquifer remains underartesian conditions.

20

Page 26: Technical Publication No. 69 - Utah

J 2

J)S. ,

GREAT SALT LAKE

11'6 S I

, .)

/')

T. ~

1S.

Base from U.S. Geolollical Surveylopollraphic maps

EXPLANATIONBetween 0 and 500 feet (150 meters)

I."")"".'.,'''"'/'''"/''''>.,."••.•'jof valley fill saturated with ~ater."<'. containing less than 1000 milli­

grams per 1iter of dissolved sol ids

______ Val ley fill saturated with water

Icontainin g more than 1000 mill i­______. grams of dissolved sol ids or wa­

ter qual ity unknown

Between 500 and 1000 feet (150 and

ITIIIIIJJ300 meters) of valley fill satura­ted with water containing less than1000 mill igrams per I iter of dis­so Ived so lids

------Boundary of drainage basin

Figure 7.-Approximate thickness of sediments saturated with freshwater(less than 1000 mg/L dissolved sol ids) in Tooele Valley.

21

Page 27: Technical Publication No. 69 - Utah

CHANGES IN GROUND-WATER CONDITIONS, 1963-78

Ground-water conditions have changed in Tooele Valley since 1963primarily owing to an increase in the amount of water withdrawn from wells.Changes in mine drainage near Pine Canyon apparently also have caused changesin ground-water conditions in the eastern part of the valley.

Well construction and well discharge

Approximately 223 wells were constructed during 1963-77 in TooeleValley. The number of wells constructed ranged from a high of 28 in 1977 to alow of 6 in 1967 and averaged about 15 wells per year (fig. 8). Of the 223new wells, 19 were designed for irrigation supply and the remainder for stockand domestic uses. Table 5 contains records for many of the new wells andalso records for wells constructed prior to 1963 for which new data areavailable.

240~~~~~~~~~~~~~--~~~~--~~~~~~~~~~~~~~-,

220

200

1 80

1 60

'"...;;: 140

•~ 120

80

40

20

~Wa t e r discharged for a I I uses o the r t han i r rig at ion

D Wa t e r discharged for i r riga t ion on I V

Cumulative number ofwei Is constructed

'"

1963 1984 1985 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1978 1977

YE AR

..........~,...a:

40 ~~

o

'"oz..

30 ~o:I:....z

20 ..:

'"a:..:I:<.>en

10

Figure 8.- Cumulative number of wells constructed and annual dischargefrom wells, 1963-77.

Since 1963, the amount of wa~er discharged from wells has ranged from ahigh of about 33,000 acre-ft (40 hm ) in 1974 to a low of about 20,000 acre-ft(25 hm3) in 1965 and has averaged about 26,000 acre-ft (32 hm3) per year.Figure 8 indicates that about 85 percent of the water discharged each year isused for irrigation, and the remainder is used for other purposes such asmunicipal, industrial, military, and domestic uses.

22

Page 28: Technical Publication No. 69 - Utah

Al though the amount of water discharged has gradually increased since1963 as the number of new wells has increased, there is no true correlation.The amount of water withdrawn each year is also related to the previouswinter's precipitation, which is a major factor in the soil moisture presentat the beginning of the irrigation season, and to the precipitation during thegrowing season. Also, the amount of irrigated land has been increased,al though this has been offset to some extent by the replacement of ditchirrigation with sprinkler irrigation, which requires less water per acre.

Water-level changes

Long-term water-level changes are the result of differences betweenrecharge and discharge over a period of many years. Long-term changes, whichare essentially an accumulation of seasonal changes, can be seen onhydrographs for individual wells (fig. 9), and their areal extent can be seenon maps of water-level change for selected periods. Figure 10 shows thecumulative water-level change in the artesian aqUifers in Tooele Valley from1963 to 1978. The maximum changes during that period were a rise of over 12ft (3.7 m) near Erda in well (C-2-4)33add-1 and a decline of over 4 ft (1.2 m)near Grantsville in well (C-2-5)31bbd-3.

Hydrographs of wells (C-2-4)33aac-1 and (C-2-4)33add-1 (fig. 9) show thetrend in water levels in the area of the long-term rise near Erda. Bothhydrographs show that water levels declined from 1963 to about 1967 and thenrose until 1976. The overall trends correlate fairly well with the long-termchanges in precipitation in the area as shown in figure 3.

Part of the rise of water levels from 1972 to 1976, however, may berelated to the discharge of mine water do~ Pine Can30n that assumed a sig­nificant volume in 1972 and averaged 5 ft /s (0.14 m Is) from 1975 to 1978.This mine discharge probably has had the same effect of raising ground-waterlevels as did the Elton tunnel during 1941-58 (Gates, 1965, p. 40).1 Althoughdischarge from wells had increased slightly in this area from 1963-78, andalthough precipitation during 1972-76 was about equal to the long-termaverage, water levels in wells (C-2-4)33add-1 and (C-2-4)33aac-1 (fig.9) rose12-15 ft (3.7-4.6 m) between 1972 and 1976. This rapid water-level rise didnot occur in other areas of the valley.

Hydrographs of wells (C-2-5)31dad-3 and (C-2-5)31bbd-3 (fig. 9) show thetrend of water levels in the area of long-term decline near Grantsville.Water levels in the area fluctuate up and down in response to precipitationand pumpage, but the overall trend was down because the long-term dischargeexceeded the long-term recharge.

l The Carr Fork mine in Pine Canyon started copper production in September1979 and full-operation output will be attained in 1980. At that time, themine drainage (previously discharged down the canyon) will be diverted for usein a concentrating process and then discharged to a settling pond from whichit will be pumped for reuse. This will result in a decrease in the rechargefrom the mine drainage to the aquifers in the Erda area.

23

Page 29: Technical Publication No. 69 - Utah

10

20

(C-2-~)33aac-1 Cant inuous record

...<..>.e...."":::>en

10 cz.e.....

•12 c........

'"en

""1 4

...I-...::E

z

16en........>...

18 .....

""...l-.e•

..~~ .. """

(C-2-~)33add-1 Cant inuous record 1937-58

Monthly measurements 1958-78

~ 50

~ 3 0 l-.l-........-'--'--L..~__'_-L----l.--L--'~L-.l-........-'--'--L.....L-__'_~----l.--L--'~L-L-.l--'--'--L.....L-__'___'_-L--L--'----'L-L-.l--'--'--L.....L-__'_-L----l...j.e

~ 3 0 r-r--r-..,.-..,--.,.-.,.---r--r-r-,----,,--...-r--r--r.-..,--.,.-.,.---r--r-r---.----,,--...-...--r-..,.-..,-..,--.,.--r-r--r---.---.,..-.--...-.,-..,.-..,--.,.-.,.---r--r-r,:::>en

cz.e.....

::; 8 0 L-J.--'--'-.......-L..~__'_-L----l.--'----'~L-.l- ........-'-........-L.....L-__'_-L----l.--'--'~L-L-..............-'-.......-L.........__'_-L----l.........--'~L-.l-..............-L.....L-...............~....J

l­.e,.

en........>........

(C-2-5 )5acc-3

onM

'"'"..'"

on..'"

'"on

'"onon

'"'"'"'"

on

'"'"'"....'"

on....'"

'"'"'"

Figure 9.-Hydrographs of selected wells in Tooele Valley.

24

Page 30: Technical Publication No. 69 - Utah

+'"o+

'"

(")

I

'"I(TO­wc­O'"a.I

00

WATER LEVELS. IN FEET ABOVEOR BELOW LANO SURFACE

± +I

'"

1960

1970

1 965

1955

WATE R LEVELS, IN FE ETBELOW LANO SURFACE

- - -... '" 0 co '" ....,.,1935_.

10c:., (")

(1) I

'"<DI

(TO

1940 -I 00-C") a.

l»0 a.:::J Ir+- OO_.:::J 1 945c:CDc...

1 950

I'\)Vl

1975~=:=-

=:~

1 960, I' Ii I ii' i I I

'"WATER LEVELS, IN METERS

BELOW LANO SURFACE

+ + + + +_ N W .... UI

WATER LEVELS. IN METERS ABOVEOR BELOW LANO SURFACE

+'"

Page 31: Technical Publication No. 69 - Utah

The hydrograph of well (C-2-5)5acc-3 (fig. 9) is typical for thenorthern part of the valley, where water levels fluctuate comparatively littlebecause of the distance to pumped wells and to the recharge areas. Theseasonal water-level changes may be due to distant pumping or to changes indischarge by upward leakage to the overlying water-table aquifer. Upwardleakage would be higher during the summer if the head difference between theartesian and water-table aquifers increases when the water table declines dueto evapotranspiration.

Changes in storage

The amount of ground water in storage changes as water levels rise orfall depending upon the relation of recharge to discharge. The change instorage in Tooele Valley from 1963 to 1978 was estimated by using a storagecoefficient of 0.002 and the average water-level change for the shaded area infigure 10. The net change thus calculated for the period 1963-78 was anincrease in storage of 140 acre-ft (0.17 hm3). Because the principal aquiferin Tooele Valley is artesian, within the historical range 0.J' water-levelfluctuations, changes in water levels are mainly changes in artesian pressureand result in changes in storage that are small in relation to the amounts ofrecharge and discharge. The increase in storage since 1963, however,indicates that recharge from precipitation and mine drainage has more thanoffset the discharge to all sources.

HYDROLOGIC BUDGET OF THE ARTESIAN AQUIFERS

A hydrologic budget of the artesian aquifers in Tooele Valley was madefor 1977. The budget, which equates water gains with water losses, assumesthat storage changes are minimal. Water gains include recharge from preci­pitation, including subsurface flow from the surrounding consolidated rocks(originally precipitation in the mountains of the Tooele Valley drainage), andsubsurface inflow from Rush Valley. Recharge from infiltration of minedrainage is not consi dered a long-term source and is not included. Waterlosses include discharge by wells, springs, upward leakage to the water-tableaquifer and eventual loss by evapotranspiration, and subsurface outflow toGreat Salt Lake.

The budget is summarized below, the various items being taken fromprevious sections in this report.

Water gains:Recharge from precipitationSubsurface inflow from Rush Valley

Total

Water losses:WellsSpringsEvapotranspirationSubsurface outflow

Total

26

Volume(acre-ft)

52,0005,000

57,000

28,00017, 00023,000

3,000

71, 000

Page 32: Technical Publication No. 69 - Utah

1 2

T. '"1S.

J)S . ,

vo

GliEAT SALT LIKE

'---~'1'\

"\I\,)

"'\,36 3 I ~ 33 I

4 )

10-2 feet (0-0.6 meters)

~2-~ feet (0.6-1.2 meters)

~~-6 feet ( 1.2-1.8 meters)

Base from U.S. Geolollical Surveylopollraphic maps

EXPLANATION__ +5__ Line of equal water-level change, in feet,

dashed where approximate

INCREASE DECREASE

r:::::Jo-~ feet (0-1.2 meters)

li:i:i:i!i!i:i:i:::i:i:i:i:i::I~-s feet (1.2-2.~ meters)

I IS-12 feet (2.~-3.6 meters)

[CSq,2-16 feet (3.6-~.8 meters) Boundary of drainage basin

Figure IO.-Approximate change in potentiometric head in the artesianaquifers in Tooele Valley, March-April 1963 to March-April 1978.

27

Page 33: Technical Publication No. 69 - Utah

The difference between the total gains and losses represents errorsinherent in estimating items in the budget, particularly recharge fromprecipitation and discharge by evapotranspiration and from springs. Theestimates of discharge probably acc~unt for most of the difference. Part ofthe estimated 23,000 acre-ft (28 hm ) discharged by evapotranspiration may bederived from local precipitation, excess irrig~tion water, and springdischarge. Also, part of the 27,000 acre-ft (33 hm ) of spring discharge maybe derived from the wat~-table aquifers.

Considering all the approximations and unknown factors involved in theestimates of water gains and losses, a reasonable figure for both sides of thehydrologic budget f03' the artesian aquifers in Tooele Valley probably is60,000 acre-ft (74 hm ).

CHEMICAL QUALITY

Gates (1965, p. 44-55) described the chemical quality of the groundwater in Tooele Valley as of 1963. The following pages are devoted todescription of the situation in 1978 and an explanation of changes in chemicalquality from 1963 to 1978. The discussion is based on the interpretation ofthe analyses of water samples collected since 1963 (table 7). For the period1964-75, analyses are available for the water from six wells and one spring.During this study, chemical analyses were made on the water from 91 wells, 6springs, 6 surface-water sites, and 6 tunnel and mine sites.

Status in 1978

The data gathered during this study indicate that the water in TooeleValley can be placed in three major groups and one minor group according tochemical type based on the predominant cations and anions. Thomas (1946, p.201) and Gates (1965, p. 44) described only the three major groups. Thesurface water in the mountains, which is probably typical of the rechargewater, is of a calcium bicarbonate type. Most of the ground water is either acalcium magnesium bicarbonate type, a sodium chloride type, or a mixture ofthe two types (fig. 4). In several small areas near Erda, the ground water isof a mixed type, with sulfate as one of the major ions.

The water in the southwestern part of the valley is of the calciumbicarbonate type, whereas the water in the northern and middle parts of thevalley is of the sodium chloride type. The change from the calciumbicarbonate type to the sodium chloride type or a mixture of the two types canbe seen in figure 11. In general, the points on the bicarbonate side of thetrilinear diagram represent samples from the recharge areas. As the watermoves through the valley fill toward discharge points, the representativeplotted points move toward the chloride side of the diagram. A change inwater-level gradients due to pumping at wells may induce the movement of waterof the sodium chloride type into areas where the water is of the calciumbicarbonate type to form a mixture of the two types. Figure 12 shows thatthis may have already taken place near Erda and Grantsville.

28

Page 34: Technical Publication No. 69 - Utah

Near Pine Canyon the water is of the mixed type with high sulfateconcentrations. Discharge from the Elton tunnel and possibly the mine in CarrFork may be the source of the high sulfate content. The similar type watersouthwest of Tooele may represent discharge from the Honerine tunnel,

60

40

20

. '

CHLORIOE (CI)

.., ..- -.... ... . ...... . ' .. '

.'

Figure II.-Percentage of the major anions in ground water in TooeleValley, Samples from recharge zones plot in the bicarbonate

area, whereas samples from discharge zones plot in thechloride area. Surface-water samples from

mountain streams are marked by an x.

29

Page 35: Technical Publication No. 69 - Utah

'--+---~.:,\

"\)

\),

"'\31 ~ 33 'I

4 j

."I 1 ~ 7 --- ..

?P.7, -

I;/IEAT SALT UKE.~

i,31 3

t6 1

I

tI

!' u.. l:t

~iii a,

~

..~j/ 1 3;JL 1 1

I,

~1

I"0::L ,. I

I Lr 1~

--i---- ,.rm y . vi

,.Toole e. ~-, .~

;.. 4 0-

1 ".. ; 3 31

o-epc$'","",,,, o-/~ 3

"."I(OW , .--+ I.l,6 0" / '" 1. ~< '"-

Ij'" '/....' SOUTH

I "'.1:"",!"':: /.IOU 1 3 1 8 . It

(':36

(1.'

)

T.1S.

~, ;S. ,

Base from U.S. Geoloiical Survey10pOiraphic maps

EXPLAMAT I OMDIAGRAM SHOWING CONCENTRATIONS OFCATIONS AND ANIONS FOR SELECTEDSURFACE-WATER SITES

______ Boundary of drainage basin

Calcium (ca)_~_Bicarbonate(HC0 3 )Maineslum (Mi)~ ~Sulfate (SO)Sodium ("1)+ 4potassium (K) --Chloride (CI)

5 a 5MlllieQuivalents per liter

SpringStream•

Well

SITE AT WHICH CHEMICAL-QUALITYDATA WERE OBTAINED

6.

illIllJI]Calcium magnesium bicarbonate type

~~~I Sodium chloride type

_ Mixture of above types

t?????Mixed type. with sulfate as one~of the major anions

Figure 12.- Distribution of water types in the artesian aquifers andsurface streams, 1977-78.

30

Page 36: Technical Publication No. 69 - Utah

The relation between water type and salinity can be seen by comparingfigures 12 and 13. The water in the areas in which the water type is calciumbicarbonate or mixed calcium bicarbonate and sodium chloride generally has adissolved-solids concentration of less than 1,000 mg/L. The water in theareas in which the water type is sodium chloride generally contains 1,000­3,000 mg/L dissolved solids in the center of the valley and 500-1,000 mg/Ldissolved solids in the northern part of the valley. The areas aroundGrantsville and Erda yield water that contains less than 500 mg/L dissolvedsolids (fig. 13). A few scattered wells in other areas also yield water witha dissolved-solids concentration of less than 500 mg/L. The low dissolved­solids concentration in the water in the Grantsville and Erda areas is due tothe proximity to the recharge area and the small amounts of soluble materialin the highly permeable beds through which the water has moved.

The water deteriorates in quality downdip from the Grantsville and Erdaareas and in other parts of the valley where the beds are fine grained andcontain larger amounts of soluble material. The middle of the valley containsthe poorest quality water, w.ith the exception of the water discharging fromWarm Springs and a well near Great Salt Lake (fig.13). The dissolved solidsin the water in the middle of the valley is generally between 1,000 and 3,000mg/L, but two wells yield water with between 3,000 and 10,000 mg/L. The poorquality in the middle of the valley is a resultant of the small amount ofrecharge from the south-central margin of the valley which moves through fine­grained soluble sediments of relatively low permeability. Poor quality wateralso may be related to water rising along faults, such as Fishing Creek faultin sec. 33, T. 2 S., R. 5 W. (Gates, 1965, p. 18 and fig. 5).

Water quality may also change with depth, as has been observed south ofMill Pond Spring. Well (C-2-4)22ccb-4, which is 96 ft (29.3 m) deep, yieldswater with a dissolved-solids concentration of 1,460 mg/L, whereas well (C-2­4)22cca-3, which is 320 ft (97.5 m) deep, yields water with a dissolved-solidsconcentration of 413 mg/L. The more shallow well yielded water with sulfateand chloride concentrations of 500 and 300 mg/L, whereas the water from thedeeper well had sulfate and chloride concentrations of 43 and 67 mg/L. Thechange in quality probably occurs as the water moves upward through fine­grained beds and dissolves mineral matter as it moves. The water level inwell (C-2-4)22ccb-4, for example, is about 8 ft (2.4 m) below that in well (C­2-4)22cca-3, indicating an upward component of movement in the vicinity of thewells.

Changes in chemical quality, 1963-78

No large areas of significant change in water quality have been observedsince Gates' study (1963b, p. 17-20; 1965, p. 44-52). Some of the changesthat have been observed at individual wells may have resulted partly fromdifferences in sampling procedure or analytical error. Also, samples frompumped wells may show small changes in quality if the rate or length of thepumping period changes.

3 1

Page 37: Technical Publication No. 69 - Utah

1 2

T" ".1S ..

(.: 3 6 31

! 1 j

)

;)S. ,

Base from U.S. Geological Surveytopographic maps

SALT f,AKF

"'---. ~.;'\

"\)

\),

\

4 )

SITE AT WHICH CHEMICAL-QUALITYDATA WERE OBTAINED

EXPLAMATI OMDISSOLVED-SOLIDS CONCENTRATION,IN MILLIGRAMS PER LITER

• Well

316/\u. Stream

Number is dissolved-solids con­centration, in milligrams perliter

ITIIIIIIJ 0- 500

S500-IOOO

~IOOO-3000

~3000-IO,OOO

~More than 10,000

~ Spring ______ Boundary of drainage basin

Figure 13.- Dissolved-sol ids concentration of water in artesianaquifers and surface streams, 1977-78.

32

Page 38: Technical Publication No. 69 - Utah

Most of the water-quality changes observed have been in the heavilypumped area near Erda in secs. 29, 31, and 33, T. 2 S., R. 4 W. (Comparetable 7 with table 4 in Gates (1963b, p. 17 -20) .) For example, the chlorideconcentration in well (C-2-4 )33bbb-1 increased from 144 mg/L in 1961 to 300mg/L in 1978, and the sulfate concentration in well (C-2-4)33add-1 increasedfrom 55 mg/L in 1958 to 100 mg/L in 1978. The increase in chlorides probablyis related to the movement of water of a sodium chloride type into the area asa result of pumping. The increase in sulfate possibly could result fromrecharge from either the Elton tunnel or mine discharge in Pine Canyon.

Another area of change is southwest of Tooele where the dissolved solidsin water from well (C-3-5)36ddd-1 increased from 843 mg/L in 1957 to 1,383mg/L in 1977. During the same period, the sulfate concentration increasedfrom 135 to 235 mg/L while the chloride concentration increased from 210 to378 mg/L. The change in water quality may be due to recharge of dischargefrom the Honerine tunnel, which is high in sulfate and chloride, or todeterioration of the well casing, thus allowing poor quality water to enterthe well through sections of the casing that were not initially perforatedwhen the well was drilled. The water from other wells in the same part of thevalley, such as (C-3-4)30aac-1 and (C-3-4)31bba-1, has not changed appreciablyin chemical quality, so the change observed at well (C-3-5)36ddd-1 is notwidespread.

The drilling of new wells since 1963 made available water-quality datafor two areas not described by Gates (1965, fig. 11). Northwest of the mouthof Pine Canyon, two wells yielded water with a relatively high sulfateconcentration (fig. 12). The source of the sulfate is probably discharge fromthe Elton tunnel or mine discharge in Pine Canyon. An analysis of mine­discharge water from site (C-3-3) 18cba (sample taken after the water hadpassed through settling ponds and prior to its use for irrigation) showed asulfate concentration of 560 mg/L (table 7). This water may be recharging andadding sulfate to the ground water in the area.

North and northwest of the city of Tooele, water from wells (C-3-4)8aaa­1, (C-3-4)9aaa-l, (C-3-5)1aca-1, and (C-3-5)22dab-1 contained high chlorideconcentrations (table 7). This may have resulted from the upward leakage ofwater containing high chloride concentration along faults or the presence ofsoluble salts of chlorides in the sediments of the area. The small amount ofpumping and relatively small water-level changes in this area eliminates thepossibility that poor quality water moved into the area because of largewithdrawals from wells for irrigation.

PREDICTION OF FUTURE WATER LEVELS WITH A DIGITAL-COMPUTER MODEL

A finite-difference digital-computer model designed by Trescott, Pinder,and Larson (1976) was used to simulate the changes in water levels in theartesian aquifers in response to future pumping patterns. A discussion of themodel, including the changes made to the program of Trescott, Pinder, andLarson (1976), model data, model grid, and model calibration are presented byRazem and Bartholoma (1980). The data used in the model were obtained by

33

Page 39: Technical Publication No. 69 - Utah

measurements of water levels, aquifer tests, examination of well logs, weIl­and spring-discharge measurements, estimation of other discharge, estimationof recharge, and experimentation during calibration.

The reliability of the predictions in the following pages can best bejudged by considering water-level changes observed during the calibration ofthe model (Razem and Bartholoma, 1980).

The predicted water levels will probably be as reliable as thoseproduced during calibration as long as pumpage and recharge are not radicallydifferent from that simulated during calibration. The changes in water levelsmeasured in the field and the changes computed during the calibration of themodel are similar at many locations (Razem and Bartholoma, 1980). An averagerecharge was used for each pumping period in the model, and the recharge wasnot allowed to fluctuate in response to precipitation variations; thus, thecomputed hydrographs are smoother than the observed hydrographs. Futurecomputed hydrographs will also be smoother than future observed hydrographsbecause the average recharge used does not take into account the normaldeviations from average recharge rates.

Due to the lack of historical data in areas around the margins of thebasin, such as near Pine Canyon, predictions for such marginal areas are notas reliable as those for areas where lengthy historical data are available,such as near Erda. Other factors which may cause future water-level changesto differ from the computed ones are effects of unpredicted mine dewateringand mine drainage, periods of extreme deviation from normal precipitation,establishment of a large well field that is not presently anticipated, orother large variances in the expected pumping patterns.

Future discharge, which is assumed to be from existing wells or newwells in their vicinity, was simulated at rates (1) approximately equal to,(2) 1.5 times, (3) double, and (4) triple the 1973-77 average discharge rate.The results that follow show predicted water-level changes from the computer­generated 1978 water levels which were used as a base. The simulations werefor 30-year periods. Steady-state conditions were attained before 30 years inall simulations, however, because simulated increases in withdrawals fromwells were balanced by changes in vertical leakage between the water-table andthe artesian aquifers. The changes in leakage were induced by the water-leveldeclines caused by the withdrawals.

Discharge equal to the 1973-77 average discharge

The model predicts that water levels will decline 5-10 ft (1.5-3.0 m) inthe extreme southeast part of the valley near Pine Canyon and decline lessthan 5 ft (1.5 m) over the remainder of the valley (fig. 14) if well dischargecontinues at about the same rate as the 1973-77 average discharge. Steady­state conditions will occur after 1.8 years.

The water-level decline in the southeast part of the valley probablyresults from assuming a lower recharge rate from mine discharge after miningoperations begin.

34

Page 40: Technical Publication No. 69 - Utah

T.1S.

r: 3 6 :3

(I)

R. 7 W.

Base from U.S. Geolollical SurveytOPOllraphic maps

33

I

, I

},.r a

"

I

EXPLANATION____ 5 __ Line of equal water-level change, in feet

Dec 1 i ne

ITIIIIIJJO-5 feet (0-1.5 meters)

~~~15-IO feet (1.5-3.0 meters)

______ Boundary of drainage basin

Figure I~.--Predicted water-level changes in Tooele Valley for the period 1978­2008, assuming that well discharge is the same as the 1973-77 average discharge.

35

Page 41: Technical Publication No. 69 - Utah

Discharge 1.5 times the 1973-77 average discharge

The model predicts that water levels will decline less than 5 ft (1.5 m)in the north part of the valley (fig. 15) if well discharge is 1.5 times the1973-77 average discharge. Water levels-will decline between 5-10 ft (1.5-3.0m) in the Grantsville area and in the southwest part of the valley j waterlevels will decline 10-15 ft (3.0-4.6 m) in the south part of the Erda areaand the southeast part of the valley, including the Tooele area j and waterlevels will decline 15-20 ft (4.6-6.1 m) near Pine Canyon. Steady-stateconditions will occur after 8.9 years.

If well discharge were allowed to increase by 1.5 times, most of thearea where ground water was used for irrigation in 1978 would experiencewater-level declines of less than 10 ft (3.0 m) with the exception of part ofthe Erda area. In addition to the decline of water levels, however, theupward leakage from the artesian system to the water-table aquifer woulddecrease. This would result in a decline of the water table. If the watertable declines below the roots of vegetation in the areas not irrigated, thechanges for the period 1978-2008, assuming that well discharge is the same asthe 1973-77 average discharge existing natural vegetation will die. This isnot expected to happen at a discharge rate of 1.5 times the 1973-77 average,assuming precipitation remains near average.

Discharge double the 1973-77 average discharge

The model predicts that if well discharge is double the 1973-77 averagedischarge, most of the areas presently irrigated with ground water willexperience water-level declines of 10-20 ft (3.0-6.1 m), and in parts of theErda area water levels will decline 20-30 ft (6.1-9.1 m) (fig. 16). Waterlevels will decline 20-30 ft (6. 1-9.1 m) near Tooele and near Pine Canyon.Steady-state conditions will occur after 8.9 years.

Assuming that the water table remains relatively stable while artesianpressures decline, a 15-20 ft (4.6-6.1 m) decline in artesian pressure wouldresult in a reversal in hydraulic gradient between the water-table and arte­sian aquifers.

Leakage between the artesian and the water-table aquifers would there­fore reverse in much of the valley. This eventually would cause the watertable to decline, and such a decline might result in a decrease in the densityof the natural phreatophytes. Also, the water-table aquifers contain water ofpoorer chemical quality than do the artesian aquifers. Reversing the direc­tion of leakage would allow poorer quality water to move into the artesianaquifers.

Discharge triple the 1973-77 average discharge

Well discharge triple the 1973-77 average discharge cannot be simulatedaccurately with the model as it is presently devised. The two-dimensionalmodel cannot handle water-level changes, storage or other hydraulic propertiesfor the water-table aquifer. In effect, in the model, the water-table aquiferprovides an unlimited (and, therefore, unrealistic) source of water to theartesian system when the leakage becomes downward from the water-table aquiferinto the artesian aquifers. A more realistic integration of the artesian andwater-table aquifers wlll require the use of a three-dimensional model.

36

Page 42: Technical Publication No. 69 - Utah

T.IS.

Base from U.S. Geological Surveytopographic maps

r;HEAT SALT LAKE

EXPLANATION----5--- Line of equal water-level change, In feet

DECLINE

OJIIIIIJI I~

~

0-5 feet (0-1.5 meters)

5-10 feet (1.5-3.0 meters)

10-15 feet (3.0-~.5 meters)

15-20 feet (~.5-6.0 meters)

Boundary of drainage basin

Figure 15.-Predicted water-level changes in Tooele Valley for the period 1978­2008, assuming that well discharge is 1.5 times the 1973-77 average discharge.

37

Page 43: Technical Publication No. 69 - Utah

1 2

----.-I

;-;S . ,

S.

(i: 36 31

>.'

)

GHE4T SALT LAKE, "---+-.-

3 6 ' ~';'\~ '. ~

,II

J

\\,

"'\31 ~ 33 '/

4 )

Base from U.S. Geological Surveytopographic maps

EXPLANATION---10--

I I

Line of equal water-level change, in feet

DECLI HE

0-10 feet (0-3.0 meters)

10-20 feet (3.0-6.0 meters)

20-30 feet (6.0-9.0 meters)

Boundary of drainage basin

Figure 16.-Predicted water-level changes in Tooele Valley for the period 1978­2008, assuming that well discharge is double the 1973-77 average discharge.

38

Page 44: Technical Publication No. 69 - Utah

SUMMARY AND CONCLUSIONS

Discharge from wells in Tooele Valley increased by 7,000 acre-ft (8.6hm3) between 1966 and 1977. Water levels in the artesian aquifers declined 2­4 ft (0.6-1.2 m) in the Grantsville area, rose 4-12 ft (1.2-3.7 m) in the Erdaarea, and remained relatively stable in the northern part of the valley. Therise in water levels near Erda may be related to mine discharge in PineCanyon.

Ground-water quality did not change significantly between 1963 and 1978.However, wells drilled during those years in the south-central and southeastparts of the valley have encountered water of poor quality. Selected wellsshould be monitored to observe if the water of poor quality is moving intoareas of water of good quality and to observe the effects of mine discharge onthe water quality in the aquifers northwest of Pine Canyon.

Predictions made by a two-dimensional digital-computer model of theartesian aquifers indicated that for the period 1978-2008, water levels woulddecline less than 5 ft (1.5 m) in most of the valley if well discharge weremaintained at the average discharge of 1973-77. If the well discharge were1.5 times the 1973-77 average discharge, water levels would decline less than15 ft (4.6 m) in most of the valley. If the well discharge were double the1973-77 average discharge, water levels would decline a maximum of 30 ft (9m) . In order to predict the effects of well discharge more than double the1973-77 average, a three-dimensional digital-computer model would be needed toadequately simulate the ground-water flow system.

REFERENCES CITED

Carpenter, Everett, 1913, Ground water in Box Elder and Tooele Counties, Utah:U.S. Geological Survey Water-Supply Paper 333.

Cook, D. R., (ed.), 1961, Geology of the Bingham mining district and northernOquirrh Mountains: Utah Geological Society Guidebook No. 16.

Criddle, W. D., Harris, Karl, and Willardson, L. S., 1962, Consumptive use andwater requirements for Utah: Utah State Engineer Technical Publication8 (revised).

Eakin, T. E., Maxey, G. B., Robinson, T. W., Fredericks, J. C., and Loeltz, O.J. , 1951, Contributions to the hydrology of eastern Nevada: NevadaState Engineer Water-Resources Bulletin 12.

Ferris, J. G., Knowles, D. B., Brown, R. H., and Stallman, R. W., 1962, Theoryof aquifer tests: U.S. Geological Survey Water-Supply Paper 1536-E.

Feth, J. H., and Brown, R. J., 1962, Method for measuring upward leakage fromartesian aquifers using rate of salt-crust accumulation: Article 40 inU.S. Geological Survey Professional Paper 450-B, p. B100-B101.

Feth, J. H., Barker, D. A., Moore, L.1966, Lake Bonneville: Geologydistrict, including Ogden, Utah:Paper 518.

39

G., Brown, R. J., and Veirs, C. E.,and hydrology of the Weber DeltaU. S. Geological Survey Professional

Page 45: Technical Publication No. 69 - Utah

Gates, J. S., 1962, Geohydrologic evidence of a buried fault in the Erda area,Tooele Valley, Utah: Article 142 in U.S. Geological Survey ProfessionalPaper 450-0, 078-080.

1963a, Hydrogeology of Middle Canyon, Oquirrh Mountains, Tooele County,Utah: U.S. Geological Survey Water-Supply Paper 1619-K.

1963b, Selected hydrologic data, Tooele Valley, Tooele County, Utah:U.S. Geological Survey Open-File Report (duplicated as Utah Basic-DataReport 7).

1965,Utah:

Re-evaluation of the ground-water resources of Tooele Valley,Utah State Engineer Technical Publication 12.

Gilbert, G. K. 1890, Lake Bonneville: U.S. Geological Survey Monograph 1.

Gilluly, James, 1932, Geology and ore deposits of the Stockton and FairfieldQuadrangles, Utah: U.S. Geological Survey Professional Paper 173.

Hedman, E. R., and Kastner, W. M., 1977, Streamflow characteristics related tochannel geometry in the Missouri River basin: U. S. Geological SurveyJournal of Research, v. 5, no. 3, p. 285-300.

Hely, A. G., Mower, R. W., and Harr, C. A., 1971, Water resources of Salt LakeCounty, Utah: Utah Department of Natural Resources Technical Publi­cation 31.

Hood, J. W., Price, Don, and Waddell, K. M., 1969, Hydrologic reconnaissanceof Rush Valley, Tooele County, Utah: Utah Department of NaturalResources Technical Publication 23.

Hood, J. W., and Waddell, K. M., 1968, Hydrologic reconnaissance of SkullValley, Tooele County, Utah: Utah Department of Natural ResourcesTechnical Publication 18.

Johnson, W. W., 1958, Regional gravity survey of part of Tooele County, Utah:University of Utah, unpublished M.S. thesis.

Kearney, T. H., Briggs, L. J., Shantz, H. L., McLane, J. W., and Piemeisel,R. L., 1914, Indicator significance of vegetation in Tooele Valley,Utah: Journal of Agricultural Research, v. 2, no. 5, p. 365-418.

Lines, G. C., 1979, Hydrology and surface morphology of the Bonneville SaltFlats and Pilot Valley, Utah: U.S. Geological Survey Water-Supply Paper2057.

Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geological Survey Profes­sional Paper 708.

Meinzer, O. E., 1927, Plants as indicators of ground water: U.S. GeologicalSurvey Water-Supply Paper 577.

40

Page 46: Technical Publication No. 69 - Utah

Mower, R. W., and Nace, R. L., 1957, Water consumption by water-loving plantsin the Malad Valley, Oneida County, Idaho: U. S. Geological SurveyWater-Supply Paper 1412.

Price, Don, 1979, Ground-water conditions in Utah, spring of 1979: UtahDivision of Water Resources Cooperative Investigations Report 18.

Razem, A. C., and Bartholoma, S. D., 1980, Digital-computer model of ground­water flow in Tooele Valley, Utah: U. S. Geological Survey Open-FileReport 80-446.

Rigby, J. K., (ed.), 1958, Geology of the Stansbury Mountains, Tooele County,Utah: Utah Geological Society Guidebook No. 13.

Robinson, T. W., 1970, Evapotranspiration by woody phreatophytes in theHumboldt River valley near Winnemucca, Nevada: U.S. Geological SurveyProfessional Paper 491-D.

Ryan, K. H., Nance, B. W., and Razem, A. C., 1981, Test drilling for freshwater in Tooele Valley, Utah: Utah Department of Natural ResourcesInformation Bulletin 26.

Thomas, H. E., 1946, Ground water in Tooele Valley, Tooele County, Utah: UtahState Engineer Technical Publication 4 in Utah State Engineer 25thBiennial Report, p. 91-238.

Tooker, E. W., and Roberts, R. J., 1971a, Geologic map of the GarfieldQuadrangle, Salt Lake and Tooele Counties, Utah: U.S. Geological SurveyGeologic Quadrangle Map GQ-922.

__1971b,Utah:

Geologic map of the Mills Junction Quadrangle, Tooele County,U.S. Geological Survey Geologic Quadrangle Map GQ-924.

Trescott, P. C., Pinder, G. F., and Larson, S. P., 1976, Finite-differencemodel for aquifer simulation in two dimensions with results of numericalexperiments: U.S. Geological Survey Techniques of Water-ResourcesInvestigations, Book 7, Chapter C1.

U.S. Bureau Census, 1977, Current population reports: Series P-25, No. 692.

U.S. Geological Survey, 1942, Water levels and artesian pressure in ob­servation wells in the United States in 1941, Part 5, NorthwesternStates: U.S. Geological Survey Water-Supply Paper 940.

van Hylckama, T. E. A., 1974, Water use by saltcedar as measured by the waterbudget method: U.S. Geological Survey Professional Paper 491-E.

White, W. N., 1932, A method of estimating ground-water supplies based ondischarge by plants and evaporation from soil: U.S. Geological SurveyWater-Supply Paper 659-A.

41

Page 47: Technical Publication No. 69 - Utah

Table 5.--RL'cords of sl'lcctc'd

Location: See tex:t for description of numbering system.Altitude: Altitude of land-surface datum above mean sea level; surveyed llltitudes are given in feet and tenths; aLtitudes interpolated from topographi.t

maps are given ill feet.Method of life: C, centrifugal pump; F, flowing well; FC, flowing well equipped with centrifugal pump; FS, flowing well equipped with submersible pump;

FT, flowing wl'll eqqipped with turbine pump; S, submersi.hle turhine plJlllp; '1', 11lrhiflP pump.

Yield: F, natural flow; P, pumped yield; e, estimated; m, measured; r, reported.lise of water in 1978: D, domestic; I, irrigation; N, industrial; P, puhlic supply; S, stock; D, unused.Remarks and other data available: C, chemical analysis i.n table 7; H, hydrograph in figure 1; W, water-level measurements in table 6.

Year

Loeation Owner constructed Depth of well(teet)

(C-1-4)26ddd-l Leslie Salt Co. 1953 227(C-1-5)31d,6-1 (l) 1977 9

33dbc-1 (1) 1977 9(C-1-6)22ddc-l Solar Salt Co. 1959 630

27aad-l <" 1977 9

29ddd-l (1) 1977 8

(C-2-4)2aba-l W. E. Hannnond 1915 232

2aba-2 O. V. Thompson 1976 JOO

2baa-3 Calera Mine Co. 1958 452

2bda-1 U.S. Geological Survey 1978 1,H12

2bdb-2 Eleanor Drury Prior 1')41935

3cbc-1 (I) 1977

8abd-l (1) 1977Bcdc-l J. J. Castagno 195'+ y,')

8cdc-2 (I) 1977 9

9cda-l Kennecott Minerals Co. 1962 68710bca-Sl do.15cac-51 do.lSccc-l S. Clark 1955 18015cd('.-1 do. 1955 305

l7dad-l E. J. Jeremy Prior1935

17dcd-l do. 190019bdd-1 P. Castagno 1939 145019dbb-1 (I) 1977 920aad-l Terracor 1978 691

20cdd-1 (I) 1977 920ddc-1 R. Delamare 1914 20021add-l Terracor 1958 9021bdd-l (1) 1977 1722ada-l Fassio Egg Farms 1976 262

22cca-3 E. vorwaller 1975 l20

22ccb-4 do. 1948 9622ccd-l N. Bergstrom 1968 1102Jbcb-l Fassio Egg Farms 1977 2252Jcbb-l A. C. Tolman 1977 242

23ccc-1 M. Butler 1978 13326bcb-l w. 8. Alsup 1971 16126ccb-2 L. Hayes 1975 245

26ccc-1 H. Russe 11 1968 24326ccd-1 G. Franken 1972 276

26cdc-l P. Christensen 1976 34026cdd-1 O. Pendleton 1977 35026ddd-Sl Union Pacific Railroad27bac-l Terracor 1977 50127bad-l do. 1970 581

27bba-l R. Robinson 1966 \0527bdc-1 G. Buzianis 1969 475

27cca-l O. Hunt27cca-2 do. 1974 145

27cdc-1 J. Buzianis 1975 220

27ddd-1 O. Weyland 1961 27028aab-l H. J. Clegg 1961 In288ac-l do. 1961 18528acd-3 E. S. Vorwaller 1931 19028bad-1 (I) 1977 5

28bdc-l G. S. Nelson 1955 36828bdd-2 J. S. Warr 190628cbb-l K. J. Warr 1978 50728cbe· 1 do. 1964 42128cbd-2 G. S. Nelson 1962 503

nkca-l A. M. Barrus 1964 4102Bcdb-l Latter-day Saints Church 1977 25028cdd-1 R. Remington 1948 19128d<1<1-1 A. Warr 1':J21 205

28dab-l N. Warr 1920 178

28dad-2 A. Weyland 1966 44528dba-J H. Clegg 1934 16528dbd-5 A. Wey land 1916 154

28deh Terracor

29adc-l F. Whi tehouse 1949 150

29bcc-l J. Whitehouse 1900 300

29ccd R l Latter-day Saints Church 1976 462

29dad-l C. Vorwaller 1962 335

29dda-l v. w. Taylor 1976 350

30ccb-l J. cahoon 1912 224

42

Casingdiameter(inches)

36

10

12

1610

16

212

1616

68,12

610

61616

3

4266

10

1063I,

1032

21610

62

Depth ofcasing(feet)

21)

630

232300451

154

668

155129

691

90

262

)20

96110225241

133161245243276

340350

500581

105475

140145220

242173182190

368

50642150]

140225019\205178

445165154

150

300462335350224

Depth tofirst

per for at ions(feet)

203

hOD

290329

536

6248

500

53

204

300

3990

123102

90140225

70256

320318

165153

90230

12597

22285

100

365

293320228

264218

192

120114228

Altitude

4,2244,2124.2044,2104,215

4,2204,238.84,2 l.24,2')64,245

4,239

4,2334,2214,2294,230

4,2354,2384,2604,2934,320

4,260

4,252.64,25:i4,2631.,265

4,2794.300.24,3084,2854,489

4,345

4,3354,3554,4914,475

4,4344,4304,4304,3954,445

4,4584,4654,6004,3584,378

4,3554,360

4,3754,3754,396

4,436.4,3254,3374,338.44,316

4,3224,326.1I" J184,3264,3J3

4,338

]54

4,307

4,297.94,3224,3214,3274,295.5

Page 48: Technical Publication No. 69 - Utah

WQJ Is and springs

Page 49: Technical Publication No. 69 - Utah

L111 I" --!{v,tlnl:-i "f s('I,,,,(,'d

Year Cas illg llv!1 lh 01

Local ion Owner cOllslrtKted of well dimneler p('rl oral iOI1l-i All j lUUl

(inches) (floe[ (fccl:)

(C-2-4)lOcl't'-1 1977 9 If, JO()

Jlaad-l E. ]I,lOJ 20h 2 20h 4,rnII an:-I,l R. Cast agno 1910 200 2 200 4,J:J7

3lada-l I':. Walten; 1899 200 2 200 4 ,lllJ.J

lladd-f) do. 1961 271 10 271 1.8J t.,350

llbcb-l F. Hickman 1951.1 J/-d 34J 17';; 4,320

llhcd-l rool-le Co. Airport 1%0 f., '32<)

J1 hdc-j R. Castagno 19h I 352 t2 21d

llbdd-2 II. WId tt ak~r 197/ 263 2fJ3 U!

3lbdd-J C. Allred In!1 283 28'J Ll3 II,J]I.

3 I bdd-I, l:kbl~rt sell Partners 19H: nl 10 271llc,'ta-2 Eo Walters 11,l14 183 4 18]

llcda-2 do. 1960 'iOO 10 500 IH'i II 354

Jldad-2 H. Clegi-\ 194] 727 R 480 288

j I.dIH·-l L. Turner 1416 221 ) L'21 4.

lldbc-J R. W. Sulton 1928 221 221

J ldbd-1 O. fl. Lance 19b5 JOO 300

Hdbd-2 w. A. Lauritzen 1916 183 J 183 It ,354

32bar.:-1. Latter-day Saints Church 1977 450 14 450 60 4, J27

J2bbb- 1 (I) 1977 lJ 4, l2!,

J2l<.iC-1 R. lluYl'c t 9h~ 500 lL 500 110J2cad-1 duo 1959 400 6 400J2cbh-l Latter-day Saints Church 185 (, 185J2ebd-l R. Castagno 196'.1 437 " 4:37 IbH 4,370J3aab-l Lattcr-day Saints Church 1959 1..0J 16 400 305 !+,382

]Jaac-1 H. Hlt> 182 4 182 4, 39J.9lJabb-4 J. 1880 80 1.5 80 bO JDadd-I II. 1931 165 8 160 bO 17.93jbhb-l F. 1911:\ 277 4 277Uhcb-1 F. 19")(, 283 4 28:-1 J71.1'\

Ubcb-3 do. 1970 8 ',,374Llbdd-l H. whiLl,housv 19 ')~I 1.21 " 421 300 !1,:39-,)J3dac- L E. Coon 197CJ 155 " ISS 1035 (t,43834adc-1 J. Droubay 1970 J03 l2 JOJ 200 4,461J4hcd-1 U.S. Geological Survey ll,l78 1.502 8 195 4,425

34bdd-l W. Sagers 19!t9 215 " 215 LOO34bdd-2 du. 196 I 254 12 254 9835cbc-l l'erracor 1952 304 )6 304 200

(C-2-5)5acc-3 A. Searle Prior 151 l1935

5ccc-2 4,219

5ued- f, G. S. Higll'Y 1955 417 J 417 4,2166ddd- 7 L. Peasnal 1928 :360 2 J60 4.219. ')7hdd-l .I. Clark 1910 300 2 3007o:Jdcl-2 A. Higley 1952 400 6 400 3bO7o:Jdd-3 A. Higley 1971 SOO " 500 l'JO

9ilab-l (I) 1977 , 1+ ,207

] Jacc-I E. Cassity 1891 280 28UL3acd-1 (': 1977 , 4,22013bca-l E. Cass lty 1955 3,540 10 7(l7 It ,216l4cbb-l U. s. Ct'ological Surv('y 197(1, 492 8 56 II.no

14dhb-l E. Cassity 1891 JOO JOOlfJh,1i1-1 C. Worthington 1948 400 1..00173hd-l17bad-l C. Higley 1954 165 I b517hda- L A. .Johns un 1912 IUU lOU

17( ad-I (I) 1977 9 4,225L1:\bdc I Q. Hrown 1952 425 42')lHdcL'-1 E. Clark 1<)10 JOO JOU19aLH'-1 .I. Wurt hingt<ln 1400 200 200jYdcc-l M. Sut tOil LY]/) J50 l')() 1+,2!.2

2()<:lc<,-1 P. Wrathal1 I91,7 2!tO 2M) !. ,2'1621 <lad-I E. Cassi ty 19')4 no FlO .IiO21,wd-2 (I) 1977 " If2lchb-1 J. 1")')2 InS In.') 11,2!1()

l I~ • ty 18'1 I 8U HIl II

2'Jdah-2 J. PalmL'r t% L 2D!. 2()2 !1,267

2')l'dd-4 R. Castagno 195f! 467 4fJ7 !.,29/

26cdc-S2 K('IIllL'CClt t Millerdls Cu. 4,2h')

2hd,lC-I (I> 1977 IJ27<ldd-1 E. Cass ity 195'j 3:>5 12 JS) lU

27cu -l du. 19J4 ]7U 170

:J.lkdc I I. 1':159 357 J'il If29ddl -2 C. 1'151 290 29019dh,j I 1977 12 4 ,;~ ':'1;1

l'.!dcd 1936 Y+O J!,() .lid)

JOlJt'c-1 E. Ldwrcl\('(' 19fJ1 445 III Ifl+') lSl />,2':i5

JOhcd-L .I. L. IIr .. ',,-'·' Priur 225 , 225['!IO

lOchl -I I.. M. l'ld' 1904 J/.O If,O

.\Ochd I E. Judd Prior JI,:'flO.!,

193')}Uccc - J. (;. M. kydalclt 1%7 175 IrJ /, ,/tJ~:

44

Page 50: Technical Publication No. 69 - Utah

wc'lis :lnd ~;prillgs--conti nlll'd

Water leve 1 abovl'(I-) or below andsurface d,1tum

(fcet)

7.0

+ll~. 4

+18. I

+23.0+2.0

/-'l.o

+5.9\ .8l.1+-. ,95

3.8

+-2.7

7.'2.

22. ')t-L2.210.0

1.3

.5 .81-3.536.1

+-2'2.1

"'.9

18.955.898.0

63.071. 1

105.01.7

+3.8+1.6+l.0

3.8+6.1

6.2+21.5

+18.8+5.3

+8.6+15.9

6.3+1.71'1.7+5.4

+21.2

+9.7+33.0

4.9+1.9.6+13.4

+7.2+2J 6

9.7

l.U0.0

+8.0if .6

+19.')

+6 .0tJ .2

+11.2#>.1

1-9.7

[late

ofmeasurl'ment

8-2]-77

J- 6-78

]- 7-77

3-27-7812- 7-74

\- )- 78l-Z8-623-13-623- 8-n3- 8-76

j-2i:l-62

4-18-58

8-2] J7

J- 6-623- 8-787- 6-6:3J- 8-78

J- 8-78]- 6-62­)- 8-78J-28-61)- 8-78

l- -593-27-7i:ll-18-70

3-22-781-22-028-13-52J- 9-78

3- 9-78J- 9-78J- 9-78

9-26-773-13-788-2]-775- 5-61

l-U-7810- 5-61

!~ - 5-62j-14-78

8-24-773-14-78l- 9-783- 8-623- 9-78

3-14-783-'2/.-638-2]-773-13-78]-13-7tl

l- 8-783- 8-78

8-2"J-77

1- 9-78i:l- I-59_~- 13-788-23-7714- 6-61

5-30-{)]3- 8-{)2

3-25-59J- 9-78

Method Date UR,' of

of Yield of wntcr

1.ift (gal/min) mei\RUn~ment in Remarks nnd other data available1978

c.F 1.4Fm 5·· 3-78 C.

F c.F 20Fm 5- 3-78 c, w.FT 6:30Pm 7-11-78 c.

F 22Fm 9- 8-76 C, w.I' flOPe 7-1.0-78 C.

F'l 290Pm 7- 7-75 1'.

FT 70Pm 8- 3-77 1,0

F 100Fr 1.2- 7-74 1),1

FF 60Ft' \- 1-78 c.

[. 480Pm 7-10-78 C.

FT 270Pm 7-11-78 C, w.C, w.

[ 90Pm l··11-78 [

I (,OPe' J -11-l8 1, D c.F .7Fm 5-17-78 S C.

FT 1,400FJ 4-1')-77 T c.1,OOOPm 7-11-78

?OGl'm 7-27-7850PL' 7-11-67

W.410Pm 7-14-78 c.7401'01 7-10-78 C, w.

II, w.FC .7F01 b- 1-78 c.r 410Pm 7-lJ-7S C, H, w.C 190Pm 7-26-78 C.

F W.

450Pm 7-26-78 c.noPm 7- 6-78 C, w.120Pm 7-18-78 C.

480Pm 7-11-78 c.See log ill Ryan and others (1981) .

c, W.210Pm 7-13-78 c.

1,200Pm 7-13-78 C.H, W.

4.8F01 5-12-78 c.

2.6Fm 5-12-78 C, W.2.IFm 5-12-78 C, W.1.4Fm 6- 2-78 C, W.

150Pm 6-25-75350Pm 7-10-78 C.

c..7Fm 5-15 78 c, W.

c.C.See log in Ryan and others (l9H1) •

8Fm 5- 9-78 c, w.:lFm 6-22-78 C.

c.16Fm 5-12-78 C.12Fm 5-12-78 C, W.

c.F 2.3Fm 5-18-78 C, W.

F .7Fm 5-12-78 C, W.F 2m 5-18-78 c.Fe om 9- 4-75 c, W.

.6Fm g- 7-78 S c, W.110Fm 8- S -77 I,S C.

II C.llOFm 8- 5-77 1,5 e, w.

11Fm 5-10-78 s c:, W.

l'iYm 5-10 78 W.W.

1, BOOFm 5- 2 77 I" Cn,pk Springs, c.I! c.

ll0Fm 8- 1-77 I,S c.

Ii W.

I c.H.6Fm 'l- 1-7S ! ,S C, W.

II C.

10Fm 5- 2 -7S J,S c.

nOFm 9- 8-78 1,S c.. 'lFm 7-[0-78 C.

.6Fm 5- 1-78 c.

.2Fm 5 - 1-78 C, W.

2Fm \- 1-78 c.

45

Page 51: Technical Publication No. 69 - Utah

Tab It, 5.--]{1.'(·ords 01 sl'll'ctl'd

Ilt'plh to

Year Casing Deptb of firsl

Location Owner conslnJI:ted Depth of wE,ll di ameter casing p(~r foral ions All it ud('(feet) ( inclH's) (feet) (feet)

(C-2-5)JOdaa-1 E. Cassity PriLlr 4,253.5

1935

JOdcc-1 Q. Brown 195/.. 510 10 510 166 1..,267

31bad-l U.S. Geological Survey 1978 1,495 110 4,280

J1bbd-3 E. Cassity 1<;126 125 125 4,280.6

'llhdd-1 J. Brown 1890 100 100 /1.294.8

lldad-J F. C. Jeffries 1':)22 234 2 234

12abc-1 G. W. Williams 1957 J09 2 JOy

l2bcb-l .I. e, Anderson 1%9 580 10 580 320

12bda-l N. e. Ke lley 1972 315 6 315 292

12daa- LI J. Fraser 195<'. 1.. 10 8 410

Jldad-I V, 1'. Fawson nnd J. M. In7 51(1 ':>10 (" IY [ . Y

Fras!'l12dbb-l .. llavis 1970 48:' 48'J lhY

33acc-l ., FawsonUilud-SlJ:lbbc-l V. rawson hll (.11

l3bcb-:l e. Fawson 1920 260 3 260 L1276.4

ndad-3 K. Anderson 1951 400 6 -171 358 4,301

13dad-4 do. 1978 120 10 120 46 4, JOI

11dba-2 G. I.. 110lilnder 1963 1St, 12 154 10 4,285

J3dcd-1 8. I. Brown 1954 2 8~) 12 285 SO 4, 'liD

34abc-l H. W. Hodson 1925 320 320 4,290

J4add-2 F. D. Andersen 1971 12'; 125 119 4,299

34bca-1 H. Syddal1 1958 320 320 171 h,291

]Lldaa-l I.. Wright 1965 9'1 99 89 4,300

34dab-l E. L<lrsen 1976 11:) 112 100 4,305

34ddb-l M. Andersen 1970 I'll. 4 154 144 115

34ddb-2 E. Andersen 1970 18') 6 184 Ih4

14ddd-1 G. Gunderson 1970 45:! 12 450 360

J5ada-l II. Langford 1973 Jon 12 300 [00

35add-l do. 1961 51.l 12 'il] 100

1Scbd-l Grantsville Soil Conser- 1931 400 400 4,308

vat ion District'l5d[ja-l U.S. Geological Survey 1977 1,513 10 120 t.,3011

35dbb-l T. Mathews 1974 22 ) 8 223 148 305

35dbb-2 e. Leak 1973 120 8 120 100

36nclc-l J. H. Palmer 1959 442 12 442 300

36bdd-1 Latter-day Saints Church 19S4 44) 16 445 418 4,316

36dac-l H. Clegg 1963 201 4 201 120 (1,337

36dcd-1 Latter-day Saints Church 19~; 5 32:" 12 125 125 4.358(C-2-6) lcca-l (1) 19(7 9 4,219

14ddd-l e. Worthington 19'17 43'~ 434 116 4,238

16aad-Sl 11 ,260

16<ldh-1. (II 19(7 It' 1.,26h

22dbd-l Utah Lime and Stone CO. 19S9 147 10 l'J9 4,350

23cbb-l J. R. Worthington 1935 210 6 210 4,273

2]cdc-2 e. Castagno 1961 400 14 197 90 4,295

23dcd-l B. Castagno 19L+l 71l 3 70 60 4,253

2Jddc-l T. Castagno 19';;9 240 12 240 94 4,251

24.1ab-l (II 1977 III 4,231

24.1dd-l M. Eliason Prior 4,233

190024cbb-2 e. H. Worthington 1898 4,243.2

24cbb-3 e. H. worthington 1964 360 12 160 98 4,24324dcd-l J. Erickson 1900 150 1.5 150 4,24:1

2jaba-l 1905 250 3 4,245

25abd-l A. Anderson 1903 2 4,252,3

25acd-4 H. Sutton 1915 190 J 190 4,260

25bca-l 1890 200 2 200

2'Jhcb- L R. Jeffries 1911 125 2 125?')cba-l B. Harru.,,; 1963 175 12 175 lOS

/Sdc;l-l M. Johnson 1961 30S 8 ]05 20010(L)(."-1 I. Worthington 1960 246 12 24h 80 l20

2bdb3-1 S. Anderson 1971 2S8 12 25M 100 309

26dcd -1 D. Nielson 1977 4JO 16 t.OO IH,

34abd-l M. Hunt 1975 2BS 6 285 no36acc -2- City of Grantsv Ule 1957 L+b5 12- 46\ JOO

36bbb-l Latter-day Saints Church 1953 Ud 8 141 110 328

36dcc-l E. e. Walk 1934 lib b Ibb 76 4, JlJ. 7

(C-l- II) 11;1-l.-1.- l .Ie Leu 11](", 1974 6;5 12 675 2hO L",550

93aa-1 do. 1974 5;'5 12 573 100 4,596

11ccc-l U.S. Geological Survey IY7B 1,5L8 8 DO 4,81U

I:3abb-l Pine Canyon Boys Ranch 1970 6bO 16 660 4,990

14ddb-1 .. Sagers 1963 6'lb 8 b56 580 (+,950

16.1a;]-1 Jelco Inc. 1970 9',0 Ib 927 t.,742

17acc- L do. 1964 ]IJO 6 3hO 148 .691

26dbd-1 G. Buzianis 1974 SUO 12 500 5,40Y

ltkdc-I City uf I'ooele 1946 4'i2 12 452 JYO 5,077

2Yccb-l do. 196') 1,000 12 1,000 5()()

3033c-1 U.S. Army, Tooele Depot 1942 515 20 4% 3Sl0

Hbb.1-l do. 1953 701 16 700 [125 I~, 83 1.)

"J2bcc-l City of Tooele 1956 710 IS 710 472 4,977

(C-3 5) l.1ca-l II. Cl('gg 1974 4')8 Jh5 tf ,194

46

Page 52: Technical Publication No. 69 - Utah

wl'lls Clnd springs--continued

W(IU·r 1l'Vld L1bovp

(I) or hl'low andsurf-ace datum

(fed)

+2.7

Dateof

measurement

3-15-78

Methodof

lift

FT

Yield(gal/min)

1.51"01

65Fm(t20Pm

DaU'

ofmeasurement

5- 2-78

7-10-787-2h-78

Use or

ill1978

J ,3

Remarks and other d.1t!1 Clvililahlv

C, w.

c.

WOrm 7-15-77

80Pm 7-27-78320Pm 7-10-78840Pm 7- 8-77

1,IOOI'm 7-26-78460Pm 7-10-78

1,OOOPm 7-14-78

J5Fm 9- 9-76

100Pr 12- -592 t+01"(' )- 7-78980Pm 8-14-78

130l'm 8- 5-77:370rm 8- 7-69

.7Fm 8- 5-77

4Fm 5-18-78

80Fm 5-18-781.1Fm 6- 2-782Fm 6- 2-781.7Fm 5- 9-781.4Fm 5- 2-78

.7Fm 5- 2-78

.6Fm 5- 2-78

250Fm 9- 4-757hOl'm h-22-76

1,200Pl 12-15-77J,50aPr 12-18-77

7501'r 9- -61160Pm 7- 5-78

830Pm 7- 6-78

DC.Il c.IIII

! ,IJ C, W.

+2.4 3- 9-7812.1 3- 9-78

7.9 3- 9-78+7.4 3- 7-62

2.4 J- 8-77

t7.3 3-13-78

3S .0 4-17-7823.0 9-19-f11

18.0 J- 9-78

.84 J- 9-7835.0 6-22-73

20.0 7-23-6538.0 7-31-76

24.0 10- -7032.0 10- 1-7014.5 3-27-7817.5 3-21-7810.9 J- 8-78

+1.5 J- 9-78

32 .0 1-24-7418.0 10- -73

t14.6 4-24-59

+21.8 3-23-590.1 12-15-77

45.5 3-14-623.9 8-24-77

19.1 3-14-73

5.8 8-11-7776.9 2-20-608.2 3-1]-63

25.9 3- 9-78

+12.0 3-17-41

(i.1 9-19-77tl1.2 ]-15-62

+10.6 3- 9-77

+22 .0 J- 9-78+7.7 4-19-1) 1

+0.4 3- 9-78t11.4 )-13-62

+4 .0 3- 8-62

jt•. 9 1-30-60

39.0 4-10-7192,6 3-27-78

265.0 10-18-7545.0 l- 7-62

93.2 3- 2-78167.0 3- 7-78216.4 3- 7-78

585,1 3-21-78

'}J8.7 3-21-78360.9 3-14-78318.7 3-21-78489.1 2-13-78360.0 5-26-64

451.4 3- 1-78382.1 3- 1-78356.7 3-11-71497.60 3-14-78

50.3 3-21-78

rrFT

FTTr

Fff

FFF

. YFm

190PmSOPm

150i.'m

90Pmf!JOPm

1,500Fm120Pm

8Fm190Pm210PIl1500Pm360Pm

200l'm

6JOPm470PrJJOPm

5- 8-78

7-10-787-10-786-22-76

7-10-78h-11-7h5- 2-777- 7-78

9- 5-J]7- h-777- 7-787-20-777-27-78

7- 7-78

6-20-631963

10-17-62

47

[ ,Dl

I,Sr

l'Jl

T,S

JJj

UI,S

1,Sssss

See log in Ryan and others (J 981).

C, H, W•w.

H, w.c.c.c.

w.

c,c.Fishing Creek Springs, C.c.

c, W.c.C.C.

c, W.

w.C.

C.C.C.

c, W.

Sec log in Ryan lind others (1981).c.r.c.

c.c.c.

c.

Warm Springs, C.

C.c.c.C, W.

c.c.

c, W.

c, W.c.c.C, W.c.

c.c

c.

c.

w.w.w.

log in RY.:lll and othl'rs (lY81).c, w.

c, w.C, w.w.w.

c, w.c.w.C, w.

Page 53: Technical Publication No. 69 - Utah

(C- 3- '») (1CI.bJ~ I4bbb-25aha~ 15Clda~ 17abc-l

1cca-l7dcc-!22uab-lJ6ddd~ 1

«>l6)lbdb-1

]6aw.:~ L

1';11l It., J.--Rectlrds of Sl,J ectt.,d

Depth toYear Casing Dept h 01 first Alt itude

Owtwr ('Ollst ruct,,'d "f \N(·l! di dllleLvT caSl Tlf,\ 1-lL'rforat ions

(inches) (fl>et) (fed)

A. C<lsl a~l1ll 1975 4, n5V. FaWSllll 1\1)7 (,I,() 12 4()7 19') 4,'111.2L. Johnson 1\153 412 10 (~ 12 117 4, ]04.I. BoyeT 1953 ]'iO " 345 2 J(~ 4,318P. Mat thews 1954 ]lJD 1b 390 150 4,433

U.S. GeolugicaL Survey 1978 1,5/4 8 IlJ 4,515.I. MiJlyard 1956 yJ5 16 289 205 4,508II.S. Army, Tooele Depot 1978 h 428 175 4,553

do. 1942 20 752 192 4,848.1North Wi 1low Irrigation Co. 1954 (t18 16 418 238 4,454

U.S. Army, Tooele Depot 1955 71la 12, 780 638 5,01510

lTest bole augered for this investigation by U.S. Geological Survey; destroyed.

48

Page 54: Technical Publication No. 69 - Utah

wells and springs--('ontinlll'd

Water level ilbove(+) or bl'low and)-;urface (l;ltum

(fect)

18.712.82h. ')

14'3.1

209.7240.1366.8166.1

62] .6

Dateof

ml':lSUrement

]- 9-781- 6-62]- 0-62)- 9-78

]- 8-783-10-783- 1-78]-15-7H

3-28-7H

Method01

1 iflYi "ld

(gal/min)

450PmB60I'mSlOPm2801'm

1,lOOI'm

920Pm

490l'r1.700!'m

341'r

Vatl'of

measurt'ment

7- 7-787- 'j-787-26-781-13-677" 5-78

7- 5-78

1962

49

lJ)-;c ofwatl'r

il11978

Remarks cllld other data avaiLlbll'

c.C, W.c.

c, W.

St>P log in Ryom and others 09cU).

c. w.C, W.

C.C, W.

12-in. <'.'Isillg frl1lll () to 700 ft. lO·-in. fr()1l\"lOU [(' 7HO ft. C.

-~-------------------

Page 55: Technical Publication No. 69 - Utah

Tahic' 6.---Water.levels in selected wells, 1963-78

See text for description of numhering system.Measurements arc in f{'et above(+) or below land-surface datum; E, estimated.LSD, land-slJrface datum.MSL, "lean sea level.

(C-2-41 2AdA-lLSD 423~.80 FT ABOVE MSL.HIGHEST WATER LtVEL 9.00 ABOVE LSD. DEC. 28. 194~.

LOwtST WATER LtVEL 0.30 ABOVE LSD. MAR. 16. 1964.RECORDS AVAILABLE: 1~36-41. 1~46-62. 1964-7d.

DATEWATERLEVEL DATE

WATEHLEVEL DATE

WATERLEVEL DATE

WATERLEVEL

MAH. 16. 1964 + 0.30 MAR. 3. 1969 + 3.~4 MA><. 8. 1974 + 8.10 SEP. 7. 1~76 + 4.53MAH. 2. 196:' + 1.89 MAR. 'I. 1970 + 3.18 SE .... 5 6.52 MAR. 7. 1~77 + 5.76MAH. 1. 1966 + 4.90 MAR. 8. 1971 + 4.63 MAH. 6. 1975 + 8.96 OCT. 5 4.36MAH. 6. 1967 + 3.47 MAR. 7. 1972 + 4010 SE .... 4 3.00 MAR. 6. 1~78 + 6.39MAR. 1. 1968 + 6.15 MAH. 13. 1~73 + 7.44 MAH. 10. 1976 + 6.92 SF'p • 8 3.34

(C-C-41 2dAA-3LSD 4c36 FT ABOVE MSL.HIGHEST WATER LEVEL 17.60 ABOVE LSD. SEP. :'. 1974.LOwEST wATER LEVEL 9.UO ASOVE LSD. DEC. 2~. 1960.RECORDS AVAILAdLE: 1~58-78.

WATER WATER wATER WATEROATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

----------------------------------------------------------------------------------------------------MAR. 16. 1964 + 10.50 SEP. 3. 1969 + 12.bO MAH. 6. 1975 + 15.60 SEP. 13. 1977 + 11.9NOV. 3 12.60 MAH. 9. 1970 + 12.40 SEP. 4 13.30 OCT. 5 11.7MIIR. 2. 1965 + 11.80 SEP. 17 11.80 MAk. 10. 1976 + 13.9 NOV. 9 11.4OCT. 26 10.00 MAH. 8. 1971 + 10.60 SEP. 7 12.5 DEC. 12 12.90MAH. 1. 1966 + 11.10 SEP. 1 12.20 MAR. 7. 1977 + 13.3 JAN. 'I. 1':1/d + 13.10SEP. 9 12.40 MAH. 7. 1972 • 1,+.00 APR. 15 13.35 FEB. 13 13.10MAH. b. 1967 + 11.20 SEP. 21 14.70 MAY 10 13.80 MAR. b 13.25SEP. 13 12.40 MAR. 8. 1973 + 14.80 JUNt. 10 13.55 APR. 11 13.20MAH. I. 1968 + 11.90 SEP. 4 Ib.70 JULY 11 13.55 JUNE 9 13.22SEP. 25 11.10 MAR. 8. 1974 + 15.70 AUG. 11 11.9 SEP. 8 11.34MAR. 3. 1969 • 10.50 SEP. 5 17.60

(C-2-4) 8CllC-lLSD 422~ FT ABOVE MSL.HIGHEST wATER LtvEL 13.10 ABOVE LSD. MAYLOwEST WATER LEVEL 9.20 ABOVE LSD. SEP.RECOHDS AVIIILAdLE: 1~58-7B.

~. 1958.10. 1966.

----------------------------------------------------------------------------------------------------wATER WATER wATER WATEH

DATE LEVEL DATE LtVEL DATE LEVEL DATE LEVEL----------------------------------------------------------------------------------------------------

MAR. 27. 1964 + 11.00 MAR. 7. 1969 + 11.20 SEP. 6. 1974 + 10.40 Sf-Po B. 1 '177 + 11.1':>NOV. 2 10.90 SfP. 3 lld 0 MAR. 6. 1975 + 12.00 OCT. ':> 11.8MAR. 8. 1965 + 11.10 MAR. 11. 1970 + 12.10 SEP. 4 11.00 NOV. 9 12.2JULY 28 10.80 SEP. 17 11.40 MAH. 8. 1976 + 12.6 DFC. 12 11.4':>OCT. 26 10.80 .'1Ak. 10. 1971 + 11.20 SEP. t! 11.8 JAN. 'I. 1':1 7d + 11.75~AH. 7. 1966 + 10.60 SE". 2 10.80 MAR. 8. 1977 + 11.6 FEB. 13 11.70SEP. 10 9.20 MAR. 10. 1972 + 10.80 APk. 14 12.6 MAR. 8 11.~0

MAk. 6. 1967 + 11.10 SEP. 21 ~.80 MAY 10 + 12.4 ApR. 11 11.70SI:Y. 13 11.20 MAR. 9. 1973 + 10.80 JUNt. 10 • 12.40 MAY II 12.20MAR. 6. 1968 + 11.20 SEP. 5 11.70 JULY 11 12.50 JUNE 9 9.61SEP. 25 11.30 MAR. l!. 1~74 + 12.00 AUG. 11 12.85

----------------------------------------------------------------------------------------------------

50

Page 56: Technical Publication No. 69 - Utah

Table 6.--Wau'r levels in selected wells, 1963-78--Continued

(C-2-4) 9COA-lLSD 4235 fT AtlOVE MSL.HIGHtST WATER LtVEL 20.70 ABOVE LSD. MAR. 2b. 1964.LOWEST WATER LtVEL 11.40 ABOVE LSD. MAR. 7. 1967.RECORDS AVAILABLE: 1963-71.

DIITE

MAR. 26. 1964 +MAR. B. 19b:) +

WIITERLE~EL

20.719.4

llATE

MAR. 16. 196') +MAR. 7. 1966 +

WATERLEVEL

20 ol14.4

MAK.MA".

DATE

7. 1967 +7. 1969 +

WATERLEVEL

11.414.5

MAR.MAR.

DATE

9.1'170 +8. 1'1 II +

WATERLEVEL

19.119.9

(C-2-4)17lJCD-ILSD 4252.63 fT ABOVE MSL.HIGHESI WATER LtVEL 22.40 A~OVE LSD. APR. 1~. 1961.LOWEST ~ATER LEVEL 17.90 ABOVE LSD. MAR. 6. 1969.RECO~DS AVAILAtlLE: 1~58. 1961-78.

DATEWATERLE~EL DATE

WATERLE~EL DATE

WATERLE~EL DATE

WlITERLE~EL

MAR. lB. 1964 + 19.90 MAR. 10. 1972 + 18.60 JUNt 10. 1971 + 20.95 JA.N. 9. 1'178 + 21.00MAR. A. 191'>5 + 19.60 MAR. 9. 1973 + 19.20 JlJL Y II 20.8 fEB. 13 21.45MIIR. 3. 1906 + 18.30 MAR. 11. 1974 + 20.30 AUG. II 20.90 MAR. 8 21.60MAR. 9. 1967 + 18.00 MAR. 6. 1975 + 20.50 SEfJ. 13 20.55 APR. II 21.85MAR. 6. 1968 + 18.20 MAR. 8. 1976 + 21.3 OCT. 5 20.35 M.lY 8 21.60MAR. 6. 1969 + 17.90 APR. 15. 1 '117 + 21.0 NOV. 9 20.40 JUNE 9 21.20MAR. 10. 1970 + 18.00 MAY 10 21.5 DEC. 12 20.80 s. P. 8 20.84MAR. 10. 1971 + 18.50

(C-2-4)I'1tllJD-ILSD 4255 fT A~OVE MSL.HIGHEST WIITER Lt~EL '1.00 A80VE LSD. MAR. 8. 1976.LOWtST WATER LE~EL 6.40 A~O~E LSD. OCT. 10. 19b2.RECORDS AVAILABLE: 1961-78.

WIITER WATER W.A TER WATERllATE LEVEL DATE LEVEL DATE LE~EL DATE LEVEL

-----------------------------------------------------------------------------------------.----------MAR. 24. 1964 + 7.10 MAR. 6. 19M1 + 7.30 MAR. 10. 1'I7? + 7.60 MA.R. A. 1'176 + 9.0MAR. 'I. 1965 + 6.90 MAR. 6. 1969 + 7.60 MAR. 1'1. 1973 + 8.00 MAR. 8. 1977 + 8.0MAR. 4. 1966 + 7.30 MAR. 10. 1970 + 7.40 MAR. 11. 1974 + 8030 OCT. 5 7.3MAR. 9. 1967 + 7.00 MAR. 10. 1971 + 7.60 MAR. 6. 1975 + 7.50 MAR. 8. 1':178 + 8.6

(C-2-4l20lJlJC-ILSll 4300.20 fT ABOVE MSL.HIGHEST WATER LlVEL 20.70 A80VE LSD. fEB. 25. 1941.LOWEST WATER Lt~EL 8.20 ABOVE LSD. OCT. 22. 1937.RECORDS AVAILA~LE: 1937. 1940-41. 1958-59, 1961-78.

----------------------------------------------------------------------------------------------------WATER WATER WATER WATER

DATE LE~EL DATE LEVEL DATE LE~EL DATE LEVEL----------------------------------------------------------------------------------------------------

MAR. 19. 1964 + 11.20 MAR. I. 1'168 + 12030 MA~. 7. 1972 + 14.40 MAR. 8, 1'170 + 17.9MAR. 3, 1965 + 13.70 MAR. 5. 1969 + 12.15 MAK. 8. 1973 + 1501 0 MAR. 7. 1'177 + 17.0MAR. I. 1966 + 13.60 MAR. 10. 1970 + 14.00 MA". 8. 1974 + 16.70 MAR. 6. 1'178 + Itl.1MAR. Y. 1967 + 11.90 MAR. 8. 1"71 . 14.30 MAR. 5, 1975 + 15.80

----------------------------------------------------------------------------------------------------

51

Page 57: Technical Publication No. 69 - Utah

Table 6.--Water levels in selected wells, 1963-78--Conttnued

(C-2-4)2lAUD-lLSD 43U8 FT A80VE M~L.

HIGHEST ~ATER LtVEL 39.54 HELO~ LSD, MA~. 8, 1976,LO~EST ~ATER LEVEL 42.28 B~LO~ LSD, OCT. 19, 1962.RECORDS AVAILABLE: 1961-71, 1973-77.

DATE~ArER

L~VEL DATE~ArER

LEVEL DATE~ATER

LEVEL DATE~ATER

LEVEL

MAR. 16, 1964 41.17 MA~. 1, 1968 41030 MAfi. 8, 1973 4U.75 MAR. 8, 1,,76 39.54/oIAR. 2. 1965 41.18 MAR. 3, 1969 41.53 /oIAR. 8, 1974 40.14 SEP. 7 40."8MAR. 1, 1966 41.39 MAR. 9, 1970 41036 MAN. 5, 1975 39.75 MAR. 7, 1-;77 39.61MAR. 6, 1967 41.56 MAR. 8, 1971 41032

----------------------------------------------------------------------------------------------------

(C-2-4)28AAC-lLSD 4337 FT ABOVE M~L.

HIGHE~T ~ATER LEVEL 49.12 8€LO~ LSD, FE8. 13, 1978,LO~EST ~ATER LEVEL 61.U9 8tLO~ LSD, OCT. 9, 1962.RECORDS AVAILABLE: 1961-78.

WATER ~ATER WATER WATERDATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

----------------------------------------------------------------------------------------------------MAR. 16, 1964 58.41 MAR. 8, 1971 511.40 APR. 13, 1'177 54.27 JAN. 10, 1971:l 52.62MA~. 3, 1965 58.76 MAR. 7, 1972 57.76 JUN!: 3 60.15 FfB. 13 49.12MA~. 1, 1966 59.00 MAR. 6, 1913 51.04 AUG. 12 51.31 MAR. 8 51.89MAR. 1, 1967 59.41 MA~. 8, 1914 55.93 OCT. 6 58.12 APR. 12 51.93MA~. 1, 1968 59.05 M.4R. 5, 1915 54.19 NOV. 9 53.9B M<\Y 10 52.25MAR. 3, 1969 59.19 MAR. 8, 1916 54.36 DEC. 13 53.12 SEP. 21 55.13MAR. 9, 1910 58.58 MAR. 1, 1911 54.26

(C-2-4)28A(.D-3LSD 4338.40 FT A80V~ MSL.HIGHEST ~ATER LEVEL 24.00 AHOVE LSD, MA~. 8, 1916,LOW~ST WATER LEVEL 4.30 A80VE LSD. SEP. 26, 1962.RECORDS AVAILA8LE: 1941, 1958-18.

DATE~ATER

LEVEL DATEWATERLEVEL DATE

WATERLEVEL DATE

WATERLEVEL

MA~. 18, 1964 · 12.30 MA~. 1, 1912 • 7.50 APR. 13, 1911 • 22.6 DEC. 11, 197T · 20.40MAR. 3, 1965 • 9.60 MAR. 8, 1913 · 8.00 MAY 11 19.5 JhN. 10, 1978 • 20.10MAR. 1, 1966 • 11.30 MAR. 8, 1914 • 20030 JUNE 13 16.25 FEB. 13 20.90MA~. 6, 1967 · 5.55 MAR. ", 1915 • 20.10 JULY 12 14.1 MAR. 6 21.20MA~. 1, 1968 • 5.00 StY. 3 14.90 AUh 12 18.1 APR. 12 21.30MAR. 3, 1969 · 6.67 MA~. 8, 1976 · 24.0 SEP. 8 11.6 MhY 10 22.00MA~. 9, 1970 · 7.50 SEP. 7 17.9 OCT. 6 19.2 JUNE 8 15.10MA~. 8, 1971 · fl.40 /oIAR. 7, 1911 · 22.0 NOV. 9 19.75 SfY. 8 16.9')

----------------------------------------------------------------------------------------------------

(C-l:'-4)2B8UD-2LSD 4326.10 FT ABOVE MSL.HIGHEST WATER LEVEL 11.30 ABOVE LSD, MAR. 8, 1976,LOWEST WATER L~VEL 2.51 A~UVE LSD, SEP. 1, 1961.RECORUS AVAILAl:lLE: 1~61-'8.

----------------------------------------------------------------------------------------------------~ATER ~ATER ~ATER ~ATER

DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL----------------------------------------------------------------------------------------------------

/oIAR. 16, 1964 · 5.30 MAR, 1, 1968 · 3.13 MAt<. 1, 1912 + 4.31 /oIIIR. 8, 1976 · 11.3MAR. 3. 1965 • 4. -'0 MAR. 5, 1969 · 3.78 MAR. 8, 1973 + 4.52 MAR. 7, 1977 · 9.7/oIAR. 1, 1966 · 3.63 /oIAR. 9, 1970 · 3.83 MAR. 8. 1974 · 5.13 MAR. 6, 1-;7d · 9.9MAR. 6, 1967 · 3.24 MAR. 8, 1971 · 3."5 MAR. 5, l eH5 · 6.77

----------------------------------------------------------------------------------------------------

52

Page 58: Technical Publication No. 69 - Utah

Table 6.--Water levels

(C-2-4128Ut:lD-5LSD 4363 FT At:lOVE MSL.HIGHEST WATER LEVEL 23.90 At:lOVE LSD. MAR.lOWEST WATER LEVEL 9.00 At:l0VE lSD. MAR.RECOHDS AVAIlAtlLE: 1'141. 1958-78.

in selected we] Is, 196J-78---Contlnued

8. 1976.3. 1965.

----------------------------------------------------------------------------------------------------WATER wATER WATER WATt::R

DATE lEVEL DATE LEVEL DATE lEVEL DATE. LEVEL

----------------------------------------------------------------------------------------------------MAR. 16. 1964 + 10.60 MAR. 1. 1968 + 10.'15 MAR. 1. 1972 + 12.10 MnR. 8. 1'116 + 23.'10

MAR. 3, 1965 + 9.00 MAR. 3. 1969 + 13.90 MAR. 8. 1973 + 13.70 MAR. 7. l'1n + 22.60

MAR. 1. 1966 + 12.60 MAR. 9. 1910 + 14.00 MAR. fl. 1914 + 110l 0 MAH. 6. 1'118 + 21.9MAH. 6, 1967 + 11.30 MAH. 8, 1971 + 14,00 MAR. 5, 1'l75 + 20.50

----------------------------------------------------------------------------------------------------

IC-2-412"tlCC-1LSD 4291.95 FT ABOVE MSL.HIGHEST wATER LEVEL 18.00 At:lOVE LSD, FEB. 25. 1941.lOWEST WATER lEVEL 5,73 BELOW lSD. OCT. 12. 1978.RECORDS AVAILAtlLE: 1.. 41. 1961-78.----------------------------------------------------------------------------------------------------

DATEWATERlEVEL DATE

WATERLEVEL DATE

WATERlEVEL DATE

WATERlEVEL

----------------------------------------------------------------------------------------------------Ml\R. 19. 1964 + 4.B9 MAR. 1. 1972 + 5.46 JUNE 13. 1977 + 7.65 Jl\N. 10. 1'171:l · 1.1:l0MAR. 4. 1965 + 4.69 MAR. 8. 1973 + 5.80 JULY 12 5.8 FEB. 14 8.10MAR. 7. 1966 + 4.74 MAR. 11. 1974 + 6.70 AUG. 12 6.61 MAR. 6 8.6MAH. 7. 1967 • 4.35 MAR. 5, 1975 · 7.00 SEPt 8 5.50 MAY 8 BollMAR. 5, 1968 + 4.53 MAR. 8, 1976 + 8.5 OCT. 0 6.5 JUNE 8 7.23MAR. 4. 1969 · 4.41 MAR. 7, 1977 · 7.t:l NOV. 9 6.9 Sr~P • 7 3.50MAR. 10. 1970 · 4.46 APR. 13 8.2 DEC. 13 7.50 O( T• 12 5.73MAR. 9. 1971 • 4.94 MAY 11 7.1

----------------------------------------------------------------------------------------------------

(C-2-4129DDA-1LSD 4327 FT A~OVE M~l.

HIGHEST wATER LtVEl 17.60 ABOVE LSD. MAR.lOWEST W4TER lEVEL 6.70 ABOVE LSD. MAR.RECORDS AVAILAt:lLE: 1'172-78.

b. 1978.7. 1972.

MAR.MAR.

DATE

7. 1972 +

8. 1973 •

WATERLEVEL

6.707.80

MAR.MAR.

DATE

B. 1974 +

5. 1975 +

WATERLEVEL

12.0014.00

MAR.MA",.

OATE

A. 1976 +

7. 1977 •

WATERLEVEL DATE

6. 1'178 +

WATERLEVEL

17.60

IC-2-4l31AllA-1lSD 4339.25 FT ABOVE MSl.HIGHEST W4TER LEVEL 16.10 At:lOVE lSD. MAR.lOWEST WATER ltVEl 4.02 BELOW lSD. SEPtRECORDS AVAILAHLE: 1..58-7B.

8. 1976.it 1971.

----------------------------------------------------------------------------------------------------WATER wATER WATER WATER

DATE LEVEL DATE LEVEL DATE LEVEL DATE lEVEL----------------------------------------------------------------------------------------------------

MAR. 17. 1964 + 1:1.10 MAR. 7. 1967 + b.70 MAR. 9. 1971 + 7.70 MAR. ". I'll:' + 13.50NOV. 3 10.00 SEPt 13 4.49 SEPt 1 4.02 SEPt 3 1 ... 7MAR. 3. 1965 + 6.60 MAR. 5. 196B · 7.70 MAR. 7. 1972 + B.70 MAR. 8. 1'17b · 16.1JULY 28 4.80 SEPt 25 5.20 SE.,. 21 1.18 SEPt 7 13.0OCT. 26 9.60 MAR. 4. 1969 + 6.70 MAR. B. 1973 + 8.20 MAR. 7. 1 '177 · 15.1:1MAR. 2. 1966 · 10.60 SEPt 3 4.90 SEPt 6 6.70 OCT. 7 12.6SEPt 9 4.32 MAR. 10. 1970 • 7.30 MAR. 11 • 1974 + 13.90 MAR. 6. 1'11b + 14.4MAR. 7. 1967 • 6.70 SEPt 17 6.30 SE.,. 5 9.90 SEPt 12 11.25

53

Page 59: Technical Publication No. 69 - Utah

Table 6.--Water levels

(C-2-4131tiCI:!-1LSD 4320 FT AtiOVE MSL.HIGHEST WATER LtVEL 29.90 A~OVE LSD. MAR.LOWtST wATER LEvEL 6.10 AI:lOVE LSD. MAR.RECO~DS AVAILAtilE: 1~~9-77.

in selectpd v..'ell,<-;, .196J-78--Continued

24. 1959.4. 1965.

WATER WATER WATER wATtRDATE LEI/EL DATE LEVEL DATE LEI/EL UATE LEI/EL

----------------------------------------------------------------------------------------------------MA~. 16. 1964 • 6.20 MA~. 5. 1968 . 6.73 MA~. 7. 1'172 • 10.22 MAR. '0. HT,> + 13.50MAR. 4. 191>'> + 6.10 MAR. 4. 1969 + 7015 MAf<. I" 1971 + 10.80 M~R. 8. l'iTb + 16.0MAt<. 4. 1966 + 6.33 MAR. 10. 1970 + 8.74 MA~. 11. 1974 + 13.10 MAR. 7. 1'i7T + 18.1MAR. 7. 1967 + 6.34 MAR. 9. 1971 + 8.79

(C-2-4131UAD-2LSD 4368.50 FT AI:lOVE MSL.rlIGHEST WATER LtVEL 12.00 AI:lOI/E LSD. DEC. 28. 194'0.LOWEST WATER LEI/EL 6.72 BELOW LSD. MAR. 4. 1968.RECORDS AVAILAtiLE: 1941-42. 1944-45. 1958-73.

DATE

MAR. 17. 1964MAR. 3. 1965MAR. 4. 1966

WATERLEVEL

4.265.796.18

MAR.MAR.MAR.

DATE

7. 191>74. 19684. 1969

WATE~

LEI/EL

6.616.72b.66

DATE

MA~. 10. 1'170MAk. 9. 1971

WATERLEvEL

5.123.82

DATEWATE~

LEVEL

2.681.10

(C-2-4131UtiC-lLSD 4356.65 FT ABOVE MSL.HIGHEST WATER Ltl/EL 0.85 ABOVE LSD. MAR.LOwEST WATER LEVEL II.TO BELOW LSD. MAR.RECO~DS AVAILAtilE: 1958. 1960-76.

8. 197b.4. 19b9.

DATEWATERLEI/EL DATE

WATERLEI/EL DATE

WATERLEVEL DATE

WATERLEVEL

------------------------------------------------------ -------------------~--------------------------MAR. 17. 1964 9.18 MAR. 5. 1968 11.60 MAk. 9. 1'l71 'l.03 M.~R. 11. I"T4 3011MAR. 3. 1965 10.30 MAR. 4. 1969 11.70 MAk. 7. 1972 8.04 MAR. 5. 1~75 1.33MAR. 4. 1966 10.68 MAR. 10. 1970 9.87 MAk. 8. 1973 6.96 MAR. 8. 1'176 + 0.85MAR. 1. 1961 11.24

(C-2-4132CtiB-lLSD 4363.10 FT ABOVE MSL.HIGHEST WATER lEVEL 14.60 A~OVE LSD. MAR. 8. 1916.LOWEST WATER LEI/EL 10.90 BELOW LSD. NOI/. 3. 1964.RECORDS AVAILAtiLE: 1964-78.

----------------------------------------------------------------------------------------------------WATER WATER WATER WATER

DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL----------------------------------------------------------------------------------------------------

NOV. 3. 1964 10.90 SEPt 3. 1969 7.94 IoIAR. 5. 1975 + 12.20 S-:p. 'I. 1'117 + 1.4MAli. 3, 1965 0.81 MAR. 10. 1970 + 0.10 SEPt 3 3.58 OCT. 6 8.4JULY 29 7.96 MAR. 9. 1971 + 1.46 MAR. 8. 1916 + 14.6 NOV. 9 10.7OCT. 26 2.62 SEPt 1 9.05 SEPt 7 + 9.10 DICC. 12 11.5MAR. 4. 1966 1.15 MAR. 1. 1972 + 2.44 MAR. 7. 1977 + 14.4 JAN. 10. 1'178 + 12.05SEPt 9 8.55 SEPt 21 4.13 APR. 13 12.0 FEB. 14 12.40MAR. 1. 1961 1.24 MAR. 8. 1913 + 3.95 MAY 11 10.1 MAR. 8 12.20SEPt 13 8.55 SEPt 6 2.78 JUt~E 13 1.40 APR. 12 12.'10MAR. 4. 1968 1. 12 MAR. 110 1914 + 8.30 JULY 12 + 1.0 MAY 8 11.13SEPt 25 5.28 SEPt 5 + 5.39 AUG. 12 4.3 JUNE 8 6.53MAR. 4. 1969 1.25

54

Page 60: Technical Publication No. 69 - Utah

IC-2-4133AAB-ILSD 438e FT AtiUVE M~L.

HIGHEST WATER LEVEL 2.00 ABOVE LSD, MAR.LOWEST WATER LEVEL 20.07 BELOW LSD, SEP.RECORDS AVAILAtiLE: 1~60-78.

e, 1~76,

<Jo 1966.MAR. T, 1977,

----------------------------------------------------------------------------------------------------DATE

WATERLEvEL DATE

WATERLEVEL UA TE

wATERLEVEL UA IE

wA HI<LEVEL

----------------------------------------------------------------------------------------------------APR. eT, 1963MAY e5JUNE 29JULY 20AUG. 10SH'. 10OCT. I ~OCT. e6NUV. 30DEC. 28JAN. 25, 1964FEB. 2"MAR. 2eMAR. 30

12.3415.9414.2T15.6715.e616.8718.6215.9815.0914.8514.6114.4014.5414.30

A;.>R. 10, 1",,4MAY 28JUNE 29OCT. 2'1NOV. 30UEC. 31JAN. 28, 1965MAR. 2MAR. 31APR. 27MAY 27AUG. 30SEP. 2'1OCT. 26

14.50 JAN. 2". 1'166 1". T5 S!:Y. ?I. I" Ie 1'1.'1214.30 FEIi. 2" 1".48 MAR. H, I 'j I.J 10. 'II14.67 MAK. I J 6.21 SiP. n 10. ~ I17.52 SEP. 'i 20.61 MAR. H. I 'j 14 5. 1016.H2 MA ..~ • I. 1901 16.91 MAR. ". 1"1,, 0.6316.41 MAR. 20, 1%8 17.09 MAR. 8. 1,,16 . 2.00t16032 MAR. :), 196'1 16.53 SEP. T 3.'>916.0H SE". 3 20.58 MAR. -" 1,,71 . 2.001e15.86 MAK. '10 19TO 15.11 M.H 15 0.3M15.94 SEP. I 1 17.65 uc To 6 3.2917.62 MAR. H. 1 '171 13.72 NuV. 15 3.001'1.49 SE;.>. I 18.53 MtlR. 8, 1"/e 1.21:>Ib.81 MAK' I. 1'l/2 13010 51: P. 21 1.1 Ii18031

----------------------------------------------------------------------------------------------------

IC-2-4133AAC-ILSD 4393.88 FT ABOVE MSL.HIGHEST WATER LEVEL 2.50 BELOW LSD, APR. 2'>. 1'176,LOWEST WATER LEVEL 25.44 BELOW LSD, JULY 20, 1968.RECORDS AVAILABLE: 1~58-7I:1.

1963

DAY JAN. FEB. MAR. APR. MAY JUNE -.JULY AUG. SEPT. OCT. NUI/. UEC.----------------------------------------------------------------------------------------------------

5 ...... 16.42 1'1.67 19.'>'; ?0.57 21.71 20.86 19." It:10 16.47 17.58 19.53 ,;'ll']5 20.67 21.11 ,;'0.:J4t15 16.34 17.98 1'1.44 ,;'U.54 20.78 21.57 cO.OO£ 19.45E20 16.38 18.4b 2ll.58 21.06 21.39E25 16.30 19.66 19.48E ,;'0.68 21.35 21.26E l'1.HlJ 19.42EEOM 16.62 1'1.67 1'1.47 eU.67 21.66 21.24 1'o1.I,U 1'1.26

1964

5 19.06 Id.68 18.63 18.40 19.20 21.02 20.77 22.20 22.67 ,;'1.",>10 18.95 18.63 18.58 18.42 19.15 21.22 21.11 22.01 22.59 c1.il,;'15 18.63 18.55 18.37 19.14 20.96 21.56 22.25 23.48 22.18 ,;' I. 5T20 18.78 1b.67 18.48 18.42 19.73 20.54 2<:: 015 22.26 23.16 22.0325 18.77 18.65 18.54 18.43 20.48 20.37 22.30 22.43 22.95 22.04EOM 18.75 18.58 18.44 18.41 20.58 20.59 2<::.06 22."4 22.61 22.09 cl.09----------------------------------------------------------------------------------------------------

1965----------------------------------------------------------------------------------------------------

5 20.49 20037 20.17 20.75 22.40 23.24 23.61 23.74 23.05 ,;',;'033 21.'U10 ,;'0.44 20.41 20.84 22.49 23.46 23.50 23.~b 22.84 2202/j 2/.8115 ,;'0.44 20.45 21.02 22.43 t:'3.93 23.'10 23.3d 22.7320 ,;'0.45 20.54 22.89 cJ.14 24.01 23.22 22.7025 eO.44 20.21 20.55 21.86 22.98 23.9<; 23.70 23." I 22.52 c1.9bt.EOM 20.39 20.18 20.56 22.04 23.08 23.89 23.82 e3.35 22.33 21.05

1966----------------------------------------------------------------------------------------------------

5 20.94 eO.48 20.63 23.00E 24.17 24.42 25.10 24.31 21.e410 20.82 ,;'0.46 20.21E 21.43 23.04 2~.02 24.B9 24.'13 24.31 21 .8~

15 20.80 20.44 20.20 22.26 23.54 24.42 24.99 24.50 23.88 <'2.4d 21.8120 <:'0.44 20.20 22.83 24.03 <'4.44 25.13 24.49 23.60 <',;'.42 21. T225 eO.30E 20.12 23.oe 24.30 e~.20 24.'14 24.24 23.45 ,;'2.12 2/.61EOM 20.66 "U.56 20.l5E 19.96 20.4':> 23.06 24.3" ?4.28E 25.22 24.21 23032 22.0<'----------------------------------------------------------------------------------------------------

55

Page 61: Technical Publication No. 69 - Utah

(C-2-4) 33AAC-I--Continued

'fable 6.--Water levels in selectE·d wclls~ 1963-78--Continlled

191',7

:, <'1.37 d.07 <'O.b<' <'0.60 71 .1" 7c.bl <'3.<'3 ?3.63 <'4.54 73.78 <'3.1tl 72.381:.10 21.41 <'1.03 20.7<' 20.'14 <'l.YO 22.87 <'3.21 24.34 24.32 23.61 <'3.1<' ?C.3315 21. <'8 <'1.00 20.72 21.01 21.tlO 22.26 c3.t>O 25.42 24.5:' 23.65 <'2.d'1 22.2'"20 <'1.18 <,U.94 20.6tl 21.06 22.14 22.1b 1.3.41 24.89 24.30 23.69 2<'.67 22.21:>25 21.16 20.86 20.61 21.01 23.02 l'2. ':>8 c'j .31 ·..... 1:'4.11 23.51 <'2.'i'+ 22.23I:. OM 21.10 20.tl4 20.:'7 22.31 22.92 n.n 24.30 24.12 23.38 21:'.1 '1----------------------------------------------------------------------------------------------------

lY6B----------------------------------------------------------------------------------------------------

5 n.l1 1:'1.74 ?1.?R £'1.13 ?1.4] 23.0? <:3.72 ·..... ?4.43 23.72 c3.11:' ?1.1l'l10 21.',14 ...... 2 I .2d 21.13 22.1b 22.B8 1.3.92 1:'4.4<; 23.39 2<'.t\4 21.71:>1:' 21.87 21.23 21.20 22.37 22.81 1.4.72 24.5'+ 23.41<'0 21.B4 21.24 21.25 24.63 23.70 <'~.44 ':4.0d 23.2': <,c.,+3

25 21.11 2102 1 23.9<' 23.Kl 23.b6 24.04 23.19 ':':.l'+EOM 21.78 <'1.31 21.14 23.11 23.65 24.23 23.8',1 23.1b ':1.9:'----------------------------------------------------------------------------------------------------

1',11:>9----------------------------------------------------------------------------------------------------

5 22.19 20.05 21.0,+ L~2.00 22.48 22.73 21.6410 21.34 21.68 20.02 20.24 21.46 22.29 23.09 21.00 22.11 22.40 21. 'i21:' I:' 1.41 ':1.74 20.0b 19.92 20.50 22.20 22.5'+ 23.44 21.30 <,2.1<' 21.31:>20 21.79 <'1.7B 20.15 20.04 21.3'1 22.42 ~2.3b 23.40 21.<;0 23.0,+ 21:'.01 20.<;125 21.88 ':1.99 20.22 20.08 <'1.52 21.83 ,'2.22 22.18 22.!J5 23.01 " 1.9 V 20.84EOM 22.20 21.98 20.32 21.40 21.58 <:'2.30 22.44 22.85 23.71 il.8d 20.71

1970----------------------------------------------------------------------------------------------------

5 20.b4 ':U.03 Ib.88 19.2t> 21.12 20.01 20.53 19.~0 21.27 <,U .J3 19.8610 20.4',1 1'1.90 19.25 IB.71:> 19.4~ 20.96 l'1.4"> 20.97 <'0.27 21.12 <'0.34 19.7-,1:' 20.44 19.78 19.20 18.75 20.37 19.6b 21.02 21.23 21.04 cU.21 19.h320 20.31:> 1'1.73 19.19 18.73 20.31:> H.S6 21.20 21.62 20.67 ,'0.0<; 19.:'b25 20.24 19.02 19.14 19.94 1'1037 20.b8 21.65 19.93 1'1.94 19.53EOM 20.14 18.99 19.12 21.46 20.01 19.66 20.17 ':1.44 20.43 19.H~ 19.44

1971----------------------------------------------------------------------------------------------------

:, Ill.1:>1 18.37 18.02 11.41 ,'U.:'9 20.93 1'1.7'1 19.4410 lll.61 18.31 11.92 18.40 <:'0.9:' 20.7:' 1'I.6H 19.<'915 19.34 Ill.52 18.32 11.89 18.93 ...... <'1.20 20.60 19.'il 19.23':0 19.19 Ib.44 11.88 19.16 21.31 ·..... 20.42 1<;.4~ 19.1v25 18.90 Ib.38 17.86 19.01 ...... 21.7b 20.21 1':I.,+5E Ib.92EOM 18.75 IB.3!! 11.90 18.2'1 ...... 21.24 19.99 19.4'>E 18.8t>----------------------------------------------------------------------------------------------------

1972----------------------------------------------------------------------------------------------------

5 lA.75 17 .9h 17 .'1B 17.27 17 .13 19.30E <'1.01 21.46 21.5'1 20.93 Ib.A7 18.1:'10 Ib.b"> 17.87 17.">9 17.30 17.11 20.08 ':1.39 22.00 21.b7 20.60E 18.5~

1:' Itl.57 17.75 17.61 17.29 18.01 20.13 <'1.11 22.40E 21.80E. 20.23 18.3~ 11.H6':0 18.37 11.66 17 .50 17.24 Ib.53 20.60E 2U.97 22.75 21.1:> 7 19.78 IHol'1 11.b725 18.09 17.60 17.39 17 .17 19.48 21.10 2U.74 21.11 CI.3<; 19.57 jb.lll 17.53EUM 18.01 11.51 11.35 11.19 IB.5b 21.14 <'.0.97 21.15 21.03 19.09 Itl.38 17.3<;----------------------------------------------------------------------------------------------------

1973----------------------------------------------------------------------------------------------------

"> 17.25 Ib.20E 15.44 14.B:' 14.42 16.70 Ib.">2 IFl.22 18.B7 16.26 13.6/ 12.2310 16.90E Ib.30E 15.22 14.78 14.l:>b 16.10 18.87 18.22 19.31 16.06 13.5U 12.1 015 111.60E 16.40E 15.24 14.61 1.4.91l 16.98 le.tl2 18.44 18.31l 15.61 J3.Jb 11.92E.20 JI:>.28 J:>.hO 1!J.03 14.60E 11.20 11.70E Itl.60 18.81:> 18.01 15.23 J<'. 7Il 11.7';E25 11:>.20E 1:>.48 14.99 14.50E 17.23 18.47 Ib.74 18.47 17.35 14.43 l2.5b 11.51E.EOM 16.UOE. J~.4B 14.90 14.40 16.91 Ib.39 18.22 18.b4 16.1:>7 13.83 l2. j2 11.31:>1:.

56

Page 62: Technical Publication No. 69 - Utah

(C-2-4) 33MC-J ---Continued

Table 6.--Water levels ill selected V<'1'.11s. 19h3-78--Colltinued

1974----------------------------------------------------------------------------------------------------[JAY JAN. FEB. '-'AR. APR. MAY JIJNF .JULY hIJG • SFPT. OCT. NOV. DFr.-------------- --------------------------------------------------------------------------------------

S 1 u .19 9.50 8.47 1:1.67 13 .<:8 12.90E 10.2( 8.3S10 10.98 10010 9.22 8.32 9.07 13.32 12.20E '01.61 8.09IS 10.1:16 ".95 9.09 8.25 9.43 13.33 11.54 ".3<: 7.9020 10.64 ... 78 8.93 8.11:1 10.00 13.27 11.14 '01.10 7.742S 10.48 9.57 8.77 8.22 10.27 11.65 ...... 13.79 13.01:1 10.8S H.74 7.S'oIEOM 10.33 ".44 8.63 8.37 •• 10 ••• 13.57 10.54 H.5~ 7.53

1975

5 1.50E 6.30E 5.54 4.94 4.25 5.00 0030 8.52 9.95 ".31E 6.S~ 5.1010 7.40E 6.20E 5.44 4.82 4.23 4.97 6.I:IOE 8.S2 9.54 8.16 b.]O 4.''115 7.]OE 6.05 5037 4.70 4.21 4.86 1.4] 8.S2 9.19 7.96 ~.7S 4.9120 7.30E 5.97 S.28 4.57 4.43 5.84 (.98 8.S5 8.8" 7.49 ':>.,:>'01 4.7625 6.70E S.86 5.23 4.45 4.42 5032 ~.74 8.92 9.2':> 7.14 ':>.40 4.6<'EOM 6.50E S.79 5.07 4.]] 4.78 5.21 e.S2 9.01 8.54 6.75 ':>.3U 4.3':>----------------------------------------------------------------------------------------------------

1976----------------------------------------------------------------------------------------------------

5 4.35 3.62 3.20 2.80 2.79 4.51 b."3 7.23 8.30 8.11 0.13 4.9410 4.20 3.57 3.10 2.70 3.20 4.46 7.41 7.40 8.3<' 7.90 5.8'7 4.8615 4.10 3.50 3.00 2.60 3.60 4.80 7. 74 7.60 8.1'7 7.40 5.6b 4.72<'0 4.00 3.40 3.00 2.60 4. I Q 5.40 7.20 7.80 9.10 6.90 5.41 4.6125 3.90 3.31 2.90 2.50 4.60 6.20 7.28 8.00 8.07 6.61 5.1'7 4.46EOM 3.86 3019 2.80 2.58 4.21 6.83 7015 8.20 8.66 6.31 5.16 4.2t:'--------------------------------------------------.-------------------------------------------------

1977----------------------------------------------------------------------------------------------------

5 4.19 3.52 3.16 2.69 3.70 5.13 1.20 8.20 9.12 8.00 7.AO 6.8010 4.08 3.44 2.99 2.58 4.00 5.18 7.50 8.42 8.99 8.28 7.44 6.6915 4.03 3.37 2.98 2.55 4.50 6.07 7.80 8.52 9.00 8.54 7.)0 6.4820 3.86 3.43 2.80 2.79 5.00 6.34 8.10 9.18 8.64 6.16 7.14 6.4'725 3.75 3.38 2.67 3.10 5.34 6.60 e.13 9.22 8.43 8.18 7.02 6.50EOM 3.59 3.18 2.63 3.40 5033 6.90 e .16 8.93 8.31 8.10 0.8'01 6.40----------------------------------------------------------------------------------------------------

1978

5 6.31 6.08 5.64 5.50E 5.29 7.10E 10.82 11.52 11.6510 6.23 5.81 5.62 5.52E 5.13 7.70E 10.51 11.96 11.89 ·.....15 (, .14 5.86 5.69 5.55E 5.27 8dOE 10.68 11.93 11.1l"20 6.17 ':>.88 5.56 5.58E 5.88 8.90E 10.49 12.03 11.lJ25 6.17 5.78 5.59 5.60E 5.87 9.50E 11.00 11.87 10.84 ·.....EOM 6010 5.71 5.42 5.60 6.46 10.10E 11.48 11.59 10.62 ·.....----------------------------------------------------------------------------------------------------

57

Page 63: Technical Publication No. 69 - Utah

Table h.--hT;lU'f levels in selected 1"f1:.' lIs, 196'J-78--Cuntillued

(C-"-413..JAlJD-1LSD 1+417.92 FT AbOVE MSL.LOwEST WATEQ Lt.VEL 57.49 BELOW LSD. AUG. 31. 1967.RECORDS AVAILAbLE: 1937-78.----------------------------------------------------------------------------------------------------

\lATER wATER WATER wATERDATE LEVEL DATE. LI:.VEL DATE LEVEL DATE. LEVEL

----------------------------------------------------------------------------------------------------APR. 19. 1963 50.08 '1AY 310 1967 5:'.03 MAf<. A. 1'171 50033 M~R. 0.. I'd:' 36.71JUNE 20 52.18 AU(;. 31 57.49 MAR. 18 50.34 APR. 28 36.11AUG. 26 54.22 OCT. 31 '">6.80 AP ... 18 SO.87 JUNE 24 36.2'1SEP. ,,5 53.99 DEC. 6 :'5035 MAY 7 51.0\1 OCT. 7 38.52OCT. 25 S4.18 JAN. 17. 1968 ':>4.40 JUL Y 21 S4.2'1 DEC. 'I 36.1+2NOV. 19 53.14 FEb. 2 55.15 SEP. 22 54.5,> JAN. 6. 1~lo 35.00NOV. 26 53.09 MAR. 1 :'4.84 uC T. 21 53.6'1 JAN. 30 31+.':>5DEC. 24 53.76 MAY 3 54.45 NuV. 29 52.12 FUl. 26 33.97JAN. 24. 1964 52.67 JUNE 26 '">6.99 DEC;. 29 51.39 MAR. 8 33.86Fl:.b. 25 52.18 AUG. 23 57.11 JAN. 28. 1972 50.76 MAR. 18 33.61MAR. 30 52.00 SEP. 24 57.24 FEll. 29 49.90 APR. 26 33.20APR. 30 ':>2.06 OCT. 1~ 50.60 MAR. 7 49.12 JUNE 29 36.40JUNE 29 53.46 JAN. 9. 1969 54.~6 APP. 28 49.46 AuG. " 37.40SI:.P. 211 57.41+ FEt:l. 5 54.32 MAY 31 52 • .,9 Sr-P. 7 3A.~4

OCT. 29 55.1~ MAR. .3 53.84 JULY 31 S2.47 SfP. 27 3H.26NOV. 30 54.60 MAY 1 53.52 AUG. "4 54.77 OFC. 8 35-"4DEC. 31 54.16 MAY 26 55.60 SEP. 21 54.58 JAN. 13. 1~77 34.37MAR. 2. 191)5 53.79 SEf'. 3 57.21 OCT. 13 ~3.12 FU:l. 8 33.78MAti. 31 53.59 OCT. 6 56.92 NOV. 14 51.29 MAR. I 3303 7APR. 27 53.68 NOV. 10 50.71 DEC. 11+ 50.18 MAR. 23 32.9>;JUNE 28 56.08 NOV. 28 55.02 JAN. 18. 1973 49.15 A,>R. 15 32.91AUG. 30 56.56 DEC. 4 51+.77 FEt<. 21 48.10 A'lR. 19 32.90SEf'. 29 56.56 JAN. 5. 1970 54.23 MAR. 8 47.86 JUNE 13 34.88OCT. 26 56.02 FEH. 2 53.30 APR. 30 46.81 SEP. 9 39.27NOV. 26 55.57 MAR. 9 52.52 SEP. 27 4'1.36 OcT. 6 37.93DEC. ,,6 ':>4.'14 APR. 2 52.18 OCT. 30 46.46 NOV. 9 37.94JAN. 26. 1966 54.53 MAY 1 52.19 JA"l. 1O. 1974 43.28 DEC. 0 37.03FEIj. 24 54.12 JUNE. 23 53.91 FEH. 21 41.94 DEC. 13 37.00MAR. 1 53.96 JULY 21 55.54 MAP. 8 41.60 J~N. 5. 1,>7ti 36.61:lAPR. "ll 53.72 SE.P. 17 55.15 APti. 9 40.80 JAN. 10 36.58DEC. 30 55.08 OCT. 12 54.18 JUrJt. 24 42.50 FHJ. h 3".29FEb. 1. 1967 54.51 NOV. 9 ':>3.1+7 SEP. ':> 44.36 MAti. ti 36.12MAR. 7 54.26 DEC. 3 '>3.00 NOV. 26 38.27 '1AR. 22 36.06MAR. 2d 53.91 JAN. 21. 1971 52.01+ FEp. 12. 1975 37.40 APR. 27 35.d6APR. 30 54.04 FEH. 4 51.76

-----------------------------------------------------------------------------.-----------.----------

IC-2-4l33tlCB-1LSD 4373.80 FT ABOVE MSL.HiGHEST WATER LtVEL 6.90 At:lOVE LSD. MAR. 8. 1978.LowtST WATER LE.VEL 9.05 BELOW LSD. MAR. 1. 1968.~tCORDS AVAILAbLE: 1941-42. 1',158-711.-------------.----------------.-.---.----------------------------------------.-----------.--.-------

WATER WATER WATER WATERDATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

-----------------------------------------------------------------------------.-----------.----------MAk. 16. 1964 6.01 MAk. I. 1968 9.05 MAR. 7. 1972 4.64 MAR. 1:1. 1,,76 + 2.2MAR. 3. 196':> 7.58 MAti. 3. 1969 8.42 MAH. 8. 1973 c.79 MAR. 7. 1'> 7 7 0.22MAR. 2. 1966 7.89 MAR. 9. 1970 6.92 MAR. ti. 1974 + 2.32 MAti. 8. 1,,7~ + 6.90MAR. 7. 1967 8.44 MAR. 8. 1971 5031 MAR. 5. 1975 + 2.50

.---.--------------.------.---.-----.--.-.-----------------------------------.-----------.--.-------

58

Page 64: Technical Publication No. 69 - Utah

TabLe 6.--H<lt-vr lc'vt'ls in si-'lecti-'d well:-;, 196J-78---Cnlltinucd

IC-2-4l34t:lLJD-lLSD 4443 FT At:lLJVE MSL.HIGHEST wATER L~VEL 59.32 !:lELOW LSD. AP~. IJ. 1977.LOwEST wATER LtVEL 72.94 8ELOw LSD. MAR. 8. 1973.RECORDS AVAILAt:lLE: 1973-78.----------------------------------------------------------------------------------------------------

DATEWATERLEVEL DATE

WATEHLEVEL DATE

wATERLEVEL DATE

WATE~

LEVEL

----------------------------------------------------------------------------------------------------8. 1973/:l. 1974':i. 197':i

72."1466.8762.47

8. 19767. 1977

hO 031'>9.94

AP". 13. 1977JUr<t 13

59.32h2.0'>

JuL Y 12. 1 y 7 7MAR. 22. 1'17';

(C-2-5) 5ACC-3LSD 4214 FT At:lUVE MSL.HIGHEST wATER LtVEL 0.1'1 !:lELOW LSO. AP~. 10. 1"152.LOwEST WATER LtVEL 4.46 8ELOW LSD. SEP. 7. 1978.RECO~DS AVAILAt:lLE: 1940-42. 1'144-53. 1955-71:l.

DATEWATERLEVEL DATE

WATERLEVEL DATE

WATEHLEVEL DATE

wATE~

LEVEL----------------------------------------------------------------------------------------------------

MAR. 20. 1964 0."11 MAR. 6. 19,.,"1 0.31 SfP. h. 1974 J.61 SE~P. 9. 1,-,77 ].33NOV. 0 1.36 SEP. 3 1.42 MA~. 7. 1'H5 1.23 OCT. 4 2.71MAR. 5, 196':> 0.81l MAR. 11. 1970 0.71l SEP. '. 4.30 NOV. 8 1.34JULY 29 1.21 SEP. 17 1.4'1 MA~. 9. 1976 0.79 DEC. 12 1.2HOCT. 27 1.15 MAH. 10. 1971 0.51 SElJ. 9 2.73 JAN. 9. l'o/lll 1.18MA~. 3. 1966 0.78 SEP. 2 1.01 MA~. 9. 1977 1013 FH1. 14 .'18SEP. 12 1.66 MA~. 10. 1972 0.1l':> AlJR. 15 0.81 MAR. 9 .69MAR. 9. 1967 .90 SO'. 21 2077 MAy 10 0.1:\2 AlJR. 12 .8USEP. 14 1.46 MAR. 12. 1973 0.34 JUNt 10 0.97 MAY 9 .75MAR. 7. 1968 0.79 SEP. 6 2.67 JULY 12 2.42 JUNE 9 2.27StY. 25 1.31 MAR. 13, 1974 0.79 AUG. 11 3.23 SEP. 7 4.46

(C-2-5) SUCD-4LSU 4216 fT At:lOVE MSL.HIGHEST WATER LEVEL 3.77 ABOVE LSD, MAR. 9. 1978.LOWEST wATER LEVEL 1.51 ABOVE LSD. MAR. 7, 1975.RECORUS AVAILA~LE: 1961-78.

WATER WATER wATER WATERDATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

----------------------------------------------------------------------------------------------------MAR. 20. 1964 + 2.48 MAR. 7. 1968 + 2.6"> MAR. 10. 1'172 + 2.69 MAR. 9. 1'1 f6 + 1.60MAR. S, 1965 + 2.47 MAR. 6, 1969 + 2.72 MAR. 12, 1973 + 2.95 MAR. 9, 1 '177 + 1.53MAR. 3. 1966 + 2.62 MAH. 11. 1970 + 2.58 MAR. 13. 1974 + 1.97 MAR. 'I, 1,,11:l + 3.77MAR, 9. 1967 + 2.60 MAR. 10, 1971 + 2.72 MAR. 7. 1''15 + 1.51

(C-2-5) 6UUD-7LSD ~219.4S FT ABOVE MSL.HIGHEST WATER L~VEL 2.21 ABOVE LSD. MAR. 12. 1973.LOWEST WATER LEVEL 0.78 ABOVE LSD, SEP. 5. 1961.RECORLJS AVAILA~LE: 1961-78.

DATEWATERLEVEL DATE

WATERLEVEL DATE

WATERLEVEL DATE

WATERLEliEL

MAR. 17, 1964 + 1.48 MAR. 7. 196A + 1.61 lolA". 10. 1972 + 1.65 MAR. 9. 1976 + 1.53MAR. 5. 1965 + 1.46 MAR. 6. 1969 + 1030 MAR. 12. 1973 + 2.21 MAR. 9. 1'0/77 + 1.68MAR. 3, 1966 + 1.65 MAR. 110 1970 + 1.51 MAR. 13. 1974 + 1.96 MAR, 9, lY71:l + 1.61MAR. 9, 1967 + 1.53 MAR. 10. 1971 + 1.83 MAR. 7. 1975 + 1.43

----------------------------------------------------------------------------------------------------

59

Page 65: Technical Publication No. 69 - Utah

Table h.--I"Jater levels in sel£'cted wells, 196J-78--Continucd

(C-2-5 I 71:HJO-lLSD 4230.78 FT AtlOVl MSL.HIGHlST ~ATER LEVEL 4.32 A80VE LSD. MAR. 12. 1973,LO~EST ~ATER LlVlL 0.85 A80VE LSD. MAR. 9. 1977.RECORuS AVAILAtlLE: 1941. 1958. 1961-78.

DATE~ATER

LEVEL DATE~ATfR

LEVEL DATE~ATfR

LEVEL DATEWATERLEVEL

MAR. 17. 1964 +

MAl'. 5, 1965 +

MAR. 3, 1966 +

MAR. 9. 1967 +

3.843.864.113.74

MAR. 7, 191>8 +MAR. 6. 1969 +MAR. II. 1970 +MAR. 10, 1971 +

3.95 MAR. 10. 197? + 3.90 MAR. 9. 1'176 +

4.24 MAR. 12, 1973 + 4.32 MIi~. 9, I"n +

3.86 MAR. 13, 1474 + 3.82 MAR. 9. 1,,70 +4.1'1 MAf<. 7. 1975 + 3.51l

1.140.H51. U2

(C-2-5113At:C-lLSD 4222 FT AtlOVE MSL.HIGHEST ~ATER LEVEL 6.72 A80VE LSD, MAR. 14, 1973.LO~EST ~ATER LUEL 5.94 A80VE LSD. MAR. II. 1970. ~At<. 6. 1975.RECORDS AVAILAtlLE: 1'161, 1970-78.

DATE

MAR. II. 1970 +MAR. 10. 197: +MAR. 8. 1972 +

WATERLEVEL DATE

MAR. 14. 1973 +MAR. 12, 1'174 +

WATERLEVEL

h.7?6.20

DATE

MAfJ. h. 1475 +MAf<. 10, 1976 +

WATERLEvEL DATt.

"AAR. A. l"-JII +

MAR. 13, lY71:l +

WATERLEVEL

(C-2-5) 14LJtl8-1LSD 4221 fT ABUVE MSL.HIGHEST ~ATER LEVEL 22.10 A80VE LSD. MAR. 20. 1964.LO~EST ~ATER LEVEL 18.27 8ELO~ LSD, OCT. 12. 1978.RECORDS AVAILAtlLE: 1940. 1958, 1961-64. 1970-78.----------------------------------------------------------------------------------------------------

WATER WATER WATER WATERDATE LEVEL DATE LEVEL DATE LlVEL DA Tl LEVEL

----------------------------------------------------------------------------------------------------MAR. 20. 19"4 + 22.10 SER. 4. 197<:; + 17.60 JULY II, 1977 + 18.1 MAR. 12. 1'1 ftl + 18.1:10MAR. 11. 1970 • 17.40 MAR. 10, 1976 • 11l.9 AUG. 11 18.3 APR. 11 18.39MAR. 10. 1971 + 17.70 SEP. 20 17.5 SEfJ. 8 18.5 MAY 9 18.t:!OMAR. 8. 1972 · 18.20 MAR. 8. 1977 • 18.5 OCT. 4 18.6 .HINl 9 18.72MAR. 14. 1973 · 17.80 APR. 15 19.1 NOV. 8 18.55 SEP. 1:1 18.02MAR. 12. 1974 + 18.40 MAY 11 18.45 DEC. 12 IH.35 OCT. 12 18.27MAR. 6. 1975 • 18.30 JUNE 10 HI.58 JAN. 9. 1978 + 18.35

(C-~-5117dUA-l

LSD 4223.94 FT ABOVE MSL.HIGHlST ~ATER LEVEL 22.70 A80VE LSD. MAR. 31. 1941.LO~EST ~ATER LEVEL 11.60 A80vE LSD. SEP. 6. 1974.RECORDS AVAILAdLE: 1941. 1961-71:1.----------------------------------------------------------------------------------------------------

~ATFR WATER ~ATER WATERDATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

----------------------------------------------------------------------------------------------------MAR. ~O. 1964 + 14.70 SEP. 17. 1970 + 14.10 MAt<. 7, 1975 . 14.60 JULY 12. 1'171 . 14.0MAl<. 8. 1965 • 15.40 MAR. 10. 1971 • 15.60 SEfJ. 3 12.70 AUG. 16 1... 3MAR. 3. 1966 + 15.80 SEP. 2 + 14.10 MAR. 10. 1976 + 15.1 StY. 9 13.4'>MAR. 9. 1967 • 15.30 MAR. 9. 1972 • 16.00 SER. 9 13.3 OCT. 4 13.6MAR. 7. 1968 • 16.90 SER. 21 13.50 MAR. 9. 1977 + 15.0 NOV. 8 14.0SEP. 25 14.60 MAR. 13. 1973 · 17 .20 APR. 15 14.82 DFC. Ie 14.80MAR. 6. 1969 + 16.60 SEP. 6 13.50 MAY 10 15.1 JAN. 9. 1'1 it:! + 15.15SEP. 3 13.50 MAR. 13. 1974 + 15.50 JUNE 10 14.9 MAR. I .. 15.90MAR. 11. 1970 + 15.10 SEP. 6 + 11.60

60

Page 66: Technical Publication No. 69 - Utah

Table 6.--Wate.r }t'vels in selectf'J we.Ils, 1963-78--Continued

(C-2-~)ltltlUC-l

LSD 422tl FT AtlOVE M~L.

HIGHtST WATER LtVEL 3.82 AtlOVE LSD. MAR. 3. 1966.LOWEST WATER LEVEL 0.34 AtlUVE LSD. MAR. 10. 1972.RECORDS AVAILAbLE: 1961-78.

DATEWATERLEVEL DATE

WATERLEVEL DATE

"lATERLEVEL DATE

wATERLEVEL

MAR. 17. 1964 • 2.74 MAR. 7. 191)A • 3.00 MAR. 10. 1972 · 0.34 MAR. 10. 1" 76 · 1.5HMAR. 5. 1965 • 3.29 MAK. 6. 1969 · 3.02 MAt<. 12. 1973 · 2.12 MAR. 9. !'in · 1.66MAR. 3. 1966 • 3.82 MAR. 11. 1970 · 2.76 MAR. 13. 1974 · 1.46 MAR. 14. I'>'!:! · 1./)7MAR. 9, 1967 · 2.71 MAR. 10, 1971 · 3.2tl MAR. l. 1975 · 0.72

----------------------------------------------------------------------------------------------------

(C-2-5) 180CC-lLSD 4230.40 FT ABOVE MSL.HIGHEST WATER LEVEL 4.38 A!:!OVE LSD, APR.LOWEST WATER LEVEL 0.81 ABOVE LSD. MAR.RECORDS AVAILABLE: 1959-78.

7, 1960,9, 1977.

DATEWATERLEVEL DATE

WATERLEVEL DATE

WATERLEVEL DATE

WATERLEVtL

----------------------------------------------------------------------------------------------------MAR. 17, 1964 • 2.43 MAR. 7, 196A · 3.19 MAR. 9, 1972 • 2.59 MAR. 9, 1976 · 2.35MAR. 5, 1965 • 3.36 MAR. 6, 1969 • 4.28 MAR. 13, 1973 · 3.45 MAR. 9, 1977 · 0.tl1MAR. 3, 1966 · 3.14 MAR. 11, 1970 • 2.67 MAR. 13. 1974 • 2.23 MAR. 9, l'Jltl · 1.72MAR. 9, 1967 • 2.50 MAH. 10, 1971 · 3.06 MAt-. 7, 1975 · 1.86

(C-2-5) 190CC-lLSD 4242 FT AtlOVE MSL.HIGHEST WATER LEVEL 21.60 ABOVE LSD, MAR. 8, 1977,LOWEST WATER LEVEL 0.04 ABOVE LSD, NOV. 29, 1958.RECOHDS AVAILAtlLE: 1937-78.

DATE

MAR. 18, 1964 •MAR. 5. 1965 •MAR. 3, 1966 •MAR. 9, 1967 •

WATERLEVEL

18.7018.7020.2018.30

MAR.MAH.MAR.MAR.

DATE

7, 1968 •6, 1969 •

11, 1970 •11, 1971 •

WATERLEVEL

1901 019.4018.60Ifl.60

DATE

MAfJ. 9, 1972 •MAfJ. 13. 1973 •MAR. 13, 1974 •MAP. 7. 1975 •

WATFRLEVEL

19.209.00

10.2017.60

DATE

9, 1976 •8. 10177 •9. 1'J7tl •

WATERLEVEL

19.5021.621.2

----------------------------------------------------------------------------------------------------

(C-2-5l20ACC-1LSD 4236 FT AbOVE MSL.HIGH~ST WATER LEVEL 12.00 AtlOVE LSD, APR. 20, 1961,LOWEST WATER LEVEL 7.65 ABOVE LSD, SEPt 7. 1978.RECORDS AVAILAtlLE: 1961-78.

----------------------------------------------------------------------------------------------------DATE

WATERLEVEL DATE

WATERLEVEL DATE

WATERLEVEL DATE

WATERLEVEL

MAR. cO. 1964 · 10.50 MAR. 6. 1969 · 10.40 MAfJ. 13. 1974 · 10.10 MAR. 9. 1':177 · 9.6MAR. 5. 1965 • 9.60 MAR. 11. 1970 · 10.50 MAfJ. 7. 1975 · 9.70 OCT. 5 8.0MAR. 7, 1966 · 10.80 MAR. 11. 1971 · 10.60 SEP. 4 7.70 MAR. 14. 197tl · 9.7MAR. 9. 1967 · 10.00 MAR. 9. 1972 • 10 .80 MAR. 9, 1976 • 1101 SEP. 7 7.65MAR. 7. 1968 · 10.90 MAR. 14. 1973 • 11.50 SEP. 9 8.3

61

Page 67: Technical Publication No. 69 - Utah

Table 6.--v,1at('r Levl'ls in ~H'lecu'd v,lf'11s, 196'3-n~--ColltitllH'(

(C-2-5) 21 CtH:l-lLSD 4240 fT A~OVE MSL.HIGHtST WATER LEVEL 22.00 AbOVE LSD, MAR. 14, 1973,LOwEST WATER LEVEL I5.S0 AbOVE LSD, OCT. 12, 1962.RECORDS AVAILAbLE: 1962-7B.-----------------------------------------------------------------------------.----------------------

DATEWAlfRLEVEL DATE

WATERLEVEL DATE

WATERLEVEL DATE

wAlE>;LEVEL

----------------------------------------------------------------------------------------------------MAR. lA, 1964 +MAR. 9, 196':> +

MAR. 7, 1966 +MAR. 9, 1967 +

19.AOIB.3019.BO17.BO

MAR. 7, 196R +

MAR. 7, 1969 +I-1AR. 11, 1970 +

MAR. 11, 1971 +

2103020.4019.4017.30

MAR. 10, 1972 +MAR. 14, 1973 +MAR. 13, 1974 +

MAR. 7, 1975 +

IR.7022.0017.9017.40

MAR. 10, 1'770 +M,\R. 9, 1'777 +

MAR. 13, 19711 +

----------------------------------------------------------------------------------------------------

(C-c-5123CAC-1LSD 4C4S FT AbOVE MSL.HIGHtST WATER LEVEL 22.50 AbOVE LSD, fEb. 27, 1941,LOWEST WATER LEVEL 10.10 ABOVE LSD, SEP. 21, 1972.RECORDS AVAILAbLE: 1940-41, H5B, 1961-711.

WATFR WATEH WATFR WATERDATE LEVEL DATE LEVEL DATE LEVEL DATE LFVEL

----------------------------------------------------------------------------------------------------MAR. 20, 1964 + 14.10 ,..,AR. 6. 1969 + 14.00 MAR. 12. 1974 + 14.70 JULY 11, 197/ + 12."0NOV. 6 11.90 SfP. 3 11.60 SEP. 6 11.90 N'lV • B 12.BSMA~. 9, 1965 + 13.30 MAH. 11, 1970 + 14.10 MAR. 6, 1975 + 12.70 Dr_C. 12 12.97JULY 2tl 11.90 SEP. 17 12.00 SEP. 4 12.60 JAN. 9, l'7ltl + 13.00OCT. 27 11.BO MAR. 11, 1971 + 14.20 MAR. 10, 1976 + 13.5 Fr_B. 1'· 13.05,..,AR. 3, 1966 + 14.10 SEP. 2 11."10 SE.P. 20 12.6 MAR. 13 13.3':)MAR. 8, 1967 + 13.80 MAR. B, 1972 + 14.40 MAR. B, 1977 + 13.0 ApR. 11 13010SE.P. 14 11.90 SEP. 21 10.10 APR. 14 13.1 'qy 10 12.77MAR. 6. 1968 + 14.15 MAR. 13, 1973 + 14.70 MAY 11 12.9 JIJNE. 9 13.11SEP. 25 + 12.30 SEP. 6 12.10 JUNE. 10 12.R5 Stp. 8 12.92

----------------------------------------------------------------------------------------------------

(C-2-S12SAAb-2LSD 4267 FT ABOVE MSL.HIGHE.ST WATER LE.VEL 7.50 AbOVE LSD, MAR. tl, 1976,LOWEST WATER LtVEL 4.46 ABOVE LSD, OCT. 10, 1962.KECORDS AVAILAbLE: 1961-78.

WATER "'ATER WATER WATERDATE LE.VEL DATE LEVEL DATE LEVEL DATE LEVEL

----------------------------------------------------------------------------------------------------MAH. 27, 1964 + 4.91 MAR. 10, I'll? + 5.60 JUNe 10, 1977 + 6.50 J~.N. 9, 1971l + 6.8MAR. 9, 1965 + 4.61 MAR. 9, 1973 + 5.95 JULY 11 6.10 FEB. 13 6.9MAR. 3, 1966 + 5.01 MAR. 11, 1974 + 6.1 Y AUI'; • 11 6.0 MAR. a 7.2MAR. 9, 1967 + 4.78 MAR. 6, 1975 + 5.98 SEp. 8 5.0 API'i. 12 7.3MAR. 6, 1968 + 4.88 MAR. 8, 1976 + 7.5 OCT. 5 6.2 MAY 10 7.3tlMAR. 6, 1969 + 4.88 MAk. 8, 1977 + 7.27 NOV. 9 6.40 JUNE Y 6.7'::>MAk. 11, 1970 + 4.85 APR. 14 7.40 DEC. 12 6.60 SlY. 7 5.00MAR. 10, 1Y7l + 5.18 MAY 10 6.1

(C-2-S)2SCDD-4LSD 4292 FT A~OVE MSL.HIGHEST WATER LEVEL 24.00 ABOVE LSD, MAR.LOWEST WATER LE.VEL 9.50 ABOVE LSD, OCT.RECORDS AVAILAbLE: 1961-7b.

7, 1977,2, 1962.

DATEWATERLEVEL DATE

WATERLEVEL DATE

WATFRLEVEL DATE

WATERLEVEL

----------------------------------------------------------------------------------------------------MAR. 19, 1964 + 10.40 MAR. 5, 1968 + 14.40 MAR. 7, 1972 + 13.00 M.Af.'. 8, 1976 + 22.BMAti. 9, 1965 + 11.30 MAR. 4, 1969 + 1'::>.00 MAR. 9, 1973 . 14.10 MAR. 7, 1'177 + 24.0MAR. 4, 1966 + 12.20 MAR. 10, 1970 + 13.50 MAH. 11, 1974 + 16.30 MAR. 8, 197B + 23.6MAR. 9, 1967 + 13.60 MAR. 9, 1971 + 12.20 MAR. 7, 1975 + 18.40

----------------------------------------------------------------------------------------------------

62

Page 68: Technical Publication No. 69 - Utah

Table 6.--\4atcr levels in selecte.d wells, 1963-7R--Continucd

(C-2-5)27CCC-ILSD 4268.10 FT ABOVE MSL.HIGHEST WATER LEVEL 1.32 BELOW LSD, APR. 5, 1960,LOWEST WATER LEVEL 4.70 BELOW LSD, SEP. J, 196~.

RECORDS AVAILABLE: 1~60-78.

----------------------------------------------------------------------------------------------------WATER WATER WATER WATtR

DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVtL

-------------- --------------------------------------------------------------------------------------MAP. 16, 1964 2.99 SEP. ;>4, 1968 4.01l SEf'. 5. 1971 3.48 JIjNE lJ. 1')77 2.04NUV. 2 3.98 MAR. 4. 1969 3018 MAo<. II. 1974 2.40 JULY II 3.~4

MAR. 4. 1965 3.70 SEP. 3 4.70 SEP. ') 3.40 AUG. II 3.04JULY 21l 3.24 MAR. 10. 1970 3.50 MAR. 6. 1975 2.57 SEP. Il 4.32OCT. 27 3.52 SEA. 17 4.18 SEP. 4 2.41 OCT. 5 3.3':>MAR. 2. 1966 2.23 MAR. 9. 1971 3.57 MAR. B. 1976 1.57 NOV. 9 2.71SEf'. 9 4.51 SEP. I 3.46 StA. 8 3.93 DEC. 12 2.31)MAR. 7, 1967 3.33 MAR. 8, 1972 2.58 MAR. B. 1977 2.0b JAN. 'I. 1'-J71l 2.1'-/SEP. 14 3.93 SEP. 21 4032 APo<. 14 2.01 MAR. 9 2.03MAR. 15. 1961l 3.08 MAR. 9, 1973 1.77 MAY 10 3.51

----------------------------------------------------------------------------------------------------

(C-2-5129ADC-2LSD 4255 FT ABOVE MSL.HIGHEST WATER LtvEL 18.20 AbOVE LSD. MAR. 7, 1968,LOWEST WATER LEVEL 3.40 ABOVE LSD, OCT, 12. 1962.RECORDS AVAILABLE: 1961-71l.

DATEWATERLEVEL DATE

WATERLEVEL DATE

WillERLEVEL DATE

WATERLEVEL

MAR. 20. 1964 + 15.50 MAR. 7, 196R + 11l.20 MAP. 10, 197? + 10.00 MAR. 10. 1'-J76 + 10.4MAR. 8, 1965 + 13.70 MAR. 7. 19b9 + 13030 MAo<. 13, 1973 + 9.00 M,\R. 9. 1'-J77 + 8.1MAR. 3. 1966 + 15.80 MAR. 11. 1970 + 12.00 MAR. 13. 1974 + 7.20 MAR. 13. I ~71l + 8.0MAR, 9, 1967 + 8.70 MAR. 110 1971 + 11.40 MAR. 7. 1975 + 8.10

----------------------------------------------------------------------------------------------------

(C-2-5l30CI;jU-ILSD 4260.41 FT ABOVE MSL.HIGHEST WATER LEVEL 9.00 ABOVE LSD. MAR. 10, 1972, MAR. 13. 1974.LOW~ST WATER LlVEL 3.06 ABOVE LSD, OCT. 3. 1962.RECORDS AVAILABLE: 1961-78.

DATEWATERLEVEL DATE

WAH:.RLEVEL DATE

WATERLEVEL DATE

WATERLEvEL

MAR. 27, 1964 + 6.00 MAR. 7. 1968 + 6013 MAt>. 10. 1972 . 9.00 MAR. 9. 1~76 + 8.5MAR, 4, 1965 + 6.55 MAR. 6, 1969 + 6.70 MAR. 13, 1973 + 8.90 MAR. 9. 1'J77 + 6.4MAR. 2, 1966 + 6.20 MAR. 12. 1970 + 6.95 MAR. 13, 1974 + 9.00 MAR. 9. 1S/71l . ".1MAR. 8, 1967 + 4.95 MAR. 10. 1971 + 6.56 MAR. 7. 1975 + 7.50

----------------------------------------------------------------------------------------------------

(C-2-5)30DAA-ILSD 4253.54 FT ABOVE MSL.HIGHEST WATER L~VEL 4.95 ABOVE LSD, MAR.LOWEST WATER LeVEL 1.92 ABOVE LSD, OCT.RECORDS AVAILABLE: 1961-78.

8, 1967,4, 1961.

DATE

MAR. 20. 1964 +MAR. Il. 1965 +MAo<. 7, 1966 +MAR. 8. 1967 +

WATERLEVEL

3.243.083.404.95

DATE

MAR. 7. 1968 +MAR. 7. 1969 +MAR. 11. 1970 +MAR. 11. 1971 +

wATERLEVEL

3.013.023.243.18

MAP.MAR.MAR.MAR.

63

DATE

9. 197? +13, 1973 +13, 1974 +

7. 1975 +

wATERLEVEL

3.353.443.172.99

DATE

MAR. 10. 1~7b •MAR. 9, 1'-J77 +MAR. 15. 1'-J71l +

WATERLEVEL

3.163.062.73

Page 69: Technical Publication No. 69 - Utah

Table 6.--tv;lter levels in selected wells, 1963-78--ContinUE'd

(C-2-5) 3111tlD-3LSD 4280.55 FT ABOVE MSL.HIGHEST WATER LtVEL ld.80 ABOVE LSD, DEC. 2~, 1952,LOwEST ~ATER LEvEL 4.25 BELO~ LSD, SEP. 9, 1977.RECORUS AVAILAllLE: 1937-78.----------------------------------------------------------------------------------------------------

DATE~ATER

LEVEL DATE'IIATEf<LEVEL DATE

'IIATFRLEVEL DATE

wATt.f<LEVt.L

----------------------------------------------------------------------------------------------------MAR. lIh 1964 • 6.'10 MAf<. 10, 1'177 · 7.40 MAY 10, 1977 • 1.75 JoN. 9, \'-178 + 1 ... 1MAR. 4, 1965 · 5.72 MAR. 13, 1'173 • 6.37 JULY 11 1.68 F r B. 14 2.00MAR. 2, 1966 · 6.94 MAR. 12, 1974 · 7.02 AUG. 11 2.91 MAR. 9 2.3eMAR. !:!, 1967 · 4.47 MAR. T, 1975 · 4.60 SEp. 'I 4.25 A,:>R. 12 2.72MAf< • 5, 196!:! · 4.50 MAR. 9, 1976 + 5.91 OCT. 5 1.42 M~Y !:! 3.U4MAR. 6. 1'169 • 4.91 MAR. 8. 1977 · 3.7 NOV. 9 0.15 JUNE 8 1.3fJMAR. 12, 1970 · 5.94 APR. 15 3.41 DEC. 12 1.1 SrY. T 2.9HMAR. 10, 1971 · 6.15

(C-2-5)3111UD-3LSD 4294.80 FT ABOVE MSL.HIGHEST WATER LEVEL 0.'10 BELO~ LSD, FEB. 27. 1942,LO~EST ~ATER LEVEL 12.43 BELO~ LSD. JAN. 9, 1978.RECORDS AVAILABLE: 1942, 1958-78.

DATEWATERLEVEL DATE

~ATFR

LlVEL DATEWATFRLEvEL OATl

wATtRLEVEL

----------------------------------------------------------------------------------------------------MAR. 16. 1964 9.04 MAR. 4, 1969 9039 SEP. S. 1974 '1.37 "FP. 9, 1911 1?00NOV. 2 9.51 SEP. 3 8.05 lolAI'. 6, 1975 10.74 OCT. 5 11.'16MAR. 4, 1965 8.03 MAR. 11, 1970 '1.44 SEP. 3 !l.10 NOV. 9 12.13JUL Y 28 6.56 SEP. 17 8.9!:! MAR. 9, 1976 9.30 UFC. 12 12.20OCT. 27 8.26 MAR. 9. 1971 9.2!:! SEP. 8 9.02 JAN. 9, 1978 12.43MAR. 2, 1966 8.34 SEP. 1 7.77 MAP. 8, 1977 10.84 FOl. 14 12.33SEP. 12 11.42 MAR. 8, 1972 8.98 APR. 14 10.93 MAR. 9 12.13MAR. !:!, 1967 5.47 SEP. 21 9.04 MAY 10 11010 ApR. 12 11. elflSEP. 14 9.70 MAR. 9. 1973 8.79 JUNE 10 10.85 MAY q 10.86MAR. 5. 1968 9.77 SEP. 5 7.92 JULY 11 11.07 JUNE !:! 10.36SEP. 24 9.05 MAR. 12, 1974 9.19 AUG. 11 11.65 S"P. 7 10.64

(C-2-5)310Ao-3LSD 4294.50 FT ABOVE MSL.HIGHEST 'IIATER LEVEL 0.20 8ELOOI LSD, MAR. 20, 1958.LOWEST ~ATER LtVEL 13.lll BELOW LSD, SEP. 9, 1977.RECORDS AI/AILAdLE: 1958-78.

----------------------------------------------------------------------------------------------------WATER 'IIATER WATER WATER

DATE LEVI'L DATE LEI/EL DATE LEVEL DATE LEVEL----------------------------------------------------------------------------------------------------

AUG. 26. 1963 11.70 MAR. 4. 1969 b.03 SEP. ." 1974 9.57 S!-.p. 9, 1 '171 13.tjJMAR. 16. 1964 6.40 SEP. 3 7.92 MAR. 6, lY75 5.27 OCT. ':> 10.t!'>NOV. 2 8.30 MAR. 12, 1'170 4.94 SEP. 3 7.B2 NOV. 9 9.b5MAR. 4, 1965 5.82 SEP. 17 1l.48 MAR. 'I, 1976 3.51 DEC. 12 8.Y2JULY 28 6.80 MAR. 9, 1971 4.68 SEP. 8 10.27 JAN. 9, 197!l 8.43OCT. 27 ,:>.79 SEP. 1 7.09 MAR. 8, 1977 5.81 H:B. 14 ':l.10MAR. 2, 1966 4.10 MAR. 8, 1972 3.63 APR. 14 5.95 MAR. 9 7.YlSEP. 9 12.89 SEP. 21 8.16 MAY 10 9.47 APR. 11 7.60MAR. 8, 1967 7.22 MAR. 9, 1973 4.36 JUNE:. 10 8.70 M.:>,Y 9 7.39SEP. 14 9.51 SEP. 5 7.20 JULY 11 lU.9t! JIINE 8 8.'>1MAR. 5, 1968 6.42 MAR. 12, 1974 3.29 AUG. 11 12.5!:! StP. 7 12.YeSEP. 24 10.10

----------------------------------------------------------------------------------------------------

64

Page 70: Technical Publication No. 69 - Utah

r;Jhll' 6.--Wntc( ll'vl'Ls in ~;('ll'ct('d w(·lLs, J96')-78-·-Continued

(C-2-5l320AD-ILSD 4291.95 FT ABOVE MSL.HIGHEST WATER LEVEL 2.13 B~LOW LSO. MAR. 10. 1976.LOWEST WATER LEVEL 9.18 BELOW LSD. SEPt ~. 1973.REC0RDS AVAILA~LE: 1~61-77.

DATEWATERLEVEL DATE

WATFRLEVEL DATE

WATF:RLEVEL DATE

WATERLEVEL

"AR. 18. 1964 3.79 MAR. 8. 1967 4,42 SEpt 17. 1970 6.41 Mr.R. 12. 1'174 4.01NOV. 2 6.16 SEP. 14 7.'10 MAR. 10. 1971 3.50 Sf p. 5 8.00MAR. 4. 196':> 4.75 MAR. ':>. 1968 4.25 SEPt I 8.01 MAR. O. H7':> 3.64JULY 2B 7.70 SEPt 24 b.03 MAfi. 8. 1972 3.34 SEPt 4 B.14OCT. 27 0.42 MAR. 4. 1969 4033 SEI-'. 21 6.91 MAR. 10. 1'176 2.13MAR. 2. 1900 3.14 SEPt 3 7.74 MAR. 9. 1973 3.32 S"p. 8 6.06SEPt 9 2.79 MAR. 1 O. 1970 3.72 SEPt ., 9.18 "AR. 8. 1'117 2.41

----------------------------------------------------------------------------------------------------

(C-2-5) 33t>Ctl-3LSD 4276.36 FT AtlOVE MSL.HIGHEST wATER LEVEL 12.20 ABOVE LSD. APR. 14. 1961.LOWEST WATER LEVEL 6.30 ABOVE LSD. OCT. 16. 1962.RECORDS AVAILABLE: 1961-78.

WATER WATF:R WATF:R wATERDATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

----------------------------------------------------------------------------------------------------MAR. 27. 1904 • 10.00 MAR. 5. 196~ • 10.20 MAfi. H. 1972 • 9.80 MAR. 9. l'170 • 9.6MAR. 4. 196':> · 8.40 MAR. O. 1969 · 9.BO MAR. 13. 1973 · 9.30 MAR. 8. 1977 · B.8MAR. 4. 1966 · 10.40 MAR. 10. 1970 · 10.40 MAR. 13. 1974 · 7.60 MAR. 13. 1'17B · 7.3MAR. 8. 1967 · 9.60 MAR. 10. 1971 · 10.60 MAP. 6. 1975 · 7.20

(C-2-5l33UCD-lLSD 4310 FT ABOVE MSL.HIGHEST WATER LEVEL 12.90 BELOW LSD. MAR.LOWEST WATER LEVEL 24.17 BELOW LSD. MAR.RECORDS AVAILABLE: 19S8. 1962-78.

14. 1958.5. 1968.

WATF:R WATER WA.TER WATERDATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

----------------------------------------------------------------------------------------------------MAR. 19. 1964 18.98 MAR. 5. 19f:>8 24.17 MAP. 8. 1977 19.39 MAR. 9. 1976 Ib.50MAR. 4. 1965 23.42 MAR. 5. 1969 23.66 MAR. 9. 1973 19.23 MAR. 8. 1'177 16.69MAR. 4. 1966 22.91 MAR. 10. 1970 22.09 MAR. 11. 1974 18.95 MAR. 9, 1 '17B 18.00MAR. 7. 1967 23.92 MAR. 9. 1971 20.24 MAR. 6. 1975 18.01

(C-2-5134ABC-lLSD 4290 FT ABOVE MSL.HIGHEST WATER LEVEL 6.50 ABOVE LSD. FEB. 26. 1941.LOWEST WATER LEVEL 6.00 BELOW LSD. SfP. 29. 1901.RECORDS AVAILABLE: 1941. 1961-78.

----------------------------------------------------------------------------------------------------DATE

WATERLEVEL DATE

'/lATERLEVEL DATE

WATERLEVEL DATE

WATERLEVEL

MAR. If:>. 1964 3.30 MAP. 5. 1968 3.25 MAR. F!. 1'172 7.16 MAFI. 8. 1'17b 0.20MAR. 4. 1965 3.70 MAH. 4. 1969 3.26 MAR. 9. 1973 2.15 MAR. 8. 1977 0.08MAR. 4. 1966 2.95 MAR. 10. 1970 2.80 MAR. 110 1974 2.23 MAR. 9. 1'1711 .114MAR. 7. 1967 3.48 MAR. 9. 1971 2.62 MAR. 6. 1975 1.53

-----------------------------------------------------------------------------------------.----------

65

Page 71: Technical Publication No. 69 - Utah

l;~bl{' h.--Water levels in sel('(,t._:d ',vl'11s, 1963-78--Continued

IC-2-5135AUU-lLSD 4308 FT A~uVE MsL.HIGHEST wATER LEVEL 29.8b BELOw LSD. MAR. b, 19b2.LOwEST WATER LI:.VEL 33.80 BELOW LSD, SEP. 9. 1977.RECURDS AVAILA~LE: 1961-74. 1976-78.

WATFR wATFR wATFR wATI:.RDATE LEVEL DATE LEVEL DAlE LEvEL DATE U:vEL

----------------------------------------------------------------------------------------------------MAR. 11), 19b4 31.41) MAR. 9. 1971 33.11) JU~!E 13. 1977 "11.66 JAIII. 9, I"'!:l 31.23MAR. 2, 1965 32.04 MAR. 8, 1972 32.81 JUL Y 19 33.54 FFB. 14 .11.41MAR. 2. 1966 31.38 MAR. 9, 1'173 32.4b AUG. 11 32.82 MAR. !:l 31).dYMAR. 7, 1967 32.10 MAR. 11. 1'174 32.21 SI:.P. 'I 33.80 APR. 12 30.!:loMAR. 4, 1968 31.<.12 MAR. 8. 1'176 31.1 0 OCT. 0 32037 MOlY 'I 30.!:l3MAR. 4, 1969 31.84 MAR. 7, 1'177 30.'17 NOV. 9 31.'14 JUIIIE 8 31.78MAR. 10, 197U 3£,.87 MAY 11 32.35 DEC. 12 31.5b SI'Y. 7 33.34

------------------------------------------------------._---------------------------------------------

(C-2-5135C"D-lLSD 430d FT A~UVE MsL.HIGHEST WATER LI:.VEL 1.45 AdOVE LSD, MAR. 'I, 1'178.LOWEST WATER LEVEL 2.b3 8ELOW LSD. MAR. 'I. 1'173.RECORDS AVAILAdLE: 1'173-18.

DATE

MAR. <.I, 1'173MAR. 11, 1'174

WATfeRLEVEL DATE

MAR. 1, 1975 •MAR. 8, 1976

WATERLEVEL

• 111.50

DATE

MAP. 7. 1'177 •DEC. 15

'WATERLEVEL DATE

WATERLEvEL

(C-2-6123COC-2LSD 4295 FT AdOVE MSL.HIGHEST wATER LEVEL 23.85 "ELOw LSD, MAR. 3, 19b6,LOWEST WATER LI:.VEL 29.bU BELOW LSD, OCT. 5. 1977.RECORDS AVAILAdLE: 1961-78._______________ 4 ____________________________________________________________________________________

WATER WATER wATER wATERDATE LEVlL DATE LEVEL DATE LEVEL DATE LEVt:L

----------------------------------------------------------------------------------------------------MAR. 17, 1'164 24.34 MAR. l?. 1970 24.98 MA~. 'I. 1'176 ;>4.<;1 III0V. 'I. 1'117 2B.20MAR. 5, 1'165 24.19 MAR. 9, 1971 25.01 MAR. 8, 1977 25.42 DtC. 12 27.27MAR. 3, 1'166 23.85 MAR. 10, 1972 24.40 APR. 14 25.62 J~N. 9, I,>Hl 26.51MAR. 8, 1967 25.10 MAR. 9, 1913 24.80 MAY 10 28.36 MAR. 9 25.B7MAR. 6, 1'168 25.01 MAR. 12. 1914 24.25 OCT. 5 ;>9.60 ApR. 12 2b.OlMAR. 5, 1'169 24.'18 MAR. 7. 1'175 24.74

(C-2-6124c.;~B-2

LSO 4243.15 FT ABOVE MSL.HIGHEST WATER LEVEL 17.60 ABOVE LSD, FEB. 26, 1941,LOWEST WATER LEVEL 7.40 ~BOVE LSD, SEPt 9. 1'176.RECO~DS AVAILA~LE: 1941, 1958-77.

DATEWATERLEVEL OATE

wATERLEVEL DATE

wATERl.EVEL DATE

~ATER

LEVEL

M~R. 20, 19b4 + 14.10 MAR. 5, 196'1 + 16.40 MAR. 14, 1913 + 14.10 MAR. 10, 1'" 76 + 12.1MAR. 4. 1965 + 14.80 MAR. 12. 1970 . 14.80 MAR. 13, 1974 + 13.40 Sf-Po 9 7.4MAR. 7, 1966 + 14.00 MAR. 9, 1971 + 14.40 MAP. 7. 1975 + 11030 MAR. 9, 1917 + 10.0MAR. 8, 1967 + 15.90 MAR. 10, 1972 . 15.20 SEp. 3 8.40 O(~T • 5 7. ,MAR. 6, 1'168 + 15.90

66

Page 72: Technical Publication No. 69 - Utah

(C-<:'-6 J <:'4CtHl-3LSD 4243.15 FT AHOV~ MSL.HIGHEST ~ATEq LlVEL 24.30 ABOVE LSD, MAR. 13, 1~74,

LO~EST WATER LEVEL 21.70 ABOVE LSD, MAR. ~,1~77'

RECORDS AVAILAtiLE: 1973-70.

: Is) 196J_7i)__ C0I1Lillued

DATEWAfERLEVEL DATE

WA TEl'LEVEL LJA TE

wATERLEVEL OAT~

WATE'<LEVlL

MAR. 14, l'n3 +MAR. 13, 1974 +

23.224.3

MAR. 7, 1975 + 23.5MAR. 10, 1476 + 23.4

';, 1Y 7 7 + 71.1 MAR. 22.0

(C-2-6)25A"0-1LSD 4252.30 FT ABOVE MSL.HIGHEST WATER LEVEL 10.00 AbOVE LSD, FEB. 27, 1941,LOWEST WATER LEVEL 4.30 ABOVE LSD, SEPt 9, 1~77.

RECORDS AVAILABLE: 1941, 1~58-78.

WATER wATER WATER wATERDATE LEVEL DATE LEVEL DATE LEVEL DATI:. LEVEL

----------------------------------------------------------------------------------------------------MAR. 19, 1964 • 6.30 MAR. 10, 1972 · 7.71 MAY !u. 1977 + 6.0 D~:C • 12, 1977 + 5.51MAR. 4, 1965 · 6.80 MAR. 13, 1973 · 7.74 JUNE 10 5.92 JAN. 9, ly70 . 5.70MAR. 3, 1966 + 7.50 MAR. 13, 1974 · 7.91 JULY 11 4.96 FEB. 14 O. 10MAR. 8, 1967 · 6.72 MAR. 7, 1975 + 7.03 AUti. 11 4.43 MAR. 9 6.40MAR. 6, 1968 + 7.07 MAR. 9, 1976 + 7.7 SEPt ~ 4.30 APR. 12 6.30MAR. 5, 1969 + 7.44 MAR. 9, 1977 + 6.67 OCT. 5 4.37 M,l Y 9 b.20MAR. 12, 1970 • 7.32 APR. 14 0.25 NOV. '01 4.97 JUNE 9 6.26MAR. 9, 1971 + 7.32

----------------------------------------------------------------------------------------------------

(C-2-6)360CC-lLSD 4373,70 FT AHOVE MSL.HIGHEST wATER LEVEL 85.57 HELOw LSD, JUNE 10, 1~74, JLNE IS, 1974,LOWEST wATER LEVEL 98.60 HELOw LSD, SEPt 5, 1977.RECOROS AVAILABLE: 1937, 1940-78.

DAY JAN. FEB. MAR. APR. MAY JUNE ..iULY AUG. SEPT. OCT. NOV. DEC.

5 91.05 91.10 90.51 '010.54 93.11 95.30 95.76 ~4.4t; 93.3b10 90.43 90.81 90.20 ~I.lb 93.49 95.44 '15.52 Y4.lti 93.2515 90.72 90.66 90.03 '11.65 93.88 '015.59 95.16 '1J.9tl 93.0820 90.98 90.54 89.89 91.98 94.25 95.58 94.98 93.Hb 92.8525 91,21 90.43 89.83 92.28 94.74 95.67 94.83 92.75EOM 91.38 90.71 89.97 9':: .58 95.08 95.72 94.64 93,55 92.65-----------------------------------------------------------------------------.-----------.----------

1964.----------------------------------------------------------------------------------.-----.----------

:, 92.50 92.10 91.36 90.71 90.32 89.10 87.50 90.43 94.64 Y3.b710 92.43 91.94 91.21 90.72 90.23 88.73 ...... 91.05 94.78 ~3 03U15 92.38 91.88 91.08 90.59 90.02 88.29 ...... 91.64 94.80 '13,1320 91.82 90.89 90.58 89.95 87.92 ....... 94.8725 92.32 92.07 90.88 90.45 89.61 87.b4 94.46EOM 92.23 91.42 90.71 90.39 89.29 87.48 8~.90 92.56 92.54 '74.04 91.71l

1965----.--------------.-------------------------------------.------------------------------------------., ':/0.19 89.70 88.89 88.81 87.49 tlb.8'1 89.3" 90.7'01 90.15 ;;'7.110 89.0610 9U.12 89.60 88.82 88.60 87.34 81.05 89.74 90,91 90.09 8'01.50 8H.Y215 90.05 89.43 88.92 88.40 87.06 87.29 89.85 yl.09 89.94 ;;9.42 88.9120 ti9.90 89.21 88.94 88.22 86.92 87.37 90.09 90.83 89,87 H9.33 88.8125 89.70 89.01 88.93 87.94 86.75 87.39 90.21 90.43 89.81 ;;9.,,0 88.79EOM 90.60E 89.76 88.':14 88.85 87.59 86.67 8H.91 90.42 90.25 89.70 b9.14 88.AO-----------------------------------------------------.-----------------------.----------------------

67

Page 73: Technical Publication No. 69 - Utah

(C-2-6) 36DCC-I--Continued

Table 6.--Water levels in selected we'lls, 14hJ-7R--Cnntinued

1966----------------------------------------------------------------------------------------------------UAY JAN. MAY JUNF ~ULY AUG. sePT. OCT. :\10 V •

----------------------------------------------------------------------------------------------------" 8e.71 88.16 88.05 88.60 '>~.52 95.59 '16.<;0 "J7.72

10 88.b4 88.02 87.'10 88.77 91.74 '>3.80 95.94 '17.33 '17.70

I" 88.66 l:Ie.32 87.93 88.17 89.03 9~.29 96.09 <'J7.44 95.38 '>4.<:'3

20 88.64 811.31 87.'10 90.21 '14.86 96.40 '17.54 95.09

2" 88.65 1:11:1.18 B7.B7 91.24 92.7B -,1':>.34 96.70 97.64 '14.92EOM tld .14 87.89 88.43 91.3'1 93.33 '1:; .49 96.85 93.7':> 92.>;u

----------------------------------------------------------------------------------------------------1967

----------------------------------------------------------------------------------------------------':> 92.11 93.90 tj~,. 77 93.44 9S.40 91. ':ll -,12.4':>

10 92.42 93.92 ,lY•• 83 94.05 95.~0 93.3>;

I" 92.79 93.24 9U.09 94.72 95.56 94.4B 'i3.24

20 92.01 93.21 'J3.12 'i0.74 95.27 '15.63 94.25 '1c.9'i

25 91.'12 93.34 92.58 '1V. '13 95.60 '15.57 93.93 'i2.8cEOM 92.80E 91.62 93.73 92.37 8'1.'12 '11.B4 95.13 Y5.2~ 93.70 '12.,,4

----------------------------------------------------------------------------------------------------196tl

----------------------------------------------------------------------------------------------------'j 92.03 91.00 89.95 89.'12 89.10 8".74 92.82 '14.41 94.70 'ir..7d Y?.Oc

10 91.52 B9.93 B8.86 90.46 93.03 '14.60 94.20 'i2.:,0 '11.9215 89.93 8B.65 '10.97 93.08 '14.7':> 93.91 '11.8.,20 90.92 89.70 B8.43 "1.67 93.37 93.63 '12.2<::1 91.71125 90.79 B9.53 81l.70 '11.91 93.63 'i5.0':> '13.40 'ie oll 91.6JEOM 89.47 89.08 '1c.50 94.08 '15.21 93.10 'i2.01 'l1.hU

1969----------------------------------------------------------------------------------------------------

5 91.47 '11.08 90.55 89.64 88.23 87.14 87.7, 89.93 '12.10 'i I. '10 90.8')10 91.42 '11.18 90.52 89.38 87.B6 87.12 IlI.30 90.27 92.4'1 93.54 'i I. ':lts '10.7715 91.34 '10.99 90.46 88.92 87.60 H7.77 II 7.71 90.59 '12.tlll 93.43 'i1.2d 90.7"20 91.23 '10.85 90.32 88.46 87.33 87.89 88.68 91.00 '13.01 92.85 'i loll' 90.5425 91ol6 '10.74 90.23 87.10 88.14 93.1-,1 92.53 'i1.02 '10.">0EOM 91.16 90.68 89.95 86.99 87.54 tl~.47 93.4<:' 92.23 '10.'10 90.34

1970----------------------------------------------------------------------------------------------------

:> 90.33 1:1'1.55 89.31 91.33 89.65 0".82 92.29 94.01 94.8':> '1J.2v 92.1':>10 90.04 1:19.50 89.70 91.IB 89.46 tl".56 92.':>8 '14.1':> '14.Bo '12.'1:> 91.9'115 89.91 6':1.53 89.13 90.14 90.7'1 8B.92 ,>0.24 93.06 '14.31 94.94 '1c. 7~ 91.7H20 89.B':> tl9.54 89.05 90.56 90.2b B8.78 91).74 93.55 94.3'1 94.42 '1<:'.'")b 91.5':>25 89.72 1:I'i.4tl 88.94 90.0b B8.62 '11.2'1 q3.76 94.61 '13.89 'i2.16 91.3HEOM 89.50 1:1".35 BA.92 91.24 89.6~ B8.41 91.HI '13.97 '14.78 93.4'1 'ic.23 '11.31

1971----------------------------------------------------------------------------------------------------

5 1:19.07 88.117 811.78 88.00 1l1l.28 00.40 90.0':> '11.8" 92.33 '10.5:> 119.JO10 8e.88 88.93 88.79 87.79 8':>.96 06.80 90.25 91.87 '12.34 '10.33 89.2415 90.96 1l/j.75 88.98 88.74 87.53 85.68 eJ7 • 64 90.77 '12.00 92.32 '1V.I:' H9.2J20 90.1:11 lld.77 88.89 88.60 87.24 86.01 od.32 9l.IA '12.03 91.93 H'1.97 89.1"25 90.6/) I:IB.71 88.81 88.44 87.0~ 86.06 ,,/:j.93 91.63 '12. III 91.4" >\'1.7'1 H'1.0 ....EOM B9.78 I:Itl.80 BB.77 8B.34 86.73 1:16.2tl 0".57 ql. tl3 92.2':> '10.'1:' b<.;l.'::51 8'1.01----------------------------------------------------------------------------------------------------

1972----------------------------------------------------------------------------------------------------" Illl. B 7 1:I1l.0l II 7.b 1 87.1'1 tl/).b4 1:I':>.1l3 H~.4b 'lId':> 'i3.11 93.61 '11.10

10 88.71 Be.09 87.50 87.17 86.63 85.82 8d.95 91.BI 93.5/:j 90.9':>I" 88.59 87.97 87.52 87.12 86.34 85.91 d~.4" '1;>.22 93.71 '1<:'.0'"> 90.7720 88.41 1:17.89 1:17.40 86.97 86.39 86.57 -,lv.OO 92.45 93.78 'II. d6 90.6225 88.21 87.76 87.29 86.72 86.16 87032 'i0.48 92.56 93.52 93.74 '11. bJ 90.,:>1EOM 88.07 1:17.64 87.40 86.72 85.93 e7.Bll '11.01 92.43 '13.56 93.68 '11.46 90.43

1'173----------------------------------------------------------------------------------------------------" 90.35 ,H.42 88.95 87.88 87.47 85.75 "b.49 89.23 91.22 91.55 0'1.64 d'1.ld

10 90.25 tsY.24 Btl.74 87.82 87.16 85.80 87.14 89.54 91.40 '10.95 "'i.Sts 89.0':>15 90.07 1:19.20 B8.69 87.83 86.9B 85.88 /j 7 .68 B9.87 "'1.29 90.54 >;9.47 8tl.9:>20 89.95 1:19.16 88.39 B7.84 86.70 85.90 dd. 10 90.20 '11.48 90.22 [19.30 88.>;.:25 B9.77 I:I~. 12 8B.30 87.82 B6.42 B5.90 00.47 90.53 -; 1.67 90.00 dl.J.2b Mel.o3[OM tl9.:i6 1:1'1.04 I:ltl.02 87.68 85.87 Bb.02 do.89 91.02 91.5b 89.71 oSl.2l+ 88.5':>----------------------------------------------------------------------------------------------------

68

Page 74: Technical Publication No. 69 - Utah

fable h.--\,latl'r LC'vclsin selected ';-JC'11s,1963-7B--ContJnued

(C-2-h)J6DCC-l--Contlnued1'174

nAY ,IAN. FFR. MAl-J. Af-"'. MAY ,iUNF "jIlL Y AIIG. ':>FPT. OCT. NOV. DFC.------------------------------------------------------ ----------------------------------------------~ tll.tl6 tll.3'1 BI.On li6.39 Ii':>. II 1.1 I. 10 90.06 ,,2.':>0 "J.fH 'J1.t.()H YI.,:>M

10 B8.33 dl.78 87.40 87.0B 86.13 85.57 MI. II', 90.39 Y2.81 '13.90 'jj.4L' 'J I. 3.j15 88.23 tll.68 H7.35 86.'J3 H6.12 B':>.57 ud .. 25 90.d2 '13.10 94.0H 'elJ.lll 41. I H

20 tlH.Ob 01.6t:' i:J7.24 tl6.A2 85.~b d5.64 de.7') 'I I. 29 0/3.311 94·.1-' '1l~. 'l y 1. (J'+

2~ 87.'1'1 " 1.53 8 I. Jj tll,.b 7 A':>.43 tJ5.61 <1'>.] 2 '11.67 'I3.b" 'I4.2~ '-)c..liJ 'ill. 'I':>EOM tl7.92 d 1.44 81.0lE tl6.60 A5.H7 8b.~B 1.1'>.7':> 92.13 93.tI'I 94.24 ';I 1." ~ 90.'14

I'll':>----------------------------------------------------------------------------------------------------

5 'I0.tl2 'IU.40 90.01 89.43 A8.95 88.26 til.06 B8.39 91.0':> 93.10 'iO.Y" 90.1t:'10 90."13 '10.24 89.95 B9.29 AR.'I~ tl7.9b b 1.] 2 8A.'I3 'i2.02 '12.93 90."" BY.HI1~ 90.72 'IlJ.24 89.'13 89.14 IJH.7? 81.6H tl7.12 89.oIJ n.ll n.50 '10.,,1 89.AU20 90. ')/J 'i0.J2 8'1./J 1 8'/.15 88. "14 /JI.2U dl.45 90.29 'i2.44 '!2.11 \j{J.l1d 89. I I2~ 9U.49 90.15 89.67 89.0/J H8.91 86.96 tll.71 90.63 92.76 91.63 90.1'>.1 b".6bEOM 90.43 'i0 .12 89.57 89.0tl 88.5'1 86.93 <ld.22 '11.13 '12.94 91.27 clo.31 B'I.'?4

1'J16-----------------------------------------------------------------------------.-----------.----------

5 89.,,5 h~.9'-1 88.56 8B.15E 88.20E 89.3U ,>I.UB 93.37 "5.12 44.34 'i3.5u 92.2'>10 89.40 bd.98 88.29 88.1 O£ 88.25E 89.19 'i1.61 93.67 94.99 'J4.1o '13.1'1 92.2215 /J9.34 8tl.87 88.33 88.10E 8/J.30i:. tl'J.04 'Ie 014 93.96 94.60 94.07 9t:'09" 92.1120 89.27 bd.85 8tl.20E B8.05E 88.40£ H9.13 'J2.46 94.16 'J4.54 94.00 ',,".10 92.0425 tl9.13 6b.74 88.20£ 8/J.04i:. A8.50i:. 89.93 9".46 94.40 '14.5t:' 93.91 '1<:'.4" 91.9'1EOM B'I.OI btl.53 d8.15E 88.10£ h8.90 'i0.56 9~.46 94.8J 94.4h 93.82 'It:'.4u 'Jl.tlli

1911

~ 91.d3 '11.4d 'il.17 9U.ltl 92.22 '13.11 ,,':J.76 97.44 91:l.ou 97.1 7 "".01 '14. A':>10 91.78 91.43 91.12 90.8/J 92.26 94.05 "6.10 97.7/J 98.59 96.95 95.'>1 94.7~

I~ 91 • .,8 '11.32 91.05 90.99 92.34 94.40 '1b.45 98.06 98.47 '16.81 95.51 'I4.6/J20 91."4 91.23 90.8/J 91.12 92.62 'J4."4 '1b.42 98.2" '17.83 96.72 'i~.41 9 ... 5H25 91.66 >11.22 90.11 91.32 92.95 95.07 '1o.lS 98.46 97.6b 96.61 9':>.1

'94.41

EOM 91.54 >11.13 90.64 91.54 93.37 95.42 'i 101" 98.55 >17.41 96.34 "4.90 94.3"----------------------------------------------------------------------------------------------------

197ti-------------------.---------------------------------.-----------------------.----------------------

5 94.16 >lJ.60 92.9/J 92.74 92.26 91.93 93.13 96.29 >l7.o0i:.10 94.09 'I.J.52 92.87 92.73 92.06 92.04 93.79 96.83 97.50£J5 93.98 9J.40 92.b6 92.58 92.04 92.18 l.J~.3~ 97.00E 9.,.50£20 93.90 '13.40 92."':> 92.43 91.92 92.20 '14.85 97.20E '17.40£25 93.80 '13.39 92.78 92.35 91.96 92.40 'I~.30 97.40E '17.10£EOM '13.73 'J3.30 'J2.79 92.34 91.93 92.50 9~. 1 I 97.70E 97.00t-------------------.--------------------------.------------------------------------------.--------------------------------------------------------.------------------------------------------.----------

IC-3-4) 8AAA-lLSD 4550 FT A~OvE MSL.HIGHi:.ST wATER LEVEL 164.09 bELOw LSD, MAR.LOWEST WATER L~vEL 169.0tl 8ELOw LSD. OCT.RECORDS AVAILAbLE: 1977-78.

31, 1977,7, J977·

DATE

MAR. 31, 1977

W".TERLEVEL

164.09

DATE

APR. 4, 1977

WATERLEVEL

164.11

69

ocr.

DATE

7. 1977

WATERLEVEL

16<J.08 MAR.

DATEWATERLEVEL

166.97

Page 75: Technical Publication No. 69 - Utah

TahIr:' 6.--WClLl'r ]l'v,-'l:~ Ln sl'I"I..'tl'd \\'ells, 19()'3-78--Cl)I1Lin(lC'd

(C-3-4) 9AAA-lLSD 4~90 FT A~OvE MSL.HIGHEST ~ATER LEvEL ~12.~0 HELOW LSD. APR. 1~. 1'177.LOWEST WATER LEvEL ~22.ul ciELOw LSD. SEPt 1~. 197~.

RECORDS AVAILAblE: 1~77-18.

1977

DAY JAN. MAR. APR. MAY JUNE ~ULY AUG. Sf PT. OCT. i\iOv. ut:C.

~ 212.72 213.37 214.4') 21', .bl 210.46 2!7.7H 217.77 iU 1. "bE 21 7.1 '1

lU 212.71 213.7'1 ~14.')O 21'".94 Cl6.71 <'18.01 217.fHE 217.74 C 17.1 II1~ 212.50 214.04 C!4.65E nb.n 216.'14 217.97 n I. 98E 211.'Jbt. eI6.8:>20 212.51 214.24 e14.80E 21b.43 217.e5 217.9~ ?17.9I::1E ell.4? ell.0425 e 1<'. b9 214.22 214.9b ?10.52 217.45 ell.93 2l7.9lE 211.JJ eI6.1::113tUM e12.53 <'13.01 214.3b 21').26 Cl b. SO 217.~1 eI7.11'l ?17.97E ell .eClt "lb.Hh

1'1(8----------------------------------------------------------------------------------------------------

5 <'16.73 21b.45 216.22 216.08 216.06 217.12 Cl'1036 220.80 221.71 Ul.60 2C 1 ,jJt: 2,,0.':>110 210.68 ~lb.32 216.26 e16.02E 216.06 e17.50E ~1'1.67 221.02 221.11b 221.67 ecl.~:> 220.5~

15 216.53 216.37 216.36 215.96 216.06 e17.89 e)-;.94 221.25 222.01 221.67 2d .II 220.4320 216.63 210.45 21b.23 215.8B 216.32 e18.24 2eo.lB 221.44 221.94 221.59E 2cO.Yb 220.37e') 216.58 210.34 216.24 <:'15.90 216.51 218.60 2eo.38 221.S4 221.71 ;>21.S0E 2LO.(ti 220.e(EOM <'10.49 21b.2S 216.08 <:'15.99 216.84 21l:l.98 2eO.63 221.64 221.56 221.4eE 2eO. ,,'j aO.13

(C-3-41131\~8-1

LSD 4990 FT A~UvE MsL.HIGHEST WATER LEVEL 576.44 BELOW LSD. APR. 13. 1977.LOwEST WATER L~vEL 58S.10 8ELO. LSD. MAR. 21. 197B.RECORDS AVAILAbLE: 1977-1~.

DATE

APR. 13. 1971MAY 11JUNE 13JULY Ie

IlIA1ERLEVEL

57b.44S10.60577.07578.46

DATE

AUG. 12. 1977SEP. 13OC r. 7NOV. 10

wATERLEVEL

')bO.40~tll.40

~tl2.31

~83.09

DATE

O£ C• 14. 1 'J 71JAN. 10. 1978FE>;. 13

wATERLEVEL

583.41583.l:l6584.'J6

DATt

MAR. 21. b7bAPR. 13MAY 11

WATERLEVEL

5l:l5.10S84.bO5H4.d5

(C-3-4) 14AU8-1LSD 4'1S0 FT A~OvE MsL.HIGHEST ~ATER LEVEL 534.07 HE LOW LSD. JUNELOwEST WATER LEVEL 540.90 tlELOw LSD. SEPtRECOHDS AVAILABLE: 1'J17-18.

22. 1971.b. 1971:l.

DATEWATERLEVEL DATE

ioATERLEVEL DATE

wATERLEVEL DATE

wAlt::"LEVEL

JUNE 22. 1971JULY 12AUG. 12SEP. 13

534.07534.39535.46536.48

ocr. 7. 1977NOV. 10DEC. 14JAN. 10. l'i7B

S37.29 FEb. 13. 1978 538.72 MAY 11 • 1'178 S38.a ..537.91 MAR. 21 53B. II JIINE 8 ';39.17~37.'J5 A,",R. 12 538.81 ;,F P. 6 540.'1053B.0'i

(C-3-4110AAA-lLSD 4742 FT AbOVE MsL.HIGHEST IlIATER LEVEL 357.16 fjELO~ LSD. APR.LOWEST wATER LEVEL 365.22 BELOW LSD. SEPtRECORDS AVAILA~LE: 1977-78.

13. 1977.b. 197H.

------------------------------------------------------._---------------------------------------------WATER wATER WATER wATER

DATE LEvEL DATE LEVEL DATE LEVEL DATE LEVEL----------------------------------------------------------------------------------------------------

MAR. 28. 1971 358.29 JULY 12. 1971 359.5l:l DEC. 13. 1977 361.77 ApR. 13. 1'178 361.10APR. 13 357.1b AUG. 12 3bO.4'J FI:.H. 13. 1978 361.20 MAY 11 360.'i6MAY 11 357.83 SEPt 13 357.1l:l MAR. 14 360.93 SPY. b 3b5.22JUNE 13 3511.5tl OCT. 7 301.93

70

Page 76: Technical Publication No. 69 - Utah

Table 6.-~-\;}ntl'r levels in selected wells, 1963-78---ContinuE'd

(C-3-4)17ACC-lLSD 4691 FT AdUVE MSL.HIGHEST WATER LtVEL 315.87 dELOW LSD. APR. 20. 1977.LOwEST wATER LEVEL 323.63 dELOW LSD. SEP. 6. 1978.RECORDS AVAILAdLE: 1~77-18.

----------------------------------------------------------------------------------------------------DATE

WA1ERLEVEL DATE

WATERL1: VEL DATE

WATERLEVEL DATE

WA TERLEVEL

---------------------------------------------------------,-------------------------------------------APR. 20. 1977 315.87 AUG. 12. 1977 320.68 DEC. 13. 1977 320.20 ApR. 13. 1'178 318.48MAY 11 316.52 SEP. 9 JeO 036 JAN. 10. 1978 31'1.61 MuY 10 3H!.~8

JUNE 13 317.21 OCT. 7 320.75 Fb-l. 1 3 J19.13 JUNE 8 319.56JULY 12 318.36 NOV. 10 320.7J MAR. 21 318.61:3 StP. 6 323.63

------------------------------------------------------------_._--------------------------------------

(C-3-4) 26Ut;D-lLSD 5409 FT AdUvE MSL.HIGHEST WATER LEVEL 41:38.79 BELOW LSD. JAN. 10. 1978.LOwEST WATER LtvEL 496.06 BELOW LSD. AUG. 12. 1977.RECORDS AVAILAOLE: 1'177-70.

UATE

APK. 7. I'll/JUNE 13JULY 12

WAfERLEVEL

41:1'1.03488.93488.91

DATE

AUG. 12. 1'J77SEP. 13OCT. 7

wAfERLEVEL

496.064(J9.0148'J.1/

DATE

NOV. 10. 1'J77DEC. 13

wATERLEVEL

48'J.12489.05

DATE

JAN. 10. 1"78FER. 13

WAfERLEVEL

488.1"489.03

(C-J-4)30AAC-lLSD 41:157 FT AdOVE MsL.HIGHEST WATER LEVEL 379.75 BELOW LSD. APR. 24. 1977.LOWEST WATER LEVEL 387.54 BELOW LSD. MAR. 12. 1970·RECOIWS AVAILAdLE: 1;/70, 1;/73, 1977-78.

DATE

MAR. 12. 1970

WATERLEVEL

387.54

DATE

MAR. 25. 1973

WATERLEVEL

38£'.85

DATE

APR. 24, 1977

WATERLEVEL

379.75

DATE

MAR. 1, 1'178

wAH.RLEVEL

382.12

(C-3-4)32dCC-lLSD 4977 FT AdOVE M~L.

HIGHEST WATER LEVEL 494.~0 BELOW LSD. MAR. 24, 1977,LOWEST WATER LtVEL ~16.07 BELOW LSD, SEP. 13, 1977.RECORDS AVAILABLE: 1977-78.

DATE

MAR. 24. 1977APR. 21MAY 10JUNE 10

WATERLEVEL

.. 94.50494.75494.'10501.48

DATE

JUL Y 12. 1<J 77AUG. 12SEP. 13

wATERLE.VEL

506.044'16.22516.07

DATE

OCT. 7. 1<J77NOV. 10DEc. 13

wATERLEVEL

515.03508.'12497.50

DATE

JAN. 10. 1978FEB. 13MAR. 14

wATERLEVEL

498.98497.40497.00

(C-3-5) 1ALA-lLSD 4394 FT ABOVE MSL.HIGHEST WATER L~VEL 49.50 BELOW LSD, APR. 12, 1978,LOWEST WATER LEVEL 66.22 BELOW LSD, SE.P. 7, 1;/78.RECORDS AVAILABLE: 1;/77-78.

DATE

JUNE 28, 1977AUG. 11SEf>. 13OCT. 6

WATERLEVEL

65.6562.6166.1159.30

DATE

OCT. 28. 1977NOV. 9DEC. 12

WATERLEVEL

58.8453.2851.66

DATE

JAN. 9, 1978MAk. 21APR. 12

71

WATERLEVEL

51.0950.294'1.50

MAYJUNES~p.

DATE

9. 1;; 7887

WA1EflLEVEL

51.6058.tlS66.22

Page 77: Technical Publication No. 69 - Utah

Table h.--Watcr levels in selected weL1K, 196J-78--ContinueJ

(C-3-5) 4dtHI-2LSD 4311.20 FT AHOVE MSL.HIbHEST wATER LEVEL 6.05 BELOw LSD. DEC. 31. 1944.LOwEST WATER LEvEL 21.70 HELOW LSD. SE~. H. 197B.RECORDS AVAILAtlLE: 1'140-42. 1'}44-46. 1'}57. 1'15'1-71;.

DATEwATERLEVEL DATt.

"AfERLEVEL DATE

WATERLEVEL DATE

"ATUILEVEL

----------------------------------------------------------------------------------------------------MAR. 10. 1964 HI. 7 j MAR. 12. 197u lb.6U MAK. b. 1915 11;.6H Ur C. 12. 1,; 77 !'1.4UMAR. 4. I'}I,,, 19.39 MAR. 1 O. 1971 11;016 MAR. 9. ·1916 17.1B JAN. 9. 1'11B 19.12MAR. 2. 19M) 17.90 -MAR. 8. 1912 17.97 MAR. tI. 1911 11.39 MAR. 9 IB.13MAR. B. 1967 19.04 MAR. 9. 1973 lB.25 APK. 14 Ill.70 Al-'R. 12 17.He;MAR. S. l%d Ill.H3 MAR. 12. 1974 lH.2S NUV. '} 19.97 Sr,'p. I; 21.7U

(C-1-'i) 7AtJC-1LSD 4433 FT AdUVE M~L.

HIGHEST wATER LEVEL 136.57 HELOW LSD. MAR. 12. 1974.LOwEST WATER LEVEL 141;.50 HELO" LSD. OCT. 18. 1961.RECORDS AVAILABLE: 1'160-7t1.

wA TER "AfER "ATER "ATERDATE LEVEL DATE LEVEL DATE LE VEL UATE LEVEL

----------------------------------------------------------------------------------------------------MAR. ltl. 190'+ 1'+3.25 MAR. 15. 196b 141.ob MAti. H. 1912 138.03 M~~. 9. i'j76 137.03MAti. 'I. 1965 143.50 MAR. 5. 1'169 141.51 MAK. 9. 1973 139.14 MAR. tI. 1'177 13'}.H2MAR. 2. 1966 140.00 MAR. 12. 1970 1,+0.31 MAti. 12. 1974 136.57 MAR. 9. 1,}7t1 143.13MAR. H. 1961 144.00 MAR. 9. 1971 139.96 MAR. 6. 1915 139.51 APR. 11 142.79MAR. ~. 196" 14<'.SO

(C-3-5) 7UI:C-lLSD 4508 FT AHOVE MSL.HIGHEST WATER LEVEL 202.90 BELOW LSD. MAR.LOWEST WATER LeVEL 226.90 BELO" LSD. OCT.R[COROS AVAILAtlL£: 19';8-78.

20. 195clo6. 1977.

DATEwAIERLEVEL DATE

IoATERLEVEL DATE

wATEi<LEVEL UATE

"A" EkLEVEL

MAR. 18. 196'+ 21£'.00 MAK. 8. 1967 212.13 MAti. 9. 1971 210.70 S·P. 8. 1,;70 ANOV. 6 213.00 SEt'. 14 <'19.92 MAR. b. 1912 208.8S MAR. 8. 1'~ 77 209.70MAR. 9. 196':1 210.5':1 MAR. S. 196A 211.4<' MAR. 9. 1973 209.70 OCT. 6 226.90OCT. 27 210.82 MAR. 6. 1969 "11.54 MAk. 12. 1974 207.71 MAR. 9. 1'j7B 214.16MAt.(. 2. 1966 209.20 MAR. 12. 1'170 210.01 MAR. 6. 1975 209.79 Af.>R. 11 212.0SSEP. 12 215.06 SEP. 17 21S.83 MAR. 'h 1976 207.95 OCT. 12 210.00

----------------------------------------------------------------------------------------------------

(C-3-5)22UAt\-1LSD 4553 FT AtlUVE MsL.HIGHEST WATEk LEVEL 239.60 BELOW LSD. MAY 3. 1918.LOweST WATER LeVEL 241.53 HELOW LSD. SEP. 21. 1978.RECORDS AVAILAdLE: 1'178----------------------------------------------------------------------------------------------------

DATE

MAR. 10. 197BMAR. 30

WATERLEVEL

;;>40.0S239.90

MAY

DATE

3. 1918

"ATERLEVEL

239,00

DATE

JUNe 2. 1978

WATERLEVEL

24001 B

DATE

SEP. 210 1'178

wATERLEVEL

----------------------------------------------------------------------------------------------------

72

Page 78: Technical Publication No. 69 - Utah

Table' 6.--l·,r;llPr lvvl'is in ~;clf'(·t('d

((-3-6) IbUtl-lLSD 4454 FT AbOVE MSL.HIGH[ST WATER LtVEL 157.60 bELOW LSD. MAR. 4. 1958.LOWEST WATER LtVEL 172.79 tl[LOW LSD. OCT. lb. 1961.R[COROS AVAILAbLE: 1958-78.

Is. 1963-78---Cot1tinued

DATEWA1ERLEvEL DATE

WATERLEVEL DATE

WATERLEVEL DATE

WATERLEVEL

----------------------------------------------------------------------------------------------------MAR. lb. 1964 164.56 MAR. 6. 1968 104.75 MAR. 8. 1972 160.97 MAR. 10. b76 161.02MAR. 9. 196':> 166.55 MAR. 5. 1969 104.56 MAk. 'I. 1973 16<,.03 MAR. 8. 1'1lf 164.11MAR. 2. 1966 161.91 MAR. 12. 1970 103,J2 MAK. 12. 1974 101.44 MAR. S. 197,; 166.06MAfi. 9. 1'167 16':>.83 MAR. 9. 1,,71 162.69 MAk. 6. 1975 16tl.Ol

i\, 1t,r]::I,J, !$EINC: PUHPED.

73

Page 79: Technical Publication No. 69 - Utah

LOCRtion: Se£ text for description of numbed ngSite: GW, well; SP, SS, mine or tunnelDate of ,.;ample:Spt:ci ric conduct"lnCf" Hicromhos }H,r centimeter at 2~"C.

L

l.OCATION

IC- 1- 41?hOOD­1('- 1- 1:)1 ,10C~­(C- 1- l) 110b(­lC- 1- ~}?,?noc­

(C- 1- f,)?7AAG-

«(- 1- IO,\?qOUG­IC- 2- 4) ?AHA­

(e- 4\ ;:H-l,AA­

IC- ?- 41 lCHC­((- ?- 4) QAt30-

((- ?- 4) G(nc- 1

(c- 2- 41 ACOC- ?(C- 7- 411nRCA-<;1

IC- 2- 4) lC,CA(-<:;lf(- 2- 4) 170AD- 1

IC- 2- 4117[)CO- I

(c- 2- 411QROO- 1

(C- 2- 4) 14DHH­(C- ?- 4)2IJAAO­(f:- ?- 41?0CI)()­1(- 2- 4l2110DC­1(- 2- 4)?ldDll-

(c- ?- 4) ??ADA­(C- ?- 4) 2?CCA-

(c- ;.>- 4) ??CC ... - 4

(c- ;:.>- ,+1 ?-~CI1"­

(C- ')- I,.) ?"-HC~­

((- ?- 4) )~CCC­

l(- 7- 4) ?k(UC-

(c- 2- 4) 2AOl)[j-<:, 1(c- 2- 4)?7H~A- I((- 4l?7HU(- I

(c- ~~- 4)?7CC(J,­

(c- ?- 4l?lCCA­IC- 2- 41/17CUC-

«(- ?- .. l ?7DUU­

iC- ?- 4\ )J-lA I"U1­

(c_ ?_ 4):'>'1;'I\C-

<:; I TF

f)I\ TfOF

SAMPLf

7P-Oh-?37 1 _0Q_0I1

77-0Q-OA

7H-Of-,-2?

77-09-0H

77 - 119- I (~

7R_ Jh- I 11'1_1)')_1177_0Q_OR

77-og-0 f \

7h-04-0H71-0 "7-11-'P-Of,-1411_(Jq_nl~

7A-!1f>-t-'H

71-{-Oh-?'7h_09_nA

7 -'-0"--1 n7 7 -rH-ll71'1-0<:'-11

7H_O")-()8

7~-nlO,-1 '1

7h_Oq_OA

7A-OS-ll7 R-Oh-14

77-10-14If-l_'J7_?7

7 1-0Q-O?7R-O"l-047!-(14-fl?

7A-Oh-l.377_0.,_047R_(\"1_} 1

,."... -(1-,-27I',Q_OQ_rn

70-07-127:::>-07-11'17l_07_fn7S_0fi_?4

7fJ-f)f.,-11

70,-·)"1-(' 17J.l-nl--,-137 7 _)")_04

n~-ot--,-?7

7'-l.-Oh-? ,7 7-0·~-n1

77_07_nM

7H-OfJ-277.0-07-14

7~,_O'(_?1

77'-O,~-n 1

71-0S-1JJ-,I '_O,._?A

77 -IJH-I1J

711-111-.-117A-07-0f'­7"\-()f-,-? 17 7 _ 0 ... -0 I~

77 _I)C,_ n ~

IJEPTHOF

?279. (I

~ 0 ~ J

h_~()

8. '212

4')<;I,f)

'-1oil

4~O

~J • 'I

'1 0 '1

?OO17

1?090

141) 0)

74 J'11.0

10':--.4 F,

?? I)

?TnIn

rFMPFQ­

A TUPF(Ilf (i f)

?:~ 0 ()

? 10 ')

]7 0 1)

1!00Jl-,o{)

1 ~, • C;

J ~) 0 r.:,

11.011.011 0 1'1

11.n11 0 f)

1 I-. 0 n11 0 0;

11--,0 nIso I)

1S 0 0

S I LI Cfl,n r c,_

<:;111 \IFf)

( MG/l

"SIn; )

)1

I"

1H

4H

) H

?2

I'

??1 I;0)4

17

?J

)7

)0

10

lo

21

I"n~,

l! c;­Sill vi:: n( I)G/L

A.', FTJ

20

MAN(j ... ­

"'lE<;F. •nl s­

SOL VF,')

WG/lAS MI\)

("'leruMf11<:;­<;Olv~-n

( MGtlliS r A l

44

14()()

4(,

Jlrl

4)

7"

?Or)

) 70

11017n

hh

1;"]

71

11'1

Ml\(,t<.jJ- _

os 1 IJM,

nTc,­"Ot vf- n( Mr;1l1\<; Mil)

??(]

4?

10

?l

1;-'

A174

n74

?f,

<;,(j1:J II.J'v4.11 I '~­

c;,OL liEf)

/W';/IA", r'JA}

""(1

J" I)

1-';)

;i10

It,.o

L',(I

, 0

I "j

Dr) rfl<:;­

'::'; IIJM.nI<:;­

SOL Vf-' n( MG/LlI,S K)

II

4.4

'1.J

'.04.4

,.4

2.7

(';wf

G.

"wle- ?- 4);::>hACG- 1 "w

(~W

.. W

(c- ?- 4) ?!-1HAL.- r,\oj

(c- ?- 4) ?HHIJC- G\OIIC- 4)?l<P()LJ- row

I;W

c.le- i!- 41;">0(11(- I f,W

(c- ? - 4 1 ? HCb D- i, \IIr,W

(C- 7- 4) ?i-"lcDD­1(- 7- 41 ?AD/Hj-

fC- ?- 4l;::>l.. 0I1/l,­

If- ?- 41?qA[}(-

"7 "7_0 :1_0 1lA-Ofl-l]7R-O 7-1J7f--.-O<'<-O I7 7_0C,-O-j

7 Q -(17-2"-Jn_09_027f,-OQ-077 7 _ 0 I) _ () ~

lfl_OS_04

7R-Oh-IQ,or_o 7 _() I

7A-OT-1417-01-!l1!l-\-07_0fJ

77-0h-1077-07-1S7fl-O 7-14

7R-Oh-O I7,:,-OQ-07

1R?

190':1 o rl

4?1

'---,0 _1

17H

I"''0

\~ 0 C,

,r.1)14 0 lOi

i 4. I)

11 0 n

I j

I J

11

74

?4 I.'

10;1

Page 80: Technical Publication No. 69 - Utah

wl'lJ\-i, spring;;, ~·;tr·eiJlllS, mLnl'\-i, ,1nd lunneJ\-i, 19(,6-7H

R TCAf..'­~()NA TF

( MG/L4S

HCn3l

CAQ­~O"'IATF

(MG/ltiC; C(lll

ALI( A­

t INTTY(I,4G/L

ASCACO] I

C:;Ul FA rFDIS­SOLVED('-'GIL

llS S(4)

ChlO­RloE,OIS­SOL VE 0( MG/l0\5 CL)

FLUo­PIOF,

DlS­SOlVFD(MG/LAS t")

HODON,DIS­

soLvEnf llG/L

.lie:; f-ll

SOLTDc:;.SUM ()~

CONl.:;TT­TUE~'TS.

015­SOLVt"f)(MG/L)

HAPD­NE 55(~r,/L

ASCACO]>

Htd;f[l­

NFSS.NONClIR­RONATE

IMG/L SODIUM(ACO]) PERCFNT

SODIUMAD­

SORP-T10'

PATIO

~PF ­CIFIeCON­DuCT­IINrf(MIC~()-

""l-!ns I (lJ"'!T TS 1

2'" IJ

I HI)

1 q:1

2AO

2?1J

24(j

2C/(J

2AMJ07

2~h

31 n]r'11

114

240310

300

21lJ

JOO

2 'II

? 111

?IO

11)0

lAO

230

210

210

IAn

200

240

2402362'52

2432Ci42Ci?25A

24021:)0

2CiO

170

210

2'50

??n

210

<'10

SS

110

21

32

43

4,

44

no

,s10

47

1100

11000

If,O

8?0

",0

??O

320

120

h 727.,24H

'00360J?O330300

"1170

??O

170

Al

.4

.0

• H

.r

.3

.7

.2

.2

.1

.1

.2

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

070

110

130

210

40

3?f"I1In

4n

Ho

4n

30

40

00

40

40

75

-"oso

I7UOO

HA?

77 ?

17;;"0

7'"

61 4

7AQ

411

447B?l

J 14

>!??

407

4HO

9400

74

3"'0

??n

200

)30

3'10

R40750730730

,00S20

210

?RO

210

?70

? ]0

?70

<qoo

1,0

130

flAt)

17

316

hOO')00470470

63270

?7

II n

H4

210

170

6,

71

57

71

?7

?4

10

2 ,

11

S.H

j7

12

1'0,.4

, .A

1.4

1.1

1.31.7

1.1

• H

1.1

1.7

1. 7

l?SO40000"1hOnO]4(Jf10

'1700 U

ssoooI4ClO?200

1 -'SOO44000

13,011001;.>;>510001500

?'2 7 5121 (}10?0

OhO111-,0

1?0 01160lOc;O1000075

I hOD12207000~90

??l:)n

740hOOhOD

17101700

?1-\40;:>/'0,10?400??OO? 1 00

7') 0

12,0400050

hOO1400

hYO700h<:'()

f,~()

HAO1.10011 ;>0117'"

1340llr:..,OJ non

8::>fl

RHO

70014001?noJO?~

1000

HI ()72'710'"0

II H0

7. A7.0

7.27.4

7.4

H.0

Page 81: Technical Publication No. 69 - Utah

'Ld)ll' 7.--Chemic;l] analyses of watl'r from 'H'h'cl.ed wells,

LOCATION

lC- 2- 4l?q/lD(- I

(c- ?- 4)cq~CC- 1

SITF

I)ATfOF

c;AMPL F

77-0A-Ol7,q-O~-04

lA-Oh-?O7h-OQ-1l777-()h-13

DEPTHOF

WELL(FT)

T~t.APFP­

ATUP~

(OJ:"G rl

I1.SI? c;11.'011.01).0

<:;ItICA.01 'i­SOLVFD(Mf;/L

ASS TO?I

loON.DIs­

SOL VEO( I)G/L

At::., Ffl

MANGo ­NF Sf..,01;­

50LVEIJWr,/LAS M~)

CAL C TIJMnIS­SOLVF D( MG/LAS r:A)

MA(:,NF _

c; T 11M.

OT5­SOL VEn( MG/l

A<.:; t-lG 1

1H

SODIUM.01<':'­

SOLVEr)(M(;/j

AS NA)

POTAS­SIUM,DJ S­

SOLVfD( MG/L

liS Kl

? 1

(;w

ewle- 7- 41?QCCO- f,w(c- 2- 4) :H1CCC- (;101'lC- 7- 4jl1AAU- (0,10/

((:-?-41JIACC- (;W(C- 7- 411lADA- G\II

GWow

ce- 7- 4111 AUU- h G"

ewow

le- c- 4) 31RC~- 1 GWOw

le- ?- 4)118(U- {)W

cc- 7- 4111CAA­(C- 7- 4) 11COA-

((- ?- 41HOAO- ?

l(- 2- 41110H(- 1

fC- 2- 41 ?llOdO-

1(- 2- 4111DHO­fC- 7- 4) l?AAC-

(c- 7- 4\ 'VAHH­(C- 7- 4) l?CAC-

lC- 2- 411?CH[)- I

1(- 2- 411?C~LJ- I

l(- 2- 4111AA~- 1

IC- 7- 4) l1Arltl­(c- 7- 4) 11AUO-

(c- ?- 4111At-lH- 1

IC- ?- 4111l-<C"!- 1

(C- 2- 401nHUO- 1

(C- 7- 4\ ~lLJAC- I

IC- ?- 4) "HA[)C- 1

7H-Oc:;,-OA

7A-07-?57h_Oh~17

77-09-087~-O"-03

7R-07-?S11"_04_07

7A-OS-O)7A-Oh-IQ7h-Oh-?2

17-01-1~

7A-r)1-Il7f--OQ-f)87A-06-? 117-07-06

1.0,-07-107Q;-05-0317_06_0H71J,-07-107f,-Of,-('?

77-0A-OR77-07-1'JHI-07-117P-07-?"i7 7 _07_0h

709-07-1177-07-1")1~-07-1I

7.0,-0')-1777-07-01)

7R-07-II71-0'1-01177-06-07HI,-07-?77"'0-06-('7.

71_0h_077l=l-07-1411-0')-0917_0f,_037R-Oh-79

7~-07-10

7R-Oh-Ol7f..-Oh-?217-01:)-0977-0h-01

7A-OI)-111.0,-01-1377-0"'-Oh7A-07-?li77-0h-nh

77_0h_Oh7R-Ol-?'-i7R-O 7-2677-0h-3078-06-20

7H_07_0h77_0 7_(j 1

7A-nl-1117-05-0977-07-0 'J

100467

y.n?Of)

?OO700

271

143

183

4RO

??I,00

13<;00

417

403

AO

lAO

777

4?1

1'0'0

'0'

16.S17. n17.0

1R. I)

17. Il[7. Il17. I)

I h. SJ h.C::;

1"'.014. n?o.o17.0IJ..,. n

17.C::;

?I

\7

13

\ J

\3

I J

14

4'.

'1

HI

?n

\ q

?O

?4

?O

1 q

?7

17

?O

llfl

llll

I~O

h,

c] 0

"Il

?7

7. S

?o

{(- 7- 4114MDD- 1

fC- 7- 4) 1'-lCHC- 1

7A-07-1377-0')-097P-OA-?717-0')-0977-0h-02

7P-D7-1 "37h-Oh-2?17-0'J-OY77-06-0hN~-Oh-? 7

?o410

\1

11'

77

41 7h ? n

((- 7- '11 snClJ- 4

7.o,-r17-117R_OO,_097P-nS-I~

lP.-Oh-??7R-Oo-l?

76

7',

1\ 0 7H

I?

1911

?j

Page 82: Technical Publication No. 69 - Utah

BpLings. sLre;lllls, mines, anJ tunnel:;, 1966-7H--Clllll inued

SOlInS, ':.>PF-CHLO- FLUO- SUM OF H/d;jf)- son IIJM c: I ~ Ie

BrCAR- ALt<A- SULFIl.Tf RIDE. RIOr:. RORON. CONC, IT- HARO- NFSS. AO- (Or-.I-

ROP>JATF CAR- L INITY OIS- OIS- OIS- OIS- TUE~!T<;. l"le SS NONCAR- C:;ORP- D(jrT-

(MG/I 80"",.4. TE {MG/l SOLVEO Sal VfD SOlVFO SOL VEn OIS- (!"G/L AONATE T ION ANn: p,<

AS { MG/L AS 01(;/L (MG/L (MG/L { [IG/L SOl.vFn AS ( MG/L soc r 11M PA T TO ( "lIq~O-

HCOl> AS (01) CA(Ol) AS 5041 AS Cll AS F I AS" I

(Mr'/L) (llCO] 1 CACOl) PERCFNT '''!MOS) /UNf TS)

11001 0 7~

?ljl) 240 (ll.l 230 .1 6n 67? Igo 60 6.0 11 ?S10001000

ggO?.:-O 210 ?~ 210 • ? " 611 100 64 S.O 1-11:)0

121-10?41:iO

700

270 220 2g 170 .2 60 ,57 ??11 '" 1. " 01S<..flO770

?l :1 220 20 1"\0 .2 60 '1?-3 ? ]0 11 'jrl 1.1 q4.0

4?O

HOOASO

10'10

?7f1 2?O ?7 1"0 .2 " 'JJ.J.4 no 50 40 1.2 qhO'--ISO

OSO77",

1300J32.,

gSO

0004?5gSO

270 220 30 100 .2 on ,40 ?]n 51 ].4 010000

92007Slj7~

"2.,1? TS

117':1V:H1O

11"0(~O 09SO

92SABOh 10,?,

2eo 210 'd 64 .1 40 ]'-014 230 21 36 I. " 660

540760no700600

2R'l 210 100 "R .1 40 46" 3111 R4 ?S 1.2 750700

1100?f-(j 2}0 2R 300 .1 60 7,5 210 (,f' 6.3 I2f)O

1100

II no?<:;,(J 210 ?7 210 .1 "0 60s ?on 61 4.0 960

9S0rlOO

21..,1) 210 12 120 .1 40 4" ??n IS 47 ? fJ A?')

ROO67.,690/iC,OHI'')

ROOIq~O

?7iJ 2?Q 160 1'0 .1 SO 6kO 41)0 ?3O 27 1.6 Ilon1 (} 1 [)

ASO

1000900,,90RSO

240 200 67 lr.:,O .1 hi' <)41 ]lQ 140 11 1.f1 OSO

9002C-,(J 210 7, 150 .1 60 5S? 330 130 3? 1.7

;>3<:'0Ill) 00 10 h;.>O .3 60 114() 600 Slo 41 1.4 ?050

9"0

77

Page 83: Technical Publication No. 69 - Utah

l'able 7. --Chemical analyses qj wat('r frOlli selcc1:l'd wcJ1H,

SILICA, MANGo'I.- Mo'I.GNF _ POT 0'1.5-OIs- I .... ON. NESE, CALCIUM ~TUM. SOlJTU>.4. SlUM,

f)ATF DtPTI1 SOL liED OIS- DT S- OlS- DIS- OI~- OIS-or OF TFMPFP- ( MG/L SOL IIEt) SOL IIEI) SOLvrO SOLVFn SOL Vf f) SOLVED

locATION SITF C:;I\MPLF:1~iy

ATUI4F AS flJG/L tUG/L 1MG/L ( MG/L ( "1(;/1 (MG/LWEG CI S [021 AS FE 1 AS M'I AS 01 A<; Mbl AS NAI AS KI

IC- ?- 5J 'iDCO- GW 1R-06-15 4}7 1s. 0 'i6 4" ," I <0 7.0fC- 2- 51 "000- GW 7R-0'i-12 360 16.0IC- 2- SI /HUO- GW 1A-Ofl-02 300 Pi.OIC- 2- "J 1DOO- ow 78-01-10 500 I"i.C,fC- 2- "J QAAB- OW 77-0Q-?h 0,0 IR.S

IC- 2- '> J l1ACC- ew 7A-05-I5 I].,GW 7R-Ofl-I4 ?RO 11. , 'in 51 I'> 1"0 '::i.l

fe- 2- 5113ACO- eW 77-09-12 9.11 I q. ()IC- ?- t:,111HCA- ew 7R-O,-15 767 ? I.'(c- ?- 5) 1 40BA- ew 1~-OQ-20 11.';

r,w 77-07-11 14. nGw 7l:-l-05-0'J 11.Sr,_ 7A-Oh-14 300 Il.a ?~ ,,? ?" 2;'>0 6,[

fC- 2- ') l 1hI-iAA- Ow 1R-Ofl-?? 400 11.0 16 54 34 ''"0 6.l,)fC- ?- 5)17AoO- r,w 7A-Of.,-?2 11.0 ?3 110 ?4(J 6.~

IC- 2- 5)17HAO- Gw 7R-OS-12 16'i I? .c,fC- 2- S)17~DA- GW 7f-,-Oc;J-()9 I? ")

G_ 77-06-10 11. f)

GW 77-07-12 11.0GW 1.'1-0")-12 12. "i

r,_ 7A-Ob-?O 100 I?C, ?4 01 4? 2?0 6.6IC- 2- 'j117CA.6- c. 17-0Q-09 g.O 13.0I C- 2- S) lARlJC- GW 7A-OS-IA 425 H,.OfC- 2- 0;;) lI-1UCC- GW 7.'~-OS-12 100 14.0I C- <'- ~} IQArlC- ew 7A-O'")-I~ ?OO 14.0

fC- 2- 511QDCC- GW 7A-Of.-14 3S0 22 40 13 '4 1.0IC- 2- ~) ?OACe- e_ 7h-Oc;J-Oq ~40 11.S

GW 7R-O~-12 13.0GW 7A-Ofo-20 1 J. 0 38 'J<-; 10 1;">0 4.8

fC- 2- ')1?IAAD- I 0_ 7f.-09-20 ?30 1<:'.1l

GW 77-0A-05 1").f)IC- 2- Sl?1AAO- r,w 17-0A-14 9.l) 17.0'C- 2- Sl2ICRB- r,w 7h-09-09 16" 13.5

0' 17-0A-OS 14. (I

ew 7A-06-21 14.0 30 "" 42 200 '.6

I C- 2- 5123CAC- I GW 76-09-(10 BO 14 .~

r,w 77-07-11 14.5GW 7~-OS-10 14.0G. 78-0f.-I q 14. n ?H 130 'i2 370 10

, C- 2- SI 2"AAB- 2 GW 1A-OS-IO 13.0

fC- ?- 51 ?SAA8- 2 GitJ 1A-Oh-19 202 11. ~ 2" 4" ?? 100 30lIC- 2- 512SWO- 4 ew 78-06-21 467 12.0 ,,~ 4.2 "00 6.7fC- 2- ')1 ?hCOC-S2 SP 7R-06-Z0 I R. 0 24 150 40 700 12I C- 2- 5) 2hOAC- 1 ew 11-09-0R 13 lr;.~

fC- 2- 51?1ADD- 1 e_ 7h-OQ-?O V,S 1 ~. to,

fC- 2- S I ?ACOC- Gw 7A-Oh-~H .is 7 17.0 ?3 14 n 'is 2S0 4.')fC- 2- 5129AOC- c. 7h-OQ-04 14 .~

e_ 71-0$1-04 14. t;

GW H~-05-0 1 14.'")GW 7A-Oh-I4 (190 14.5 23 IBO eo In 0 4.0

, C- 2- 51 290t:JA- ew 77-0Q-OR 12 11'0,.,(c- 2- 512~OCO- Gw 7A-OS-flZ 340 14.iSIC- 2- 5l30ACC- ow 7h-09-09 445 14.0

r,w 17-0A-04 14.5G\IiI 1A-Oh-26 14.0 IB 61 17 n 2.0

IC- 2- ,) 30ACO- Ow 7,'1:-07-10 22" 11.'ifC- 2- S 110CHC- (;Ioi HI-OS-O 1 14f) 1?OIC- 2- r;) 3nCt10- r,w 1h-09-09 1?s

r,w 71-0H-04 13.C,(;\Ij HI-Oo;;-O I II • ..,

, c- 2- 5130CCC- I ew 7h-09-o9 ]15 11. (1

e_ 77-0R-Olt 13. t)

ew 7R-()")-O 1 1,.0fC- 2- 5110DAA- I OW 76-09-09 14. a

ow 71-08-04 14.0

Gw 1A-OCJ-02 14.0GW 78-06-20 13.0::; IB 16 1 ? ;4 1.9

fC- 2- ,1300CC- I GW 17-08-04 14. nGW 7A-06-llt 510 11.0 21 61 20 n 1.7GW 7B-07-10 14.'")

GW 7A-01-?fJ 13."fC- 2- 5131'1BU- GW 1A-OS-OA 125 13.0IC- 2- SI32AHC- GW 7A-06-28 300 IS., ?l 64 27 '2 20lfC- 2- "132.CB- GW 7R-07-10 SAO 1'i.SIC- 2- ,13?BlJA- GW 77-01-08 315 16.0

e_ 7A-07-10 15.0IC- 2- 5) 3?DH8- I ow 77-07-08 4B5 1f..O

r,w 18-01-10 16.0IC- ?- S131ACC- I r,W 7~-O~-11 11.0IC- ?- 5133AOO-51 5P 78-06-2R 15.5 ?5 Il0 47 J'iO ~. H

78

Page 84: Technical Publication No. 69 - Utah

springs. streams. mines, and tUllllcls, L966-1 R--cont inueJ

50LTOC:;. CjPF -

CHLO- FLUO- CjlJP-4 OF HflRO- sao I U~ efFIeAICAR- ALKA- SULFATE RIDE, RIDF. AaRON. eON<.;TT- HARD- NFSS. AO- eON-RONATF CAR- L INI Tv DIS- 015- 015- 1115- TuE/H<:j • NE ss NONCM1- C:;ORP- :we T-

(MG/l !iONATF f~G/L SOLVEO SOL VP) SOLVFD SOt Vfn UTS- (~G/L RONATE TION ANCF PY

AS (MG/L AS (MG/L (MG/L (MG/l IUG/l SOLVFO 'S (MG/l SOD TUM RATIO (MICRO-

HCO'i) " COl) CACO] ) AS 504) AS ell AS FI AS HI (Mh/t. I CAC01) eACn] ) PERCFNT MH05} fUN r TC, 1

1"1) 1?0 2" ?40 .'> 70 6""" ZR(l I SO So 3.4 II ?'J"l~nO

4101100

1 A')OO

400:VQ 2h(} 4.4 170 .7 I?o h04 140 hl 4.7 975

240001 ht)O1';;00

l:P')1 JOO

210 2?0 34 300 .S lIn Mf)") 230 11 hi 11.3 1)00??O IRO SA 4AO .7 14n 101=-,0 290 110 6,; 7.4 18702?O lAO h7 500 .4 I :~ f) Ii 00 460 ?AO ')] l~ • B l~OO

1 ')?S1 -roo1 l?S

167'"))625

??() lAO 7h 4S0 ,4 120 1020 41n no S4 4.R 1MOP200

4S0420370

1'0 110 14 4'> .1 3n ?44 ISO ?? 1? 1.2 42510ROlOC;O

140 160 34 no .3 on h 11 ?hO IIO 4q 1.? 1050?]OO

?07S1900) 800lSC,O

?I.n 700 AS 400 .1 14ri 477 41n ?In Sl 4.3 1700

?2002211:);>SO 0

74 D 200 I)] 7S0 .4 140 15;>0 ",~ n 140 i")'~ h.9 ;)300H?'3

210 2?0 ?A 140 ,2 '1ri 447 2111 0 50 1.0 8S0?, ?O '.4 410 .3 10 1AO 140 7? h. A 1300

21') 100 47 1400 .1 1'10 ?500 '380 190 7? J] 3900P,"l00?SOO

??O 180 70 '40 .1 An 1?40 SRO 400 4" 4.'3 ? 1 00?OSO.?£>oo? I 00

It,1) 110 11 son .1 40 IOQO 7"n 6")0 2? 1.6 ?O?S

2300IH~O

'10520

l'''U IhO 14 7., .1 30 310 ??n hA 24 1.0 4AO

6'06709?0R7SASO

7?n770'?n4?5S10

3QO17(j 140 14 4" .1 30 c4"'i 140 34 1.1 4")0

S?Sp-l;l ISO 14 9] .1 30 ]?q ?,40 92 2n .8 621-)

"';>0

"'40gen

ISO 1?0 1 ? 140 .1 30 j7? 270 150 ?n .8 7?S4AO4?0

.,so10?012001600

t!I..,U 210 qq 67U .S 17n 1410 47{) <60 hi 7.0 ?2<;0

79

Page 85: Technical Publication No. 69 - Utah

Table 7.--Chemical analyses of water from selected wells,

LOCATION

(c- 2- C;}11103~C­

(C- 2- .,,338C8­(C- 2- ., I 33DAD-

SITE

GWGwGwGw

"w

DATEOF

SAt-4PLE

77-07-081A-06-2666-06-2169-07 ... 151?-01-18

DEPTHOF

WELL(FT)

411260311

TFt-lPfR­ATURE

(f)FG C)

<;ILICA.015­SOLVED( MG/L

AS51021

18

2k

IRON.nIc;­

SflLVEf)(UG/LAS FE)

MANGA­NE5E.

DIS­SOLVEDWG/LAS "4")

CALCIUM015­50LVFO(MG/LA.S CA)

1<;0

110

",,~r;NE_

SlUM.015­

SOL VEn( M(;/LAS ~G)

61

SODIUM.nIs­

~OLVEn

( MG/LAS NA)

200

260

POTAS­SIUM.015­

SOLVED(JoilG/LAS K)

4.3

1.6

Gw"wGwGW

le- 2- 5) :nDAO- 4 (;W

"w(C- 2- 5) 33DtiA- r;wle- 2- 5)310(0- C;'"

Gw"w

(c- ?- 5) 34AOO- GWcc- 7- 51148(A- GW

"wGw

le- 7- 5)140A,6.- I GW

ce- 2- 51 340A~- GWle- 2- 5)14006- r.wfe- 2- 5134008- flwle- 2- SI3C;ADD- GW

Gw

{e- 2- 513"CtiO- C1W(e- 2- 5) 35Dd8- r;w

Gwle- 2- 513,OB~- 2 GW

Gw

74-07-011S-07-0716-06-1117-01-061A-06-29

18-01-0177-07-2011-01-011A-Oh-}47P.-07-21

7A-06-2977-07-077A-06-2818-01-017A-06-29

7A-0f:l-287A-06-2t31A-06-2811-01-1577-0Q-09

18-06-1976-06-227A-07-2776-06-2277-06-08

120

1<;4?A<;

125320

99

112154184513

400223

I?O

16.070.0

1'1.0?? .c;??oIR.S

15.570.0?O.O19.521. n

?1?82'>

?6

23

30

22

222122

6.1

10 10

Rn120100

110

100

\30

220

140

I?O251)130

16

41

03

SI

4692S2

13

rw300210

270

180

600

91)0

550

4'1015004~O

150

6.18.97.8

1.4

II

19

10

9,3269.1

le- 2- 5131'.AOC­le- 2- 5) 36ADD-

le- 2- 5) 360AC- 1

(C- 2- 513WCD-

(C- 2- 513~DCD- I(C- 2- 6114DDD- I

(C- 2- 61 I~AAO-Sl

(C- 2- 61IhADS­(C- 2- hi 22D8D­le- 2- 6) 21C!i8-

G."wGwGwGW

GWG.GwGWGw

OwGwGwSPSP

GWGwGw"WGw

1A-01-1011-01-013

1"-06-2271-07-061R-01-26

11-06-081A-06-1918-01-107"'-06-2277-07-06

1A-01-141f1-0Q-09

1A-06-22M-03-1518-06-26

11-00-0818-06-22~f:,-06-27

12-01-1874-07-03

442445

20 I

325434

12130210

71. ~

20.0

18

11

?J2726

71

55

10

35584750

80

35

?<;

11IAAzoo

29

14

240

26089109000

HI

210

3.8

7.1231210

14

23

r,w 15-07-08GW 76-06-22{;w HI-07-03Gw 71-07-26GW 78-06-26

20.020.0?O.520.5

52

54

48

33

31

34

II

\3

I?

leo

200

200

19

20

22

(C- 2- 6123COC­(C- 2- 6124AA8­(C- 2- 6124AOD-

(C- 2- 6124C8B-

(c- 2- 6) 24Cth~­(C- 2- 6124DCO­(c- 2- 6) 25At1A­cc- 2- 6)?,A~O-

GWGwGwGw"W

GWGwGwr,wGw

11-01-2017-09-121';-09-0911-08-0516-09-09

1.'1.-01:)-187A-05-1878-0(,-0218-06-0211-06-10

39110

360150250

16.515.011.013.5I? .5

I ?514.012.511.512.0

Gw"w"W

fe- 2- 6) ?Ci,ACO- 4 (;W

"w

77-07-117A-O~-OQ

7.'1.-01,-2071)-09-0978-01:)-02

190

P.O11.011.0I? .0,

11.0

?l 11

iC- 2- 612,8(,6.- 1 I1Wte- 2- 6) ?,RCB-l GWcc- 2- 612"0,6,(- 1 r,w

GW(C- 2- fll 36A(C", 2 r;w

fe- 3- 311j:lCBA­(C- 3- 311AC88­le- 3- 3)?~~CA­

(C- 3- 3 I 2AHDC­ce- 3- 4) ~AAA-

555555SSGW

7A-05-027A-OS-o216-06-221A-06-2218-06-21

18-01-11 1

1A-01-11 2

71=1-01-1118-01-11 "77-04-28

200125

246465

13. <;17.013.511.514.0

A.51?0i?h.O11.01.'1..0

18?4

201915?5

80

10101050

3~ 0500

11)paD

HI)

k<;

160160

301"0

?I?S

701121

lSI)

1312

7.111

3.63.63.33.4

Page 86: Technical Publication No. 69 - Utah

f:;Jlr ing~, sLre<lmS, mines, ilnd l.UDllVJS, I 96(,- 7H-- con t InuE'd

SOLIDS. SPF:-CHLO- FLUO- SUM OF HARO- SOnIUM CIFlC

B r CAR- ALKA- SUlFATE RIDE. RIDf. f10RON. CONC,TT- HARO- NFSS. An- eON-RONA TF r~R- L!"ITY DIS- DIS- DIS- OIS- TUE'\ITc; • NE SS NONCAR- SDRP- lJUCT-

(MG/I RONATf (""GIL SOLVEn SOLVf:D SOLVFD SOL VEn DIS- I "GIL AONATE TION ~NCE PHAS (t-H;JL AS (MG/L (MG/L (,",GIL ( ttG/L SOlVFn AS (,",GIL SODIUM RATIO (MICRO-

HC03l AS C01 ) CACO)) AS sn4) AS ell AS F) " ") (""';/11 CAC03) CAC03) PERC,NT MHOS) fU~I Te;)

?l1020() 160 41 600 .1 ~n 11 AO 6)0 460 4) 3.5 ?175244 200 4fl'") 1910 1. A2'- <'00 'oRO 440 240 19<;0 7.7216 IQ4 91 510 124n 490 300 '1 5.1 ??70 7.?

240 191 AA 'iOO .4 Ihl) 11/0 'oRO ?RO 51 4.6 ?Of:;O 7.7227 lA6 RA f,SO .4 ISo 1 ]7n I:,?O 140 55 5.1 ?300 7. I?3b 194 9? 5]0 .4 150 1?no 4hO ?6O 56 'i.5 ? I 00 7.1

?O"JO100 2S0 Al 51')0 .4 140 12/',0 4AO 230 54 5.4 ? 1 00

IH"lO19001500

240 197 360 .4 140 41f.o 440 ?40 46 1.7 I4AO -, .8

14'10

?lU 190 74 1100 .4 lAo ?10n 53'} 340 71 II 11)005750

190 IhO 100 1gOO ." no BhO 910 780 67 13 k,2001:;100

??O lAO 6? 1100 .4 110 ""040 Sho lAO be 10 ViOO

24 () 200 63 920 .4 lSo \lJ'.lO 490 ?90 be 9.4 ?AGD170 140 130 2900 .7 340 5010 100O 860 76 21 A)40 7.7230 190 61 AhO .4 140 1700 54(} 150 64 A.4 ?HOO

IAOO1f.l40

140 110 A.A 210 .1 '0 477 q3 77 6.A 87"I7"iOJ 7~013001000

1?001075lA5017?515"0

lAk,O260 210 3'i 450 .? 00 1O?O 2AO M 60 7.6 17?')

177S40001f)(}O

2t:;1j 210 49 1100 .? 140 ?jl-l(} hOO 400 11 ]? 16001400

110 110 14 420 .1 40 814 130 26 AO 9.A }45023.1 191 '6? 1,000 1.7 150 2"'AOO 2230 2040 AA A? 40400 7.52?O lAO "'30 If.oOOO 1.0 1700 27000 2700 2500 A7 7S ?C;900

17,00It;,O I?O 2' 200 .1 I ?o 514 320 200 34 ?O 900tqq tAl :no 1310 7. hI" 7 162 37 31G 7A I Isn 7? 7 .6 1370 1.'i

1220

19' 160 )? 2"0 .7 IOn 677 130 1, 6.9 1100 7.71230

IYY 163 3' 2AU 7<1 140 71 7.S l:no 7.QIIRO

lRU 150 34 290 .1 90 710 130 71 1.5 1270

9751000

4AO180410

440",0,50S20540

700b?5

200 IhO 21 90 .1 30 3'iS 2- 1 A7 21 .9 6?5650.,00

5405801<;0

1'0 1.10 23 I hO .1 40 4?f, 290 160 24 1.1 "(so21 () 170 3q 120 .1 30 411 3?0 140 I" .K 7"

1'° 1?0 '60 Iii ." 30 9?? 690 ")60 .2 10'10 8.4170 140 520 I" .1 30 BAq 690 S5n .? 1000 8.?I" 120 38 I" .1 ?o 21"- PH'l 61 .2 3S0 8.0?<-u cl0 860 ?<' I.? 40 1400 1100 A90 .2 1650 7.1

?V,O

81

Page 87: Technical Publication No. 69 - Utah

Table 7. --Cilemi cal analyses of water from selected wells,

5 IL ICA, MA"lGA- MAr.NE_ POT AS-015- IQON, NESE, CALCIIJM SlUM. C:;OOIUM, SlUM,

nATE DEPTIj SOL vED OIs- 015- 015- 015- 015- 015-OF OF TEMPER- (MG/L SOLVED SOL 'EO SOLVED SOLvEn SOL vEl) SOLVED

locATION SITE SAMPLE WELL HURF AS (lJG/l lUG/L (MG/L ( MG/l ( M(~/L (MG/L(n) !Dfr, C) S 102) A'i FE) AS M,) AS CA) AS ~H;) AS NA) AS K)

(C- 3- 4 ) AAAA- ew 1A-06-26 615 13 A3 ?7 400 6.\(C- 3- 4 ) Q606oA- ew 7A-06-06 'i13 111.5 13 61 ?'i 3?O 4.4( C- 3- 4111A88- r,W 13-01-02 660 30 'i0 101 44 41

ew 13-08-01 50 \5 111 4'i 41r,W 14-02-01 20 19':l \1 " 43 4S 3.6

Gw 17-10-31 150 61 102 46 4"i 3.2(C- 3- 4) 146oOH- ew 14-01-11 40 14 , 129 ~4 17 2.4

ew 17-10-31 310 I?" "" 'i2 40 2.2Gw 78-06-08 656 11.0 13 120 'iA 10 1.6

(C- 3- 411f..AAA- 1 GW 1A-09-21 021 14.0 13 I?O " 4;.>0 3.5

( C- 3- 4110AAC- GW 17-02-28 406 \3 <60 <;In " 10 42 .0IC- 3- 4)3IAHA- eW 1A-02-28 100 ?6 <60 <;In 01 3'i 4H 3.8(C- 3- 'i) lAC,A- GW 77-10-2A 36'> 20.0 18 1000 31) ':140 ?OO 1600 21IC- 3- 5) 4A~D- GW 71-07-07 1 A. 0

GW 7A-07-07 11.'i

(c- 3- 5) 4R~8- 2 GW h6-0h-27 401 1l1.C,Gw "Q-01-15 14.0r,w 70-07-11 lC,.OOw 72-07-1A Ih.O ?3 100 39 140 3. ~ow 71-07-03 lli.O 22 49 \h 1"0 3.5

ew 7C,-Oh-25 11'..0 ?I 90 32 1"'0 :3 .5ew 7h-Of..-11 16.0 21 10 44 34 140 3.1GW 17-07-07 11.0ew 17-07-2" 17.0r,W 7A-Oh-21 111.0 23 100 1h 190 3.1

ew 7A-07-0S If-.C,(C- 3- 'i) ~ABA- ew 7A-06-20 412 14.0 ?3 "" 34 '9 2.4

eW 7A-01-26 13.'i(C- 3- 51 7AljC- Gw 76-06-11 300 I?O

GW 17-01-08 11.0

GW 18-06-20 I?O 20 '4 11 ?1 1.1GW 1A-01-0S 13.0

(C- 3- 'i) 7DCC- 1 Gw 76-0b-l1 289 14.0 IH 10 h? 16 n 1.6eW 77-07-26 1"'.0 J9 hO 16 ;..>.3 1.6GW 7A-07-05 14.0

r,w 1A-07-75 16 h? 11 ?2 1.1(C- 3- 512?DAB- e. 7A-Ob-OS 428 IQ.O 23 1\ ° 41 3jQ 12(C- 3- 5136000- C,W 77-02-28 1S2 24 60 <?n 111 11 11':1 Ii.?(C- 3- 61 I~Otl- Gw 16-07-22 418 14.0

G. 11-05-02 14.0

(C- 3- 6) lAOH- ew 1R-07-0C; 14.0tC- 3- 6) 19ACB- SW 18-06-23 l'i.'i 14 44 12 '0 1.4(C- 3- 6) 10COC- SW 18-06-01 10.0 0.0 ?4 11.':" \ 0 .8( C- 3- bl3FoAAC- GW 7A-02-?8 C 180 19 A30 < ;lfl 12 10 n 1.1(C- 4- 3) OACC- SS 18-06-21 4.0 0.6 82 ?S , 2 1.0

(C- 4- 3 ) qCt;B- Sw 18-06-21 I? S II h6 0.4 h.O .1(C- 4- 41 38tW- SW 7A-06-27 10.Ci 9.6 h1 14 4.4 .8IC- 4- SI11CAC- SS 1A-06-23 19.5 30 7?0 40 110 4.7(C- 4- 61 4C6oD- 'iW 7A-06-23 I1.'i 12 "1 11 ?"i 1.)It- 4- 6) 6eA Sw 71-08-24 10.0

'iW 1l-0Q-?? 7 .~

SW 71-10-21 6.0SW 71-17-02 1.5SW 1\-12-30 3.0SW 77-02-17 4.S

SW 77-04-04 1.0SW 12-05-03 10.0SW 1?-05-31 q. S'iW 7?-06-23 9.'iSW 77-01-21:) 1?0

SW 1?-08-24 10.0SW 12-10-13 0.0SW 12-1l-14 S.O5w 17-12-14 ? .SSw 13-01-18 4.0

Sw 13-02-2 I 3.'isw 73-03-21 4.5'iW 71-04-30 7.05. 73-05-17 9.0SW 71-05-24 1.0

sw 73-0h-04 1.05W 73-06-22 1.,SW 73-07-23 10.0SW 73-08-21 9.S5W 75-10-07 8.0

SW 1'i-II-I0 4.SSW 15-12-00 4.0so 76-01-1 Q .3.05W 16-02-\1 1.0'iW 1h-04 ... 26 5.S

82

Page 88: Technical Publication No. 69 - Utah

sprill~;S , <llreams, mines, and tunnels, 19fi6-J8-- con t inu{'J

SOLIOS. <~PF -

CHLO- FLUO- SUM OF HARn- c;onIUM CIVIC

BICA~- ALKA- ~lJLFATF RUlE. RIDE, ROPON. CONSTI- HARI)- NfSS. AD- Ult-i-

80-. Tf CAP- L1NI TV 015- 015- 015- f)I~- TUE"'!TS. I\lESS NONCAR- C;ORP- [)Ur T-

{MG/l AONATE (MG/L SOLVED SOLVED C;OL V[O SOLVFn D15- (MG/L ~ONATf lION A",rF

AS IMG/L AS ( MG/L (""GIL (MG/L (UG/L SOL \lFO AS (""GIL SOD I UM PATIO (~rrRO-

He03 ) AS COl' CACO., ) AS SCl4 ) AS eLI AS F I AS A I (Mf;/L) CAC01) CACD]) PFRUNT ,"'l-fnS) fU"1 r TS)

2<:; (I 210 'il 690 .1 I I n 1340 320 110 7 J 9.8 ('400

?80 230 5? 470 .1 An 10'10 ?70 41 7? A. '"1B~O

2'" 209 74' 3" .' 0'0 449 ?40 1.0 7.4

2':-,c.:; 221 ?47 40 .5 040 470 ?OO .0 7. q

Ikh 153 730 37 .4 b40 47? 320 17 ,0 '.A210 177 ?55 ?9 .5 bID 444 ?70 1 " .9 7. f-,

244 200 173 37 .1 HOO '.:.,4 '7 1S0 I' .7 7,7

244 200 VI '0 .4 I)?O 500 110 IS .A 7. b

300 250 100 ](j .1 so 710 <;40 ?OO 1<. .1 9AO

27[) 2?0 40 7AO .1 100 1,,>SO 440 ??f) 6' A.7 ?C)SO

216 ?7 4" .1 cOO ]41 ?41 2'> I.? b?4 7.0

226 A6 197 , ? 23n 776 17'1 3A 7. ? 12nq 7.A

lAO 150 AA 3QO() .1 ?3fl "'460 ('200 2000 61 15 1160U14?')1400

2?1) 180 44" 1730 11.0

2?2 18? 435 414 73? 17;>0 7.7

450 1 720

221 1 R I 51 4f,l) Cjl~ 41n 230 50 4.1 1AOO r."'l21'> lAS 44 410 "lOS 400 ?IO 4g 3.9 1760 7. S

2?2 IA2 41 :no .1 70 H"il 3AO 170 i.);.> 4,1 12AO21_ 184 40 410 .1 7n 017 37(} 100 S? 4.3 1700 7.S

1'-)00}l:\f}()

220 J AO 42 410 .1 70 "l11 400 ??O 51 4.1 1570

1600

1"0 160 21 230 .1 4n !:jf}3 360 200 2, 1.6 102S

"SO5401:)00

210 lAO ]7 ',J .1 30 300 >10 ]4 ? 1 .R 5105;>0

20" 171 15 57 .1 4n 20A ??O 40 17 .6 S>O 7.42}U 170 13 52 .1 3n 2RR 2?O 41 10 .7 '>?5

560

200 160 14 5A .1 1n 20 I 2?0 61 17 .6 500 7,72AO 210 ISO ')40 .5 lAO 1330 440 no 61 A.A ?300 7. ?

210 ?31i 37" .2 _In 13s:l1 710 2A 1.0 I QIJ 7.7000770

ROOlAO 150 21 44 .2 50 2flO 17n ?4 21 1.0 ]1'10

" j A" 10 ?3 .1 ?O 1?1 B] 15 21 ,S lOS236 I A 6'> .1 16n 35? 2"'1 2? .0 673 7.7

240 200 100 14 .1 ?n 3A? 310 110 .3 4AO

14() 160 16 B.'" .1 20 21? ?IO 49 .2 4AO?IG 170 17 14 .1 2n 211 ?2f) 41 .3 400?~, 'J 210 460 200 .0 27fl 1220 7S0 540 24 1.7 IhOO2?O lAO 21 4" .1 4n 31 ,:., ?AO 07 16 .7 51S

270

-i403?0300?90110

340140?1'::J

I""3 J e,

30031527.,?7n320

33S140;:'4021027'1

11"1

?'~'"2 ~ 0?I-\(:;,

1<:'0

3403AO?AO

ViS3S0

83

Page 89: Technical Publication No. 69 - Utah

l'ahh 7.~-Chetrll(',lJ a.nalyses of watl'T frOID selected wf'.Ll~.

LOCATION

(L- 4- 6J b\...A

DATEOF

SITF C:;Ar-1PlE

~w 7f,-Or:.-?6~w 76-01-06~w 1fl-OA-02~w 7f.-09-0H~w 76-}0-21

~w 70-11-10~w 1f.-l?-08SW 77-01-13SW 77-0?-OA~w 17-03-11

5W 11-04-19SW 77-0S-02SW 11-0S-24sw 77-06-15SW 17-07-18

SW 77-0A-16~w 77-09-0QSW 77-10-12SW 77-11-09sw 17-17-06

SW 1A-OI-OSSW 7A-02-06SW 1A-03-02SW 78-04-03sw 18-04-?7

SW 7j;1-0S-26sw 1A-01-03SW 1B-OA-30

DEPTHOF

~EL1~,FT)

TfMPfR­ATUQf

(nFG C)

1.n11.01 n. 0

q .S~, • 0

~) • 0:I. 'i3.0

11. ,10.01.n4.0"),0

S IL leA.DIS­SOLVED(MG/L

ASSID?>

I,JON,·,1 S­

S()llJfO( iJG/LAS FEl

MANGA- MA(;N~_

NF~E • CALCIUM ~TUM. SODIU"'1.DIS- OIS- DIS- DIs-

SOLVED ~OLVFD SOlVEn SDlVEnIUG/L (MG/L ( IolG/l ( Mr./LAS ",j A~ CAj A~ MG) AS NAj

POTA~­

SlUM,DIS­

SOLVED{MG/LAS Kl

All analyses are by the U.S. Geological Survey except where noted.lMine-discharge water sampled above settling pond.?'Mine-discharge water samplC'd below settling pond.3Mine-discharge water from new workings sampled at discharge point.4Mine-discharge water from old workings sampled at discharge point.SOata provided by Anaconda Co.60ata provided by Tooele Army Depot.

84

Page 90: Technical Publication No. 69 - Utah

llHI I ')fJo 7B-·-("OIll [nllt'.1

<;OLTf)~.

CHL()- FLUO- S\!"'I OF

ATCAR- t\l~A- t;UI F 0. TF RI nE. Rrnr. 1\ 'Jp n ~~ • r.Ot~~Tr-

AONAH C"R- L t r-J[ TY fn S- OlS- DIS- /) T "~; -. r LJ~~ 1\1 f

( "1(,/1. RONATF I MG/t snLv[n SOL l/~; I C;OLvrn t:;OL V~II OT':1-

AS ( MG/l AS (f'AG/L ( MG/l {Mrlll ( (tf-i/l. 1.10Lvf'r)HCOJ) AS Cal) CACO 1) AS 504 ) AS CLl AS F) AS Hl ("1h/l)

85

rltlRD­,>ll:s';(till GIL

ASCAcn 1)

HAI-W­

NFSS.NO~CAR­

RO~HI,Tf

(~G/!. SOD !tIMCAe03) PERn NT

t:;on llHAAD­

t:;ORP­TJI)N

PAT TO

, PF-

elf' I CCOr<I­

l)urT-­Ar~rf:

( "'11rRO­"IHnc; )

?40?10?3n]}O340

34{)

?QO340"i40-pn

300210?YO?40300

31011')0)40

360140

330]";0

340_~ 00340

nolql:)

310

(\1"'T Tt:.;)

Page 91: Technical Publication No. 69 - Utah

*No.

No.

*No.

*No.

*No.

*No.

No.

*No.

No.

1.

2.

3.

4.

5.

6.

7.

8.

8.

PUBLICATIONS OF THE UTAH DEPARTMENT OF NATURAL RESOURCES,DIVISION OF WATER RIGHTS

(I)-Out of Print

TECHNICAL PUBLICATIONS

Underground leakage from artesian wells in the Flowell area, nearFillmore, Utah, by Penn Livingston and G. B. Maxey, U.S. Geo­logical Survey, 1944.

The Ogden Valley artesian reservoir, Weber County, Utah, by H. E.Thomas, U.S. Geological Survey, 1945.

Ground water in Pavant Valley, Millard County, Utah, by P. E.Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey,1946.

Ground water in Tooele Valley, Tooele County, Utah, by H. E.Thomas, U.S. Geological Survey, in Utah State Engineer 25thBiennial Report, p. 91-238, pls. 1-6, 1946.

Ground water in the East Shore area, Utah: Part I, BountifulDistrict, Davis County, Utah, by H. E. Thomas and W. B. Nelson,U.S. Geological Survey, in Utah State Engineer 26th BiennialReport, p. 53-206, pls. 1-2, 1948.

Ground water in the Escalante Valley, Beaver, Iron, and WashingtonCounties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, andR. G. Butler, U.S. Geological Survey, in Utah State Engineer 27thBiennial Report, p. 107-210, pls. 1-10, 1950.

Status of development of selected ground-water basins in Utah, byH. E. Thomas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S.Geological Survey, 1952.

Consumptive use of water and irrigation requirements of crops inUtah, by C. O. Roskelly and W. D. Criddle, Utah State Engineer'sOffice, 1952.

(Revised) Consumptive use and water requirements for Utah, byW. D. Criddle, Karl Harris, and L. S. Willardson, Utah StateEngineer's Office, 1962.

No.9.

*No. 10.

Progress report on selected ground water basins in Utah, by H. A.Waite, W. B. Nelson, and others, U.S. Geological Survey, 1954.

A compilation of chemical quality data for ground and surfacewaters in Utah, by J. G. Connor, C. G. Mitchell, and others, U.S.Geological Survey, 1958.

86

Page 92: Technical Publication No. 69 - Utah

*No. 11.

*No. 12.

*No. 13.

*No. 14.

*No. 15.

*No. 16.

*No. 17.

No. 18.

No. 19.

No. 20.

No. 21.

No. 22.

No. 23.

No. 24.

No. 25.

Ground water in northern Utah Valley, Utah: A progress report forthe period 1948-63, by R. M. Cordova and Seymour Subitzky, U.S.Geological Survey, 1965.

Reevaluation of the ground-water resources of Tooele Valley, Utah,by J. S. Gates, U.S. Geological Survey, 1965.

Ground-water resources of selected basins in southwestern Utah, byG. W. Sandberg, U.S. Geological Survey, 1966.

Water-resources appraisal of the Snake Valley area, Utah andNevada, by J. W. Hood and F. E. Rush, U. S. Geological Survey,1966.

Water from bedrock in the Colorado Plateau of Utah, by R. D.Feltis, U.S. Geological Survey, 1966.

Ground-water conditions in Cedar Valley, Utah County, Utah, byR. D. Feltis, U.S. Geological Survey, 1967.

Ground-water resources of northern Juab Valley, Utah, by L. J.Bjorklund, U.S. Geological Survey, 1968.

Hydrologic reconnaissance of Skull Valley, Tooele County, Utah, byJ. W. Hood and K. M. Waddell, U.S. Geological Survey, 1968.

An appraisal of the quality of surface water in the Sevier Lakebasin, Utah, by D. C. Hahl and J. C. Mundorff, U.S. GeologicalSurvey, 1968.

Extensions of streamflow records in Utah, by J. K. Reid, L. E.Carroon, and G. E. Pyper, U.S. Geological Survey, 1969.

Summary of maximum discharges in Utah streams, by G. L. Whitaker,U.S. Geological Survey, 1969.

Reconnaissance of the ground-water resources of the upper FremontRiver valley, Wayne County, Utah, by L. J. Bjorklund, U.S.Geological Survey, 1969.

Hydrologic reconnaissance of Rush Valley, Tooele County, Utah, byJ. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey,1969.

Hydrologic reconnaissance of Deep Creek valley, Tooele and JuabCounties, Utah, and Elko and White Pine Counties, Nevada, by J. W.Hood and K. M. Waddell, U.S. Geological Survey, 1969.

Hydrologic reconnaissance of Curlew Valley, Utah and Idaho, byE. L. BoIke and Don Price, U.S. Geological Survey, 1969.

87

Page 93: Technical Publication No. 69 - Utah

No. 26.

No. 27.

No. 28.

No. 29.

No. 30.

No. 31.

No. 32.

No. 33.

No. 34.

No. 35.

No. 36.

No. 37.

No. 38.

No. 39.

No. 40.

Hydrologic reconnaissance of the Sink Valley area, Tooele and BoxElder Counties, Utah, by Don Price and E. L. Bolke, U.S.Geological Survey, 1969.

Water resources of the Heber-Kamas-Park City area, north-centralUtah, by C. H. Baker, Jr., U.S. Geological Survey, 1970.

Ground-water conditions in southern Utah Valley and Goshen Valley,Utah, by R. M. Cordova, U.S. Geological Survey, 1970.

Hydrologic reconnaissance of Grouse Creek valley, Box ElderCounty, Utah, by J. W. Hood and Don Price, U.S. Geological Survey,1970.

Hydrologic reconnaissance of the Park Valley area, Box ElderCounty, Utah, by J. W. Hood, U.S. Geological Survey, 1971.

Water resources of Salt Lake County, Utah, by A. G. Hely, R. W.Mower, and C. A. Harr, U.S. Geological Survey, 1971.

Geology and water resources of the Spanish Valley area, Grand andSan Juan Counties, Utah, by C. T. Sumsion, U.S. Geological Survey,1971.

Hydrologic reconnaissance of Hansel Valley and northern RozelFlat, Box Elder County, Utah, by J. W. Hood, U.S. GeologicalSurvey, 1971.

Summary of water resources of Salt Lake County, Utah, by A. G.Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.

Ground-water conditions in the East Shore area, Box Elder, Davis,and Weber Counties, Utah, 1960-69, by E. L. BoIke and K. M.Waddell, U.S. Geological Survey, 1972.

Ground-water resources of Cache Valley, Utah and Idaho, by L. J.Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.

Hydrologic reconnaissance of the Blue Creek Valley area, Box ElderCounty, Utah, by E. L. Bolke and Don Price, U.S. GeologicalSurvey, 1972.

Hydrologic reconnaissance of the Promontory Mountains area, BoxElder County, Utah, by J. W. Hood, U.S. Geological Survey, 1972.

Reconnaissance of chemical quality of surface water and fluvialsediment in the Price River Basin, Utah, by J. C. Mundorff, U.S.Geological Survey, 1972.

Ground-water conditions in the central Virgin River basin, Utah,by R. M. Cordova, G. W. Sandberg, and Wilson McConkie, U.S. Geo­logical Survey, 1972.

88

Page 94: Technical Publication No. 69 - Utah

No. 41.

No. 42.

No. 43.

No. 44.

No. 45.

No. 46.

No. 47.

No. 48.

No. 49.

No. 50.

No. 51.

No. 52.

No 53.

No. 54.

No. 55.

Hydrologic reconnaissance of Pilot Valley, Utah and Nevada, byJ. C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.

Hydrologic reconnaissance of the northern Great Salt Lake Desertand summary hydrologic reconnaissance of northwestern Utah, byJ. C. Stephens, U.S. Geological Survey, 1973.

Water resources of the Milford area, Utah, with emphasis on groundwater, by R. W. Mower and R. M. Cordova, U.S. Geological Survey,1974.

Ground-water resources of the lower Bear River drainage basin, BoxElder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S.Geological Survey, 1974.

Water resources of the Curlew Valley drainage basin, Utah andIdaho, by C. H. Baker, Jr., U.S. Geological Survey, 1974.

Water-quality reconnaissance of surface inflow to Utah Lake, byJ. C. Mundorff, U.S. Geological Survey, 1974.

Hydrologic reconnaissance of the Wah Wah Valley drainage basin,Millard and Beaver Counties, Utah, by J. C. Stephens, U.S.Geological Survey, 1974.

Estimating mean streamflow in the Duchesne River basin, Utah, byR. W. Cruff, U.S. Geological Survey, 1974.

Hydrologic reconnaissance of the southern Uinta Basin, Utah andColorado, by Don Price and L. L. Miller, U.S. Geological Survey,1975.

Seepage study of the Rocky Point Canal and the Grey Mountain­Pleasant Valley Canal systems, Duchesne County, Utah, by R. W.Cruff and J. W. Hood, U.S. Geological Survey, 1976.

Hydrologic reconnaissance of the Pine Valley drainage basin,Millard, Beaver, and Iron Counties, Utah, by J. C. Stephens, U.S.Geological Survey, 1976.

Seepage study of canals in Beaver Valley, Beaver County, Utah, byR. W. Cruff and R. W. Mower, U.S. Geological Survey, 1976.

Characteristics of aquifers in the northern Uinta Basin area, Utahand Colorado, by J. W. Hood, U.S. Geological Survey, 1976.

Hydrologic evaluation of Ashley Valley, northern Uinta Basin area,Utah, by J. W. Hood, U.S. Geological Survey, 1977.

Reconnaissance of water quality in the Duchesne River basin andsome adjacent drainage areas, Utah, by J. C. Mundorff, U.S.Geological Survey, 1977.

89

Page 95: Technical Publication No. 69 - Utah

No. 56.

No. 57.

No. 58.

No. 59.

No. 60.

No. 61.

No. 62.

No. 63.

No. 64.

No. 65.

No. 66.

No. 67.

No. 68.

Hydrologic reconnaissance of the Tule Valley drainage basin, Juaband Millard Counties, Utah, by J. C. Stephens, U. S. GeologicalSurvey, 1977.

Hydrologic evaluation of the upper Duchesne River valley, northernUinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey,1977.

Seepage study of the Sevier Valley-Piute Canal, Sevier County,Utah, by R. W. Cruff, U.S. Geological Survey, 1977.

Hydrologic reconnaissance of the Dugway Valley-Government Creekarea, west-central Utah, by J. C. Stephens and C. T. Sumsion, U.S.Geological Survey, 1978.

Ground-water resources of the Parowan-Cedar City drainage basin,Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W.Sandberg, U.S. Geological Survey, 1978.

Ground-water conditions in the Navajo Sandstone in the centralVirgin River basin, Utah, by R. M. Cordova, U.S. GeologicalSurvey, 1978.

Water resources of the northern Uinta Basin area, Utah andColorado, with special emphasis on ground-water supply, by J. W.Hood and F. K. Fields, U.S. Geological Survey, 1978.

Hydrology of the Beaver Valley area, Beaver County, Utah withemphasis on ground water, by R. W. Mower, U.S. Geological Survey,1978.

Hydrologic reconnaissance of the Fish Springs Flat area, Tooele,Juab, and Millard Counties, Utah, by E. L. BoIke and C. T.Sumsion, U.S. Geological Survey, 1978.

Reconnaissance of chemical quality of surface water and fluvialsediment in the Dirty Devil River basin, Utah, by J. C. Mundorff,U.S. Geological Survey, 1978.

Aquifer tests of the Navajo Sandstone near Caineville, WayneCounty, Utah, by J. W. Hood and T. W. Danielson, U.S. GeologicalSurvey, 1979.

Seepage study of the West Side and West Canals, Box Elder County,by R. W. Cruff, U.S. Geological Survey, 1980.

Bedrock aquifers in the lower Dirty Devil River basin, Utah, withemphasis on the Navajo Sandstone, by J. W. Hood and T. W.Danielson, U.S. Geological Survey, 1980.

90

Page 96: Technical Publication No. 69 - Utah

No.

No.

*No.

No.

No.

1.

2.

1.

2.

3.

WATER CIRCULARS

Ground water in the Jordan Valley, Salt Lake County, Utah, by TedArnow, U.S. Geological Survey, 1965.

Ground water in Tooele Valley, Utah, by J. S. Gates and O. A.Keller, U.S. Geological Survey, 1970.

BASIC-DATA REPORTS

Records and water-level measurements of selected wells andchemical analyses of ground water, East Shore area, Davis, Weber,and Box Elder Counties, Utah, by R. E. Smith, U.S. GeologicalSurvey, 1961.

Records of selected wells and springs, selected drillers' logs ofwells, and chemical analyses of ground and surface waters,northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S.Geological Survey, 1962.

Ground-water data, central Sevier Valley, parts of Sanpete,Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A.Young, U.S. Geological Survey, 1963.

*No. 4.

*No. 5.

*No. 6.

No. 7.

No. 8.

*No. 9.

No. 10.

*No. 11 .

No. 12.

Selected hydrologic data, Jordan Valley, Salt Lake County, Utah,by I. W. Marine and Don Price, U.S. Geological Survey, 1963.

Selected hydrologic data, Pavant Valley, Millard County, Utah, byR. W. Mower, U.S. Geological Survey, 1963.

Ground-water data, parts of Washington, Iron, Beaver, and MillardCounties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.

Selected hydrologic data, Tooele Valley, Tooele County, Utah, byJ. S. Gates, U.S. Geological Survey, 1963.

Selected hydrologic data, upper Sevier River basin, Utah, by C. H.Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund, U.S. Geo­logical Survey, 1964.

Ground-water data, Sevier Desert, Utah, by R. W. Mower and R. D.Feltis, U.S. Geological Survey, 1964.

Quality of surface water in the Sevier Lake basin, Utah, by D. C.Hahl and R. E. Cabell, U.S. Geological Survey, 1965.

Hydrologic and climatologic data, collected through 1964, SaltLake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr,U.S. Geological Survey, 1966.

Hydrologic and climatologic data, 1965, Salt Lake County, Utah, byW. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey,1966.

91

Page 97: Technical Publication No. 69 - Utah

No. 13.

No. 14.

No. 15.

No, 16.

No. 17.

No. 18.

No. 19

No. 20

No. 21

No. 22.

No. 23.

No. 24.

No. 25.

No. 26.

No. 27.

Hydrologic and climatologic data, 1966, Salt Lake County, Utah, byA. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey,1967.

Selected hydrologic data, San Pitch River drainage basin, Utah, byG. B. Robinson, Jr., U.S. Geological Survey, 1968.

Hydrologic and climatologic data, 1967, Salt Lake County, Utah, byA. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey,1968.

Selected hydrologic data, southern Utah and Goshen Valleys, Utah,by R. M. Cordova, U.S. Geological Survey, 1969.

Hydrologic and climatologic data, 1968, Salt Lake County, Utah, byA. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey,1969.

Quality of surface water in the Bear River basin, Utah, Wyoming,and Idaho, by K. M. Waddell, U.S. Geological Survey, 1970.

Daily water-temperature records for Utah streams, 1944-68, byG. L. Whitaker, U.S. Geological Survey, 1970.

Water-quality data for the Flaming Gorge area, Utah and Wyoming,by R. J. Madison, U.S. Geological Survey, 1970.

Selected hydrologic data, Cache Valley, Utah and Idaho, by L. J.McGreevy and L. J. Bjorklund, U.S. Geological Survey, 1970.

Periodic water- and air-temperature records for Utah streams,1966-70, by G. L. Whitaker, U.S. Geological Survey, 1971.

Selected hydrologic data, lower Bear River drainage basin, BoxElder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S.Geological Survey, 1973.

Water-quality data for the Flaming Gorge Reservoir area, Utah andWyoming, 1969-72, by E. L. Balke and K. M. Waddell, U.S. Geologi­cal Survey, 1972.

Streamflow characteristics in northeastern Utah and adjacentareas, by F. K. Fields, U.S. Geological Survey, 1975.

Selected hydrologic data, Uinta Basin area, Utah and Colorado, byJ. W. Hood, J. C. Mundorff, and Don Price, U.S. Geological Survey,1976.

Chemical and physical data for the Flaming Gorge Reservoir area,Utah and Wyoming, by E. L. Balke, U.S. Geological Survey, 1976.

92

Page 98: Technical Publication No. 69 - Utah

No. 28.

No. 29.

Selected hydrologic data, Parowan Valley and Cedar City Valleydrainage basins, Iron County, Utah, by L. J. Bjorklund, C. T.Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1977.

Climatologic and hydrologic data, southeastern Uinta Basin, Utahand Colorado, water years 1975 and 1976, by L. S. Conroy and F. K.Fields, U.S. Geological Survey, 1977.

No. 30. Selected ground-waterValley, western Utah,1977.

data, Bonneville Salt Flats and Pilotby. G. C. Lines, U.S. Geological Survey,

No. 31.

No. 32.

No. 33.

Selected hydrologic data, Wasatch Plateau-Book Cliffs coal-fieldsarea, Utah, by K. M. Waddell and others, U.S. Geological Survey,1978.

Selected coal-related ground-water data, Wasatch Plateau-BookCliffs area, Utah, by C. T. Sumsion, U.S. Geological Survey, 1979.

Hydrologic and climatologic data, southeastern Uinta Basin, Utahand Colorado, water year 1977, by L. S. Conroy, U.S. GeologicalSurvey, 1979.

INFORMATION BULLETINS

*No.

*No.

*No.

*No.

1.

2.

3.

4.

Plan of work for the Sevier River Basin (Sec. 6, P. L. 566), U.S.Department of Agriculture, 1960.

Water production from oil wells in Utah, by Jerry Tuttle, UtahState Engineer's Office, 1960.

Ground-water areas and well logs, central Sevier Valley, Utah, byR. A. Young, U.S. Geological Survey, 1960.

Ground-water investigations in Utah in 1960 and reports publishedby the U.S. Geological Surveyor the Utah State Engineer prior to1960, by H. D. Goode, U.S. Geological Survey, 1960.

*No. 5.

*No. 6.

*No. 7.

*No. 8.

No. 9.

Developing ground water in the central Sevier Valley, Utah, by R.A. Young and C. H. Carpenter, U.S. Geological Survey, 1961.

Work outline and report outline for Sevier River basin survey,(Sec. 6, P. L. 566), U.S. Department of Agriculture, 1961.

Relation of the deep and shallow artesian aquifers near Lynndyl,Utah, by R. W. Mower, U.S. Geological Survey, 1961.

Projected 1975 municipal water-use requirements, Davis County,Utah, by Utah State Engineer's Office, 1962.

Projected 1975 municipal water-use requirements, Weber County,Utah, by Utah State Engineer's Office, 1962.

93

Page 99: Technical Publication No. 69 - Utah

*No. 10.

*No. 11.

*No. 12.

*No. 13.

*No. 14.

*No. 15.

*No. 16.

*No. 11.

*No. 18.

No, 19.

*No, 20.

*No. 21.

Effects on the shallow artesian aquifer of withdrawing water fromthe deep artesian aquifer near Sugarville, Millard County, Utah,by R. W. Mower, U.S. Geological Survey, 1963.

Amendments to plan of work and work outline for the Sevier Riverbasin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1964.

Test drilling in the upper Sevier River drainage basin, Garfieldand Piute Counties, Utah, by R. D. Feltis and G. B. Robinson, Jr.,U.S. Geological Survey, 1963.

Water requirements of lower Jordan River, Utah, by Karl Harris,Irrigation Engineer, Agricultural Research Service, Phoenix,Arizona, prepared under informal cooperation approved by Mr. W. W.Donnan, Chief, Southwest Branch (Riverside, California) Soil andWater Conservation Research Division, Agricultural ResearchService, U.S.D.A., and by W. D. Criddle, State Engineer, State ofUtah, Salt Lake City, Utah, 1964.

Consumptive use of water by native vegetation and irrigated cropsin the Virgin River area of Utah, by W. D. Criddle, J. M. Bagley,R. K. Higginson, and D. W. Hendricks, through cooperation of UtahAgricul tural Experiment Station, Agricultural Research Service,Soil and Water Conservation Branch, Western Soil and WaterManagement Section, Utah Water and Power Board, and Utah StateEngineer, Salt Lake City, Utah, 1964.

Ground-water conditions and related water-administration problemsin Cedar City Valley, Iron County, Utah, February, 1966, by J. A.Barnett and F. T. Mayo, Utah State Engineer's Office.

Summary of water well drilling activities in Utah, 1960 through1965, compiled by Utah State Engineer's Office, 1966.

Bibliography of U.S. Geological Survey water-resources reports forUtah, compiled by O. A. Keller, U.S. Geological Survey, 1966.

The effect of pumping large-discharge wells on the ground-waterreservoir in southern Utah Valley, Utah County, Utah, by R. M.Cordova and R. W. Mower, U.S. Geological Survey, 1967.

Ground-water hydrology of southern Cache Valley, Utah, by L. P.Beer, Utah State Engineer's Office, 1961.

Fluvial sediment in Utah, 1905-65, A data compilation by J. C.Mundorff, U.S. Geological Survey, 1968.

Hydrogeology of the eastern portion of the south slopes of theUinta Mountains, Utah, by L. G. Moore and D. A. Barker, U.S.Bureau of Reclamation, and J. D. Maxwell and B. L. Bridges, SoilConservation Service, 1971.

94

Page 100: Technical Publication No. 69 - Utah

*No.22.

*No. 23.

No. 24.

No. 25.

No. 26.

No. 27.

Bibliography of U.S. Geological Survey water-resources reports forUtah, compiled by B. A. LaPray, U.S. Geological Survey, 1972.

Bibliography of U.S. Geological Survey water-resources reports forUtah, compiled by B. A. LaPray, U.S. Geological Survey, 1975.

A water-land use management model for the Sevier River Basin,Phase I and II, by V. A. Narasimham and Eugene K. Israelsen, UtahWater Research Laboratory, College of Engineering, Utah StateUniversity, 1975.

A water-land use management model for the Sevier River Basin,Phase III, by Eugene K. Israelsen, Utah Water Research Laboratory,College of Engineering, Utah State University, 1976.

Test drilling for fresh water in Tooele Valley, Utah, by K. H.Ryan, B. W. Nance, and A. C. Razem, Utah Department of NaturalResources, 1981.

Bibliography of U.S. Geological Survey Water-Resources Reports forUtah, compiled by Barbara A. LaPray and Linda S. Hamblin, U.S.Geological Survey, 1980.

95

Page 101: Technical Publication No. 69 - Utah
Page 102: Technical Publication No. 69 - Utah