Technical Handbook Valve-Regulated Lead-Acid Batteries

  • Upload
    cacho63

  • View
    225

  • Download
    1

Embed Size (px)

Citation preview

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    1/19

    Tech nic a l Handb ook

    Valve-RegulatedLead-Ac id Ba t te r ies

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    2/19

    Aerial view of the italian facto ry in Avezzano

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    3/19

    TABLE OF CONTENTS

    CHARACTERISTICS PAGE 51.1 Total absence of maintenance1.2 Sealed construction1.3 High energy density1.4 Recovery after overdischarge1.5 Low self-discharge1.6 Long life1.7 Wide ranging operating temperature1.8 International certifications1.9 Economy of operation

    COSTRUCTION PAGE 6

    WORKING PRINCIPLES FORVALVE-REGULATED LEAD ACID BATTERIES PAGE 73.1 Basic theory3.2 Theory of Internal Recombination

    ELECTRICAL CHARACTERISTICS PAGE 84.1 Capacity4.2 Discharge4.3 Self-discharge4.4 Open c ircuit tension4.5 Charge

    4.5.1 Constant tension charge4.5.2 Fast charge4.5.3 Two -stage charge4.5.4 Parallel charge

    4

    3

    2

    1

    ll FIAMM-GS batteries have been spec ifically developed to enhance

    economy of operation, reliability and energy output .

    The values reached in these areas position FIAMM-GS b atteries among the very best p resently

    available on the market. They represent the ideal solution fo r all app lications which require a

    high- density energy source, that is both reliable and maintenance- free for several years.

    A

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    4/19

    LIFETIME PAGE 125.1 Lifetime in cyclic use

    5.2 Lifetime in buffer use5.3 Lifetime in deep d ischarge

    OPERATING INSTRUCTIONS PAGE 136.1 Assembling and connecting6.2 Storage6.3 General comments

    HOW TO SELECT THE APPROPRIATETYPE OF BATTERY PAGE 14

    TECHNICAL SPECIFICATIONS PAGE 16

    7

    6

    5

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    5/19

    5

    CHARACTERISTICS

    Tota l absence o f m a in tenance . The g a s e s w h ic h a re g e ne ra t e d b y t he

    electrolysis of water, during the period of overcharge, are completely recombined in the

    elements , thereby e limina ting the nee d for the period ic a dd ition o f wa ter.

    Sealed c onst ruct ion . The s ea led co ns truction, typ ic a l of a ll FIAMM-GS

    ba tteries permits a s a fe use in any po s ition w ithout a ny lea kag e of electrolyte a nd/or red uction

    of elec tric c a pa city.

    High energy density. The us e o f highly porous g la s s fibre se pa ra tors p ermits

    the ma ximum po s sible e nergy de ns ity pe r unit o f volume a nd/or w eig ht.

    Reco very after overd ischarge. The glas s f ibre sepa ra tors, c omb ined w ith

    s pec ia l elec trolyte a dd itives , a llow FIAMM-GS ba tteries to c ontinue to a cc ept c ha rging c urrent,

    even in ca ses of overdisc harge, or after long storag e period s.

    Low self-discharge. The perfec t se a ling o f the ba ttery ca se a nd the us e of pure

    P b-Ca a lloy g rids keep the se lf-disc ha rge values b elow 3% of ba ttery c a pa city per month.

    Long life. B oth the pos itive a nd neg a tive pla tes have b een optimized , to ob tain

    excellent results in either cyclic or stand-by use.

    Wide rang ing operat ing temperature . FIAMM-GS batteries are special ly

    des igned to operate within a w ide tempera ture range .

    Internat ional cert i f icat ions. FIAMM-GS bat ter ies are tes ted and cert i f ied

    a cc ording to UL 924, se ction 38. The b a ttery types c ommo nly use d in sec urity a pplica tions a re

    further cert if ied by the VdS , the G erman insuranc e und erwriters a ss oc ia t ion. The VdS

    certification is one of the few product certificates that tests the effective battery capacity.

    Moreover, FIAMM-G S ba tte ries meet the req uirements of provis ion A 67 of the IATA Da ng erous

    G ood s Reg ula tion a nd c a n therefore be trans ported b y a ircraft.

    Economy of operat ion. FIAMM-GS highly automated production and the

    ba tteries spec ia l des ign permit ma ny yea rs of s a fe a nd trouble-free us e.

    1.9

    1.8

    1.7

    1.6

    1.5

    1.4

    1.3

    1.2

    1.1

    1

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    6/19

    6

    COSTRUCTION2

    1

    12

    4

    5

    6

    3

    Components M aterials

    Terminals Tin-plated brass

    Safety valve Lubricated synthetic rubber

    Separator Glass fibre

    Container and cover ABS synthetic resin

    Negative plate Lead and lead oxide

    Positive plate Lead and lead oxide

    Electrolyte Diluted sulphuric acid

    6

    5

    4

    3

    2

    1

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    7/19

    7

    WORKING PRINCIPLESFOR VALVE-REGULATED LEAD

    ACID BATTERIES

    ELECTROCHEMICAL PROCESSES

    Basic t heory

    The follow ing c hemica l rea c tions de sc ribe the

    exact transformation which occurs both in the

    p o s i t i v e a n d n e g a t i v e p l a t e s , d u e t o

    electrochemica l proc ess es:

    Combining the two formulae one can therefore

    obtain:

    DischargeDuring discharge, the PbO2 (lead dioxide) of the

    posi t ive plate becomes PbSO4 (lea d s ulpha te);

    and the Pb (spongy lead) of the negative plate

    b ecom es P b S O4 (lea d s ulpha te). This c a use s a

    reduction of the specific weight of the electrolyte,

    as the sulphuric acid contained in the electrolyte

    pa ss es to the pla tes d uring discha rge.

    These proc es se s a re reverse d during the c harging

    phase.

    Charge

    D u rin g t h e c h a rg in g p h a s e , t h e P b S O 4 (lead

    sulphate) of the positive plate oxidizes and re-

    Discharge

    P bO2 + 2H2S O4 + P b P b S O4 + 2H2O + P b S O4Charge

    Negative plate

    Discharge

    P b + S O4 P bS O4 + 2e Charge

    Positive plate

    Discharge

    P bO2 + 4H+ + S O4 + 2e P bS O4 + 2H2O

    Charge

    3.1

    3 forms as PbO2, while in the negative plate, theP b S O4 (lead sulphate) re-forms as Pb (spongylead).

    The g enera l formula (see be s ide ), c onc erning the

    to t a l t r an s f o r m a t i on occu r r i n g d u r i n g th e

    ch a rge/d isc h ar ge p h as es , c o r resp o n d s t o a n

    e l ec t r i c q u an t i t y o f 2F ( Far ad s ) o r 53 .6 Ah

    (Ampere/ho ur).

    For a d i scharge reac t ion to occur , one would

    therefore require active materials in a ratio of

    239.2 grams of PbO2, 207.2 grams of Pb, and

    1 9 6 . 2 g r a m s o f S O 4 . Th e s a m e w e i gh t ra t io

    likewise holds true for the charge reaction.

    Theory of Intern al Recombinat ion

    When a tra ditiona l open lea d-ac id ce ll is cha rge d,

    a re lea se o f g a s o cc u rs . Th is h a p p en s w h en

    w a t e r , t h r o u g h t h e p r o c e s s o f e l e c t r o l y s i s ,

    decomposes into its foming elements.

    To m a inta in the c hemica l ba la nce in the c ell, the

    lost water must therefore be replaced periodically,

    involving time consuming verification and refillingof the e lec trolyte.

    In the ca se of Va lve-reg ula ted ba tteries , how ever,

    the elements in the gases created are combined

    anew during the charge phase, through the so-

    called cycle of oxygen recombination, thereby

    producing water as described in the following cycle:

    1) On the positive plates, oxygen is generated by

    wa ter electrolysis:

    and i s d i f fused through the separa tors to the

    negative plates.

    2) On the negative plates, the oxygen combines

    with a part of the lead contained in these plates

    prod ucing lead oxide:

    3) The lea d oxide c om bines w ith the s ulphuric

    P b + 1/2 O2 P bO

    H2O 1/2 O2 + 2H+ + 2e

    3.2

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    8/19

    8

    acid of the electrolyte, forming lead sulphate and

    water:

    Water is therefore regenerated on the positive

    plates, while lead sulphate is formed from the

    pa rtia lly disc harged nega tive pla tes .

    4) The c ha rge proc es s rec ha rge s the pa rt ia lly

    discharged negative plates, thereby closing the

    cycle.

    The rec omb ination cyc le, a s d es cribed a bo ve, is

    therefore the oretica lly c omp lete (se e a lso Fig .1).

    The c ons tituent pa rts of w a ter and sulphuric a cid

    in the elec trolyte, a s we ll a s the a mount of lea d o f

    the negative plates, reappear at the end of the

    process in their or iginal s tate , wi thout having

    mod ified the c harge c onditions of the pla tes.

    N.B. In everyday circumstances, recombination

    yields tend to be s l ight ly less than complete,

    giving approximately 98% efficiency.

    Necessary conditions

    To fa c ilita te the d iffusion o f oxyg en, highly uniform

    a nd porous se parators are used .

    Furthermore, to avoid saturat ing the avai lable

    poros ity of these sa me s epa ra tors, the q uantity of

    H2O 2H+

    + 1/2 O2

    H2SO4PbSO4 +H2O

    Pb + H2SO4

    PbOPb

    Fig. 1

    P b S O4 + 2H+ + 2e P b + H2S O4

    P bO + H2S O4 P b S O4 + H2O

    electrolyte must carefully be measured, thereby

    en su r i n g th a t th e e l ec t r o l y t e i s com p l e te l y

    contained inside the plates and the separators,

    leav ing no f ree e lec t ro ly te ins ide the ba t terycontainer.

    To prevent co ntac t of the lea d o f the nega tive

    p l a t e s a n d t h e o x y g e n c o n t a i n e d i n t h e

    surrounding a tmosphere , and the consequent

    chemical oxidation, the electrical elements must

    be held in fully closed containers. At the same

    time, it is also necessary to allow the venting of

    any overpressurizat ion of gases which may be

    generated within the container during anomalous

    a nd/or overly ha rsh cha rg ing c ond itions .

    Every battery cell is therefore equipped with a

    one-wa y valve. This va lve allow s exc es s g a se s to

    be vented when required, but does not permit

    outs ide a ir to enter. The presenc e o f these one-

    way valves therefore gives r ise to the correct

    Valve-regulated classification for FIAMM-GS

    batteries, instead of the more commonly used,

    but inac cura te, sea led cla ss ifica tion.

    ELECTRICAL CHARACTERISTICS

    Capacity

    The c a pa c ity of a ba t tery (Ah) is the prod uct

    between the d i scharge curren t (expressed in

    Amperes) and the t ime that passes before the

    final discharge tension is reached (expressed in

    hours).

    The c a pa city varies a cc ording to the intensity ofthe o utput c urrent . The rat ed c a pa c ity (C ) is

    con v en t i on a l y ca l cu l a t ed b y d i s ch ar g i n g th e

    ba t tery at a s ta ble tempera ture of 20-25 C, in

    such a way as to reach a final discharge tension

    of 1.75 V per cell after 20 hours.

    Discharge

    Figures 2 and 3 represent the discharge curves

    with currents from 0.05 C, up to 2 C. In the caseof a 12V-7,2Ah ba ttery, for insta nce , the d isc ha rge

    current is expressed according to the following

    formula:

    4.2

    4.1

    4

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    9/19

    9

    Due to the internal resistance of the battery, the

    vol tage decreases f as ter when the d i scharge ,

    currents a re higher (see figures 2 a nd 3).

    In order to avoid shortening the battery life, it is

    reco mmended not to discha rge the ba ttery beyond

    the indicated minimum tensions (see table 1).

    The m a ximum pe rmiss ible c ontinuous disc ha rg e

    current depends on the type of terminal which is

    use d (fa s ton or s c rew /bo lt te rmina l). As a rule ofth u m b , i t i s gen er a l l y g i v en a s 6 t i m es th e

    ca pac ity of the ba ttery.

    0.5C

    1C

    2CC: Rated capacity

    Temperature: 25C (77F)

    0 8010 20 30 40 50 60

    13,0 6,5

    12,0 6,0

    11,0 5,5

    10,0 5,0

    9,0 4,5

    8,0 4,0

    6cells

    3cells

    Discharge time (minutes)

    Terminalvoltage(V)

    Discharge time vs. discharge current

    70

    Fig. 3

    0.2C0.1C 0.05C

    C: Rated capacityTemperature: 25C (77F)

    0 222 4 6 8 10 12 14 16 18 20

    13,0 6,5

    12,0 6,0

    11,0 5,5

    10,0 5,0

    9,0 4,5

    8,0 4,0

    6cells

    3cells

    Discharge time (hours)

    Terminalvoltag

    e(V)

    Discharge time vs. discharge current

    Fig. 2

    0,05 C = 0,05 x 7,2 = 0,36 A

    2 C = 2 x 7,2 = 14,4 A

    For cable-terminals, the maximum permissible

    discharge current is general ly accepted to be

    a pproxima tely 3 times the c a pa city of the ba ttery.

    Table 1 - Discharge current and final discharge voltage

    Battery discharge is an electrochemical reaction

    b e tw een th e e l ec t r od es ( th e p l a t e s ) an d th e

    diluted sulphuric a c id.

    When the discharge current is particularly high, or

    the temperature is very low, thereby causing a

    greater viscosity of the acid, the diffusion rate of

    the a cid through the pla tes ca n no long er keep up

    wi th the d i scharge , reducing the capaci ty , as

    sho w n in figure 4.

    Self-discharge

    The los s of ba ttery c a pa city over a period of timeis ca lled se lf-discha rge . Through the use of P b-Ca

    alloys, self-discharge caused by the sulphating of

    the plates has been great ly reduced. Bat ter ies

    4.3

    20

    40

    60

    80

    100

    120

    -10 0 10 20 30 40-20

    2,0C(A)

    1,0C(A)

    0,2C(A)

    0,1C(A)0,05C(A)

    Availablecapacity(%)

    C: nominal capacity

    Temperature (C)

    Fig. 4

    Effect of the temperature on capacity

    0

    Discharge current Final discharge voltage

    Less than 0.2 C 1.75 V/cell

    0.2 C - 0.5 C 1.70 V/cell

    0.5 C - 1.0 C 1.60 V/cell

    1.0 C - 2.0 C 1.50 V/cell

    2.0 C - 3.0 C 1.35 V/cell

    Over 3.0 C 1.00 V/cell

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    10/19

    10

    can therefore be stored for long periods, or used

    only oc ca sionally.

    Under normal condi t ions, at about 20C-25C,sel f-discharge is around 0.1% of the nominal

    c a p a c it y p er d a y. Th is i s 25- 30% les s th a n

    co nventiona l open lea d-ac id b a tteries .

    The re la t ions h ip b etw een s e lf -d i sc ha rg e a nd

    temperature is shown in figures 5 and 6. For every

    1 0 C i n c r e a s e i n t h e t e m p e r a t u r e , t h e s e l f -

    disc harge ra te do ubles.

    Open circui t voltage

    In traditional open lead-acid batteries with fillingcaps, where free acid is used, i t is possible to

    estimate the residual capacity of the battery by

    mea suring the d ensity of the a cid.

    4.4

    032

    1050

    2068

    3086

    40104

    50122

    60 (C)140 (F)

    0,02

    0,05

    0,1

    0,2

    0,5

    1

    2

    Temperature

    Self-disch

    argerate(%

    day)

    Relation between self-discharge rate and temperature

    Fig. 6

    20

    40

    60

    80

    100

    120

    0 1 2 3 4 5 6 7 8 9 10 11 12

    40C

    20C

    10C

    Storage time (months)

    Availablecapacity(%)

    Fig. 5

    Self discharge rate

    0

    This is how ever not po ssible with valve-reg ula ted

    batteries, thus leaving a comparison of the value

    of the open circuit tension as the only method to

    a pproxima te the res idua l c a pa c ity. The res ult of ameasurement of the open circuit tension, taken

    either 24 hours after a full charge, or at least 10

    minutes a f ter d i scharge , when p lo t ted on the

    curve found in figure 7 allows an approximation of

    the res idua l ca pa city.

    Charge

    A proper charge is among the most important

    elements that help ensure long life to FIAMM-GS

    batteries.

    Constant tens ion charge

    This is the most c ommonly used method of cha rging.

    G enera lly, a constant tension charger is used togetherwith a current limiter. In this way, the charging current

    cannot pass the suggested limit of 0.25C during the

    initial charge phase. When the battery tension

    reaches the fixed level (see figures 8 and 9), the

    charger switches from constant current to constant

    voltage. During this phase, the charging current

    begins to dec rea se until it reac hes a level of minimum

    charging current, also known as maintenance current

    which generally eq uals 0.3 mA/Ah.

    The rec omme nde d va lues for cha rg ing voltag e,with a temperature o f 20-25 C, a re the follow ing:

    cyc lic us e: 2.40 - 2.45 V/cell - cha rging current 0,25C

    stand-by use: 2.25 - 2.30 V/cell - cha rging current 0,25C

    4.5.1

    4.5

    Conditions:24 hours after charge10 minutes after dischargeTemperature 25C (77F)

    Opencircuitvoltage(V/cell)

    1,9

    2,0

    2,1

    2,2

    2 50 100

    Remaining capacity (%)

    Relation between open circuit voltage and remaining capacity

    Fig. 7

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    11/19

    11

    With tempe ra tures low er or hig her than 10 C -

    30 C , i t i s n ecessa r y t o m od i f y th e ch ar g i n g

    tens ion , by apply ing a thermal compensat ion

    f ac to r . O th er w i se , t h e r e i s th e r i sk o f

    u n d e r c h a r g i n g a t l o w t e m p e r a t u r e s , o r

    overcharging a t high te mperatures .The therma l co mpensa tion fac tors to be applied a re:

    If the temperature is betw een 10 C a nd 30 C, it is

    generally not neces sa ry to ta ke the c ompensa tion

    fac tor into a cc ount.

    Caution: in cyclic use it is recommended to use

    either a timer to interrupt charging at the preset

    voltage or a sensor.

    Fast charg e

    Higher than normal tensions and currents are

    4.5.2

    - 3 mV/cell/ C for sta nd -by- 5 mV/cell/ C for c yc lic use

    Charge

    Current

    Voltage

    2,5

    2,0

    2,4

    2,3

    2,1

    2,2

    Voltage(V/cell)

    Chargeamount(%)

    20

    0

    120

    100

    40

    80

    60

    Current(CA)

    0

    0,25

    0,20

    0,05

    0,15

    0,10

    Charge time (hours)

    (2.30V/cell, 25C (77F))

    Constant voltage charging characteristics

    0 2 4 6 8 10 12 14 16 18 20 22 24

    Fig. 9

    2,5

    2,0

    2,4

    2,3

    2,1

    2,2

    00

    0,25

    0,20

    0,05

    0,15

    0,10

    20

    0

    120

    100

    40

    80

    60

    Chargeamo

    unt(%)

    Current(CA

    )

    Voltage(V/c

    ell)

    2 4 6 8 10

    Charge time (hours)

    Charge

    Current

    Voltage

    (2.45V/cell, 25C (77F))

    Constant voltage charging characteristics

    Fig. 8used to fast charge batteries. By increasing the

    limit of initial current to 1.5 C, it is possible to

    recharge previously 70% discharged batteries in

    about 1,5 hours (see f igure 10). In the case ofbatteries with over 10 Ah capacity, it is however

    n e c e s s a r y t o k e e p t h e i n i t i a l c u r r e n t t o a

    maximum of 1 C in order to avoid a temperature

    i n cr ease d u r i n g th e ch ar g i n g p h ase . Bey on d

    thermal compensation (see 4.5.1), the installation

    o f a t h e r m a l f u s e i s a l s o r e c o m m e n d e d t o

    immediately halt the charge should the batteries

    reach overly high temperatures.

    Two-stage charge

    The use of a tw o-stag e cha rger ca n also be used

    to a cc elerate the c harge. Figure 11 repres ents the

    functioning o f a tw o-sta ge cha rge r.

    Charge

    Voltage

    Current

    0 2 4 6 8 10 12 14 16 18 20 22 24

    2,5

    2,4

    2,3

    2,2

    2,1

    2,0

    0,25

    0,20

    0,15

    0,10

    0,05

    0

    120

    100

    80

    60

    40

    20

    0

    Chargeamount(%)

    Current(CA)

    Voltage(V/cell)

    Charge time (hours)

    Two-step constant voltages of 2.45 V/cell and

    2.30 V/cell at 25C (77F)

    Fig. 11

    4.5.3

    Charge

    Voltage

    Current

    0 30 60 90

    2,2

    2,3

    2,4

    2,5

    0

    0,5

    1,0

    1,5

    100

    50

    0

    Chargeamount(%)

    Current(CA)

    Voltage(V/cell)

    Charge time (minutes)

    Battery: 70% dischargedTemperature 25C (77F)

    Characteristics of fast charging

    Fig. 10

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    12/19

    12

    Parallel char ge

    Use only ba tteries of the same type a nd bra nd.

    Ensure tha t the connect ing c a b les ha ve the

    sa me elec tric resista nce va lue.

    Use only ba t teries wi th the sa me product ion

    da te and usa ge history.

    LIFETIME

    After being used for a longer period, the electric

    capacity of a battery begins to deteriorate, until it

    r e a c h e s a p o i n t w h e r e i t c a n n o l o n g e r b e

    res tored through recha rg ing . This indic a tes tha t

    th e en d o f th e b a t t e r y s u se f u l l i f e h as b een

    reached. It is very difficult to forecast the lifetime

    of a bat tery , as many factors can have a great

    influence thereon.

    The ma in fac tors w hich neg a tively a ffec t ba ttery

    life are:

    Deep discharge

    High quantity of overcharge

    Charging current and voltage

    During the charging phase, a high initial current

    ca n generate exc es sive hea t. This phenome non

    may c ause both as sembled a nd non-as sembled

    b a t t e r i e s t o s w e l l i f t h e y a r e p l a c e d i n a n

    insufficiently ventila ted spa ce . The s a me c a n

    hap pen w hen the cha rging tension is to o high.

    Surrounding temperature

    The highe r the s urround ing t emp era ture, the

    more the ba ttery dete riorates .

    Lifet ime in cycl ic use

    Figure 12 shows the l i f e t ime of FIAMM-GS

    batteries in cyclic use. Initially, the capacity tends

    t o i nc r e a s e . Th e n u m b e r o f u s a b l e c y c le s

    dec rea ses if the de pth of disc harge increa ses .

    5.1

    5

    4.5.4A battery with a higher capacity will have a much

    longer lifetime, if compared to a smaller capacity

    ba ttery using the sa me loa d.

    Lifet ime in stand-by use

    Figure 13 shows the l i f e t ime of FIAMM-GS

    ba tteries in sta nd-by us e. The w idth of the c urveind ica tes the normal to lerance o f the ba t tery

    capacity. As the lifetime is considerably affected

    by the charging voltage, it is important to remain

    w ithin the limits of 2.25 - 2.30 V/cell (+ the therma l

    compensat ion f ac tor) . As can be seen in the

    figure, a tremendous reduction of battery lifetime

    i s cau sed b y an i n c r ease i n th e su r r ou n d i n g

    temperature.

    0,5

    1

    2

    5

    10

    0 20 30 40 50 60

    Temperature (C)

    Life

    (years)

    Fig. 13

    Lifetime in stand-by use

    5.2

    20

    40

    60

    80

    100

    120

    0 200 400 600 800 1000 1200 1400

    (100% depthof discharge)

    Number of cycles ()

    A

    vailablecapacity(%)

    Temperature 25C

    (50% depthof discharge)

    (30% depthof discharge)

    (%) indicates the depth ofdischarge per with nominalc a pa c i t y t a ken a s 100%

    Fig. 12

    Lifetime in cyclic use

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    13/19

    13

    Lifet ime in deep discharge

    The lifetime o f a FIAMM-GS ba tte ry is serious ly

    reduced if discharged too deeply or if stored in a

    disc harged state.

    Figure 14 demonstrates the relationship between

    the number of overdischarges and the percentage

    of ra ted c a pac ity which c a n be ob tained a fter the

    recharge of FIAMM-GS batteries.

    Figure 15 sho ws the c harge a fter a n overly s evere

    discharge.

    Voltage

    Current

    0 2 4 6 8 10 12 14 16 18 20

    2,5

    2,4

    2,3

    2,2

    2,1

    2,0

    0,25

    0,20

    0,15

    0,10

    0,05

    0

    Current(CA)

    Voltage(V/cell)

    Charging time (hours)

    Charging characteristics after deep discharge

    1) Totally discharged with resistorover 30 days.

    2) Charged at 2.45 V/cell constant voltage(0.25CA max) for 20 hours.

    Fig. 15

    120

    100

    80

    60

    40

    20

    0

    Capacity

    (%)

    Deep discharge cycles

    Deep discharge cycle durability

    0 2 4 6 8 10

    1) Totally discharged with resistorover 30 days.

    2) Charged at 2.45 V/cell constant voltage(0.25A max) for 20 hours.

    3) Discharged at 0.1CA to check capacityrepeat steps 1) to 3).

    Fig. 14

    5.3 OPERATING INSTRUCTIONS

    Assembl ing and connect ing

    Never put the ba tteries in a se a led c onta inerduring charging.

    S e c u re t h e b a t t e ry w e l l, a n d p ro t e c t fro mvibrations and impacts.

    If the ba ttery is insta lled inside a ca binet, fas tenit well at the lowest possible level.

    Do not install the ba ttery near sources of heat or

    sources of pos sible s parks.

    It is co mmon for slight te mperature d ifference sto exist between batteries installed in series orparallel. It is however important to avoid thatsuch differences exceed 3C .

    Do not pla ce the ba ttery in contac t with objectscontaining plasticizers, organic solvents or softP VC , a s t h e y m a y d a m a g e t h e AB S b a t te rycase .

    Do not c ompress a nd/or bend the termina ls,

    a n d d o n o t o v e r h e a t t h e m ( d o n o t w e l d o rsolder!).

    It is not rec ommend ed to insta ll the ba tteries ina n upside-do wn po sition.

    Ba tteries should be insta lled in a dry cool andw ell-ventila ted loc a tion.

    Alwa ys lea ve sufficient spa ce betwe en ba tteries(preferably 10 mm).

    Alwa ys disc harge a ll batteries co ntempora neously.

    Avoid us ing the b a tteries in pla ce s w here, d ueto temperature changes, water may condenseon the ba tteries .

    F o r b a t t e r ie s u s e d in s e r ie s , e n s u r e t hei n t e r c o n n e c t i o n o f t h e b a t t e r i e s b e f o r econnecting them to the load.

    Due to the se lf-disc ha rge proc es s , it is likelythat batteries will have lower capacity followingtrans po rtation and /or sto rag e, i t is the reforenecessary to recharge the batteries well before

    their installation.

    N.B. The ma nufa cturing d a te co de is sho w n on allbatteries.

    6.1

    6

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    14/19

    14

    Storage

    S torage tempera ture must be betw een -20 C

    and + 40C .

    B efore sto ring the ba ttery, disc onnec t from a nyelec tric circuit, a nd plac e in a c oo l, d ry pla ce .

    During the storag e period , rec harge the ba tteryat least once every six months.

    B a tteries a lso a ge d uring s torag e, it is thereforereco mmended to use them as soo n as pos sible.

    General comment s

    Never short-c ircuit the termina ls .

    Use a cloth for the cleaning of the ba tteries .Never use gasoline, oils, or solvents, and neveru s e c l o t h s i m p r e g n a t e d w i t h t h eaforementioned.

    Avoid a ny spa rks or fla mes nea r the ba tteries .

    6.3

    6.2 Do not a t tempt to open the ba t teries . In the

    event that the diluted sulphuric acid electrolytehapp ens to co me in co ntac t with skin and /orclothes, wash immediately with water. Shouldthe acid come in contact with eyes, wash themthoroughly, a nd immed ia tely c ons ult a do cto r.

    Never incinera te ba tteries, they may e xplode.

    N e v e r e m p l o y b a t t e r ie s h a v in g d i ff e re n tc a p a c it ie s a n d /or co m in g f r om d if f e ren tm a n u f a c t u r e r s o r p r o d u c t i o n b a t c h e s .Differences in battery characteristics can caused a m a g e t o t h e b a t t e rie s a n d /o r t o t h eeq uipment they s erve.

    Upon reaching the end of their useful life,

    bat ter ies should be disposed of us ing

    appropr iate col lec t ion and/or recyc l ing

    channels (please consult local authorities for

    information).

    Do not d ispose of with household waste.

    HOW TO SELECT THE APPROPRIATE TYPE OF BATTERYTh e req u ired b a t t e r y ca p a c i t y c a n b e d e te rm in ed b y p l o t t in g th e p o i nt w h er e th e need ed

    d i s c h a r g e c u r r e n t c o m b i n e s w i t h t h a t o f t h e n e e d e d d i s c h a r g e t i m e o n f i g u r e 1 6 .

    Any ba ttery type dep icte d by a curve tha t fa lls to the right o f the va lue c a lcula ted w ill provide the

    needed capaci ty .

    6

    Fig. 16

    Minu

    tes

    How to select the appropriate type of battery

    1

    10

    100

    1000

    0,01 0,1 1 10 100 1000

    Ampere

    FG27004

    FG26504

    FG24204

    FG22703

    FG12003FG21803

    FG21201

    FG10801

    FG20086

    FG20121

    FG20201

    FG20301

    FG20451

    FG20721

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    15/19

    15

    Constant power discharge (W)

    Time 5' 10' 15' 20' 30' 45' 1h 2h 3h 5h 10h 20h

    FG20721 29 A 17,8 A 13,2 A 10,7 A 7,8 A 5,7 A 4,6 A 2,6 A 1,86 A 1,21 A 0,66 A 0,38 A

    FG21202 48 A 31 A 23 A 18,5 A 13,5 A 9,7 A 7,7 A 4,3 A 3,0 A 1,92 A 1,04 A 0,64 A

    FG21803 67 A 41 A 31 A 25 A 18,6 A 13,7 A 11,0 A 6,4 A 4,6 A 3,0 A 1,65 A 0,93 A

    FG22703 97 A 60 A 45 A 37 A 27 A 21,5 A 17,2 A 10,7 A 7,4 A 4,8 A 2,67 A 1,43 A

    FG24204 156 A 100 A 76 A 63 A 47 A 35 A 28 A 16,1 A 11,6 A 7,5 A 4,09 A 2,16 A

    FG27004 246 A 168 A 129 A 106 A 79 A 58 A 46 A 26 A 18,3 A 11,8 A 6,50 A 3,59 A

    Final Voltage: 1.6V/Cell

    Time 5' 10' 15' 20' 30' 45' 1h 2h 3h 5h 10h 20h

    FG20721 27 A 17,2 A 13,1 A 10,6 A 7,9 A 5,8 A 4,6 A 2,6 A 1,84 A 1,18 A 0,65 A 0,37 A

    FG21202 45 A 29 A 22 A 18,2 A 13,3 A 9,7 A 7,6 A 4,2 A 3,0 A 1,89 A 1,03 A 0,64 A

    FG21803 62 A 40 A 30 A 25 A 18,6 A 13,8 A 11,0 A 6,4 A 4,6 A 3,0 A 1,62 A 0,92 A

    FG22703 95 A 59 A 44 A 36 A 27 A 21,1 A 16,9 A 10,5 A 7,3 A 4,7 A 2,62 A 1,42 A

    FG24204 140 A 96 A 75 A 62 A 47 A 35 A 28 A 16,0 A 11,4 A 7,4 A 4,02 A 2,15 A

    FG27004 226 A 160 A 125 A 103 A 78 A 57 A 45 A 26 A 18,1 A 11,7 A 6,44 A 3,58 A

    Final Voltage: 1.7V/Cell

    Time 5' 10' 15' 20' 30' 45' 1h 2h 3h 5h 10h 20h

    FG20721 23 A 15,6 A 12,1 A 10,0 A 7,5 A 5,6 A 4,4 A 2,5 A 1,80 A 1,16 A 0,63 A 0,36 A

    FG21202 39 A 27 A 20 A 16,8 A 12,5 A 9,2 A 7,3 A 4,1 A 2,9 A 1,86 A 1,01 A 0,60 A

    FG21803 54 A 37 A 29 A 24 A 18,0 A 13,5 A 10,9 A 6,3 A 4,5 A 2,9 A 1,59 A 0,90 A

    FG22703 78 A 48 A 39 A 33 A 24 A 19,3 A 15,6 A 9,8 A 6,9 A 4,5 A 2,46 A 1,41 A

    FG24204 119 A 86 A 68 A 57 A 44 A 33 A 27 A 15,7 A 11,2 A 7,3 A 3,96 A 2,14 A

    FG27004 194 A 142 A 113 A 95 A 73 A 55 A 44 A 26 A 18,3 A 11,9 A 6,48 A 3,58 A

    Final Voltage: 1.8V/Cell

    Constant current discharge (A)

    Time 5' 7' 10' 15' 20' 30' 45' 1h 2h 3h 5h 10h 20h

    FG20721 298,3 W 243,2 W 193,8 W 147,7 W 120,9 W 90,2 W 66,5 W 53,2 W 30,4 W 21,6 W 13,9 W 7,5 W 4,0 W

    FG21202 359,0 W 307,8 W 256,1 W 202,9 W 169,5 W 129,3 W 96,7 W 77,9 W 44,9 W 32,0 W 20,6 W 11,2 W 6,0 W

    FG21803 680,8 W 556,5 W 445,5 W 342,3 W 282,0 W 212,7 W 158,7 W 128,2 W 75,0 W 54,1 W 35,4 W 19,5 W 10,5 W

    FG22703 808,2 W 702,3 W 590,3 W 471,1 W 394,8 W 301,5 W 225,4 W 181,3 W 104,1 W 74,2 W 47,9 W 26,3 W 14,6 W

    FG24204 1620,8 W 1322,8 W 1060,0 W 817,4 W 676,1 W 513,3 W 386,1 W 313,6 W 186,0 W 135,1 W 88,9 W 48,9 W 26,0 W

    FG27004 2474,9 W 2092,3 W 1723,5 W 1357,0 W 1132,5 W 864,9 W 650,1 W 526,3 W 308,1 W 221,9 W 144,9 W 79,8 W 43,3 W

    Final Voltage: 1.6V/Cell

    Time 5' 7' 10' 15' 20' 30' 45' 1h 2h 3h 5h 10h 20h

    FG20721 281,4 W 233,3 W 188,3 W 145,1 W 119,4 W 89,5 W 66,1 W 52,8 W 30,1 W 21,4 W 13,8 W 7,5 W 4,0 W

    FG21202 333,3 W 288,7 W 242,7 W 194,3 W 163,4 W 125,7 W 94,7 W 76,6 W 44,5 W 31,8 W 20,5 W 11,2 W 6,0 W

    FG21803 628,9 W 525,9 W 429,0 W 334,8 W 278,1 W 211,2 W 158,2 W 127,8 W 74,6 W 53,7 W 35,1 W 19,3 W 10,5 W

    FG22703 756,1 W 664,3 W 564,4 W 455,5 W 384,5 W 296,3 W 223,2 W 180,4 W 104,5 W 74,6 W 48,2 W 26,4 W 14,5 W

    FG24204 1482,2 W 1243,8 W 1019,8 W 801,3 W 669,0 W 512,1 W 386,5 W 314,0 W 185,4 W 134,1 W 87,8 W 48,2 W 25,8 W

    FG27004 2292,4 W 1981,4 W 1662,5 W 1329,2 W 1117,9 W 859,8 W 648,5 W 525,4 W 306,9 W 220,4 W 143,5 W 78,9 W 43,2 W

    Final Voltage: 1.7V/Cell

    Time 5' 7' 10' 15' 20' 30' 45' 1h 2h 3h 5h 10h 20h

    FG20721 250,4 W 211,6 W 174,0 W 136,4 W 113,4 W 85,9 W 64,0 W 51,5 W 29,6 W 21,1 W 13,6 W 7,3 W 3,9 W

    FG21202 286,6 W 253,9 W 217,9 W 178,0 W 151,6 W 118,3 W 90,2 W 73,5 W 43,2 W 31,0 W 20,1 W 11,0 W 5,9 W

    FG21803 540,3 W 464,7 W 388,6 W 310,2 W 261,0 W 201,1 W 152,1 W 123,6 W 72,7 W 52,4 W 34,3 W 18,9 W 10,3 W

    FG22703 660,4 W 593,3 W 514,8 W 423,9 W 362,3 W 283,2 W 215,7 W 175,3 W 102,2 W 73,0 W 47,0 W 25,4 W 13,7 W

    FG24204 1296,0 W 1122,1 W 944,9 W 760,1 W 642,5 W 498,2 W 379,0 W 308,9 W 182,8 W 132,1 W 86,3 W 47,5 W 25,7 W

    FG27004 1996,7 W 1760,7 W 1506,0 W 1227,8 W 1045,5 W 816,6 W 624,1 W 509,6 W 302,0 W 218,1 W 142,6 W 78,5 W 42,7 W

    Final Voltage: 1.8V/Cell

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    16/19

    16

    FG Series

    q Batteries produced in Italian factory of Avezzano

    Batteries also available with a case that responds to UL-94 V0 flame retardant standards; these models carry an FGV prefix

    s VdS homologated batteries

    v Under VdS homologation

    Discharge20 h rate

    1,75V/cell

    Discharge10 h rate

    1,75V/cell

    Discharge5 h rate

    1,70V/cell

    Discharge1,5 h rate1,60V/cell

    L W H THType VdSNominalvoltage

    (V)Terminal

    Weightgr

    CAPACITY (Ah) DIM ENSIONS (mm)

    Terminalpositionfigure

    Maxdischarge

    current(A)

    TEMPERAT. (C)Max

    chargecurrent

    (A)Charge

    Discharge

    Storage

    FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 6,3

    BOLT+NUT TYPE M5

    LEAD WIRE+SOCKET

    FASTON 4,8FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 4,8

    FASTON 6,3

    FASTON 4,8

    FASTON 6,3

    BOLT+NUT TYPE M5

    BOLT+NUT TYPE M5

    BOLT+NUT TYPE M5

    BOLT+NUT TYPE M6BOLT+NUT TYPE M6

    BOLT+NUT TYPE M6

    FG10121

    FG10301

    FG10321

    FG10451

    FG10721

    q FG11201

    q FG11202

    FG12003

    FG20086

    q FG20121FG20121A

    q FG20201

    FG20271

    FG20301

    FG20451

    q FG20721

    q FG20722

    q FG21201

    q FG21202

    q FG21503

    q FG21803

    q FG22703

    q FG24204FG26504

    q FG27004

    s

    s

    s

    s

    s

    s

    s

    s

    s

    s

    s

    s

    s

    6

    6

    6

    6

    6

    6

    6

    6

    12

    1212

    12

    12

    12

    12

    12

    12

    12

    12

    12

    12

    12

    1212

    12

    1,20

    3,00

    3,20

    4,00

    7,00

    12,00

    12,00

    20,00

    0,80

    1,201,20

    2,00

    2,70

    3,00

    4,00

    7,20

    7,20

    12,00

    12,00

    15,00

    18,00

    27,00

    42,0065,00

    70,00

    1,08

    2,70

    2,88

    3,60

    6,30

    10,80

    10,80

    18,00

    0,72

    1,061,08

    1,83

    2,43

    2,70

    3,60

    6,50

    6,50

    10,80

    10,80

    13,70

    16,20

    25,00

    38,5062,00

    66,70

    1,00

    2,55

    2,72

    3,40

    5,95

    9,60

    9,60

    16,50

    0,63

    0,981,00

    1,65

    2,25

    2,55

    3,40

    5,90

    5,90

    9,60

    9,60

    12,30

    14,76

    23,00

    34,5055,80

    60,00

    0,78

    1,95

    2,08

    2,60

    4,55

    7,50

    7,50

    13,40

    0,53

    0,800,78

    1,37

    1,76

    1,95

    2,60

    4,60

    4,60

    7,50

    7,50

    9,90

    11,86

    18,00

    28,5046,10

    50,00

    97

    134

    66

    70

    151

    151

    151

    157

    96

    9797

    178

    79

    134

    90

    151

    151

    151

    151

    181

    181

    166

    196271

    350

    24,5

    34

    33

    48

    34

    50

    50

    83

    25

    48,542

    34

    55,5

    68

    70

    65

    65

    98

    98

    76

    76

    175

    163166

    166

    50,5

    60

    118

    102

    94

    94

    94

    125

    61,5

    50,551

    60

    102

    61

    102

    94

    94

    94

    94

    167

    167

    125

    174190

    174

    55

    65

    124

    106

    98

    99

    99

    125

    61,5

    5555

    65

    106

    65

    106

    99

    99

    99

    99

    167

    167

    125

    174190

    174

    300

    680

    750

    890

    1380

    2100

    2100

    3700

    360

    580550

    890

    1100

    1300

    1750

    2650

    2650

    4200

    4200

    6100

    6200

    9000

    1500022600

    24000

    6

    2

    3

    1

    3

    2

    2

    8

    7

    44

    2

    3

    4

    3

    4

    4

    4

    4

    8

    8

    8

    88

    8

    7,2

    18,0

    19,2

    24,0

    36,0

    72,0

    72,0

    120,0

    3,2

    7,27,2

    12,0

    16,2

    18,0

    24,0

    43,2

    43,2

    72,0

    72,0

    108,0

    156,0

    162,0

    252,0390,0

    420,0

    0,300

    0,750

    0,800

    1,000

    1,500

    3,000

    3,000

    5,000

    0,200

    0,3000,300

    0,500

    0,670

    0,750

    1,000

    1,800

    1,800

    3,000

    3,000

    4,500

    6,500

    6,750

    10,50016,250

    17,500

    0

    40

    -20

    50

    -20

    50

    How to read the code number

    The c od e number of FIAMM-GS ba tteries indica tes volta ge , c a pa city and type o f terminal.

    Technica

    ldatamaybesubjecttovariations

    AFGA indicates a different form compared to thestanda rd type of same c apa city and voltage

    Termina l type1: faston type 4,82: faston type 6,33: bo lt type M54: bo lt type M66: lead wire with socket

    Capacityin tenthsof Ahat 20 hoursrate

    Voltage1: 6V2: 12V

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    17/19

    17

    TERMINAL POSITION

    MAXIMUM DIMENSIONS TERMINAL TYPE

    Fig. 8Fig. 7Fig. 6Fig. 5

    Fig. 4Fig. 3Fig. 2Fig. 1

    Termina l po s ition

    Connecto r + wire

    Bolt and nut

    Front side

    Nut M5

    2 12

    12

    Nut M6

    2,5 16

    17,5

    7,5

    13,5

    5,1

    21,8

    8

    6,3

    0,8

    6,5

    4,8

    0,8

    L W

    HTH

    Terminal 1

    Termina l typ e

    Terminal 2

    Termina l typ e

    Terminal 3

    Bo lt a nd nut type M5

    Terminal 4

    Bolt and nut type M6

    Terminal 6

    Lead w ire w ith connecto r

    Wire lengt h

    105 (D. 4134) 10 (D. 0394)

    MALEAMP. INC.N. 1-480318-0

    FEMALE

    AMP. INC.N. 60617-1

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    18/19

    NOTES:

  • 7/27/2019 Technical Handbook Valve-Regulated Lead-Acid Batteries

    19/19

    V i a l e E u r o p a , 6 336075 Montecchio MaggioreV I C E N Z A - I T A L Y Phone +39 0444 709350F a x + 3 9 0 4 4 4 7 0 9 3 6 0htt // fi 0

    978