252
Technical Handbook Lighting people and places Technical Handbook Australia Thorn Lighting Pty Limited 43 Newton Road, Wetherill Park NSW 2164 Tel: (02) 8786 6000 Fax: (02) 9612 2700 E-mail: [email protected] Website: www.thornlighting.com.au Austria Thorn Licht GmbH Donau-City-Straße 11, 1220 Wien, Austria Tel: (43) 1 202 66 11 Fax: (43) 1 202 66 11 12 E-mail: offi[email protected] Website: www.thornlighting.at China Thorn Lighting (Guangzhou) Operations Ltd, No.12 Lian Yun Road, Eastern Section, GETDD, Guangzhou 510530, China Tel: (86) 20 3228 2706 Fax: (86) 20 3228 1777 E-mail: [email protected] Thorn Lighting (Tianjin) Co. Ltd 332 Hongqi Road, Tianjin 300190, China Tel: (86) 22 8369 2303 Fax: (86) 22 8369 2302 E-mail: [email protected] Czech Republic Thorn Lighting CS spol. s.r.o., Na Březince 6/930, 150 00 Praha 5 Czech Republic Tel: (420) 224 315 252 Fax: (420) 233 326 313 E-mail: thorn.cz@thornlighting.com Website: www.thornlighting.cz Denmark Thorn Lighting A/S Albuen 44, 6000 Kolding, Denmark Tel: (45) 7696 3600 Fax: (45) 7696 3601 E-mail: [email protected] Website: www.thornlighting.dk France Thorn Europhane SA 156 Boulevard Haussmann, Cedex 08, Paris 75379, France Tel: (33) 1 49 53 6262 Fax: (33) 1 49 53 6240 Website: www.thornlighting.fr Hong Kong Thorn Lighting (Hong Kong) Limited Unit 4301, Level 43, Tower 1, Metroplaza,223 Hing Fong Road, Kwai Chung, N.T., Hong Kong Tel: (852) 2578 4303 Fax: (852) 2887 0247 E-mail: [email protected] India Thorn Lighting India Pvt. Ltd RH-2 Nirav CHS, 636A, 90 Ft. D.P. Road, Near Thakur Polytechnic 400 101 Mumbai, India Tel: (91) 22285 41056 Fax: (91) 22285 1120 E-mail: [email protected] Website: www.thornlighting.com Ireland Thorn Lighting (Ireland) Limited 320 Harold’s Cross Road, Dublin 6W, Ireland Tel: (353) 1 4922 877 Fax: (353) 1 4922 724 E-mail: [email protected] Website: www.thornlighting.co.uk Italy Thorn Europhane Spa Via G Di Vittorio, 2, Cadriano di Granarolo, Bologna 40057, Italy Tel: (39) 051 763391 Fax: (39) 051 763088 E-mail: [email protected] Website: www.thornlighting.it New Zealand Thorn Lighting (NZ) Ltd 399 Rosebank Road, P O Box 71134, Rosebank, Auckland 7, New Zealand Tel: (64) 9 828 7155 Fax: (64) 9 828 7591 E-mail: [email protected] Website: www.thornlighting.co.nz Norway Thorn Lighting AS Strømsveien 344, 1081 Oslo, Norway Tel: (47) 22 82 07 00 Fax: (47) 22 82 07 01 E-mail: [email protected] Website: www.thornlighting.no Poland Thorn Lighting Polska Sp.z.o.o., Ul. Gazowa 26A, Wrocław 50-513, Poland Tel: (48) 71 7833 740 Fax: (48) 71 3366 029 E-mail: [email protected] Website: www.thornlighting.pl Russia Thorn Lighting Novoslobodskaya Str., 21, office 406 Business Center “Novoslobodskaya 21”, Moscow 127030, Russia Tel: (7) 495 981 35 41 Fax: (7) 495 981 35 42 E-mail: [email protected] Website: www.thornlighting.ru Thorn Lighting is constantly developing and improving its products. All descriptions, illustrations, drawings and specifications in this publication present only general particulars and shall not form part of any contract. The right is reserved to change specifications without prior notification or public announcement. All goods supplied by the company are supplied subject to the company’s General Conditions of Sale, a copy of which is available on request. All measurements are in millimetres and weights in kilograms unless otherwise stated. Publication Date: 07/09 Thorn Lighting Main Offices Singapore Thorn Lighting (Singapore) Pte Ltd 5 Kaki Bukit Crescent, 04-02 Koyotech Building, 416238 Singapore Tel: (65) 6844 5800 Fax: (65) 6745 7707 E-mail: [email protected] Sweden Thorn Lighting AB Industrigatan, Box 305, SE-261 23 Landskrona, Sweden Tel: (46) 418 520 00 Fax: (46) 418 265 74 E-mail: [email protected] Website: www.thornlighting.se United Arab Emirates Thorn Lighting Ltd Dubai Al Shoala Building, Office 301, Block E, Airport road, P.O. Box 1200, Deira, Dubai, UAE Tel: (971) 4 2940181 Fax: (971) 4 2948838 E-mail: [email protected] Website: www.thornlighting.com Thorn Gulf LLC Al Shoala Building, Office 301/2, Block E, Airport road, P.O. Box 22672, Deira, Dubai, UAE Tel: (971) 4 2948938 Fax: (971) 4 2948838 E-mail: [email protected] Website: www.thornlighting.com United Kingdom Thorn Lighting Limited Silver Screens, Elstree Way, Borehamwood, Hertfordshire, WD6 1FE, UK Tel: (44) 20 8732 9800 Fax: (44) 20 8732 9801 E-mail: [email protected] Thorn Olympics Sports Lighting Team Tel: 07796 303176 E-mail: [email protected] International Sales Thorn Lighting Limited Silver Screens, Elstree Way, Borehamwood, Hertfordshire, WD6 1FE, UK Tel: (44) 20 8732 1915 Fax: (44) 20 8732 1911 E-mail: [email protected] Website: www.thornlighting.com www.thornlighting.com

Technical Handbook Australia COMPLETE 2

Embed Size (px)

Citation preview

Page 1: Technical Handbook Australia COMPLETE 2

Technical Handbook

Lighting people and places

Technical H

and

book

AustraliaThorn Lighting Pty Limited 43 Newton Road, Wetherill Park NSW 2164Tel: (02) 8786 6000Fax: (02) 9612 2700E-mail: [email protected]: www.thornlighting.com.au

AustriaThorn Licht GmbH Donau-City-Straße 11, 1220 Wien, AustriaTel: (43) 1 202 66 11Fax: (43) 1 202 66 11 12E-mail: [email protected]: www.thornlighting.at

ChinaThorn Lighting (Guangzhou) Operations Ltd, No.12 Lian Yun Road, Eastern Section, GETDD, Guangzhou 510530, ChinaTel: (86) 20 3228 2706Fax: (86) 20 3228 1777E-mail: [email protected]

Thorn Lighting (Tianjin) Co. Ltd 332 Hongqi Road, Tianjin 300190, ChinaTel: (86) 22 8369 2303Fax: (86) 22 8369 2302E-mail: [email protected]

Czech RepublicThorn Lighting CS spol. s.r.o., Na Březince 6/930, 150 00 Praha 5Czech RepublicTel: (420) 224 315 252Fax: (420) 233 326 313E-mail: [email protected]: www.thornlighting.cz

DenmarkThorn Lighting A/SAlbuen 44, 6000 Kolding, DenmarkTel: (45) 7696 3600Fax: (45) 7696 3601E-mail: [email protected]: www.thornlighting.dk

FranceThorn Europhane SA 156 Boulevard Haussmann, Cedex 08, Paris 75379, FranceTel: (33) 1 49 53 6262Fax: (33) 1 49 53 6240Website: www.thornlighting.fr

Hong KongThorn Lighting (Hong Kong) LimitedUnit 4301, Level 43, Tower 1, Metroplaza,223 Hing Fong Road, Kwai Chung, N.T., Hong KongTel: (852) 2578 4303Fax: (852) 2887 0247E-mail: [email protected]

IndiaThorn Lighting India Pvt. LtdRH-2 Nirav CHS, 636A, 90 Ft. D.P. Road,Near Thakur Polytechnic400 101 Mumbai, IndiaTel: (91) 22285 41056Fax: (91) 22285 1120E-mail: [email protected]: www.thornlighting.com

IrelandThorn Lighting (Ireland) Limited 320 Harold’s Cross Road, Dublin 6W, IrelandTel: (353) 1 4922 877Fax: (353) 1 4922 724E-mail: [email protected]: www.thornlighting.co.uk

ItalyThorn Europhane Spa Via G Di Vittorio, 2, Cadriano di Granarolo, Bologna 40057, ItalyTel: (39) 051 763391Fax: (39) 051 763088E-mail: [email protected]: www.thornlighting.it

New ZealandThorn Lighting (NZ) Ltd399 Rosebank Road, P O Box 71134, Rosebank, Auckland 7, New ZealandTel: (64) 9 828 7155Fax: (64) 9 828 7591E-mail: [email protected] Website: www.thornlighting.co.nz

NorwayThorn Lighting ASStrømsveien 344, 1081 Oslo, NorwayTel: (47) 22 82 07 00Fax: (47) 22 82 07 01E-mail: [email protected]: www.thornlighting.no

PolandThorn Lighting Polska Sp.z.o.o., Ul. Gazowa 26A, Wrocław 50-513, PolandTel: (48) 71 7833 740Fax: (48) 71 3366 029E-mail: [email protected] Website: www.thornlighting.pl

RussiaThorn Lighting Novoslobodskaya Str., 21, office 406 Business Center “Novoslobodskaya 21”, Moscow 127030, RussiaTel: (7) 495 981 35 41Fax: (7) 495 981 35 42E-mail: [email protected]: www.thornlighting.ru

Thorn Lighting is constantly developing and improving its products. All descriptions, illustrations, drawings and specifications in this publication present only general particulars and shall not form part of any contract. The right is reserved to change specifications without prior notification or public announcement. All goods supplied by the company are supplied subject to the company’s General Conditions of Sale, a copy of which is available on request. All measurements are in millimetres and weights in kilograms unless otherwise stated.

Publication Date: 07/09

Thorn Lighting Main Offices

SingaporeThorn Lighting (Singapore) Pte Ltd5 Kaki Bukit Crescent, 04-02 Koyotech Building, 416238 SingaporeTel: (65) 6844 5800Fax: (65) 6745 7707E-mail: [email protected]

SwedenThorn Lighting ABIndustrigatan, Box 305, SE-261 23 Landskrona, SwedenTel: (46) 418 520 00Fax: (46) 418 265 74E-mail: [email protected]: www.thornlighting.se

United Arab EmiratesThorn Lighting Ltd Dubai Al Shoala Building, Office 301, Block E, Airport road, P.O. Box 1200, Deira, Dubai, UAETel: (971) 4 2940181Fax: (971) 4 2948838E-mail: [email protected]: www.thornlighting.com

Thorn Gulf LLC Al Shoala Building, Office 301/2, Block E, Airport road, P.O. Box 22672, Deira, Dubai, UAETel: (971) 4 2948938Fax: (971) 4 2948838E-mail: [email protected]: www.thornlighting.com

United KingdomThorn Lighting Limited Silver Screens, Elstree Way, Borehamwood, Hertfordshire, WD6 1FE, UKTel: (44) 20 8732 9800Fax: (44) 20 8732 9801E-mail: [email protected]

Thorn Olympics Sports Lighting TeamTel: 07796 303176E-mail: [email protected]

International SalesThorn Lighting Limited Silver Screens, Elstree Way, Borehamwood, Hertfordshire, WD6 1FE, UKTel: (44) 20 8732 1915Fax: (44) 20 8732 1911E-mail: [email protected]: www.thornlighting.com

www.thornlighting.com

Page 2: Technical Handbook Australia COMPLETE 2

|

Editor Peter Thorns BSc(Hons) CEng MCIBSE MSLL

Contributors Patricia El-Baamrani; Lou Bedocs; Karl Flax; Stefan Hauer; Pat Holley; Hugh King; Jan-Erik Jerleke; Iain Macrae; Robin Ostlin; Paul Stranks

This is the fifth edition of the Technical Handbook

Copyright © Thorn Lighting. All rights reserved. No part of this publication may be reproduced in any form, without prior permission in writing from Thorn Lighting, except for the quotation of brief passages in reviews. While Thorn has made every effort to credit the copyright owners for the illustrations and photographs used herein, there may be omissions, for which the company apologises.

Picture credits: Danny Maddocks; Chris Gascoigne; Mike Gee; Richard Seymour and Alan Turner

Graphics: Juice Creative

Price £15 GBP/€20 EUR. Not for resale.

Glossary

Spill LightStray light from a luminaire that incidentally illuminates nearby objects or surfaces within the public environment. Can be a cause of ‘light trespass’.

SpineSee batten

TrackA linear bus bar system providing one to three main circuits or a low voltage supply to which display lighting (spotlights) can be connected and disconnected at will along the length of the system.

TransformerTransformers reduce the line voltage (for instance 230V) to the lower voltage required for operating low-voltage halogen lamps. This will generally be 12V.

TrunkingTrunking usually provides mechanical fixings for the luminaires as well as electrical connection.

UniformityThe ratio of the minimum illuminance to the average illuminance over the specified area.

Visual performanceThe ability to perceive detail and carry out the visual tasks.

Visual comfortOur feeling of ease or well being within the visual field.

Visual satisfactionThe qualitative impression of a lit space.

251 Glossary |

Page 3: Technical Handbook Australia COMPLETE 2

Contents | 3

Contents

1 Introduction 5

2 The Mechanics of Seeing 7 2.1 What is light? 7 2.2 The eye and vision 7 2.3 Lighting fundamentals 8

3 Controlling Light 9 3.1 Reflection 9 3.2 Transmission 10 3.3 Refraction 10

4 Australian Standards 11 4.1 Luminaire Manufacture 11 4.2 Interior Lighting Standards 11 4.3 Building Code of Australia 11 4.4 Exterior Lighting Standards 12

5 Recommendations for Good Lighting 13 5.1 Indoor workplaces 13 5.2 Outdoor workplaces 13 5.3 Sports 13 5.4 Emergency 13 5.5 Roads 13 5.6 Tunnel 13

6 Applications and Techniques 41 6.1 General Considerations 41 6.2 Office 44 6.3 Education 50 6.4 Industry indoor 57 6.5 Industry outdoor 64 6.6 Healthcare 71 6.7 Super/hypermarket 80 6.8 Road lighting 88 6.9 Urban – decorative roadlighting and amenity areas 96 6.10 Urban – architectural floodlighting 107 6.11 Sports lighting 111

7 Specific Techniques 127 7.1 Indoor lighting controls (ILC) 127 7.2 Lighting for display screen equipment 133 7.3 Light for learning 135 7.4 Emergency lighting 139 7.5 Low mount road lighting 147 7.6 Road tunnel lighting 151

Page 4: Technical Handbook Australia COMPLETE 2

| 4

7.7 Lighting maintenance 154 7.8 Control of obtrusive light 164 7.9 Lighting for crime prevention 169 7.10 Lighting and health 173 7.11 Sustainability 176 7.12 Outdoor lighting controls (OLC) 179

8 Checklists 183 8.1 Life cycle analysis 183 8.2 Economics 185 8.3 Lighting energy numeric indicator (LENI) 187

9 Lamps, LEDs and Circuits 193 9.1 Choosing the right lamp 193 9.2 Tungsten halogen lamps 195 9.3 Fluorescent lamps 195 9.4 Compact fluorescent lamps 198 9.5 Metal halide lamps 199 9.6 Sodium vapour high pressure lamps 200 9.7 Mercury vapour lamps 201 9.8 Induction lamps 202 9.9 Light Emitting Diodes (LEDs) 202 9.10 Lamp coding systems – LBS/ILCOS 206 9.11 Characteristic values of the major lamps 208 9.12 Energy efficiency of luminaires 221 9.13 Circuits 221 9.14 Properties of electronic ballasts 225 9.15 Voltage drop 227 9.16 Fusing 228 9.17 Wiring regulations 229 9.18 Fault detection 231

10 Standards and Directives 235 10.1 Directives 235 10.2 Standards 237 10.3 Quality and safety marks 239 10.4 Product/corrosion compatibility guide 242

11 Tools 245 11.1 Tools 245

12 Glossary 248

Page 5: Technical Handbook Australia COMPLETE 2

Introduction | 5

Light is life, without light we could not live. Our human physiology is based upon light and the complex structure of our earth relies upon light to function. And as we have progressed technologically we have taken this further, turning the dark into light, from using fire to the electric light. Electric lighting is the basis for our modern society, turning darkness into light in windowless or deep-plan offices, in our city streets at night, in numerous leisure and amenity facilities. Our society exists as it does because of light. Our patterns of work and leisure are made possible through our ability to control our environment and supply light on demand.

As we have developed the technology of lighting we have also developed our understanding of how to use light. Through standards we lay down limits for safety and adequacy, through guides we direct lighting toward established good practice, show how to transcend the adequate. We have learnt how to give light meaning, transforming spaces by giving them a lit atmosphere, applying light to give beauty to a scene.

But the use of light is constantly challenging us. It is no longer enough to ensure good task visibility, or a comfortable environment. It is not even enough to produce an environment that gives a sense of well-being. We need to do all these, but also in a way that minimises harm to the environment. Therefore stricter rules are being applied to product design, use and disposal. We have to minimise the carbon footprint of a product or an installation and maximise sustainability. Therefore, all aspects of design, whether for a luminaire or lighting installation, is a balance of factors, a balance of performance, efficiency and comfort (PEC).

Performance is the achievement of visual effectiveness, meeting requirements and targets. It is quantifiable through known lighting measures such as illuminance, luminance, glare rating, colour rendition and uniformity. These measures are generally defined through national and international standards and recommendations.

1 Introduction

Fig. 1.1 Amenity lighting creating a pleasant balanced scene

Page 6: Technical Handbook Australia COMPLETE 2

| Introduction 6

Efficiency is conserving energy and effort, reducing CO2 emissions and waste, producing a system that is practical and efficient to install, operate and maintain. Efficiency can also be quantified, through units such as lumens/watt, cost/m2, CO2 kg/year, percent recycled element, percent maintenance link, and many others. Some of these measures are defined through national and international standards and recommendations, such as energy efficiency or the ecodesign of products, whilst others are concerns for the end-user, such as cost.

Comfort is the achievement of complete satisfaction, providing a stimulating atmosphere that gives sustainable wellness. The criteria for assessing comfort are subjective and are the criteria that differentiate the design, that give the design its individuality, its own character. Is it calming/stimulating/inspiring, welcoming and pleasant, reassuring, fulfilling? Does it have a pleasing flow of light and give a well balanced ambient? Do all parts of the design complement each other, the architecture of the space, the lit effect, and the physical design of the luminaires? This is the point where the engineering and art are blended to produce good lighting.

So in their job the designer needs to know a wide selection of information and how to blend this to deliver better lighting, with better efficiency and a better environment in a sustainable manner. This is the PEC philosophy, and in this handbook we supply some of this information to help the designer in their task.

Page 7: Technical Handbook Australia COMPLETE 2

The Mechanics of Seeing | 7

Our discernment of the world is via our five senses of sight, hearing, taste, touch and smell. Of these sight is the most important. Over 80 per cent of our experience of the world comes via our sight. But how do we see?

2.1 What is light?To see we need light, and light is an emission of electromagnetic radiation. The electromagnetic spectrum varies from radio waves through infrared, ultra-violet, X-rays and finally to gamma rays, and light is a very small part of this spectrum with wavelengths from 380 to 760 nanometres (1nm=10-9m). This is the part of the spectrum whose rays are visible to the human eye and lies between infrared and ultra-violet. Light may be further divided as the wavelength of the light relates to the colour we see. As the wavelength changes so does the colour of the light, from blue at 400nm to red at 700nm.

2.2 The eye and visionRays of light entering the eye are directed onto the retina, which is a layer of light sensitive cells within the eye. The retina is composed of two basic types of light sensitive cells, the rods and the cones. These cells have different properties. Cones operate during the day and enable us to see in detailed colour (photopic vision). As the light level drops, say to that of a well-lit street, the cones become less effective and are assisted by the more sensitive rods (mesopic vision). However, the rods only give black and white vision. Therefore we see a less brightly coloured view as we are using a mixture of the rod and cone cells, the relative mixture varying depending upon the actual light level. At much lower light levels, say that of dim moonlight, the cones cease to function at all, and our vision becomes totally monochromatic using just the rods (scotopic vision). The unit for this measure of light is the lumen.

These concepts are important as we consider the appearance of a space under different lighting conditions with respect to the amount of light and the colour spectrum of the light.

2 The Mechanics of Seeing

Fig. 2.1 The importance of vision

Fig. 2.2 The electromagnetic spectrum

Fig. 2.3 Photopic and Scotopic visual response curves

380

GAMMARAYS

XRAYS

ULTRAVOILET

INFRARED

RADIO

500400WAVELENGTH (nanometers)

600

VISIBLE LIGHT

700 760

100%

100%

Photopicvision (day)

Photopicvision (day)

Scotopic vision(dark adapted eye)

400 500 600 700 800

400 500 600 700 800

Othersenses20%

Vision80%

Page 8: Technical Handbook Australia COMPLETE 2

| The Mechanics of Seeing 8

2.3 Lighting fundamentals

2.3.1 Illuminance (E) - This is a measure of the amount of light falling onto an object, and is measured in lux. It is the amount of luminous flux (F) that is received by a surface of given area.

2.3.2 Luminance (L) - This is a measure of the amount of light reflected by an object and is measured in cd/m². It is the amount of luminous flux (F, lumens) that is emitted by a surface of given area and is dependant upon the properties of the surface (e.g. reflection, refraction and transmission. See section 3 on controlling light). The value of luminance at a point on a surface can therefore vary dependant upon the observer viewpoint.

2.3.3 Glare - Glare is the result of excessive contrasts of luminance in the field of view. The effect may vary from mild discomfort to an actual impairment of the ability to see. When the ability to see is impaired this is called disability glare. Discomfort glare refers to the discomfort or distraction caused by bright windows or luminaires.

Glare may be calculated in a variety of ways depending upon the application. So for example in interiors the Unified Glare Rating (UGR) is calculated. Similarly for sports lighting applications Glare Rating (GR) is used and for street lighting Threshold Increment (TI) is calculated. All of these methods, whilst using different parameters are essentially the ratio of luminaire brightness to background brightness.

Fig. 2.4 Illuminance

Fig. 2.5 Luminance

Fig. 2.6 Glare from indoor luminaires with poor optical control

E

L

Page 9: Technical Handbook Australia COMPLETE 2

Controlling Light | 9

3 Controlling Light

When we light an object, be it a space such as a room or a sports field, or part of a luminaire such as a louvre or diffuser, we do not see the light that falls onto a surface or object. What we actually see is the effect of light upon the object. Different materials affect light in different ways, for example paper reflects light differently to polished metal and the lit effect is different again for glass. To understand how a surface or object will look we need a basic understanding of reflection, transmission and refraction, the principal ways materials react to light.

3.1 ReflectionAs mentioned above paper reflects light differently to polished metal. This is because paper exhibits what we term matt or diffuse reflection whilst polished metal exhibits what we term specular reflection. With diffuse reflection the light reflected from a surface is scattered equally in all directions.

With specular reflection the light reflects from a surface as if from a mirror, producing a sharp-mirrored image. For any ray of light striking a specular surface the angle of incidence of the light is equal to the angle at which the ray of light is reflected.

Some surfaces exhibit a mixture of diffuse and specular reflection, showing a fuzzy mirrored image. For this the peak reflection still obeys the rule of angle of incidence equals angle of reflection but light is also diffusely scattered around this peak.

Fig. 3.1 Diffuse reflection

Fig. 3.2 Specular reflection

Fig. 3.3 Mixed specular and diffuse reflection

Page 10: Technical Handbook Australia COMPLETE 2

| Controlling Light 10

3.2 TransmissionCertain materials have the ability to transmit and diffuse light. When light falls on a translucent (light transmitting) material some light will be reflected in a specular manner, and some light will pass through the material. For a clear material, such as clear glass, the light will pass through with a minimum of scattering. However for materials such as opal plastic the light is scattered or diffused, therefore spreading the brightness of the light ray over a larger area. (See Fig.3.4)

3.3 RefractionWhen light passes from one transparent medium to another of different density (e.g. air to glass) it bends. This is known as refraction and this principle is used to control light, for example using prisms. In luminaires prisms are used to direct light away from areas that could cause glare or waste light and into areas that produce more useful light, thereby making the luminaire more efficient at illuminating a task or object. (See Fig. 3.5)

Fig. 3.4 Transmission of a ray of light through a translucent material

Fig. 3.5 Refraction of a ray of light through a prismatic panel

Page 11: Technical Handbook Australia COMPLETE 2

Controlling Light | 11

4 Australian Standards

This section of the Technical handbook outlines some of the key standards that apply to lighting installations in Australia. This information has been included as a general guide only. Note that other regulations may also apply and it is the responsibility of the respective party to ensure compliance with all Australian standards. Standards, designs and products outlined in other sections within this Technical Handbook may not be applicable in Australia.

4.1 Luminaire Manufacture ASNZS60598 Safety Compliance verified by self-certification based on in-house or NATA report.

ASNZS CISPR15 Compliance with electromagnetic radiation standard as in C-Tick.

4.2 Interior Lighting Standards AS1680.1 General principles and recommendations AS1680.2.1 Circulation spaces and other general areas AS1680.2.2 Office and screen based tasks AS1680.2.3 Educational and Training Facilities AS1680.2.4 Industrial tasks and purposes AS1680.2.5 Hospital and medical tasks

4.3 Building Code of AustraliaPart J6.2 Provisions for all new constructions and refurbishments projects - minimum efficiency requirements. For more information visit www.abcb.gov.au or refer to Thorn’s Building Code of Australia - A Contractor’s Guide handbook.

Page 12: Technical Handbook Australia COMPLETE 2

| Controlling Light 12

4.4 Exterior Lighting StandardsASNZS 1158.1 Lighting for roads and public spaces - Vehicular traffic (Category V) lighting - Performance and design requirements.

ASNZS 1158.3 Lighting for roads and public spaces - Pedestrian area (Category P) lighting - Performance and design requirements.

ASNZS 1158.4 The lighting of urban roads and other public thoroughfares - Supplementary lighting at pedestrian crossings

AS4282 Control of the obtrusive effects of outdoor lighting.

4.5 Sports LightingAS2560.1 General AS2560.2.1 Tennis AS2560.2.2 Multipurpose Sports Hall AS2560.2.3 Football AS2560.2.4 Netball & Basketball AS2560.2.5 Swimming Pools AS2560.2.6 Baseball & Softball AS2560.2.7 Hockey AS2560.2.8 Bowling Greens AS4282 Control of the obtrusive effects of outdoor lighting

Page 13: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 13

5 Recommendations for Good Lighting

The recommendations for good lighting give practical values for various lighting criteria, depending upon the application. The recommendations are drawn from a variety of documents, the principle documents being:

Section 5.1 Indoor workplacesEN 12464-1:2002 Light and Lighting – Lighting of work places – Part 1: Indoor work places and CIE S 008:2001

Section 5.2 Outdoor workplacesEN 12464-2:2007 Lighting of work places – Part 2 : Outdoor work places and CIE S 015:2005

Section 5.3 SportsEN 12193: 2007 Light and Lighting – Sports Lighting

Section 5.4 EmergencyEN 1838:1999 and CIE S 020/E:2007 Emergency Lighting

Section 5.5 RoadsEN 13201 1-4 Road lighting practice

Section 5.6 TunnelCR 14380:2003 Lighting Applications – Tunnel Lighting

Note that these recommendations are based upon the European norms and local regulations may stipulate different values.

Page 14: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 14

Whilst these limiting values may be considered to be the minimum design criteria additional factors should be taken into account to ensure a good lighting installation. Some of these factors are described in other sections of this book.

The criteria used in the recommendations are defined below.

Em This is the maintained average illuminance, that is the minimum value for average illuminance provided during the maintenance cycle of the installation.

Emin This is the minimum value of illuminance that is permissible within any calculation or measurement grid.

GRL This is maximum value of glare rating that is permissible in any direction within any measurement or calculation grid.

Lm This is the maintained average luminance, that is the minimum value for average luminance provided during the maintenance cycle of the installation.

Ra This is the colour rendering index for a lamp and defines the ability of a lamp to show different colours correctly.

SR This is the surround ratio, which is a value used in the design of road lighting applications. It is the ratio of the average illuminance of a strip just outside the carriageway compared to the average illuminance of a strip just inside the carriageway

TI This is the threshold increment, which is a measure of the loss of visibility caused by the disability glare of the luminaires in an installation.

UGRL This is the limiting maximum value of glare calculated by the unified glare rating method.

Ul This is the uniformity of illuminance along a line, being defined as the minimum illuminance value within a line of measurement points divided by the average illuminance value of the line of measurement points (Emin_line/Em_line).

Uo This is the uniformity of illuminance across any calculation or measurement grid, being defined as the minimum illuminance value within a grid of measurement points divided by the average illuminance value of a grid of measurement points (Emin/Em).

Recommendations for good lighting

Page 15: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 15

5.1 Indoor workplaces

Recommendations for good lighting

Type of task or activity Em UGRL Ra

Traffic zones and general areas inside buildingsTraffic ZonesCirculation areas and corridors 100 28 40Stairs, escalators, travalators 150 25 40Loading ramps/bays 150 25 40Rest, sanitation and first aid roomsCanteens, pantries 200 22 80Rest rooms 100 22 80Rooms for physical exercise 300 22 80Cloakrooms, washrooms, bathrooms, toilets 200 25 80Sick bay 500 19 80Rooms for medical attention 500 16 90Control roomsPlant rooms, switch gear rooms 200 25 60Post room, switchboard 500 19 80Store rooms, cold storesStore and stockrooms 100 25 60Dispatch packing handling areas 300 25 60Storage rack areasGangways : unmanned 20 - 40Gangways : manned 150 22 60Control stations 150 22 60

Industrial activities and craftsAgricultureLoading and operating of goods, handling equipment and machinery 200 25 80Buildings for livestock 50 - 40Sick animal pens, calving stalls 200 25 80Food preparation, dairy, utensil washing 200 25 80BakeriesPreparation and baking 300 22 80Finishing, glazing, decorating 500 22 80Cement, cement goods, concrete, bricksDrying 50 28 20Preparation of materials, work on kilns and mixers 200 28 40General machine work 300 25 80Rough forms 300 25 80Ceramics, tiles, glass, glasswareDrying 50 28 20Preparation, general machine work 300 25 80Enamelling, rolling, pressing, shaping simple parts, glazing, glass blowing 300 25 80Grinding, engraving, glass polishing, shaping precision parts, manufacture of glass instruments 750 19 80Grinding of optical glass, crystal, hand grinding and engraving 750 16 80Precision work e.g. decorative grinding, hand painting 1000 16 90Manufacture of synthetic precious stones 1500 16 90

Page 16: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 16

Type of task or activity Em UGRL Ra

Chemical, plastics and rubber industryRemote-operated processing installations 50 - 20Processing installations with limited manual intervention 150 28 40Constantly manned work places in processing installations 300 25 80Precision measuring rooms, laboratories 500 19 80Pharmaceutical production 500 22 80Tyre production 500 22 80Colour inspection 1000 16 90Cutting, finishing, inspection 750 19 80Electrical industry 300 25 80Cable and wire manufacture 300 25 80Winding

-Large coils 300 25 80-Medium-sized coils 500 22 80-Small coils 750 19 80

Coil impregnating 300 25 80Galvanising 300 25 80Assembly work

-Rough e.g. large transformers 300 25 80-Medium e.g. switchboards 500 22 80-Fine e.g. telephones 750 19 80-Precision e.g. measuring equipment 1000 16 80

Electronic workshops, testing, adjusting 1500 16 80Food stuffs and luxury food industryWork places and zone in

-Breweries, malting floor 200 25 80-For washing, barrel filling, cleaning, sieving, peeling 200 25 80-Cooking in preserve and chocolate factories 200 25 80-Work places and zones in sugar factories 200 25 80-For drying and fermenting raw tobacco, fermentation cellar 200 25 80

Sorting and washing of products, milling, mixing, packing 300 25 80Work places and critical zones in slaughter houses, butchers, dairies mills, on filtering floor in sugar refineries 500 25 80

Cutting and sorting of fruit and vegetables 300 25 80Manufacture of delicatessen foods, kitchen work, manufacture of cigars and cigarettes 500 22 80Inspection of glasses and bottles, product control, trimming, sorting, decoration 500 22 80Laboratories 500 19 80Colour inspection 1000 16 90Foundries and metal castingMan-size underfloor tunnels, cellars, etc. 50 - 20Platforms 100 25 40Sand preparation 200 25 80Dressing room 200 25 80Work places at cupola and mixer 200 25 80Casting bay 200 25 80Shake out areas 200 25 80Machine moulding 200 25 80

5.1 Indoor workplaces (continued)

Page 17: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 17

Type of task or activity Em UGRL Ra

Hand and core moulding 300 25 80Die casting 300 25 80Model building 500 22 80HairdressersHairdressing 500 19 90Jewellery manufacturingWorking with precious stones 1500 16 90Manufacture of jewellery 1000 16 90Watch making (manual) 1500 16 80Watch making (automatic) 500 19 80Laundries and dry cleaningGoods in, marking and sorting 300 25 80Washing and dry cleaning 300 25 80Ironing, pressing 300 25 80Inspection and repairs 750 19 80Leather and leather goodsWork on vats, barrels, pits 200 25 40Fleshing, skiving, rubbing, tumbling of skins 300 25 80Saddlery work, shoe manufacturer, stitching, sewing, polishing, shaping, cutting, punching 500 22 80Sorting 500 22 90Leather dyeing (machine) 500 22 80Quality control 1000 19 80Colour inspection 1000 16 90Shoe making 500 22 80Glove making 500 22 80Metal working and processingOpen die forging 200 25 60Drop forging 300 25 60Welding 300 25 60Rough and average machining: tolerances ≥ 0.1mm 300 22 60Precision machining, grinding: tolerances < 0.1mm 500 19 60Scribing, inspection 750 19 60Wire and pipe drawing shops, cold forming 300 25 60Plate machining: thickness ≥ 5mm 200 26 60Sheet metalwork: thickness < 5mm 300 22 60Tool making, cutting equipment manufacture 750 19 60Assembly

• Rough 200 25 80• Medium 300 25 80• Fine 500 22 80• Precision 750 19 80

Galvanising 300 25 80Surface preparation and painting 750 25 80Tool, template and jig making, precision mechanics, micromechanics 750 25 80Paper and paper goodsEdge runners, pulp mills 200 25 80Paper manufacture and processing, paper and corrugating machines, cardboard manufacture 300 25 80Standard bookbinding work e.g. folding, sorting, gluing, cutting, embossing, sewing 500 22 80

5.1 Indoor workplaces (continued)

Page 18: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 18

Type of task or activity Em UGRL Ra

Power stationsFuel supply plant 50 - 20Boiler house 100 28 40Machine halls 200 25 80Side rooms e.g. pump rooms, condenser rooms, etc., switchboards (inside buildings) 200 25 60Control rooms 500 16 80Outdoor switch gear 20 - 20PrintersCutting, gilding, embossing, block engraving, work on stones and platens, printing machines, matrix making 500 19 80

Paper sorting and hand printing 500 19 80Type setting, retouching, lithography 1000 19 80Colour inspection in multicoloured printing 1500 16 90Steel and copper engraving 2000 16 80Rolling mills, iron and steel worksProduction plants without manual operation 50 - 20Production plants with occasional manual operation 150 28 40Production plants with continuous manual operation 200 25 80Slab store 50 - 20Furnaces 200 25 20Mill train, coiler, shear line 300 25 40Control platforms, control panels 300 22 80Test, measurement and inspection 500 22 80Underfloor man-sized tunnels, belt sections, cellars, etc. 50 - 20Textile manufacture and processingWork places and zones in baths, bale opening 200 25 60Carding, washing, ironing, devilling machine work, drawing, combing, sizing, card cutting, pre-spinning, jute and hemp spinning 300 22 80

Spinning, plying, reeling, winding 500 22 80Warping, weaving, braiding, knitting 500 22 80Sewing, fine knitting, taking up stitches 750 22 80Manual design, drawing patterns 750 22 90Finishing, dyeing 500 22 80Drying room 100 28 60Automatic fabric printing 500 25 80Burling, picking, trimming 1000 19 80Colour inspection, fabric control 1000 16 90Invisible mending 1500 19 90Hat manufacturing 500 22 80Vehicle constructionBody work and assembly 500 22 80Painting, spraying chamber, polishing chamber 750 22 80Painting, touch-up, inspection 1000 19 90Upholstery manufacture (manned) 1000 19 80Final inspection 1000 19 80Wood working and processingAutomatic processing e.g. drying, plywood manufacturing 50 28 40Steam pits 150 28 40Saw frame 300 25 60Work at joiners bench, gluing, assembly 300 25 80

5.1 Indoor workplaces (continued)

Page 19: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 19

5.1 Indoor workplaces (continued)

Type of task or activity Em UGRL Ra

Polishing, painting, fancy joinery 750 22 80Work on wood working machines e.g. turning, fluting, dressing, rebating, grooving, cutting, sawing, sinking 500 19 80

Selection of veneer woods 750 22 90Marquetry, inlay work 750 22 90Quality control, inspection 1000 19 90

OfficesOfficesFiling, copying, etc. 300 19 80Writing, typing, reading, data processing 500 19 80Technical drawing 750 16 80CAD work stations 500 19 80Conference and meeting rooms 500 19 80Reception desk 300 22 80Archives 200 25 80

Retail premisesRetail premisesSales area 300 22 80Till area 500 19 80Wrapper table 500 19 80

Places of public assemblyGeneral areasEntrance halls 100 22 80Cloakrooms 200 25 80Lounges 200 22 80Ticket offices 300 22 80Restaurants and hotelsReception/cashier desk, porters desk 300 22 80Kitchen 500 22 80Restaurant, dining room, function room - - 80Self-service restaurant 200 22 80Buffet 300 22 80Conference rooms 500 19 80Corridors 100 25 80Theatres, concert halls, cinemasPractice rooms, dressing rooms 300 22 80Trade fairs, exhibition hallsGeneral lighting 300 22 80LibrariesBookshelves 200 19 80Reading area 500 19 80Counters 500 19 80Public car parks (indoor)In/out ramps (during the day) 300 25 20In/out ramps (at night) 75 25 20Traffic lanes 75 25 20Parking areas 75 - 20Ticket office 300 19 80

Page 20: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 20

Type of task or activity Em UGRL Ra

Educational premisesNursery school, play schoolPlay room 300 19 80Nursery 300 19 80Handicraft room 300 19 80Educational buildingsClassrooms, tutorial rooms 300 19 80Classroom for evening classes and adult education 500 19 80Lecture hall 500 19 80Black board 500 19 80Demonstration table 500 19 80Art rooms 500 19 80Art rooms in art schools 750 19 90Technical drawing rooms 750 16 80Practical rooms and laboratories 500 19 80Handicraft rooms 500 19 80Teaching workshop 500 19 80Music practice rooms 300 19 80Computer practice rooms (menu driven) 300 19 80Language laboratory 300 19 80Preparation rooms and workshops 500 22 80Entrance halls 200 22 80Circulation areas, corridors 100 25 80Stairs 150 25 80Student common rooms and assembly halls 200 22 80Teachers rooms 300 19 80Library: bookshelves 200 19 80Library: reading areas 500 19 80Stock rooms for teaching materials 100 25 80Sports halls, gymnasiums, swimming pools (general use) 300 22 80School canteens 200 22 80Kitchen 500 22 80

Health care premises 500 22 80Rooms for general use 750 22 80Waiting rooms 200 22 80Corridors (during the day) 200 22 80Corridors (at night) 50 22 80Day rooms 200 22 80Staff roomsStaff office 500 19 80Staff rooms 300 19 80Wards, maternity wardsGeneral lighting 100 19 80Reading lighting 300 19 80Simple examinations 300 19 80Examination and treatment 1000 19 90Night lighting, observation lighting 5 - 80Bathrooms and toilets for patients 200 22 80

5.1 Indoor workplaces (continued)

Page 21: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 21

Type of task or activity Em UGRL Ra

Examination rooms (general)General lighting 500 19 90Examination and treatment 1000 19 90Eye examination roomsGeneral lighting 300 19 80Examination of the outer eye 1000 - 90Reading and colour vision tests with vision charts 500 16 90Ear examination rooms 750 22 80General lighting 300 19 80Ear examination 1000 - 90Scanner roomsGeneral lighting 300 19 80Scanners with image enhancers and television systems 50 19 80Delivery roomsGeneral lighting 300 19 80Examination and treatment 1000 19 80Treatment rooms (general)Dialysis 500 19 80Dermatology 500 19 90Endoscopy rooms 300 19 80Plaster rooms 500 19 80Medical baths 300 19 80Massage and radiotherapy 300 19 80Operating areasPre-op and recovery rooms 500 19 90Operating theatre 1000 19 90Intensive care unitGeneral lighting 100 19 90Simple examinations 300 19 90Examination and treatment 1000 19 90Night watch 20 19 90Dentists 200 25 80General lighting 500 19 90At the patient 1000 - 90Operating cavity 5000 - 90White teeth matching 5000 - 90Laboratories and pharmaciesGeneral lighting 500 19 80Colour inspection 1000 19 90Decontamination rooms 300 22 80Sterilisation rooms 300 22 80Disinfection rooms 300 22 80Autopsy rooms and mortuariesGeneral lighting 500 19 90Autopsy table and dissecting table 5000 - 90

5.1 Indoor workplaces (continued)

Page 22: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 22

Type of task or activity Em UGRL Ra

Transportation areas 300 22 80AirportsArrival and departure halls, baggage claim areas 200 22 80Connecting areas, escalators, travolators 150 22 80Information desks, check-in desks 500 19 80Customs and passport control desks 500 19 80Waiting areas 200 22 80Luggage store rooms 200 25 80Security check areas 300 19 80Air traffic control tower 500 16 80Testing and repair hangers 500 22 80Measuring areas in hangers 500 22 80Railway installationsCovered platforms and passenger subways 50 28 40Ticket hall and concourse 200 28 40Ticket and luggage offices and counters 300 19 80Waiting rooms 200 22 80

5.1 Indoor workplaces (continued)

Page 23: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 23

Type of area, task or activity Em Ra Uo GRL

General circulation areasWalkways exclusively for pedestrians 5 20 0.25 50Traffic areas for slowly moving vehicles (max 10km/h) e.g. bicycles, trucks and excavators 10 20 0.40 50

Regular vehicle traffic (max 40km/h) 20 20 0.40 45Pedestrian passages, vehicle turning, loading and unloading points 50 20 0.40 50

AirportsHanger apron 20 20 0.10 55Terminal apron 30 40 0.20 50Loading areas 50 40 0.20 50Fuel depot 50 40 0.40 50Aircraft maintenance stands 200 60 0.50 45

Building sitesGeneral lighting at building sites 50 20Clearance, excavation and loading 20 20 0.25 55Drain pipes mounting, transport, auxiliary and storage tasks 50 20 0.40 50Framework element mounting, light reinforcement work, wooden mould and framework mounting, electric piping and cabling 100 40 0.40 45

Element jointing, demanding electrical, machine and pipe mountings 200 40 0.50 45

Canals, locks and harboursWaiting quays at canals and locks 10 20 0.25 50Gangways and passages exclusively for pedestrians, waiting areas 10 20 0.25 50Outport embankment ballasting at canals and locks 20 20 0.25 55Lock control area 20 20 0.25 55Cargo handling, loading and unloading 50 20 0.25 55Passenger areas in passenger harbours 50 20 0.40 50Coupling of hoses, pipes and ropes 50 20 0.40 50Dangerous part of walkways and driveways (see also parking areas) 50 20 0.40 45

FarmsFarm yard 20 20 0.10 55Equipment shed (open) 50 20 0.20 55Animals sorting pen 50 20 0.20 45

Fuel filling service stationsVehicle parking and storage areas 5 20 0.25 50Entry and exit driveways – dark environment 20 20 0.40 45Entry and exit driveways – light environment (i.e. urban) 50 20 0.40 45Air pressure and water checking points and other service areas 150 20 0.40 45Meter reading area 150 20 0.40 45

Industrial sites and storage areas 500 80Short term handling of large units and raw materials, loading and unloading of solid bulk goods 20 20 0.25 55

Continuous handling of large units and raw materials, loading and unloading of freight, lifting and descending location for cranes, open loading platforms 50 20 0.40 50

Reading of addresses, covered loading platforms, use of tools, ordinary reinforcement and casting tasks in concrete plants 100 20 0.50 45

Demanding electrical, machine and piping installations, inspection 200 60 0.50 45

5.2 Outdoor workplaces

Page 24: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 24

Type of area, task or activity Em Ra Uo GRL

Off-shore gas and oil structuresDrill floor and monkey board 300 40 0.50 40Rotary table 500 40 0.50 40Regular vehicle traffic (max 40km/h) 20 20 0.40 45Pedestrian passages, vehicle turning, loading and unloading points 50 20 0.40 50Derrick 100 40 0.50 45Mud sampling room 300 40 0.50 40Test station, shale shaker, wellhead 200 40 0.50 45Process areasPumping areas 200 20 0.50 45Crude oil pumps 300 40 0.50 45Treatment areas 100 40 0.50 45Ladders, stairs, walkways 100 20 0.25 45Plant areas 300 40 0.50 40Boat landing areas transport areas 100 20 0.25 50Life boat areas 200 20 0.40 50Sea surface below the rig 30 20 0.25 50Helideck 100 20 0.40 45

Parking lotsLight traffic e.g. parking areas of shops, schools, churches, terraced and apartment houses 5 20 0.25 55

Medium traffic e.g. parking areas of department stores, office buildings, sports and multipurpose building complexes 10 20 0.25 50

Heavy traffic e.g. parking areas of major shopping centres, major sports and multipurpose building complexes 20 20 0.25 50

Petrochemical and other hazardous industriesHandling of servicing tools, utilisation of manually regulated valves, starting and stopping motors, lighting of burners 20 20 0.25 55

Filling and emptying of container trucks and wagons with risk free substances, inspection of leakage, piping and packing 50 20 0.40 50

Filling and emptying of container trucks and wagons with dangerous substances, replacements of pump packing, general service work, reading of instruments 100 40 0.40 45

Repair of machines and electrical devices 200 60 0.50 45Fuel loading and unloading sites 100 20 0.40 45

Power, electricity, gas and heat plantsPedestrian movements within electrically safe areas 5 20 0.25 50Handling of servicing tools, coal 20 20 0.25 55Overall inspection 50 20 0.40 50General servicing work and reading of instruments 100 40 0.40 45Wind tunnels – servicing and maintenance 100 40 0.40 45Repair of electric devices 200 60 0.50 45

Railway areasOpen platforms - small stations, rural and local trains 15 20 0.25 50Open platforms - medium size stations, suburban and regional trains 20 20 0.40 45Open platforms - large stations, inter-city services 50 20 0.40 45Covered platforms - medium size stations, suburban and regional trains 50 40 0.40 45Covered platforms - large stations, inter-city services 100 40 0.50 45Stairs - small and medium size stations 50 40 0.40 45Stairs - large stations 100 40 0.50 45Walkways 20 20 0.40 50

5.2 Outdoor workplaces (continued)

Page 25: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 25

Type of area, task or activity Em Ra Uo GRL

Freight areasFreight track – short duration operations 10 20 0.25 50Freight track – continuous operation 20 20 0.40 50Open platforms 20 20 0.40 50Covered platform – short duration operations 50 20 0.40 45Covered platform – continuous operation 100 40 0.50 45Railway yards handling areas 30 20 0.40 50Railway yards – flat marshalling, retarder and classification yards 10 20 0.40 50Hump areas 10 20 0.40 45Wagon inspection pit 100 40 0.50 40Coupling area 30 20 0.40 45Tracks in passenger station areas, including stabling 10 20 0.25 50Servicing trains and locomotives 20 40 0.40 50Level crossings 20 20 0.40 45

Saw millsTimber handling on land and in water, sawdust and chip conveyors 20 20 0.25 55Sorting of timber on land or in water, timber unloading points and sawn timber loading points, mechanical lifting to timber conveyor 50 20 0.40 50

Reading of addresses and marking of sawn timber 100 40 0.40 45Grading and packaging 200 40 0.50 45Feeding into stripping and chopping machines 300 40 0.50 45

Shipyards and docksShort term handling of large units 20 20 0.25 55Cleaning of ship hull 50 20 0.25 50Painting and welding of ship hull 100 60 0.40 45Mounting of electrical and mechanical components 200 60 0.50 45General lighting of shipyard area, storage areas for prefabricated goods 20 40 0.25 55

Water and sewage plantsHandling of service tools, utilisation of manually operated valves, starting and stopping of motors, piping packing and raking plants 50 20 0.40 45

Handling of chemicals, inspection of leakage, changing of pumps, general servicing work, reading of instruments 100 40 0.40 45

Repair of motors and electric devices 200 60 0.50 45

5.2 Outdoor workplaces (continued)

Page 26: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 26

5.3 SportsThis table contains lighting recommendations for a variety of sports. Lighting requirements may differ according to the level of competition of a sport, and therefore requirements are shown for different lighting classes. There are three lighting classes:

Class I Top level competition that will generally involve a large amount of spectators and may involve long viewing distances

Class II Medium level competition that will generally involve a medium amount of spectators and may involve medium viewing distances. Professional level training may also be class II.

Class III Low level competition that will generally involve small amounts

Level of competition Lighting Class I II III

International or national 3

Regional 3 3

Local 3 3 3

Training 3 3

Recreational/education 3

Type of area, task or activity Class Em Ra Uo GRL

Aerobics (recreational) 200 20 0.50Archery (lane/target) 200/Ev 750 60 0.5/0.8Athletics (indoor)

Class I 500 60 0.70Class II 300 60 0.60Class III 200 20 0.50

Athletics (outdoor, all disciplines)Class I 500 60 0.70 50Class II 200 60 0.50 55Class III 100 20 0.50 55

BadmintonClass I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.70

Page 27: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 27

Type of area, task or activity Class Em Ra Uo GRL

Basketball (indoor)Class I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

BasketballClass I 500 60 0.70 50Class II 200 60 0.60 50Class III 75 20 0.50 55

BilliardsClass I 750 80 0.80Class II 500 80 0.80Class III 500 80 0.80

Boccia (indoor)Class I 300 60 0.70Class II 200 60 0.70Class III 200 20 0.50

Boccia (outdoor)

Class I 200 60 0.70 50Class II 100 20 0.70 50Class III 50 20 0.50 55

Boules (indoor)Class I 300 60 0.70Class II 200 60 0.70Class III 200 20 0.50

Boules (outdoor)Class I 200 60 0.70 50Class II 100 20 0.70 50Class III 50 20 0.50 55

10 pin/9 pin bowlingLanes 200 60 0.50Pins 25m lane Ev 1000 0.80Pins 50m lane Ev 2000 0.80

BoxingClass I 2000 80 0.80Class II 1000 80 0.80Class III 500 60 0.50

ClimbingClass I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.50

Cricket (infield/outfield)Class I 750/500 60 0.70 50Class II 500/300 60 0.70 50Class III 300/200 20 0.70 55

Cricket netsClass I 1500 60 0.80 50Class II 1000 60 0.80 50Class III 750 20 0.80 55

Page 28: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 28

Type of area, task or activity Class Em Ra Uo GRL

Curling (target / playing area) 300/200 0.70 0.70Cycling (indoor) 50

Class I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Cycling (outdoor)Class I 500 60 0.70 50Class II 300 60 0.70 50Class III 100 20 0.50 55

DancingClass I 500 60 0.70Class II 300 60 0.60Class III 200 20 0.50

DartsClass I Eh 200/Ev 750 60Class II Eh 100/Ev 500 60Class III Eh 50/Ev 300 20

FencingClass I Eh 750/Ev 500 60 0.70Class II Eh 500/Ev 300 60 0.70Class III Eh 300/Ev 200 20 0.70

Football (indoor)Class I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Football (outdoor)Class I 500 60 0.70 50Class II 200 60 0.60 50Class III 75 20 0.50 55

GymnasticsClass I 500 60 0.70Class II 300 60 0.60Class III 200 20 0.50

Handball (indoor)Class I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Handball (outdoor)Class I 500 60 0.70 50Class II 200 60 0.60 50Class III 75 20 0.50 55

Hockey (indoor)Class I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.70

Hockey (outdoor)Class I 500 60 0.70 50Class II 200 60 0.70 50Class III 200 20 0.70 55

Page 29: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 29

Type of area, task or activity Class Em Ra Uo GRL

Ice hockey (indoor)Class I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.70

Ice hockey (outdoor)Class I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Ice skatingClass I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.70

JudoClass I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Kendo / KarateClass I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Netball (indoor)Class I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Netball (outdoor)Class I 500 60 0.70 50Class II 200 60 0.60 50Class III 75 20 0.50 55

Petanque (indoor)Class I 300 60 0.70Class II 200 60 0.70Class III 200 20 0.50

Petanque (outdoor)Class I 200 60 0.70 50Class II 100 20 0.70 50Class III 50 20 0.50 55

RacketballClass I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.70

Roller skatingClass I 500 60 0.70Class II 300 60 0.60Class III 200 20 0.50

School sportsClass I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Page 30: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 30

Type of area, task or activity Class Em Ra Uo GRL

Shooting (lane/target) 200/Ev 750 60 0.5/0.8Snooker

Class I 750 80 0.80Class II 500 80 0.80Class III 500 80 0.80

Speed skatingClass I 500 60 0.70Class II 300 60 0.60Class III 200 20 0.50

SquashClass I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.70

SwimmingClass I 500 60 0.70Class II 300 60 0.70Class III 200 20 0.50

Table tennisClass I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.70

Tennis (indoor)Class I 750 60 0.70Class II 500 60 0.70Class III 300 20 0.50

Tennis (outdoor)Class I 500 60 0.70 50Class II 300 60 0.70 50Class III 200 20 0.60 55

Weight liftingClass I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

WrestlingClass I 750 60 0.70Class II 500 60 0.70Class III 200 20 0.50

Page 31: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 31

5.4 EmergencyIlluminance limits (CEN 1838:1999 and CIE S 020/E:2007)

Disability glare limits (CEN 1838:1999 and CIE S 020/E:2007)

Description of space Illuminance limits (lux) Diversity limits (Imin / Imax)

Escape route Along centre line ≥ 1.0lx In central band ≥ 0.5lx

0.025 (1:40)

Open area Across area ≥ 0.5lx 0.025 (1:40)High risk task area ≥ 10% maintained level but not less than15.0lx 0.1 (1:10)

Mounting height above floor level

H in m

Escape route and open area (anti panic) lighting maximum luminous

intensityImax in cd

High risk task area lighting maximumluminous intensity

Imax in cdH < 2.5 500 1000

2.5 ≤ H < 3.0 900 18003.0 ≤ H < 3.5 1600 32003.5 ≤ H < 4.0 2500 50004.0 ≤ H < 4.5 3500 7000

4.5 ≤ H 5000 10000

For escape routes and open areas response times and durations are; CEN 1838:199950% of the required illuminance within 5s, and 100% within 60s with a minimum duration of 1 hour CIE S 020/E:200750% of the required illuminance within 20s, and 100% within 60s (if the visual task or risk to people requires a shorter response time then it should be shortened to 50% of the required illuminance within 5s) with a minimum duration of 1 hour (if the visual task or risk to people requires a longer duration then it should be extended to 3 hours)

For high risk task areas response times and durations are; CEN 1838:1999Either 100% required illuminance permanently or within 0.5s, depending upon the application with a minimum duration covering the time the risk exists CIE S 020/E:2007Either 100% required illuminance permanently or within 0.5s, depending upon the application with a minimum duration of 1 hour

Note that these values may differ across countries. For example; UK (CEN 1838:1999) Escape route along centre line ≥ 0.2lx in central band ≥ 0.1lx

Page 32: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 32

Escape route and open area duration may be extended from 5s to 15s in premises for the most part likely to be occupied by persons who are familiar with them France (CEN 1838:1999) Certified luminaires only may be used On escape routes maximum spacing of luminaires is 15mFor open areas 5lm/m2 (luminaire lumens) is required and luminaires may not be spaced more than 4 times their mounting height apart, with a minimum of 2 luminaires per room

Therefore, whilst these values may be used for guidance local regulations should be consulted.

5.5 RoadsFor road lighting the lighting criteria are selected dependant upon the class of road being lit. The class has a range of sub-classes, from the strictest to the most relaxed, and these are chosen dependant upon factors, such as typical speed of users, typical volumes of traffic flow, difficulty of the navigational task, etc. The basic lighting classes are defined as:

ME This class is intended for users of motorised vehicles on traffic routes. In some countries this class also applies to residential roads. Traffic speeds are medium to high.

The ME classes go from ME1 to ME6, with ME1 defining the strictest requirements. For wet road conditions the MEW classes go from MEW1 to MEW6.

LuminanceLm U0 UL SR TI

ME1 ≥ 2.0 cd/m2 ≥ 0.40 ≥ 0.70 ≥ 0.50 ≤ 10%ME2 ≥ 1.5 cd/m2 ≥ 0.40 ≥ 0.70 ≥ 0.50 ≤ 10%ME3A ≥ 1.0 cd/m2 ≥ 0.40 ≥ 0.70 ≥ 0.50 ≤ 15%ME3B ≥ 1.0 cd/m2 ≥ 0.40 ≥ 0.60 ≥ 0.50 ≤ 15%ME3C ≥ 1.0 cd/m2 ≥ 0.40 ≥ 0.50 ≥ 0.50 ≤ 15%ME4A ≥ 0.75 cd/m2 ≥ 0.40 ≥ 0.60 ≥ 0.60 ≤ 15%ME4B ≥ 0.75 cd/m2 ≥ 0.40 ≥ 0.50 ≥ 0.50 ≤ 15%ME5 ≥ 0.50 cd/m2 ≥ 0.35 ≥ 0.40 ≥ 0.50 ≤ 15%ME6 ≥ 0.3 cd/m2 ≥ 0.35 ≥ 0.40 ≥ 0.50 ≤ 15%MEW1D ≥ 2.0 cd/m2 ≥ 0.40 ≥ 0.60 ≥ 0.50 ≤ 10%MEW1W - ≥ 0.15 - ≥ 0.50 -MEW2D ≥ 1.5 cd/m2 ≥ 0.40 ≥ 0.60 ≥ 0.50 ≤ 10%MEW2W - ≥ 0.15 - ≥ 0.50 -MEW3D ≥ 1.0 cd/m2 ≥ 0.40 ≥ 0.60 ≥ 0.50 ≤ 15%MEW3W - ≥ 0.15 - ≥ 0.50 -MEW4D ≥ 0.75 cd/m2 ≥ 0.40 - ≥ 0.50 ≤ 15%MEW4W - ≥ 0.15 - ≥ 0.50 -MEW5D ≥ 0.5 cd/m2 ≥ 0.35 - ≥ 0.50 ≤ 15%MEW5W - ≥ 0.15 - ≥ 0.50 -

KEY Emin - minimum illuminance Em - maintained average illuminance Lm - maintained average luminance Uo - overall uniformity UL - longitudinal uniformity TI - threshold increment SR - surround ratio

Page 33: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 33

Horizontal illuminanceEm Emin Uo

CE0 ≥ 50.0 lux - ≥ 0.40CE1 ≥ 30.0 lux - ≥ 0.40CE2 ≥ 20.0 lux - ≥ 0.40CE3 ≥ 15.0 lux - ≥ 0.40CE5 ≥ 7.50 lux - ≥ 0.40

Horizontal illuminanceEm Emin Uo

S1 ≥ 15.0 lux; ≤ 22.5 lux ≥ 5.0 lux -S2 ≥ 10.0 lux; ≤ 15.0 lux ≥ 3.0 lux -S3 ≥ 7.5 lux; ≤ 11.25 lux ≥ 1.5 lux -S4 ≥ 5.0 lux; ≤ 7.5 lux ≥ 1.0 lux -S5 ≥ 3.0 lux; ≤4.5 lux ≥ 0.6 lux -S6 ≥ 2.0 lux; ≤ 3.0 lux ≥ 0.6 lux -

Hemispherical illuminanceEm Uo

A1 ≥ 5.0 lux ≥ 0.15A2 ≥ 3.0 lux ≥ 0.15A3 ≥ 2.0 lux ≥ 0.15A4 ≥ 1.5 lux ≥ 0.15A5 ≥ 1.0 lux ≥ 0.15

Semi-cylindrical illuminanceEmin

ES1 ≥ 10.0 luxES2 ≥ 7.5 luxES3 ≥ 5.0 luxES4 ≥ 3.0 luxES5 ≥ 2.0 luxES6 ≥ 1.5 luxES7 ≥ 1.0 luxES8 ≥ 0.75 luxES9 ≥ 0.50 lux

Vertical illuminanceEmin

EV1 ≥ 50.0 luxEV2 ≥ 30.0 luxEV3 ≥ 10.0 luxEV4 ≥ 7.5 luxEV5 ≥ 5.0 luxEV6 ≥ 0.5 lux

CE This class is intended for users of motorised vehicles in conflict areas such as road intersections, roundabouts, etc. These areas also allow provision for cyclists and pedestrians. The CE classes go from CE0 to CE5, with CE0 defining the strictest requirements.

S This class is intended for cyclists and pedestrians on footpaths, cycle paths, residential roads, pedestrian streets, parking areas, etc. The S class and the A class are for similar situations, but the S class criteria are defined in terms of horizontal illuminance as preferred by certain countries.

The S classes go from S1 to S6, with S1 defining the strictest requirements.

A This class is intended for cyclists and pedestrians on footpaths, cycle paths, residential roads, pedestrian streets, parking areas, etc. The A class and the S class are for similar situations but the A class criteria are defined in terms of hemispherical illuminance as preferred by certain countries. The A classes go from A1 to A5, with A1 defining the strictest requirements.

ES This class is an extension of the A and S classes for those situations where the identification of people or objects is particularly necessary, for example in high crime risk areas. The criteria are in terms of semi-cylindrical illuminance and are used in addition to the S or A class criteria.

The ES classes go from ES1 to ES9, with ES1 defining the strictest requirements.

EV This class is an extension of the CE, A and S classes for those situations requiring good visibility of vertical surfaces, for example toll booths. The criteria are in terms of vertical illuminance and are used in addition to the CE, S or A class criteria. The EV classes go from EV1 to EV6, with EV1 defining the strictest requirements.

Page 34: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 34

Recommended lighting levels

When lighting adjacent areas there should not be a difference greater than two comparable classes between the areas, with the area with the highest recommended lighting level being taken as the reference area.

To help apply this when adjacent area are lit to different lighting classes the table below shows lighting classes for comparable lighting levels.

Lighting classes of comparable lighting level

In some countries there is a preference for a particular measure of illuminance over others (for example hemispherical illuminance in preference to horizontal illuminance). The following two tables show comparable alternative lighting classes to aid in designing to local preferences.

A class (hemispherical illuminance) compared to S class (horizontal illuminance)

ES class (semi-cylindrical illuminance) and EV class (vertical illuminance) compared to CE and S class (horizontal illuminance)

ME1 ME2 ME3 ME4 ME5 ME6MEW1 MEW2 MEW3 MEW4 MEW5

CE0 CE1 CE2 CE3 CE4 CE5S1 S2 S3 S4 S5 S6

Reference class S1 S2 S3 S4 S5 S6

Alternative class A1 A2 A3 A4 A5

Reference class CE0 CE1 CE2 CE3 S1

CE4 S2

CE5S3 S4 S5 S6

Alternative class ES1 ES2EV3

ES3EV4

ES4EV5

ES5 ES6 ES7 ES8 ES9

Page 35: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 35

5.6 AmenityThere is little standardised information for lighting requirements in amenity areas, and therefore this information should be considered guidance. Local standards and regulations should be checked to ensure compliance.

Lighting classes for pedestrian areas in urban centres (see road section above)

Pedestrian zones

Lighting levels for underground, multi-storey and outdoor car parks zones

Traffic flow pedestrians

Normal High

Environmental zone Environmental zone

E3 E4 E3 E4

Pedestrian only traffic CE3 CE2 CE2 CE1

Mixed pedestrian and vehicular traffic CE2 CE1 CE1 CE1

Area

Em(lux)

Eminimum(lux)

Diversity(Emin/Emax)

Pedestrian precincts 5.0 - 0.08

Squares/open areas 5.0 - 0.10

Squares (high pedestrian use) 10.0 - 0.10

Level footpaths - 1.0

Footpaths with steps - 5.0 -

Outdoor staircase 15.0 - 0.30

Underpass 60.0 - 0.30

Type

Area

Em(lux)

Eminimum(lux)

Underground and multi-storey excluding roof level

Parking bays, access area 75 50

Ramps, corners, intersections 150 75

Entrance/exit zones (vehicular) 75 night 300 day

-

Pedestrian areas, stairs, lifts 100 50

Outdoor and multi-storey roof level

60.0 -

Rural zones E1 and E2 15 5

Urban zones E3 and E4 30 10

Multi-storey roof level 30 10

Page 36: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 36

5.7 TunnelFor guidance on tunnel lighting you should also refer to section 7.6 on road tunnel lighting.

Glare restriction

Traffic flow classification

Interior zone average luminance levels (Lav)

Time of day Threshold zone Interior zone Exit zone

Day-time TI <15% TI <15% -

Night TI <15% TI <15% TI <15%

Traffic flow One way traffic(vehicles/hour.lane)

Two way traffic(vehicles/hour.lane)

High > 1500 > 400

Medium 500 – 1500 100 – 400

Low < 500 < 100

Stopping distance Traffic flow

(≅ speed in m/s) Low Medium High

160m ≥ 5 cd/m² ≥ 10 cd/m² ≥ 15 cd/m²

100m ≥ 2 cd/m² ≥ 4 cd/m² ≥ 6 cd/m²

60m ≥ 1 cd/m² ≥ 2 cd/m² ≥ 3 cd/m²

Threshold zones average luminance levels (Lav)

Maximum permitted average luminance ratio passing between transition zones is 3:1

Maximum permitted average luminance ratio passing from transition zones to interior zone is 1.5:1

Note: During night hours the entire tunnel is treated as one interior zone

Uniformity requirements

Minimum luminance to average luminance for road surface and lower 2m of tunnel walls ≥ 0.4

Longitudinal uniformity along centre line of each lane ≥ 0.6

Page 37: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 37

5.8 Lighting scheme surveysWhen a lighting scheme has been designed and installed it is normally necessary to perform a survey as part of the commissioning process. A survey would also be necessary in the case of any dispute over the performance of an installation. When performing a survey a grid of points is generally placed over the area to be surveyed. These grid points are the measurement points at which a reading of light will be taken.

To perform a survey adequate equipment is required. This is generally either an illuminance meter or a luminance meter, dependant upon the criteria used during the design of the installation. It is essential that the equipment used is suitable for the task. It therefore needs to be calibrated, with a current calibration certificate from a competent company with traceability to national standards. It also needs to have a suitable range of sensitivity to be able to measure the light levels present in the installation. So to measure emergency light levels a more sensitive meter would be necessary that could measure low light levels.

When making a scheme survey it is essential to keep a complete and accurate record of the state of the whole installation at the time of the survey, which is the lighting equipment and the space the lighting is in. (Photographs are a valuable addition to a written record.) Examples of information of note are:

With regard to the measuring equipment− Type of meter, manufacturer, model, serial number and

calibration date− Details of any additional equipment, such as tripods, tape

measures, etc. should be noted

With regard to the luminaires− The luminaire manufacturer and manufacturers’ code− Details of the lamps (number, type and age)− The supply voltage (value and stability)− The state of maintenance of the installation (lamps and

luminaires)− Details of luminaire control systems being used− Geometric details of the luminaire positioning

Page 38: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 38

With regard to the space− The condition of reflective surfaces− The surface reflectances− The presence of any significant obstructions− The presence/absence of daylight, including a

background reading of luminance/illuminance with daylight only (luminaires turned off). Note that the quantity of daylight may vary significantly over time so ideally daylight should be excluded from measurements of electric light unless the aim is to measure a constant illuminance installation (daylight control)

− The ambient temperature in the space− Any other factors which could influence the measurement

Before taking any measurements it is important that the output of the luminaires is stable. Therefore the lighting should ideally be operated for one hour before taking any measurements, and at least 30 minutes. Additionally to ensure the stability of the meter photocell it should be exposed to the stable light levels for approximately five minutes before taking any measurements.

When defining a measurement grid this is dependant upon the application being surveyed.

Interior measurement gridsFrequently for sports lighting the grid definition is defined by the sports governing body, so for an indoor sports facility any requirements specific to a particular sport should be used. However, if no specific requirements exist, or the installation is not a sports facility, the measurement points for verification of the design should be in the same location and plane as the calculation points used during the design. Therefore, if a measurement plane was calculated which was tilted to mimic the orientation of the task, the same measurement plane should be used for verification.

Note that during design it should be ensured that the grid spacing does not coincide with the spacing of the luminaires in the installation as this can distort the calculated results, and therefore the scheme performance.

Page 39: Technical Handbook Australia COMPLETE 2

Recommendations for Good Lighting | 39

Exterior measurement grids – sports and areaFrequently for sports lighting the grid definition is defined by the sports governing body, so any requirements specific to a particular sport should be used. However, if no specific requirements exist, or the installation is not a sports facility, the measurement points for verification of the design should be in the same location and plane as the calculation points used during the design. Therefore, if a measurement plane was calculated which was tilted to mimic the orientation of the task, the same measurement plane should be used for verification.

Exterior measurement grids – roadFor road lighting the grid is normally defined in the relevant standard and is generally related to the spacing of the road lighting lanterns. Therefore the relevant standard should be referenced for the grid definition which should be the same as the grid used for calculation during design.

When marking the measurement grid in the area to be measured the method of marking is dependant upon the measurements to be taken. When measuring illuminance small markers (such as sticky dots) may be placed upon the surface to show the measurement point. However when measuring luminance this would invalidate the reading and so for luminance readings markings should be used to sight the luminance meter, and then moved before the reading is taken. When taking luminance readings in a road lighting installation the position of the meter will be a significant distance from the measurement point. This has two implications:− The luminance meter must be able to restrict the angle of

measurement to allow only the relevant grid position to be measured, typically to two minutes of arc in the vertical plane and 20 minutes of arc in the horizontal plane.

− The grid markings must be visible from a large distance. Therefore three-dimensional objects should be used to mark the grid points and removed individually as each grid point is measured.

The method of marking out the grid should be recorded with details of equipment used and fixed reference points used to locate the grid. To record the measured values a diagram should be used to assign reference numbers to each grid point. A table of values may then be completed containing the grid reference number and the measured value.

Page 40: Technical Handbook Australia COMPLETE 2

| Recommendations for Good Lighting 40

Some points of note when taking the readings are− When taking measurements it should be ensured that

no additional shadowing is introduced due to the measurement technique.

− When taking measurements it is advisable to wear dark matt clothing to prevent light reflecting from clothing onto the photocell, giving abnormally high readings. However, if safety requirements require high visibility clothing, care should be taken to minimise light reflection onto the photocell.

− The use of a tripod is advisable, especially for luminance readings or readings using heavy equipment.

− For measurement grids that are not at ground level the use of a stand, at the correct height and orientation for the task plane, can help ensure a photocell is correctly positioned at a measurement position.

− It is good practice to measure the background light levels without the lighting installation turned on. Even moonlight can have a noticeable effect on light levels. Also to take these measurements after measuring the installation with the lights turned on, as the background light levels may vary considerably during the warm-up time for the lighting.

− When measuring horizontal illuminance it cannot be assumed that the ground is horizontal, especially in outdoor applications. Care must be taken to ensure the photocell is horizontal, even if this is not a true representation of the ground.

− Correction factors should be applied to readings to compensate for the lamp type used in the schemes. However, highly coloured or monochromatic light sources will give erroneous readings using conventional light meters.

Page 41: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 41

6 Applications and Techniques

6.1 General ConsiderationsThe application of the right light is paramount in lighting design. The simple golden rule for design considerations is to provide the right light to the right place at the right time. This rule is valid for all places where lighting for people is needed so that they can see and perform the visual tasks efficiently and in comfort. The specific lighting requirements of people and places vary according to the type of place, activity and people involved. The visual tasks can differ in character, location, size, colour, duration, dynamics and ergonomics. It is very important to assess these parameters and to formulate the right design objectives for the specific lighting application area. Once the task analyses have been completed and listed the required lighting design criteria can be selected and the lighting design process can start. See also the list of recommendations within the appropriate lighting application standards referenced in this book.

This section of the handbook gives an insight to the activities and visual tasks found in the various lighting application segments and gives advise on the important points to consider. It recommends the most appropriate lighting design techniques and suitable lighting solutions. The list of application segments is not exhaustive but the main types covered include the lighting of indoor and outdoor industry, offices, education buildings, super and hypermarkets, roads, amenity areas, architectural elements and healthcare premises. For each case the lighting techniques employed should start by considering a holistic approach to design and should include PEC – performance, efficiency and comfort - attributes and fulfilment. This means addressing all the lighting design parameters and balancing the requirements and constraints to yield the best possible solution. In the holistic framework the key elements for consideration are visual function, visual amenity, architectural integration, energy efficiency, installation costs and maintenance. The individual elements may not carry equal weight, but they

Page 42: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 42

all need consideration separately and combined with each other. PEC extends this consideration to include the changing human factors and environmental challenges. By fulfilling PEC we ensure that quality lighting will be provided that gives effective light for visual performance, with high operating energy efficiency, be sustainable and kind to the environment, and give people comfort, stimulation and total satisfaction. It is well proven that good lighting is essential to mankind, without this the human activity will be seriously impaired and valuable energy and resource will be wasted. It is also important to recognise that this lighting not only illuminates the task but will also contribute to the quality of the visual environment and wellbeing of the people.

Much of the success of a lighting installation depends on making the right decisions at the design stage, selecting the right equipment and providing adequate instructions on how to operate, manage and service the scheme through it’s life. In the section “Specific Techniques” guidance is given on techniques that are applicable to several application segments. These include, lighting for display screen equipment, lighting for education, emergency lighting, road and amenity lighting, controlling obtrusive light, lighting for crime prevention, lighting for health, lighting controls, lighting maintenance and tunnel lighting. The consideration of these form an integral part of the design process to yield the most appropriate lighting solution.

Applications and Techniques

Page 43: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 43

HealthcareSection 5.6

Urban – decorative roadlighting & amenity areasSection 5.9

EducationSection 5.3

Sports lightingSection 5.11

OfficeSection 5.2

Super/HypermarketSection 5.7

Road lightingSection 5.8

Urban – architectural floodlightingSection 5.10

Industry – indoorSection 5.4Industry – outdoor Section 5.5

Fig. 6.1 City plan showing the diversity of lighting needs. This section gives hints on lighting techniques for each of these application areas, helping the reader to tackle such everyday projects with greater understanding.

Page 44: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 44

Techniques

General

Office lighting is a general term that covers many tasks. These tasks can use different mediums such as paper, computer screen, or involve face-to-face meetings. Additionally the tasks can vary in content and may be mainly clerical in nature or may be more specialised such as engineering tasks and CAD work. Points of note are:

Office workers tend to have a sedentary work routine. Therefore they will be looking in essentially the same direction for large amounts of time. Poor lighting can cause various health problems, from headaches due to discomfort glare to muscle strain due to sitting at an awkward angle to avoid reflections in computer screens or glossy publications. Care must be taken to design a lighting installation that minimises discomfort caused by lighting.

A balanced ambience creates a pleasant work environment. Ensuring light falls onto the walls and ceiling helps prevent dark surfaces creating an oppressive atmosphere. Generally, ensuring wall lighting levels are 50% of the horizontal task lighting level and ceiling levels are 30% of the horizontal task level will give a good balance. Careful use of wall-washing luminaires and indirect lighting can help produce a positive environment.

Lamps with a colour-rendering index of 80 or more should be used to enhance visual performance and visual satisfaction.

If the positions of the workstations are known and fixed it is more efficient to design the lighting to supply the correct amount of lighting to the task, but less lighting to circulation areas. For areas that may be reconfigured lighting controls may be used to set the light levels for individual luminaires in an array of luminaires to achieve the same effect.

For rooms containing display screen equipment luminaires with suitable optical control to remove any bright luminance above 65° should be used.

6.2 Office

Page 45: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 45

Drawing office

Lighting for technical areas is critical to minimise errors. Any error in a drawing could be costly and potentially dangerous.

Although drawing boards are becoming less common some offices do still use them. In such cases the lighting should provide adequate light levels over a reasonable range of tilt angles of the board, and be positioned so as to minimise shadowing onto the board.

For CAD workstations luminaires should be chosen which have a minimal luminance at high angles from the downward vertical (e.g. angles close to the horizontal plane of the luminaire). When using indirect or direct/indirect luminaires care should be taken to ensure that the ceiling luminance is not too high as this can produce images on the computer screen.

Key luminaires:

Reception desk

Main objective is to provide visitors with a visible first point of contact and employees with a transition zone from exterior and interior lighting levels.

Light naturally attracts people so a well lit reception area and reception desk will help orientate visitors by giving them a visible point of reference.

Luminaires should be placed to help orientation by providing a luminous pathway

Entrances with high ceilings lend themselves to the use of uplighting or suspended lighting, both of which tend to provide good modelling.

Key luminaires:

Office

Page 46: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 46

Conference rooms

Main objectives are to ensure that people have adequate light to perform their tasks (such as reading, writing), that any presentation aids used are clearly visible, and that modelling is suitable to allow good communication between people.

A good vertical illuminance component should exist to aid the visibility of wall-displays and improve modelling. Moderately strong modelling is desirable for formal communication, whilst softer modelling is more suitable for informal or close contact. Modelling is of special importance in areas that may be used by people with special needs who may utilise lip-reading or signing.

Specialised lighting for whiteboards may be installed to ensure good visibility for all participants. These luminaires should not cause glare for the user of the whiteboard and should be positioned to minimise shadowing during use. If audio-visual projectors are used the luminaires should not impede the projector beam and cause shadowing.

Flexible luminaire controls should be employed to allow the use of projectors or other audio-visual equipment and to set a luminous environment suitable for the meeting purpose.

Key luminaires:

General office

Main objective is to ensure that people have adequate light to perform their tasks quickly and accurately without any stress or strain caused by poor light levels or poorly positioned lighting causing visual disability or discomfort.

Whilst recommendations and standards define suitable lighting levels for office based work consideration should also be given to the demands of the task. For work involving small or complex detail lighting levels required for accurate working will be higher than those necessary for more general office tasks. If a minority of people in a large office perform these tasks local lighting may be suitable for these workers.

Office

Page 47: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 47

Care should be taken when positioning luminaires and workstations to ensure that the worker does not create shadows on the task. Ensuring that all workstations are lit by more than one luminaire and from a variety of directions can prevent this occurring.

Tasks frequently involve the transfer of paper-based information onto a computer. In many instances special attachments are used to hold the paper next to the computer screen in a vertical or near vertical orientation. Therefore it must be ensured that the vertical illuminance is sufficient to allow good visibility of the paper-based task.

When writing, typing or reading paper-based material the contrast rendering factor (CRF) of the task is important. This indicates how effectively the lighting system minimises unwanted shiny reflections in the task. The CRF is sensitive to the geometry between the luminaires, task and observer and should either be calculated or measured. If the CRF is too low altering the lighting layout or moving the location of the task should be considered.

It should be ensured that light levels on the walls are suitable for comfortable use of notice boards, whiteboards, etc. However, overly aggressive or poorly designed lighting of shiny artefacts on the walls (such as whiteboards or glazed pictures) may result in some workers having problems with reflected glare.

When filing or retrieving information from a storage system it is frequently necessary to read information on a vertical surface, such as the front of a drawer of a filing cabinet. Therefore, adequate vertical illuminance levels should be provided.

Luminaires should be positioned to ensure that the user does not create shadowing over filing systems or copiers when standing in front of them.

Key luminaires:

Office

Page 48: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 48

Schemes

Office lighting

Scheme: Civil circuit judge court, 7m x 6.5m x 2.8mLuminaire(s) used: 23 MenloSoft 3x24W T16 and 5 Planor 2x24W T16 wall mountedWorkplane: Eav = 569 lux. (1m above floor)

Scheme: Meeting room, 4.4m x 4.4m x 2.8mLuminaire(s) used: 9 Corsa 200 2x26W TC-DDesk: Eav = 468 lux ; Emin/Eav = 0.86

Scheme: Circulation routes, 2.8m wide x 2.8m highLuminaire(s) used: Indi-Quattro 2x36W TC-L on 3m centresDesk: Eav = 255 lux ; Emin/Eav = 0.41

Scheme: Boardroom, 7m x 6.5m x 2.8mLuminaire(s) used: 12 Corsa 200 2x26W TC-D and 16 Chalice LV 50WDesk: Eav = 479 lux ; Emin/Eav = 0.62

Office

Page 49: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 49

Recessed MenloSoft luminaires lighting a large open plan office. The appearance of the luminaire gives a lively feel to the ceiling, which might otherwise appear uninteresting. A good distribution of light prevents walls appearing dark and uninviting.

Pendant Planor luminaires lighting a small office area. Small offices frequently feel enclosed and cramped. The light distribution from the luminaire lights the ceiling and walls, making the space feel larger and more cheerful, and the fittings seem to float in the space.

Recessed luminaires controlled by the SensaLink system (see Section 6.1). The luminaires have integrated detectors allowing them to adjust the lighting levels according to the amount of daylight flowing in from the large window on the edge of the office.

Quattro T Line luminaires with reflector optics in a large open plan office. This minimises potential problems of the lighting causing reflections in computer screens (see Section 6.2) and allows a clean uncluttered feel to the ceiling. Care needs to be taken to prevent dark walls and ceiling making the room feel gloomy and uninviting.

Office

Page 50: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 50

Techniques:

General

The purpose of a school or college building is to provide a facility that aids and promotes learning for all age groups in a safe and fulfilling environment. The lighting should support this aim in all teaching and ancillary areas.

Luminaires need to be physically robust, not easily damaged, and easy to maintain

The ambience of different areas should be suitable for the activity performed there. For example by treating an art or music room as more than just another classroom the lighting can contribute to providing an inspiring atmosphere.

Additional consideration should be given to any uses of the teaching space for extra-curricular activities or adult learning classes. If a large number of older students use the space light levels should be suitable, taking into account deterioration of the eye with age.

Emergency lighting will be required in many parts of the building.

Entrance hall

Main objective is to provide visitors with a visible first point of contact and students and staff with a transition zone from exterior and interior lighting levels.

Light naturally attracts people so a well lit reception area and reception desk will help orientate visitors by giving them a visible point of reference.

Luminaires should be placed to help orientation by providing a luminous pathway

Entrances with high ceilings lend themselves to the use of uplighting or suspended lighting, both of which tend to provide good modelling.

Key luminaires:

6.3 Education

Page 51: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 51

Corridors/Staircases

Main objective is to allow students and staff to move around the building safely. As corridors and staircases are also main exit routes for emergency situations good emergency lighting with way-guidance is necessary. Points of note are:

Bright ceilings and walls can make corridor areas seem more open and appealing.

Wall mounted fittings can model peoples faces better.

Luminaires should be placed to help orientation by providing a luminous pathway

For walls with an interesting texture using luminaires with a significant downlight component positioned close to the wall can create an interesting effect.

Stairs should be well lit and glare free. Lighting should prevent heavy shadowing of steps, but must allow sufficient contrast for people to easily identify changes in level.

Display lighting in corridors should be glare free for corridor users. Special care is needed near stairs to prevent display lights causing glare to people on the staircase.

Key luminaires:

Classrooms/Lecture halls

Main objectives are to ensure that students and staff have adequate light to perform their tasks (such as reading, writing), that students can see any teaching aids used (such as a whiteboard or projected information), that modelling is suitable to allow good communication between students and staff.

A good vertical illuminance component should exist to aid the visibility of wall-displays and improve modelling. Moderately strong modelling is desirable for formal communication, whilst softer modelling is more suitable for informal or close contact. Modelling is of special importance in areas for students with special needs who may utilise lip-reading or signing.

Education

Page 52: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 52

To help in the visibility of written text and diagrams a high contrast rendering factor (CRF) should exist at all desks.

Specialised lighting for blackboards and whiteboards should be installed to ensure good visibility for all students. These luminaires should not cause glare for the user of the blackboard or whiteboard and be positioned to minimise shadowing during use. If audio-visual projectors are used the luminaires should not impede the projector beam and cause shadowing.

For rooms containing display screen equipment luminaires with suitable optical control to remove any bright luminance above 65° should be used

Flexible luminaire controls should be employed to allow the use of projectors or other audio-visual equipment. Flexible controls can also maximise the benefits of daylight by dimming selected luminaires under good daylight conditions.

Key luminaires:

Laboratories/Workshops

Main objectives are to ensure that students and staff have adequate light to perform their tasks (such as science experiments or craft projects) and that the lighting aids good visibility and therefore safety. Points of note are:

Light falling on any position should be from multiple sources to prevent heavy shadowing of the task by the student. However a general drift of light should be present to help with modelling, as patterns of light and shade are essential to allow objects to be correctly discerned and to create an interesting environment.

Good colour rendering is required.

For areas using machinery high frequency control gear should be used to prevent any problems with stroboscopic effects resulting in rotating machinery appearing to be stationary.

Key luminaires:

Education

Page 53: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 53

Sports halls

Main objectives are to ensure that students and staff have adequate light to safely participate in sporting activities. These may require visibility of relatively small objects moving at high speed, or visual conditions suitable for the use of gymnastic equipment. Points of note are:

All required sports should be defined and a design produced for the most stringent requirements.

A good component of vertical illuminance should exist to aid the modelling of objects and people.

Good colour rendering aids in the discrimination of team colours and sporting equipment such as balls, etc. against the hall background.

The lighting should illuminate the entire three dimensional space, allowing high objects to be easily seen.

The infinitely variable viewing positions of sports participants require good glare control.

Luminaires should be robust and have protection against stray objects striking them (such as a wire guard to protect the lamps). Ideally luminaires should be designed and mounted to minimise the risks of object becoming trapped within or behind them.

Lighting controls should be flexible to produce optimum conditions for all required sports.

Key luminaires:

Assembly halls

Main objectives are to produce a suitable visual environment for all activities required within the space. These may be school meetings, rehearsals and performances of school productions, a space for formal written examinations, or others. Points of note are:

This is a place where the school presents itself to visitors at open events such as school open days, meetings with parents or school productions and concerts. Lighting should be designed to project a suitable image for the school.

Education

Page 54: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 54

Lighting control should be flexible to allow for lighting suitable for public meetings, and also lighting that provides the flexibility of a small theatre for public productions and concerts.

Lighting should have no flicker to minimise possible stress in examination conditions.

Lighting should prevent shadowing of the task by the student, such as question papers in formal examinations. Lighting should also gives a good CRF to ensure good visibility of written text and diagrams.

Generally a viewing direction is defined by the hall design. Glare free viewing in this direction should be ensured under all lit conditions.

For areas designed for presentations or performances, such as staging, good vertical illuminance and colour rendering are required to aid in modelling and discrimination.

Key luminaires:

Education

Page 55: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 55

Scheme: Circulation routes, varies x 2.7m highLuminaire(s) used: Chalice 190 2x26W TC-D on 2.4m Floor: Eav = 143 lux ; Emin/Eav = 0.22

Scheme: Storeroom, 1.7m x 3.5m x 2.8mLuminaire(s) used: 1 Diffusalux II 1x35W T16Floor: Eav = 96 lux ; Emin/Eav = 0.88

Scheme: Classroom, 7.5m x 5.5m x 2.6mLuminaire(s) used: 6 Omega BD/MB 4x18W T26 and 2 Punch 1x58W T26 lighting front boardDesks: Eav = 518 lux ; Emin/Eav = 0.70

Schemes

Classrooms

Education

Sche me: Circulation rout es, varies x 2.7m high Lumi naire(s) use d: Ch alice 190 2x26W TC-D o n 2.4m ce ntres. Floor: Eav = 143lux; E min/Eav = 0.22

Scheme: Design and Technology classroom, 15m x 7m x 2.7mLuminaire(s) used: 15 custom 2x35W T16 luminaireFloor: Eav = 558 lux ; Emin/Eav = 0.75

Page 56: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 56

Suspended linear direct/indirect luminaires in a university library. The ceiling adds significantly to the visual interest of the scene and the linear luminaires mimic the architecture of the ceiling beams, also producing a component of uplight that lights up the ceiling and give it life.

Lyric ceiling mounted luminaires lighting a school corridor. The line of luminaires helps give guidance as to the shape of the corridor, and their appearance brightens the space and visually lifts the ceiling, making the corridor appear pleasant and airy.

Recessed fluorescent luminaires lighting a classroom. The luminaires are laid out to permit maximum flexibility within the space and the walls are pleasantly lit to exhibit poster and displays children’s work. However, a lack of controls mean luminaires remain lit in unused sections of the room, and are unable to save energy by using the daylight spilling in from windows on the right of the photograph.

Education

Page 57: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 57

Techniques

General

The purpose of industrial lighting is to enable quick and accurate work, safely, and in a good visual environment. Points of note are:

Illuminance on the task is the main criteria used for industrial lighting. Therefore the extent of the task area needs to be determined.

Illuminance is often required for a vertical task. Illuminance on a vertical surface is much more sensitive to changes in the spacing between luminaires than illuminance on a horizontal surface.

Industrial areas generally contain obstructions that affect the lighting. For overhead obstructions where possible install lighting below the obstruction. If the area contains a few large obstructions ensure that all parts of the space are lit by at least two luminaires. If the space contains multiple or extensive obstructions the spacing between luminaires will need to be reduced to counteract these and additional low level supplementary lighting may be required. In all cases care should be taken to ensure obstructions do not cause shadowing on the task.

For lamps used in industrial lighting a colour-rendering index of not less than 80 is required for all continuously occupied spaces. An exception is high bay applications where HST/HSE lamps are acceptable.

In areas containing rotating machinery stroboscopic effects should be eliminated or reduced by either using high frequency control gear (if available) or by having alternate luminaires on different electrical phases and ensuring that critical areas receive light in approximately equal proportions from more than one luminaire. Alternatively lighting of the machinery may be supplemented using local luminaires.

Emergency lighting will be required to aid in the safe evacuation of the building when the normal lighting fails. In some industrial applications there is an additional requirement to ensure all processes are in a safe and stable state before evacuating the area. For others there is a need to continue operations, even though the normal lighting has failed. The extent and nature of the emergency lighting required is determined by the type of occupancy, the size and complexity of the site and the processes involved.

6.4 Industry indoor

Page 58: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 58

Luminaires should be chosen to ensure they are suitable for the environmental conditions in the space. Many industrial spaces have conditions of excessive heat, cold, vibration or a corrosive atmosphere. Information on any airborne chemicals is important as plastics and rubbers have differing resistance to specific chemicals. Additionally in hazardous environments the lighting equipment has to be carefully selected to ensure it does not pose a risk of fire or explosion (see chapter on directives and standards).

Many industrial environments have impurities in the power supply due to electrical motors running, or couplers connecting/disconnecting huge loads giving spikes and voltage fluctuations. In conditions with poor quality of power low loss magnetic ballasts should be considered instead of electronic ballasts as they could be more durable and tolerant. Alternatively industrial high frequency circuits with extra protection may be available.

At the design stage consideration should be given as to how the lighting installation is to be maintained. Frequently, access to light fittings is difficult and methods to improve ease of access should be considered, along with use of technology that minimises the necessity for intervention for maintenance.

Factory spaces - Points of note are;

Traditional factory spaces for heavy engineering and manufacturing have high ceilings combined with a dirty environment. High bay lighting is most suitable in these areas.

More modern manufacturing areas tend to have lower ceilings and a cleaner environment. Linear fluorescent lighting is suitable for these areas and a selection of mounting methods exist, from track mounting to catenary systems.

Lighting should take into account the possibility of moving overhead gantries and moving vehicles such as forklift trucks.

Key luminaires:

Industry indoor

Page 59: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 59

Workshops - Points of note are;

Tasks in a workshop vary from large tasks with little visual difficulty to small task with high visual difficulty. The designer needs to understand the degree of difficulty of the task to ensure that the task is adequately lit for the degree of difficulty.

Generally ceiling heights are intermediate to low, and uniform lighting is required across the entire space. Therefore either linear fluorescent reflector luminaires or low bay luminaires with HID lamps are suitable

Key luminaires:

Assembly work - Points of note are;

Assembly work can vary from large tasks with little visual difficulty to small task with high visual difficulty. Additionally colour discrimination may be of little importance or essential. The designer needs to understand the degree of difficulty of the task to ensure that the task is adequately lit for the degree of difficulty.

In areas with lower ceilings fluorescent lighting is most suitable. The advantages of this are the ability to produce fairly shadow free conditions, a wide choice of lamps of different colour rendering capabilities and colour appearance, and the ease of using lighting controls and emergency lighting.

For ceiling heights of 6m or less, care should be taken when using low bay luminaires to prevent excessive glare.

Lighting should take into account the safety of pedestrians in the presence of moving vehicles such as forklift trucks.

Store rooms - Points of note are;

For bulk storage at floor level it is generally important to avoid dense shadows. A reasonable illuminance on vertical surfaces is required if the reading of identification marks or labels is frequently necessary.

Industry indoor

Page 60: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 60

A suitable method of lighting these spaces is to use a closely spaced overhead layout of luminaires with a wide distribution.

Lighting should take into account the safety of pedestrians in the presence of moving vehicles such as forklift trucks.

Storage rack areas - Points of note are;

High racking can reduce lighting levels by up to 50%. Therefore an empty space calculated for 300 lux will only achieve approximately 150 lux if high racks are installed with narrow aisles.

It is good practice to light narrow aisles with runs of fluorescent luminaires with narrow distributions arranged along the aisles to even out the vertical illuminance from top to bottom of the racking whilst giving adequate illumination along the aisle.

For mounting heights above 15m HID lamps may be used in luminaires with a narrow lighting distribution across the aisle and a wide lighting distribution along the aisle.

Cold stores - Points of note are;

It must be ensured that the lamp and luminaire chosen are capable of operating within the low temperatures involved.

Thermally insulated fluorescent lamps may be used. Alternatively high pressure sodium lamps can operate reliably at –40°C.

Food and drink processing plants - Points of note are;

The food and drink industry covers a vast range of working areas, where ambient temperatures can range from –30°C to 50°C, from oil or fat vapour laden atmospheres to hazardous environments where the lighting equipment has to be carefully selected to ensure it does not pose a risk of fire or explosion. Therefore great care must be taken to ensure a suitable luminaire is chosen for the specific conditions.

Where food product is processed luminaires near the product should be housed in an enclosure that prevents the lamp or any part of the luminaire accidentally falling into the product.

The luminaire should be easily cleaned, maintained and re-lamped, having minimum horizontal surface area upon which dust can rest and smooth lines with no crevices in which fungus can grow (IP55 minimum).

Industry indoor

Page 61: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 61

Industry indoor

Schemes

Aircraft Hanger

Scheme: Aircraft maintenance hanger, 125m x 40m, varying height Luminaire(s) used: Concavia XL 1000W HIE, mounting height 15m, Concavia L 400W HIE, mounting

height 9m and Concavia L 250W HIE, mounting height 7mHanger area floor: Eav = 591 lux ; Emin/Eav = 0.71

Page 62: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 62

Scheme: Storage racking, racks 5.1m long x 6m highLuminaire(s) used: 12 Indus RDx 2x49W T16, mounting height 6mRacking: Eav (vertical) = 137 lux

A train workshop lit using fluorescent battens mounted on trunking. The luminaires are positioned between the trains to give a good vertical component of light falling on the sides of the carriages.

Factory lighting using Popular Range luminaires. The luminaires are track mounted to allow easy modification of the lighting layout. It may therefore be easily adjusted to suit the requirements or any changes to the layout of the factory space.

Industry indoor

Schemes

Storage racking

Page 63: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 63

Industry indoor

Low-bay luminaires lighting a machine workshop. The Lopak luminaires provide a good even illumination, allowing work upon complex machines with minimum shadowing. Note that this task has no special requirement for colour discrimination. If this was the case the lamp type should be chosen to show colours correctly.

Hi-bay luminaires lighting a large factory space. The luminaires need to be able to cope with the relatively hostile and dirty environment, and due to problems of access maintenance requirements for the luminaires need to be minimal. The shape of the luminaire aids in self-cleaning, directing air within the reflector to help remove dirt, and the use of high pressure sodium lamps ensures a long lamp life.

Page 64: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 64

Techniques

General

The purpose of industrial lighting is to enable quick and accurate work, safely, and in a good visual environment. Points of note are:

Illuminance on the task is the main criteria used for industrial lighting. Therefore the extent of the task area needs to be determined.

Illuminance is often required for a vertical task. Illuminance on a vertical surface is much more sensitive to changes in the spacing between luminaires than illuminance on a horizontal surface.

Industrial areas generally contain obstructions that affect the lighting. For overhead obstructions where possible install lighting below the obstruction. If the area contains a few large obstructions ensure that all parts of the space are lit by at least two luminaires. If the space contains multiple or extensive obstructions the spacing between luminaires will need to be reduced to counteract these and additional low level supplementary lighting may be required. In all cases care should be taken to ensure obstructions do not cause shadowing on the task.

Luminaires should be chosen to ensure they are suitable for the environmental conditions in the space. Many industrial spaces have conditions of excessive heat, cold, vibration or a corrosive atmosphere. Information on any airborne chemicals is important as plastics and rubbers have differing resistance to specific chemicals. Additionally in hazardous environments the lighting equipment has to be carefully selected to ensure it does not pose a risk of fire or explosion (section 9 - Directives and Standards).

Many industrial environments have impurities in the power supply due to electrical motors running, or couplers connecting/disconnecting huge loads giving spikes and voltage fluctuations. In conditions with poor quality of power low loss magnetic ballasts should be considered instead of electronic ballasts as they could be more durable and tolerant. Alternatively industrial high frequency circuits with extra protection may be available.

At the design stage consideration should be given as to how the lighting installation is to be maintained. Frequently access to light fittings is difficult and methods to improve ease of access should be considered, along with use of technology that minimises the necessity for intervention for maintenance.

6.5 Industry outdoor

Page 65: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 65

Building sites

Main objective is to provide a safe work environment in an area which may contain machinery, motorised vehicles and pedestrians, along with building materials, excavations and incomplete structures.

Building sites can provide a special environment, in that it is common for a maximum permissible voltage of 110V to be stipulated for all equipment that is accessible to site workers. This excludes the use of high-pressure discharge fixtures except where installed at a height that excludes access by normal site personnel. Temporary lighting is normally by special linear fluorescent or tungsten halogen luminaires.

Luminaires should be sited to allow for vehicular access to all necessary areas.

Key luminaires:

Cargo handling, storage areas

Main objective is to provide a safe work environment in an area which may contain machinery, motorised vehicles and pedestrians and in which the size and position of obstructions may vary over time.

Care should be taken to avoid lighting obscuring or decreasing the visibility of signalling equipment. This can include direct light and reflected light from other surfaces.

Lighting equipment should be sited to ensure it does not obstruct movement of cargo handling equipment, and should not be in too close proximity to electrified lines.

Higher light levels are required in areas where goods are loaded/unloaded and for potential conflict areas where cargo is sorted into handling bays or railway sidings.

Industry outdoor

Page 66: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 66

Industry outdoor

For large container storage areas general area lighting may be insufficient for giving adequate light on the task. Additional task lighting in the form of floodlights mounted on crane structures, or low voltage sealed beam units mounted on forklift trucks can be used. Additional local lighting can also be used mounted on fixed hoppers and conveyors. It should be ensured that the transition between areas with higher light levels to those with lower light levels is gradual to allow the eye to adapt to the changed light level.

Key luminaires:

Petrochemical and other hazardous areas

Main objective is to provide a safe work environment in an area which may contain a hazardous atmosphere, machinery, motorised vehicles and pedestrians and in which the consequences of safety issues may be especially serious.

For petrochemical facilities and tank farms plant layout is normally complex with major light obstruction and work being performed at many levels above ground level. High mounted floodlights in a number of positions situated outside the main area can provide adequate light for safe movement and some task work. Additional task lighting may be required for specific locations.

Luminaires used should be correct for the environment they are used in. Environments are classified using the ATEX system and luminaires should be adequate for the ATEX classification of the environment (section 9, Directives and Standards).

Page 67: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 67

Industry outdoor

Quarries and open cast workings

Main objective is to provide a safe work environment in an area that may contain machinery, motorised vehicles, pedestrians and uneven and loose ground conditions.

With quarries and open cast mines the dimensions of the area to light will change over time. Therefore the lighting installation should be designed for the expected maximum dimensions of the excavations, both in size and depth of workings. This will help prevent the need to relocate lighting masts, and will allow forward planning for additional lighting to be installed as the workings increase in size. As the workings increase in size re-aiming of existing luminaires may be required.

Key luminaires:

Sales areas

Main objective is to advertise the presence of the sales area, and to allow customers to examine and purchase goods. For areas such as petrol filling stations, safety is also very important and local regulations for these should be consulted.

The illuminance of the sales area should be proportional to the brightness of the surrounding district and should respect the requirements for the environmental lighting zone classification (see section on control of obtrusive light).

A high vertical component of light is generally required to show the sales goods. Additionally the colour rendering qualities of the lighting should be chosen to ensure the goods are displayed with a good colour appearance.

If the sales area is adjacent to a road care should be taken to ensure the lighting does not introduce glare to motorists or pedestrians.

Key luminaires:

Page 68: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 68

Industry outdoor

Lorry parks

Main objective is to provide a safe environment in an area that contains large motorised vehicles and pedestrians.

Where possible lorry parks should be lit from the boundaries of the parking area. This minimises the risk of columns and lighting being damaged by manoeuvring vehicles. If columns have to be mounted within the parking area they should be protected by crash barriers or similar.

Lighting should be mounted as high as possible (12m or more above ground level) to minimise shadowing from lorry trailers.

Ease of maintenance should be considered during design, and head-frames that may be raised and lowered should be considered.

Key luminaires:

Page 69: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 69

Industry outdoor

Schemes

Transformer sub-station

Scheme: Transformer sub-stationLuminaire(s) used: Troika 400W HST (main building) and PRT 500W QT-DE with 3m mounting

height (transformer areas)Typical transformer area: Eav = 23 lux

Page 70: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 70

Industry outdoor

Schemes

Railway lighting

Scheme: Railway lighting, section 100m x 24mLuminaire(s) used: Victor Stora 150W HST catenary mounted with 7.3m mounting height,

3 luminaires per wire, and 250W HST mounted columns with 10.3m mounting height, 1 luminaire per column. Columns spaced at 25m

Track area: Eav = 41 lux ; Emin/Eav = 0.22

Floodlighting at a port facility. The floodlights mounted on the top of the structure light the suspended walkway, whilst additional floodlights mounted below the walkway prevent deep shadows being cast by the walkway onto the dockside.

Page 71: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 71

Techniques

General

The lighting of healthcare spaces presents one of the most difficult tasks for any lighting designer, lighting both for an enormous range of tasks, some times requiring extreme levels of visual performance and yet creating a space that satisfies today’s energy requirements and just as importantly the comfort needs of the patients, staff and visitors. The choice of lighting can affect task performance, well-being and whether patients and visitors feel the space is clean and safe. The information given below is in two sections, the fundamental requirements for lighting for healthcare and lighting requirements for specific locations.

The fundamental requirements for lighting for healthcare could be as follows:

Cleanliness

Infection control is of prime importance in all healthcare buildings. Airborne particulates as small as 0.5µm can transfer harmful bacteria. In addition, transmission by the touch of a hand can add to the spread of infection. In lighting terms we need to defend against this by using luminaires that have the minimum area of horizontal or near horizontal surfaces on which dust may collect. All luminaires that could collect dust or be touched by hand should be designed to be easily cleaned.

In areas of high infection risk, luminaires with only downward and vertical faces or those specifically designed for clean environments. Such luminaires will utilise materials impervious to bacteria, and also designed with suitable ingress protection for dust and moisture both into the luminaire and from the ceiling void through the luminaire into the clean space.

Daylight

Research shows that daylight and window view can have positive effects on patients, their sleep patterns, circadian rhythms and recovery rates form many illnesses. Thus it is common practice for modern spaces to include good daylight design. Given that good levels of daylight should be expected in areas for treatment, administration, waiting, circulation and overnight stay, the use of lighting controls offers not only added comfort but also impacts heavily on energy. The addition of lighting controls can allow for changing tasks, changes in daylight and add levels of user comfort to a space.

6.6 Healthcare

Page 72: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 72

Healthcare

Fields of view

Remember that the field of view in many healthcare spaces may include the ceiling and upper walls and often may include luminaires. The point of view of a recumbent patient will need to be thought about to limit discomfort glare in many circulation and treatment spaces.

Colour

Skin tone and eye colour in many healthcare establishments are often important in diagnosis. This is extended to include flesh and other colours during invasive treatments. Hence the ability of light sources to render true colours is vital in all areas where diagnosis and treatment is carried out, and a consistent, high quality source of colour rendering should be provided. All lamps within these areas should have an Ra of at least 90.

In other spaces where diagnosis and treatment is not carried out colour rendering can be relaxed to an Ra of 80, but on no account should lamps of different colour rendering be mixed in the same space.

The other aspect to colour is that of colour temperature. Common practice is to use 4000K lamps in all healthcare spaces, but in areas where there is a wish to provide a more homely feel, the colour temperature may need to be matched to that prevalent at home, for example nearer 2700K for the UK. Similarly different colour temperatures should not be mixed in any one space.

Emergency lighting

Emergency lighting is required for the movement of patients, staff and visitors to a place of safety. In certain healthcare buildings the emergency lighting will need to take account of tasks that have to continue even when other spaces may be evacuated, this is called Standby lighting. In critical areas, such as operating theatres, delivery rooms and high dependency units, the illuminance provided by the standby lighting should equal 90% of the normal mains illuminance or there about. Other important tasks but in non-critical areas will require standby lighting generally to 50% of the normal level.

Some patients will almost certainly be physically or mentally incapacitated. In this case it is likely that the condition of patients will mean it is difficult to evacuate them in an emergency. Emergency lighting for these situations should be sufficient to allow progressive evacuation, or to allow time at points of refuge. Apart from the above emergency lighting should be designed to meet the requirements of EN1838.

A generator will generally supply standby lighting and special account of the changeover and run up time will be needed. Escape routes generally will be covered by luminaires with integral emergency control gear.

Page 73: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 73

Healthcare

Light for comfort

Recent research shows strong links between good lighting, the colour of light and human comfort. For instance warm colour temperatures make patients look healthier and improve patient moral, but care must be taken to prevent compromising the ability for clinical diagnosis.

Recent research also indicates that light therapy may have potential for improving the quality of life for elderly people. The reception of blue light decreases with age due to the aging of the eye reducing its efficiency, especially at the blue end of the spectrum. Also in the elderly the reduction in mobility and tolerance of adverse weather (such as cold, wind and rain) mean elderly people experience a reduction in ability to go out of doors. Therefore they receive less exposure to bright light, and especially bright light of the correct wavelengths. Additionally the circadian functions may be compromised through age and damage caused by small strokes. All of these result in poor quality of sleep. Light therapy may be used to help improve sleep quality, using both artificial light and by designing the environment to aid access to natural light and to make the outdoor environment more attractive and friendly. However the use of blue biased white light for health is still a relatively new concept with limited knowledge on benefits and potential side-effects so at present blue biased white light should be used sparingly and with care.

Artificial lighting should incorporate features to help provide sufficient light during waking hours for health benefits, but during the night only provide minimum light for safety, preferable amber, orange or red in colour, to preserve the bodies sleep cycle. Importantly, the consequences of any artificial lighting on the carers should be carefully considered to prevent further problems.

Colour and reflectance

High reflectance materials are required to give visual lightness, otherwise the surface and hence the space itself will appear dark. Equally areas of strong colour, such as murals in children’s wards, will need to be well lit to give full vibrancy.

High chroma colours will affect clinical diagnosis – Grey is a good, if boring, clinical background and has been shown to relax and reduce stress. But the effect of surface colour can be immense, not only in terms of reflected light but also energy efficiency and wellbeing. For instance colour should be chosen to flatter the patients appearance, soft lighting enhances this. Also consider colour psychology e.g. Use of blues and green (used for calming effect in mental health institutions) may actually exacerbate depression, the modern fashions (greys and browns) may be under stimulating for long-term patients.

Page 74: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 74

Healthcare

The lighting requirements for specific locations could be as follows:

Entrance canopies

It is important that entrances are clearly lit to advertise the way into the building whilst providing sufficient light for the task perhaps including driving, unloading ambulances, access for wheel chairs, and so on.

Lighting solutions should provide good vertical illumination avoiding down lights with harsh cut-offs. This will provide good facial recognition for CCTV.

Entrance halls, waiting areas and lift lobbies

Lighting here should emphasise points of interest such as reception desks, signage and onward routes.

Where there are a number of routes to different departments signage may take the form of coloured lines, flooring or other decoration, the lighting should enhance this where ever possible

Reception

These areas, including enquiry and patient reception, should make the patient and visitor feel welcome and provide both staff and visitors with good facial modelling through good vertical illuminance.

Staff here will often have to use computer display screens, but the emphasis on this should never out weigh user comfort. An approach focused on the many tasks and points of view is important.

Hospital streets and other circulation routes

Hospital “streets” form the major links between clinical departments with smaller corridors often running off to other areas. Streets will have relatively high use and will be wider and often higher than conventional corridors. In many corridors, certainly those in areas occupied by patient’s overnight, the lighting will require dimming or switching to a lower level at night. This is can be achieved either through dimming or switching, care being needed to maintain uniformity above 0.2.

Where there is sufficient daylight savings can be made using daylight linked dimming controls.

Spill light and glare to patient rooms and to trolley bourn patients must also be considered, the latter being achieved through asymmetric luminaires mounted along one side of the corridor.

Page 75: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 75

Healthcare

Ward corridors need specific night lighting techniques to allow safe movement of staff without affecting patient rest. The lighting near the doors to bedded wards will require careful illuminance and luminance control. Three hour self-contained emergency lighting is needed on all escape routes.

Stairs

Stairs require careful lighting and tread colour design to ensure the tread is clear to all users including those with visual disability. Treads need clear and reasonably uniform lighting with some element of contrast to the riser.

Glare from wall-mounted fittings should be limited by using lower brightness light sources, whereas soffit mounted luminaires often create installation and maintenance problems.

Stairs will need careful emergency lighting.

WCs, washrooms and changing areas

Lighting should be sympathetic avoiding harsh directional light or shadowing.

Lighting should be positioned for lockers, mirrors sinks and make up areas with the task, facial modelling and veiling reflections in mind.

In wet or humid environments the lighting should be of a suitable ingress protection, normally IP54 or better.

Lighting of bedded areas

The general lighting must be adequate for the care of the patients by the nursing staff. For these duties to be performed efficiently the illuminance inside a curtained bedded area should be no less than 300 lux from a combination of ambient and task lighting and the illuminance in the central space between the bed foot rails should be not less than 100 lux (75 lux when all curtains are closed), measured at floor level. Good glare control is needed with UGR limited to 19. However, note that in some countries additional luminaire luminance limits are also specified.

The balance of brightness and colour of the surroundings should help to provide a visually pleasing interior. To achieve this the reflectance of the major surfaces should be of the order of 0.7 for the ceiling, 0.5 for the walls and 0.2 for the floor, though higher ceiling and wall reflectance is essential when lighting the ward from the bed head position.

Suspended luminaires: The ceiling height for suspended luminaires should not be less than 3m to ensure adequate clearance for mobile apparatus used at the bedside. The mounting height above the floor should not be less than 2.7m nor greater than 3.5m.

Page 76: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 76

Healthcare

Ceiling mounted luminaires: The ceiling height may be 3m or less. In areas with ceiling heights between 2.4m and 2.7m, it is possible to provide the recommended illuminance at the bedhead only by using ceiling mounted luminaires.

Wall mounted luminaires: Modern lighting systems comply with the general recommendations using only semi direct wall mounted luminaires with fluorescent lamps. The most suitable height for wall-mounted luminaires is a minimum of 1.7m.

Recessed and semi-recessed luminaires: Recessed and semi-recessed luminaires may be used in ceilings between 2.4m and 3m high. If these luminaires will not provide the illuminance required at the bedhead a dual system will be required.

Dual systems: For dual systems in which supplementary lighting along the side walls of the bedded area is used, ceiling mounted luminaires may still be suitable.

Reading lights/examination lighting: The patient’s reading light is required to give 300 lux directly on a task area in front of the patient. Staff or nursing tasks at the bedhead can also use the reading light. If treatment is given at the bedside requiring an illuminance exceeding 300 lux, either a mobile examination luminaire is required or the reading light is to be designed to provide this illuminance by switching. Hand-held switches, if used, should be of the extra low voltage type. Reading lights are usually provided for all beds in hospitals, but it may be undesirable to have them within easy reach of children and mentally ill patients. For such circumstances, high-level wall or ceiling mounted luminaires should be used and the switches should be out of the patient’s reach.

Night lighting: Night lighting is required to provide enough light for safe movement of patients and staff. It should not disturb lightly sleeping patients. The luminance of any luminaire left on during the night should not exceed 30 cd/m2 as seen by patients from their beds, the cut off angle being 20° within the curtained area and 35° in central zones. The illuminance for the circulation space should be an average 5 lux on circulation spaces, 0.85m off the floor and a maximum of 10lux. The illuminance on the bedhead should not exceed 0.5 lux

Watch lighting: The purpose of watch lighting is to allow continuous observation of a particular patient after the general lighting has been switched off, without the disturbance, which would be caused by the patient’s reading light. An illuminance of 15-20 lux is adequate.

Page 77: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 77

Healthcare

Nurses’ stations and staff bases

Nurses’ stations provide for a number of tasks including dispensing medicine, ad hoc meetings, greeting visitors and PC use. Lighting should allow for all these tasks both during the day and at night. To do so will require lighting that has good luminance control both to reduce glare to PC users and patients sleeping nearby.

Dimming control is essential to allow staff to reduce the illuminance at night.

Operating Theatres and associated clinical spaces

Lighting here needs to provide for clinical examination, preparation, treatment and movement, this will include good vertical illuminance from the ambient lighting. The theatre surgical lights are specialist and should be provided as part of the overall theatre equipment.

Lighting colour rendering and temperature should be chosen for clinical diagnosis rather than energy efficiency.

In an emergency all lighting should be retained at full brightness.

Lighting also needs to provide good uniformity, be dimmable to suit the surgical need and take account of the high number of monitoring screens, often using negative polarity displays.

Luminaires chosen for these spaces must be easy to clean and maintain and should have an IP rating of 65 from below and 54 or better from above.

Ancillary areas & other specialist spaces

Healthcare buildings contain many ancillary areas to do with the efficient and safe functioning of the whole building. Many of these are covered elsewhere, but special care may need to be paid to protecting healthcare environments from hospital bourn diseases. Improved IP ratings or luminaires suitable for regular wash down and cleaning may need to be considered.

In specialist treatment and examination rooms not mentioned above there may be other requirements too, such as dimming and glare control in ophthalmic rooms, noise and EMC control in scanner and audiology and electromedical screening rooms.

Page 78: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 78

Healthcare

Schemes

Healthcare rooms

Scheme: 4-bed ward, 7.6m x 6.6m x 2.7mLuminaire(s) used: Bedhead mounted uplight and reading lightWard floor: Eav = 141 lux ; Emin/Eav = 0.68

Scheme: Consulting room, 8m x 3m x 2.7mLuminaire(s) used: 3 Diffusalux Hospital 2x35W T16Desk height: Eav = 440 lux ; Emin/Eav = 0.7

Page 79: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 79

Healthcare

Lighting in hospital wards may use bed head luminaires with integrated services such as oxygen, electricity, etc. or ceiling mounted luminaires (either surface mounted or recessed). The advantage of a bed head luminaire is the flexibility of lighting, with uplighting supplying ambient light to the ward, and differing amounts of down light allowing a patient to read or a doctor to examine the patient. An additional advantage for bed head systems is ease of access for maintenance and cleaning.

Ceiling mounted luminaires allow easier centralised control of lighting by nursing staff and may be a more energy efficient solution as, unlike bed head systems, they do not rely on uplight being reflected from the ceiling to give ambient lighting to the room. When using ceiling recessed lighting it is important that it is planned in conjunction with other services to ensure a clear space in the ceiling void for the luminaire.

Corridors and circulation areas should be well lit and airy. Ideally ceiling mounted lighting should avoid the centre of the corridor as recumbent patients being wheeled along the corridor should not be looking directly into a luminaire as this may be glaring, and looking into luminaires whilst travelling down the corridor may create an unpleasant flicker effect.

Page 80: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 80

Techniques

General

The purpose of a super/hypermarket lighting scheme is to make the store as appealing as possible to customers. It also needs to satisfy more down-to-earth requirements such as facilitating orientation or to attract customer attention to special displays or points of interests. Luminaires have to be chosen in order to underline and reinforce the individual character of the shop brand or chain of stores. Colour appearance of the light determines the overall ambience but colour rendering characteristics have a direct impact on ensuring that the objects are shown to their best advantage.

The fundamental requirements for shop lighting could be as follows:

Creating atmosphere: the way goods are presented and lit, as well as the general atmosphere, can positively influence a customer.

Creating interest: using accent lighting to create areas that make a customer curious and wanting to see more.

Visual guidance: the lighting must help the customer navigate around the shop.

Flexibility: marketing trends and initiatives change frequently and in order to influence customers into rediscovering a shop it should be possible to easily adapt the lighting to new requirements.

Lighting should allow consumers to examine the merchandise and should help complete the sale.

General lighting

Main objective is to provide a background ambience and to give light for guidance, especially in the case of frequent modifications to the store layout or promotions.

As well as good horizontal light levels vertical light levels are important as shop goods tend to be held in vertical shelving units

As this is background store lighting a high uniformity is required

Luminaires should be placed perpendicular to shelving in order to facilitate any reorganisation of the shelving and the possibility of variable spacing of shelving due to different types of goods being sold in different areas.

6.7 Super/hypermarket

Page 81: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 81

Super/hypermarket

Key luminaires:

Accent lighting

By locally increasing or decreasing the quantity of light it is possible to create variation in shadows and brightness. The aim of this is to give a maximum expression to merchandise, enhancing form, texture and colour in contrast with the surroundings. Ideally this should optimise the relationship between space, product and customer in order to enhance the prospects of a sale.

Accent lighting should be at least 3x brighter than the surround to be noticeable or 5x brighter to be meaningful.

Focal-point lighting, which highlights a specific central display with feature merchandise, should be 10x brighter than the surround and generally uses spotlighting

Display case lighting illuminates merchandise in glass or open cases and shelves. It can be linear fluorescent or spotlighting depending on the type of display

Perimeter lighting provides vertical illumination for merchandise along walls, such as vertical shelving and can use valance systems or linear wall-washing systems

Key luminaires:

Lighting clothing

The primary purpose of lighting is to make merchandise look good, increasing the desirability of the item leading to a sale. When lighting clothing a flexible lighting solution is needed to allow the lighting to be reconfigured when displays are altered or moved. The market positioning of the store (high, mid, low-tier) should be considered when designing the installation, and also the possible options for display, as clothing

Page 82: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 82

Super/hypermarket

may be hung on rails, displayed on shelves or shown in an entirely novel way. Differing materials used in the design of the display fittings and the size of the displays will require differing lighting techniques. However lighting should remain discrete to ensure the main focus is the merchandise, and should be as efficient as practicable.

One of the main issues with clothing is colour rendering and colour temperature. Customers need to see the items they are thinking of buying in a quality of light that shows the garment correctly. Any post purchase dissatisfaction when seeing the article in the daylight must be avoided. The Ra of the lamp must be at least 85 so that colours are reproduced as faithfully as possible. Also note that the UV characteristics of the lamp should be checked to ensure that it is suitable for the material being lit and will cause no effects such as fading of colours.

New generations of metal halide lamp offer a wide choice of warm or cool white light. LEDs with their improved performance are also becoming more widely used. LED luminaires can be smaller and easy to blend into the background. However, downlights and track mounted spotlights remain the most common fixtures.

Key luminaires:

Greengrocery

Main objectives are to ensure that fruits and vegetables are shown under the best colour rendering bright light. Using specific type of lamps that create colourful accents can bring out freshness of produce. Warm accents are preferred with a low content of actinic radiations (to prevent fading of colour in goods) and low heat radiation.

This kind of light is often realised with suspended structures hanging above the displays allowing spotlights integration.

Key luminaires:

Page 83: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 83

Super/hypermarket

Bakery, cheese and delicatessen

A warm, oven-fresh appearance can be created on the bread, while cream pastries appear appetising when illuminated by halogen lamps or warm white metal halide.

Key luminaires:

Wines and spirits

A lower lighting level helps to recreate the atmosphere of a wine cellar. With lower dark ceilings mounted with fluorescent downlights the atmosphere may be emphasised further.

Key luminaires:

Fresh food counters

The ceiling is often lower than in the rest of the hypermarket. Recessed luminaires provide a good illuminance level, accentuating the freshness of the displays with a combination of different high Ra colour lamps.

Key luminaires:

Page 84: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 84

Super/hypermarket

Task lighting

This provides illumination for a specific functional area such as the checkout counter. This is not to be confused with accent or focal-point lighting. Particular attention has to be paid to avoid any glare at the cashier position in order to assure a comfortable activity with no mistakes. The area beyond the checkout should be lit to a level that provides a transition zone for shoppers leaving the supermarket and going into daylight or the dark of night.

Key luminaires:

Guidance

Indoor guidance - due to the diversity of goods a clear communication with colours, graphemes, and lighting has to be established in order to guide customers. This guidance is sometimes mandatory for safety reasons: exit ways being indicated in case of emergency evacuations.

Key luminaires:

Signage

Additional to guidance the use of lighting to signal locations and features is important. For outdoor lighting, facades, communication, logos, etc. help present the sales policy and brand positioning.

Key luminaires:

Page 85: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 85

Super/hypermarket

Schemes

Super-store

Scheme: Computer super-store, 37m x 51m x 7mLuminaire(s) used: Primata II 2x58W T26 with 5m mounting height, Sirios 150W HIT-DE

(spotlight) and 2x55W Voyager Twinspot (emergency lighting)Sales area: Eav = 802 lux ; Emin/Eav = 0.68

Page 86: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 86

Super/hypermarket

Schemes

Hypermarket

Scheme: Hypermarket, 80m x 63mLuminaire(s) used: Arena 2x70W T26 Floor: Eav = 980 lux ; Emin/Eav = 0.83

Scheme: Hypermarket, 80m x 63mLuminaire(s) used: Arena 2x70W T26 Floor: Eav = 560 lux ; Emin/Eav = 0.76

Wall-washing luminaires illuminating food products on shelving. It is important to ensure a good level of vertical illuminance on shelving so that products are adequately lit. Colour of light can make a large impact on the appearance of goods and should be carefully matched to the requirements of the product on display.

Page 87: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 87

Super/hypermarket

The lighting should allow for large obstructions such as signage and seasonal decorations to be displayed without causing shadowing.

Consideration should be given as to the goods being lit. Glass and crystal objects should be made to sparkle, light appearing to come from inside the object, whilst solid objects such as clothes need to have light projected onto them.

Lighting demands may vary across the store, with differing store configuration and colour needs. Accent lighting along the front of counters can make them stand out and appear more welcoming.

Page 88: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 88

Techniques

General

The human eye does not perform well in the dark or at dusk when visual performance is impaired by lower visual acuity, poorer colour discrimination and a much lower tolerance to disability glare – hence the increased accident risk to drivers and pedestrians.

Road lighting plays a very important role in reducing accidents, and research has shown that good road lighting will significantly reduce accidents. Road lighting provides guidance through conflict areas such as junctions. This can be reinforced by the use of different lamp colours to distinguish a change of road classification or area definition. Road lighting can also have a secondary effect of preventing crime.

The amount of light required on a road to reveal objects i.e. vehicles, pedestrians and obstructions depends upon the amount or density of traffic, the speed of the traffic and if pedestrians are present – mixed usage areas. Crime rates also determine the lighting level required. For traffic routes a silhouette vision system is used.

Operating costs and environmental impact are important and the use of photocells to reduce the number of hours the lighting is used can be very economical. Lighting control systems can provide even further savings by allowing switching or dimming of lamps at of-peak or night time situations. Points of note are:

Luminance is the main criteria for traffic route lighting, so the road characteristics and the observer positions needs to be determined.

If illuminance has to be considered all the involved areas have to be taken into account including vehicles and pedestrian.

As one of main concerns in road lighting is extended maintenance operations luminaires with high IP ratings are recommended

In addition to extended maintenance periods it is also desirable to reduce the maintenance and installation operations to a minimum, therefore the use of a tool-free lantern is suggested.

Lamps with a high luminous efficacy are mainly used, preferably HST/E ones. Additionally latest technology has improved efficacy in lamps with a higher colour rendering such as CFL and HIT-CE and some of the latest standards benefit this technology and allows using a lower class but improving the quality of the light.

6.8 Road lighting

Page 89: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 89

The use of electronic control gear is recommended. Although this increases initial investment it is shortly repaid by extending lamp life and maintenance periods.

Lighting controls for road lighting applications cover a wide range of applications, from a single fitting controlled by a photocell to a large-scale installation monitored from a remote control point and managing luminaire data in real time. Therefore lighting controls should be considered because in addition to reducing power consumption they extend lamp life and give the possibility to remotely identify failures and optimise maintenance operations.

Multiple fitting enclosures are available although each has an optimal application. Polycarbonate enclosures are more resistant to vandal attacks, shallow glass maximises optical performance and flat glass reduces possible glare issues.

In low mounting height installations with a risk of vandal attacks, a polycarbonate bowl is highly recommended and the use of vandal proof screws to fix the luminaire to the column and reinforced closing clips secured by special screws are also recommended.

When considering a possible proposal for a road it is recommended to have information of the existing road lighting. Many projects are a continuation of previous installations or new parts from a previously light area. In these cases it is good to introduce newer technologies without confusing the users. Better optical fittings can be used but try to keep a similar layout, mounting height, etc.

At the design stage not only the requirements for the road have to be considered, in all cases the adjacent areas should be taken into account and that will define the best option. When houses and the road are close to each other low mounting heights, use of brackets and low glare fittings are a highly recommended although this may not lead to be the best functional solution.

Highways and high speed roads - Points of note are;

These roads are designed for high speeds (>60km/h) and no pedestrians, cyclists or slow vehicles are involved. There are no intersections and access is controlled.

Traditional mounting heights are above 12 m to properly light a twin carriageway with 3 or 4 lanes plus a hard shoulder at either side. Brackets should be considered to optimise performance.

Road lighting

Page 90: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 90

Although traditionally columns have been installed in a central reservation, an opposite installation with columns behind the hard shoulder can improve maintenance operations and reduce traffic disruption when in process.

As glare becomes a major concern an optimised designed optic and/or the use of flat glass enclosures are necessary.

Key luminaires:

Main Roads - Points of note are;

The main usage of the road is for vehicles at high speed (>60km/h) but pedestrians, cyclists or slow vehicles may also be present on footpaths, cycle paths and slow lanes. Intersections can be present and need special attention.

A common installation is using columns around 10m high and in an opposite or twin central configuration but it needs to always be related to the road layout, the number of lanes involved and the lighting criteria to achieve.

Where cycle and pedestrian pathways are present the use of luminaires with different lamp settings is beneficial to comply with requirements for the road and also to be able to correctly light the pathways without needing to change the pole characteristics.

As in all road lighting applications a high IP rating has to be considered to extend maintenance periods.

Key luminaires:

Road lighting

Page 91: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 91

Ring roads and radial roads - Points of note are;

These are usually medium speed roads and high-speed urban roads where pedestrians and cyclists are common.

Luminaire mounting heights around 8 and 10m in a staggered or single sided arrangement are usual, although many other possibilities can be considered due to the multiple layouts of these roads.

As these roads can be of multiple lanes the main concern is the common use by cyclist and pedestrians usage.

In some cases, when a road has many lanes and cycle and/or pedestrian pathways are also present the use of twin poles may be considered (i.e. using an additional luminaire at a separate mounting height to light the adjacent pathways) or alternatively the use of bollards which also provide a physical separation between traffic types. In these cases using different light sources for motorised and other traffic (such as high pressure sodium and a white light lamp) can help to differentiate between the two areas.

Key luminaires:

Mixed traffic roads - Points of note are;

These are normally medium to low speed roads with a large number of slow vehicles and pedestrians. Intersections are very common. Regional roads and urban roads are mainly part of this group as well as commercial streets.

Columns no higher than 8m are commonly used in a single sided or staggered layout, although in some commercial streets with wide footpaths an additional column and luminaire may be used to achieve high quality lighting and differentiate areas.

For regional roads low luminance classes should be applied and illuminance classes where pedestrian usage is relevant.

Key luminaires:

Road lighting

Page 92: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 92

Road lighting

Residential and local roads - Points of note are;

These roads are normally used by low speed mixed traffic. Pedestrian areas and local and residential roads are mainly part of this group.

Low mounting heights are common, with column height usually under 6m.

Single sided layouts may be used to reduce installation costs although layouts may vary due to multiple access points to private car parks or properties. The use of staggered layouts is common when parking lanes and wide footpaths are present.

Lighting classes tend to be from lower categories and in residential areas the use of high colour rendering lamps to improve perception is recommended.

In applications where crime ratios are high and facial recognition is required vertical and semi-cylindrical illuminance classes should be applied.

Low glare luminaires should be considered to reduce light trespass onto adjacent residential housing. Additionally the location and the orientation of the luminaires can help avoid any light trespass into houses.

Key luminaires:

Conflict areas and junctions - Points of note are;

In these areas traffic, either motorised or pedestrian, converges from many directions. Lighting in these areas has to increase awareness and guidance to drivers and pedestrians regarding the geometry of the area and the position of other users.

In terms of lighting the highest applicable class should be used in these areas, using the highest class of the incoming roads.

Page 93: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 93

Road lighting

Access and exit lanes should be highlighted, including a short section of these lanes away from the conflict area. This is to ensure any obstacle in these areas is visible.

When positioning the luminaires the main aim is to help the incoming vehicles visibility. When entering a junction from a minor road a luminaire should be positioned to make vehicles visible as they approach the conflict area.

Columns can play a major role not only in terms of providing lighting but also to give guidance to the geometry of the area. A common technique is to increase the height of the columns in the conflict area and on the approaches. On roundabouts columns placed in a single sided configuration around the outer part of a curve provide a clear guidance for a driver as they approach the area.

Key luminaires:

Page 94: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 94

Road lighting

Schemes

Traffic

Scheme: Traffic route, 3 lanes, opposite arrangement. Total width 10.95mLuminaire(s) used: Triumph 1 150W HST, 10m mounting height, 36m spacing, 5° tiltRoad: Lav = 5.75 cd/m² ; Emin/Eav = 0.59;

Threshold increment = 2%

Scheme: Access ramp, width 4mLuminaire(s) used: Orus 70W CDM-T, 0.9m mounting height, 10.5m spacingRoad: Eav = 33 lux ; Emin = 15 lux

Page 95: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 95

Road lighting

Lighting columns and fixtures may be themed to blend into and complement the area they are situated within. Careful choice of column height is necessary to prevent lighting becoming excessively visible and detracting from the view. However, a column height that is too low will reduce installation performance and require additional lanterns.

Whenever designing an installation the impact of the lighting hardware on a scene during daylight hours should be considered, as well as the performance of the lighting during darkness.

Catenary lighting solutions in which the lanterns are suspended along the centre of the carriageway are popular in many countries and remove the need for lighting columns and brackets. This can create a less cluttered environment at street level, although in architecturally interesting areas thought should be given as to the effect of the additional cabling on the field of view.

Frequently lighting columns collect additional street furniture, such as banners or signage. Lighting columns are constructed to withstand a defined windage (that is the force of the wind on the column). Windage is directly related to the surface area of any furniture mounted on or fixed to the column, and therefore adding additional objects to the column will increase the windage loading, and may cause weakening of the column and structural failure.

Page 96: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 96

Techniques

General

Amenity lighting provides the essential lighting for the city or town shopping centres, residential streets, cycle paths, pedestrian crossings, precincts, town squares, parks, car parks both indoor and outdoor, underpasses and general security lighting. The mix of slow moving vehicles and pedestrians creates a challenge and the main emphasis is towards pedestrians, reducing accidents and helping prevent crime and the fear of crime.

Lighting can fulfil both functional and decorative elements by providing sufficient lighting to provide orientation and direction with security after dark. Good amenity lighting can provide guidance through city or town areas by the use of themed lighting, whether by using styled lighting equipment or by the use of different colour appearance light sources to provide aesthetic interest.

Operating costs and environmental impact are important and the use of photocells to reduce the number of hours the lighting is used can be very economical. Lighting control systems can provide even further savings by allowing switching or dimming of lamps at of-peak or night time situations.

Feeder Roads - Points of note are;

The risk of accidents is much greater on feeder roads from the high volume and speed of vehicles, particularly where children, elderly, partially sighted and handicapped pedestrians are present. Correctly designed lighting systems however will help drivers and pedestrians recognise potentially dangerous situations and will also help reduce crime against people, vehicles and property.

Feeder Roads generally use asymmetric light distribution street lanterns on 8–10m columns with outreach arms to position the lantern in the optimum location for road geometry. Alternatively lanterns can be post top mounted (without the outreach arm) but the lanterns will need the ability to re-direct the lantern peak intensity (typically using an adjustable lampholder) into road centre to improve efficiency and reduce installation and running costs.

For dual carriageway installations lanterns mounted back to back on centrally mounted lighting columns provide good economy and lighting efficiency. However it is important to ensure the pavements are adequately illuminated.

6.9 Urban – decorative roadlighting and amenity areas

Page 97: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 97

White light sources – Metal halide, compact fluorescent and induction lamps provide good colour rendering conditions for drivers and pedestrians, improving visual perception and helping to provide early warning of impending situations. High-pressure sodium light sources are more efficient but suffer from poorer colour rendering characteristics.

Vandalism should not be a problem to lanterns mounted at 8-10m but in extreme cases polycarbonate bowls might be required.

Key luminaires:

Local and residential roads - Points of note are;

For local and residential roads post top lanterns on 5-8m poles with a symmetric or asymmetric distribution will help provide good vertical illuminance. Light above the horizontal should be avoided to reduce sky glow, improve efficiency and create less glare to drivers and residents. Narrow pavements may need lanterns mounted using wall brackets.

Lanterns can be themed or styled to suit neighbourhood road and architectural layout. Strongly themed lanterns may require a lower mounting height 4-5m.

White light sources provide good colour rendering conditions for drivers and pedestrians improving visual perception and helping to provide early warning of impending situations.

Vandal and impact resistant luminaires may be required using polycarbonate.

Key luminaires:

Urban – decorative roadlighting and amenity areas

Page 98: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 98

Open Pedestrian/Shopping Precincts

The object of the lighting should promote easy movement of pedestrian’s with a feeling of general security and well-being. Points of note are:

For arcades and canopied areas lighting levels should be relatively high to match those of the surrounding shop windows. Good colour rendering is important and therefore compact fluorescent and metal halide white light sources are preferred.

Creating visual interest can help to highlight architectural features within the areas and can also provide guidance through the area.

Post top lanterns on 4-6m high columns with a symmetric lighting distribution will help provide a good balance between the horizontal and vertical surfaces. Wall mounted luminaires or recessed IP rated downlights can be used to reduce installation costs associated with lighting columns.

Architecturally/period styled lighting equipment will provide a good integration into the surrounding building architecture. This is especially important where daytime integration needs to be considered in architecturally sensitive areas.

Light above the horizontal should be avoided to reduce sky glow, improve the efficiency of the installation and help prevent glare to drivers.

Vandal and impact resistant luminaires may be required.

Key luminaires:

Squares/Open areas

The object of the lighting should promote easy movement of pedestrian’s with a feeling of general security and well-being. Points of note are:

Access to squares is often through mixed vehicle and pedestrian access routes requiring high levels of illuminance for safety.

A pleasing effect may be created using decorative or themed post top lanterns mounted on 5-6m high columns with architectural/themed styling.

Urban – decorative roadlighting and amenity areas

Page 99: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 99

Additional feature lighting for fountains, trees/shrubs and pathways should be used. The use of LED or low wattage metal halide ground inset uplights can create exciting lighting effects, guidance and interest, particularly when using colour and movement, helping to attract pedestrians into the square. Care must be taken to ensure good drainage is allowed for all inset uplights.

Lighting bollards can help to reduce the visual impact of lighting equipment during the day. However care must be taken in positioning high brightness light sources at almost the same height as a car driver’s eye-line. The use of internal louvres or refractors will help reduce glare by shielding the bare lamp.

The lighting of statues and adjacent buildings must be co-ordinated with the general ambient lighting level within the square so they compliment the overall effect.

Fountains can be effectively lit using submersible floodlights beneath the falling water to make the light refract and spread over a wider area. The use of colour filters will also help the effect. Fibre optics and LED’s can be used to create colour and movement, particularly if the light emitting elements are positioned adjacent or inside the fountain spouts.

Shrubberies, trees and flowerbeds can benefit from localised lighting to provide a contrasting effect at night. Light and shadow can be effective particularly on trees, even in winter. The use of colour filters can also help, but too much colour will reduce the efficiency of the lighting system.

Key luminaires:

Footpaths

The object of the lighting should promote easy movement of pedestrian’s with a feeling of general security and well-being. Points of note are:

The level of lighting is primarily determined by the crime risk whilst also providing guidance and the ability to negotiate obstructions and stairways. Dark patches and high light/dark contrasts should be avoided as they can affect adaptation and impair visibility. The lighting of areas adjacent to footpaths will help to improve the feeling of safety.

Urban – decorative roadlighting and amenity areas

Page 100: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 100

For open areas such as parks the same lighting principles apply however crime prevention may require a higher uniformity and extra lighting to the sides of the footpath to create a safer feel to the pathway. Good vertical light onto adjacent areas to reveal shrubs and risk areas will help create a feeling of safety.

Lighting is generally either by post top symmetric lanterns mounted on 5-6m columns, bulkhead or amenity lanterns mounted on adjacent walls or surfaces, or by low-level bollards. For areas with a high crime rate high level floodlighting may be required.

White light sources provide good colour rendering conditions for pedestrians, improving visual perception.

Vandal and impact resistant luminaires will be required.

Key luminaires:

Cyclepaths - Points of note are;

With increasing numbers of cycle paths being built from re-claimed railway track beds and new build in city centres and housing developments it is important that the safety of the cyclist is considered against possible collisions with other cyclists, potholes or bumps on the pathway. At speeds of up to 40km/h good uniformity of the cycle path surface is paramount to allow reasonable perception of danger as early as possible.

If cycle paths are set back from a main road or outside built up areas a separate lighting system is required. This can comprise 5-6m high columns with asymmetric post top lanterns that have a wide angled distribution to provide a minimum number of lighting points. The wide beam distribution will also provide a good vertical illuminance helping guidance along the path.

Metal halide, high-pressure sodium and compact fluorescent light sources will provide the correct optical and economic running cost solutions. However, the use of “white” light is preferred.

Urban – decorative roadlighting and amenity areas

Page 101: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 101

Key luminaires:

Pedestrian crossings - Points of note are;

It is important to ensure that all pedestrian crossings are lit to provide a safe route to users across all traffic routes, whether they are routes with heavy volumes of traffic, or relatively rural areas where traffic density is much lower. In the dark it must be as safe as during the daytime and safety is enhanced by the use of additional signalling and the use of a separate lighting system. Light sources having a different colour to the general road lighting create additional alertness or signalling effects.

By positioning lighting columns 0.5 -1.0 times the mounting height from each side of the pedestrian crossing good positive contrast is achieved in the zone helping motorists quickly see pedestrians.

When lighting a pedestrian crossing the lanterns are normally mounted between 5- 6m and need to have a double asymmetric light distribution with good glare control to ensure drivers are not dazzled. In some instances additional baffling may be required on the lanterns. The lighting distribution should be narrow along the road axis and wider along the axis of the pedestrian crossing to ensure pedestrians on the edges of the crossing are visible.

High-pressure sodium light sources should be considered if white light metal halide or compact fluorescent lamps are used for the general road lighting.

Key luminaires:

Urban – decorative roadlighting and amenity areas

Page 102: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 102

Urban – decorative roadlighting and amenity areas

Indoor multi-storey car-parks - Points of note are;

The provision of good lighting will aid in user orientation, ensure high levels of visibility of vehicles and pedestrians and give a feeling of safety to pedestrians. Good vertical lighting is required for all these criteria, especially for approach roads, entrances and exits.

Additional or supplementary lighting should be installed in the access and exit zones of the car park and also on ramps, corners and intersections for additional guidance.

Emergency lighting will be required to allow the safe evacuation of pedestrians in the event of an emergency.

The orientation and location of luminaires in the driver’s line of sight should be arranged to prevent glare or distracting visual effects.

Good quality T16 or T26 fluorescent luminaires will provide good uniformity and levels of vertical illuminance combined with low luminaire brightness to prevent glare issues. When using T16 luminaires additional thermal protection of the lamps may be necessary. Integration of emergency lighting is a normal requirement.

Metal halide and high-pressure lamp luminaires may be used but care must be taken to control glare and to ensure a separate lamp emergency lighting system is provided.

All lighting equipment should be vandal-resistant.

Fluorescent, metal halide, and induction lamps all have good colour rendering and will provide good colour perception. This is particularly important in multi-storey car parks that identify floors by colour theme.

Key luminaires:

Page 103: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 103

Urban – decorative roadlighting and amenity areas

Outdoor car-parks - Points of note are;

Outdoor car parks are more likely to be subject to high crime rates of both car theft and robbery. They are normally situated on the periphery of towns, stations, schools and retail centres. Access routes, ticket dispensers, entrance barriers and exits all need good lighting to ensure pedestrians and drivers safety.

A common approach for lighting is to use 6–8m lighting columns, either on the edge of the car park or centrally mounted using double asymmetric low glare flat glass floodlights to provide a good level of horizontal and vertical illuminance at ground level. Care must be taken to avoid spill light onto adjacent housing, railway lines or other sensitive transport areas. The use of street lanterns with double asymmetrical light distribution is also suitable, however more centrally positioned lanterns will be required to achieve good illuminance uniformity across the car park.

Supplementary white lighting at ticket dispensers, entrance barriers and exits will help colour and perception, particularly if reading is required.

Multi-storey car park roof levels use a similar approach to outdoor car parks where the column height is 6-8m and their location is co-ordinated into the structural elements of the roof structure. Luminaires should be double asymmetric distribution street lanterns as they have better glare and spill light control.

Metal halide, high-pressure sodium and compact fluorescent lamps are the preferred lighting sources to ensure low running and maintenance costs as many car parks are illuminated through the night.

All lighting equipment should be vandal-resistant.

Key luminaires:

Page 104: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 104

Urban – decorative roadlighting and amenity areas

Underpasses / pedestrian tunnels - Points of note are;

All pedestrian underpasses require artificial lighting as they have a small cross section, which means daylight decreases rapidly. Adaptation is less of a problem for pedestrians as they move slowly compared to motorists; even so the entrance zone of an underpass should be well lit. Lighting should help pedestrians see the faces of other people to help give a feeling of security. Light wall surfaces improve the vertical illuminance important for facial recognition.

Depending upon the size and complexity of the underpass emergency lighting may be required to allow the safe evacuation of pedestrians in the event of an emergency.

Lighting equipment can be surface mounted or recessed, either individually or in a continuous line. All equipment must be fully vandal proof including electrical feeds. Fluorescent cornice mounted luminaires generally provide good uniformity of illuminance and a good vertical component of illuminance. These can be inset into cladding or decorative mouldings to create a clean appearance with additional security protection against vandalism. Easy access with a security key is essential to ensure good maintenance practice.

Discharge lamps may be used but good glare control is important to prevent any loss of discrimination by pedestrians of other users of the underpass due to glare.

As underpasses can remain illuminated throughout the night metal halide, high-pressure sodium and fluorescent lamps are the preferred lighting sources to ensure low running and maintenance costs. Care should be taken in the use of high-pressure sodium lamps where good colour rendering is required.

Key luminaires:

Page 105: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 105

Urban – decorative roadlighting and amenity areas

Scheme: Amenity park area, path width 2mLuminaire(s) used: 26 x Promenade 42W CFL bollards, 1m mounting heightFootpath: Eav = 8 lux ; Emin/Eav = 0.26

Scheme: Amenity park area, path width 8.4mLuminaire(s) used: 27 x Avenue Virtual, 70W HIT-CE, 10m spacing, 3m mounting heightFootpath: Eav = 21 lux; Emin/Eav = 0.25

Schemes

Footpaths

Page 106: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 106

Urban – decorative roadlighting and amenity areasSchemes

Shopping centre car parking

Scheme: Shopping centre car parking, 297m x 163m

Luminaire(s) used: 96 x Dyana 2 150W HIT, 8m mounting height, 0° tilt

Park area: Eav = 21 lux ; Emin/Eav = 0.32

Mica recessed luminaires illuminating a pathway. The pools of light give guidance and reassurance whilst still allowing darker more intimate areas. Splashes of light on the wall reveal the texture and warmth of the stone and provide visual interest, whilst the lighting also provides good illumination for the steps.

The daylight appearance of lighting can be as important as the lit effect. Lighting hardware should, as far as is possible, blend into the surroundings and enhance the appearance of a space even when not in use.

Page 107: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 107

Techniques

General

The purpose of architectural floodlighting is to reveal the beauty of a structure or in some cases add a dimension by showing a structure in a new way. Architectural lighting adds an aesthetic quality to a scene. Points of note are:

Generally a structure will have one or more principal viewing positions. Therefore the lighting should be sympathetic for an observer positioned at these viewpoints.

The light levels used on a structure should be in harmony with the light levels of the surrounding area. In darker areas comparatively little light can be used to good effect, but in areas with a large amount of ambient lighting higher light levels will be required.

A coherent flow of light across a structure is often desirable, implying one general aiming orientation for the main floodlights. This direction should not coincide with the most common viewing direction for the structure as no shadows will then be visible and the scene will appear flat and uninteresting.

Care should be taken when mounting the floodlighting equipment to ensure that the lighting units do not appear in silhouette against the lit scene, as this will spoil the overall effect.

Structural detail

The main objective is to highlight significant features of the structure whilst ensuring the structure still appears as a coherent whole. Points of note are;

Light naturally attracts peoples attention so highlighting specific features will help an observer read the structure. Care should be taken to only light those details that are required, as too many highlights will destroy the effect and either makes the structure appear bland and uninteresting or disjointed and incoherent.

Completeness of lighting is an important consideration to ensure a coherent whole. Care should be taken to avoid a floating appearance, caused by the base of the structure being under lit, or high level lit detail seeming unconnected due to the upper parts of the structure being insufficiently lit.

Shadows can make as useful a contribution to the final lit effect as do illuminated areas. A good technique is to highlight specific features and to give a low-key wash of light to the rest of the structure. Therefore smaller lighting units are needed to highlight the detail, as well as units with a more general distribution to cover the broader area.

6.10 Urban – architectural floodlighting

Page 108: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 108

Urban – architectural floodlighting

Positioning floodlights at a distance from a structure and therefore giving light closer to the horizontal will tend to reduce the visibility of the textures of the materials used in the construction of the structure. Conversely positioning floodlights in a close offset position, and therefore giving light closer to the vertical will tend to enhance the visibility of the textures of the materials used in the construction of the structure.

Daylight has a generally downward bias, forming shadows from architectural details below the detail itself. Floodlighting a structure from above can mimic this effect, whilst floodlighting from below will reverse the shadows and can often give a fresh appeal to a structure by giving it an individual day time and night time appearance. Lighting laterally will enhance any vertical features of the structure.

Showing features in silhouette may enhance the lit appearance of a structure. Lighting behind features such as columns will show the form of the structure and display the columns in silhouette against the lit structure.

Obtrusive light

The main objective is to maximise the amount of useful light (that is light falling onto the structure) and minimise waste light that spills light onto the surroundings or upwards into the sky. Points of note are:

Close off set lighting will reduce waste light by minimising light lost through scatter in the air, especially in urban areas with lower air quality.

When uplighting a structure the upward light ratio (ULR) is not very useful as an indication of obtrusive light. A more useful measure is the utilisation factor, that is the amount of light actually lighting the structure compared to the total amount of light produced by the scheme. This gives the percentage useful light, and therefore the percentage waste light. It should be remembered that any reflected light will be in a predominantly upward direction and can give a significant contribution to obtrusive light. Therefore where possible uplighting should be used for structures that use low reflectance materials in their construction.

To minimise obtrusive light additional attachments should be used on the floodlight such as louvres or visors to shape the floodlight beam and help it conform to the shape of the structure.

Where possible niches and overhangs should be used to contain obtrusive light.

Page 109: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 109

Urban – architectural floodlighting

Floodlight technology

The main objective is to ensure that the correct technology in terms of lamp, optic and floodlight body is chosen for the application. Points of note are:

The fabric of a structure has a colour, or in many cases a mixture of colours. Light sources that are monochromatic or strongly biased towards a small range of colours can distort the structure appearance. Therefore, light sources with a wide spectrum, (such as metal halide) or with a colour temperature that blends with the structure materials (such as high-pressure sodium on sandstone) should be used. Colour filters or RGB colour mixing should be used with care but can be very effective for dramatic effects or seasonal/festive events.

Floodlights have a beam distribution that is mainly relative to the shape of the reflector. A round reflector will produce a conical beam useful for long-throw requirements, typically to pick out a single feature. A rectangular reflector will produce an asymmetrical beam useful for lighting areas rather than small points.

Constraints in mounting position or specific application requirements often require a modified beam distribution. Additional optical components such as refractor glasses that vary the beam shape, or louvres that reduce obtrusive light are useful in getting the correct result.

Floodlighting set-ups are generally aimed at night to enable fine-tuning of the finished appearance. However maintenance will be done in daylight, and often the floodlight will need to be moved to allow access to the lamp, etc. Floodlights with a re-positioning lock system are helpful to ensure the lit appearance is maintained over successive maintenance operations.

Key luminaires:

Scheme: Building façade Luminaire(s) used: Avenue Deco bollard

50W MBF, Avenue Deco 125W MBF at 3m mounting height, Efact LED, Mica B 70W HIT-DE and Contrast Pinspot 70W Par 30. Road Eav = 7lux

Pavement: Eav = 15lux away from the façade, Eav = 35lux along store façade

Schemes – Building facade

Page 110: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 110

Urban – architectural floodlighting

The curved roof is washed with light, making it appear to float over the building. The structure itself glows from the interior light spilling through the glass facades.

Lighting of glass facades is difficult and it is more usual to let spill light from the interior light up the building and define its night-time appearance.

The suspension tower and cabling are lit to provide a distinctive appearance. Narrow beam floodlights are directed along the cables to make then glow, whilst the central tower is washed with light. The structure seems to float above the surface of the water.

The appearance is built up using layers of light. The lower section of the building has a general wash of light with highlighting above the central columns. Lighter and darker areas give depth to the façade. The upper storey mainly comprises grand window openings, and these are lit with a white light to accentuate the detail of the window surrounds. The detail around the top of the façade (below the roof line) is lit to define the transition to the roof space, and additional windows within the roof space are lit, along with chimney work, with a small amount of spill light showing the roofline.

Page 111: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 111

Techniques

General

The purpose of sports lighting is to provide lighting that allows a sport to take place safely (i.e. designed to suit the speed of play and size of any objects used in the sport) and provide good viewing conditions, both in visibility of the sports action and comfort of the audience. Points of note are:

For all sports a good level of modelling is required. Modelling is the effect of light and shadow produced when light flows from one main direction (known as key light) and additional lower levels of lighting flow from other directions (known as fill light), producing a coherent three-dimensional image of a scene. If there is insufficient key light and all the lighting is fill light objects become flat with little discernable detail. If there is insufficient fill light harsh shadowing will occur, obscuring areas in the field of view. Both cases will cause a reduction in the ability of sports participants to correctly see and react to events on the field of play, and will also cause problems for spectators and television cameras.

For high-speed sports the elimination of any stroboscopic effects from high intensity discharge sources is important. Stroboscopic effects may make a moving object appear stationary, or make the object seem to jump from one position to another. For these sports the use of high frequency control gear is recommended.

Lighting requirements are defined by EN 12193. Additional requirements may be defined by sports governing bodies such as FIFA, Olympic Delivery Authorities, etc. and by television authorities, such as Sky.

Some sports (notably FIFA regulations for football) also define requirements for uniformity gradient (UG). This is measure of the rate of change of illuminance across an area, and is expressed as the ratio between the illuminance levels of two adjacent measurement points. That is

Emeasurement point 1UG = Emeasurement point 2

EN 12193 defines requirements based on the lighting class (I, II, or III). This is derived from the level of competition, international and national, regional, local, training and recreational. At the lower standard of play there is flexibility with the light source options (i.e. high pressure sodium, metal halide) but at class I and II metal halide or fluorescent light sources with high colour rendering abilities are required.

6.11 Sports lighting

Page 112: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 112

Each sport has a playing area that is the principal playing area (the area inside the line marking for tennis or football for example) and a total area that is defined as the principal playing area, plus an additional safety outside the principal playing area.

Lighting levels for sports are normally defined in terms of the minimum average horizontal illuminance on a reference plane, and a uniformity of illuminance. In some instances the plane of illuminance will be relevant to the sport and the spectator viewing distance, or TV camera-viewing plane. Here the normal to camera illuminance and vertical illuminance will be relevant.

As some sporting areas are large, have the need for high levels of illuminance or are used for a long period in the day, highly efficient lighting systems are required to keep energy consumption low. Maintenance is also important to ensure system efficiency and functionality and therefore all lighting equipment should be safely accessible and maintainable throughout life.

When lighting exterior sports facilities to achieve good uniformity lighting equipment must be mounted on masts of sufficient height to ensure floodlight aiming angles are no greater than 70°. This will ensure a high utilisation of lamp flux, minimum electrical load, and lower installed costs.

When designing lighting for sports facilities it is important to minimise obtrusive and spill light. For guidance on this see section 6.8.

All sports facilities require safety lighting (that is lighting designed to allow safe movement of players and spectators in the event of a power failure or emergency). Relevant guidelines form the sports governing bodies should be consulted for this information.

Sports halls - Points of note are;

Most sports halls are suitable for different sports and non-sporting events, all requiring different visual requirements. The most demanding visual activity should dictate the lighting design layout and light levels.

One lighting layout will generally not be sufficient to meet all requirements, as specific sports require different lighting configurations. Therefore it is essential that lighting controls are used to switch a selection of luminaires for different requirements.

Luminaires should be impact resistant against balls and projectiles, and designed and mounted to minimise the risk of objects becoming trapped within or behind them.

Sports lighting

Page 113: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 113

The layout of a sports hall may be altered using partitions, and therefore care should be taken to ensure glare is controlled along all lines of sight, with and without the partitions. Additional lighting may be required when partitions are in place and this should be checked during design.

For aerial sports, e.g. badminton and volleyball, the positioning of the luminaires outside the playing area may be necessary to avoid disability glare for players looking upwards.

As a sports hall can support many types of activity it is important to ensure good uniformity is achieved throughout the hall. This allows competitors to quickly and accurately monitor an opponent’s movement, particularly important in combat sports.

Key luminaires:

Table tennis and badminton - Points of note are;

Badminton shuttlecocks are small and fast. Players are continually required to visually follow the trajectory of the shuttlecock and there are therefore specific recommendations for luminaire positions and requirements for good vertical illuminance. A low ceiling reflection factor will help to improve the visibility of the shuttlecock.

For competition table tennis it is important that excellent uniformity is achieved over the table top and up to five metres from the table edges. The elimination of any stroboscopic effects from high intensity discharge sources is important. A good level of vertical illuminance is required to ensure visibility of any high balls.

Fluorescent lighting systems provide the best arrangements for high levels of horizontal and vertical uniformity over the playing areas. Pendant, surface or recessed T16 or T26 luminaires with a parabolic louvre are suitable.

Key luminaires:

Sports lighting

Page 114: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 114

Fencing - Points of note are;

Fencing has specific requirements for both horizontal and vertical illuminance as the movements are very fast with a fine foil blade and the visual task is the torso of the players.

Fluorescent pendant, surface or recessed T16 or T26 luminaires with a parabolic louvre are suitable.

Key luminaires:

Boxing - Points of note are;

In boxing the speed and force of movement over extremely short distances requires very high lighting levels at competition levels, normally between 1000 lux and 2000 lux average horizontal illuminance. This also ensures that the referee, judges and spectators can see adequately and comfortably.

Normally a purpose made lighting assembly will support the lighting equipment above the ring. Narrow beam luminaires should be used to provide the necessary high levels of illuminance efficiently.

High colour rendering qualities are required from the light source, which is recommended to be metal halide with an Ra of 85+. This is also required for video and CTV transmissions.

Pendant or surface narrow/medium beam metal halide floodlights are suitable with baffle/louvre attachments to control glare.

Key luminaires:

Sports lighting

Page 115: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 115

Indoor tennis halls - Points of note are;

Tennis can be a very fast sport demanding good visual conditions to allow judgement of the ball trajectory, its speed and anticipated bounce position on the court. Therefore good illuminance and uniformity with the elimination of shadows and glare are a requirement from the lighting system. The lighting will also need to extend beyond the playing area to cover the important zones behind the baselines and sidelines.

To prevent players being dazzled when looking at high balls the luminaires should be positioned outside the playing area, and not positioned behind the baseline up to a distance of three metres where serving takes place.

Luminaires should be impact resistant against balls and projectiles, and designed and mounted to minimise the risks of object becoming trapped within or behind them.

Additional wall colouring or screening with low reflectance matt material will help players to get additional information about the balls position on the court.

Pendant or surface mounted T16 or T26 fluorescent reflector luminaires with a protective grille are suitable. Alternatively pendant or surface mounted low-bay metal halide luminaires with a louvre assembly and protective grill.

Key luminaires:

Squash courts - Points of note are;

The ball used for squash is smaller than a tennis ball, is dark coloured, travels up to 200 km/h and bounces in any plane. As the walls are used to create complex trajectories with players moving very quickly across each other’s line of sight early anticipation and vision are required to hit the ball accurately. Good illuminance on all four vertical planes together with high horizontal illuminance uniformity is needed against a light vertical background to improve perception of the ball.

Fluorescent lighting is most suitable with two asymmetric distribution luminaires mounted parallel to the front to wash the wall, and an asymmetric distribution luminaire washing each of the sidewalls. Mounting the luminaires at 1m from the wall prevents reflected glare.

Sports lighting

Page 116: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 116

Sports lighting

Surface mounted or recessed T16 or T26 fluorescent asymmetric reflector luminaires with a protective grille are most suitable.

Key luminaires:

Figure skating and ice hockey - Points of note are;

Most indoor rinks are used for recreational purposes with additional events carried out on specific occasions. Therefore the lighting installation needs to be flexible.

Luminaires are normally mounted over the ice in a regular array to provide good uniformity of illuminance and general average horizontal illuminance.

The ice hockey puck is black and to help spectators see it when it is flying through the air high reflectance surroundings should be used around the ice. Decreasing the spacing between luminaires near the goal increases illuminance in this critical area.

Luminaires should be impact resistant if mounted less than 5m above the ice.

High bay style luminaires with prismatic optics and metal halide lamps will help provide a good level of vertical illuminance and a high uniformity of illuminance on the horizontal plane whilst using the minimum number of luminaires. Floodlights can also be used but care should be taken to control both direct glare and reflected glare from the surface of the ice. The use of double asymmetric beam floodlights will help.

Key luminaires:

Page 117: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 117

Sports lighting

Swimming pools - Points of note are;

Swimming pool lighting caters for a variety of visual tasks. The competitive swimmer has a much different seeing task to other swimmers where the main attention is focussed on staying in lane and the turning point at the end of the lane. Water polo players need lighting with a good ambient lighting effect. Swimming instructors, coaches, pool attendants and spectators all need to see across the pool and into the water to identify swimmers and situations. For recreational swimming pools themed or decorative lighting effects may be required.

Because water reflects direct incident light the positioning of the luminaires needs to be carefully selected to avoid luminaire reflections and disability glare. Luminaires positioned around the pool help to reduce unwanted reflections. When this is not possible asymmetric distribution luminaires positioned above the water may be used but maintenance of the luminaires should be considered.

Underwater lighting will help to reduce reflected glare from the pool surface as well as improving viewing conditions on the pool bottom. Synchronised swimmers need underwater lighting to help monitor the movement and position of other swimmers. However for competitive swimming and water polo underwater luminaires should be switched off.

For diving pools supplementary lighting is required to improve the vertical illuminance, particularly for judges who need to assess the divers performance at the point of entry into the water. For springboard diving the lighting in the diving zone requires a good ratio of horizontal to vertical illuminance.

Luminaires for indoor swimming pools must be protected against chlorinated and possibly salty air and as such need to meet high standards of electrical reliability and protection against corrosion. Luminaires should be protected to IP65 and have fixings that are made of stabilised austenitic stainless steel. High ambient temperatures may require control gear to be mounted remotely to ensure long life and reliability. The use of floodlights will help resolve some of these issues as floodlights are mainly designed for exterior use and have a high degree of protection and resistance to the elements built in.

Good colour rendering lamps are required to provide the correct ambience and visual comfort for competitors and bathers. Metal halide lamps with a warm or cool appearance can be used to good effect.

Surface mounted or recessed fluorescent luminaires with an acrylic panel/bowl are suitable, as are metal halide or high pressure sodium floodlights wall mounted or pendant mounted for uplighting or direct lighting of the pool.

Page 118: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 118

Sports lighting

Key luminaires:

Outdoor football and rugby - Points of note are;

The most common approach is the use of lighting masts, approximately four each side of 12m–20m height to achieve a minimum angle above the pitch centre of 20° to the lowest floodlight, but preferably 25°. These are spaced along the long axis of the playing area, positioned away from the touchlines to avoid collisions. For football they are also positioned away from the corners to avoid glare to goalkeepers. The floodlights are normally rated 1kW– 2kW and have a double asymmetric beam shape to ensure good uniformity and glare control.

An alternative option is four corner masts where long throw symmetrical narrow beam floodlights are used. The same conditions apply to mast positioning and height to achieve high utilisation of lamp flux and the avoidance of glare.

For rugby pitches the dead-ball zone, which can be up to 22m long, will need to be adequately illuminated. In some instances the spill light from the playing area will be sufficient but only to a depth of 6m. This is in addition to the playing area length of up to 100m between goal lines. A total area shall include a strip the length of the pitch including the dead ball area of no less than 6m wide on each side of the pitch.

Lighting can be positioned on the roofs of adjacent grandstands if they are of sufficient height and location to comply with floodlight positional requirements, and of sufficient structural strength to allow the weight of the floodlights.

Double asymmetric or symmetrical beam floodlights using high-pressure sodium or metal halide lamps are suitable for this application.

Key luminaires:

Page 119: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 119

Sports lighting

Hockey - Points of note are;

The playing area for hockey is slightly smaller than for football, but the lighting principles are the same with regards to mast positions and heights. The use of a smaller ball and the speed of the sport require a higher lighting level for Class III installations and a better uniformity for Classes II and III than for football and rugby.

Double asymmetric or symmetrical beam floodlights using high-pressure sodium or metal halide lamps are suitable for this application.

Key luminaires:

Track and field - Points of note are;

For track and field stadiums the most cost effective solution is to locate 6-8 masts around the whole perimeter of the track with a clearance of 4.5m from the track edge. The mast height is determined as for football but with the additional requirement of a maximum mast height to ensure adequate vertical illuminance for competitors on the outside of the track. The masts mounted along the straight section of track illuminate the centre field area providing good vertical illuminance for javelin, shot, hammer and discus events.

Double asymmetric or flat glass double asymmetric beam floodlights using high-pressure sodium or metal halide lamps are suitable for this application.

Key luminaires:

Page 120: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 120

Sports lighting

Freestyle skiing and ski jumping - Points of note are;

Downhill skiers require the whole piste uniformly illuminated from beginning to end so depressions and surface irregularities are revealed. As high speeds can be achieved the position of floodlights are important to provide the correct visual conditions, therefore floodlights are placed either side of the piste whilst being aimed across and down the slope to reduce glare to the skiers.

Wide horizontal and narrow vertical angle floodlights metal halide lamps mounted on masts up to 12m high are suitable for this application.

Ski-jumpers require good horizontal lighting at the take-off and at the landing or touchdown point for judging and safety. The landing area needs to have a high level of uniformity (0.7) for the class III standard of skiing. The illuminance on the jump hill is measured on the surface of the snow.

Key luminaires:

Page 121: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 121

Sports lightingSports lighting

Schemes

Tennis court

Scheme: Double tennis court, 24m x 11mLuminaire(s) used: 4 x Champion 2kW HQI-TS/N/L, 12m mounting heightPitch: Eav = 397 lux, Emin/Eav = 0.81

Lighting from the edges helps prevent glare to players.

Page 122: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 122

Sports lighting

Schemes

Football Stadium

A football stadium lit using Mundial floodlights. The luminaires are mounted along the roof of the stand down two sides of the pitch, and a mix of light distributions is used to correctly illuminate all the playing area. Lighting levels for television are supplied by ensuring good levels of vertical illumination in the camera directions.

Additional luminaires on the inside of the canopy lights the seating areas and ensures the security and safety of spectators.

Scheme: Football stadium with 4 x 25m corner columnsLuminaire(s) used: 48 x Mundial R 2kW HQI-TSPitch: Eav = 538 lux; Emin/Eav = 0.76

Page 123: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 123

Sports lighting

Schemes

Ice Hockey Stadium

Scheme: Ice hockey stadium, 117.5m x 17.3m x 23mLuminaire(s) used: 316 x Indus XS, 2 x 80WT16, 17m mounting heightPitch: Eav = 422 lux ; Emin/Eav = 0.07

A relatively high level of illumination is required due to the fast moving nature of the game and the small size of the puck. Lighting levels by the goals are increased to aid the ability of the goalkeeper, officials and spectators to see the puck.

Page 124: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 124

Sports lighting

Schemes

Indoor tennis court

Indoor tennis courts lit using the Sporting luminaire. The luminaires are integrated into the architecture of the roof and are positioned to light from the edges of the playing areas, preventing players having to look directly at a luminaire.

Scheme: Indoor tennis court, 36m x 18m x 6mLuminaire(s) used: 32 x Titus Sport, 3x49W 5m mounting heightTennis court: Eav = 531 lux ; Emin/Eav = 0.35

Page 125: Technical Handbook Australia COMPLETE 2

Applications and Techniques | 125

Sports lighting

Schemes

Ski shute

Scheme: Ski shute, 30m x 150m Luminaire(s) used: Either 36 x Sonpak

25/40 with HIT400W or 27 x Sonpak 25/40 with HST400W

Ski slope: HIT 400W Eav = 1.24 lux; Emin/Eav = 0.02 HST 400W Eav = 1.41 lux; Emin/Eav = 0.02

A ski slope lit using 270 Mundial 2kW floodlights. The floodlights are positioned and aimed to prevent glare to skiers, whilst revealing the texture of the surface of the slope to ensure safety. This requires aiming away from the direction of view of skiers, and the use of glancing angles to show surface texture. Additional care should be taken to prevent reflected glare from the snow.

Page 126: Technical Handbook Australia COMPLETE 2

| Applications and Techniques 126

Sports lighting

Schemes

Sports hall

Scheme: Multi-purpose sports hall, 17m x 18m x 7.6m. Emergency lighting

Luminaire(s) used: 2 x Voyager Twinspot, 6m mounting heightFloor: Eav = 2.46 lux; Emin/Eav = 0.23

When lighting sports venues it is essential to consider the safety of the participants and spectators in the event of loss of power or an emergency. Therefore emergency lighting should be installed that complies with the relevant requirements and standards.

Scheme: Multi-purpose sports hall, 17m x 18m x 7.6mLuminaire(s) used: 18 x Titus Sport 4 x 49W, 7.6m mounting heightFloor: Eav = 364 lux; Emin/Eav = 0.61

Page 127: Technical Handbook Australia COMPLETE 2

Specific Techniques | 127

7 Specific Techniques

7.1 Indoor lighting controls (ILC)The purpose of Indoor Lighting Controls (ILC) is to provide the right light at the right time and place, saving as much energy as possible, whilst simultaneously providing the comfort expected for any application, such as offices, lecture and conference rooms, school classrooms, sport halls, or in hospitals and supermarkets. Industrial installations may also benefit from the energy savings provided by ILC if fluorescent luminaires such as trunking systems are being used.

In offices up to 40 per cent of the energy used is needed for lighting, within schools this percentage can be even higher. In industrial applications that figure is between 10 and 15 per cent depending on the lighting technology used. Potential energy savings are:

Electronic ballasts + dimming: 30% Dimming + presence link: 50% Dimming + presence link + daylight link: 70%

There are many different levels of controls to choose from. These should be chosen to fit the needs and activities within an application and to achieve the required energy saving and comfort.

One of the most basic controls and the first step into manual dimming is “RotaryDIM”, a very simple recess wall mounted rotary DSI dimmer that can be connected to Thorn High Frequency DSI dimmable (HFD) luminaires, controlling up to 20 DSI ballasts in total. The lighting can be raised, dimmed and dimmed to off, by turning the control knob. This product combines digital dimming with the intuitive operation known from domestic lighting controls.

Thorn Pull SwitchDIM (PSWD) luminaires come with integrated pull cord momentary action switches. Typically used in offices lit with suspended luminaires. Using the pull cord momentary action switch the user may manually set the light level from 100% down to 1%, and switch the light on and off.

The easiest way to automate lighting is the use of “SwitchLite” presence detectors, installed into recessed ceilings, mounted onto ceilings, into corners or onto walls. These detectors switch the lighting on when movement is detected, and, after a configurable Off delay time, switch it off when vacancy is detected. Different SwitchLite presence

Fig. 7.1 RotaryDIM DSI dimmer

Page 128: Technical Handbook Australia COMPLETE 2

| Specific Techniques 128

detectors are available suitable for various mounting needs and detection patterns, and using passive infrared (PIR) or microwave technology to detect presence and absence. Some products additionally provide an integrated photocell that can be set so that the detector only switches lighting on when the ambient light level is below a preset level. This kind of presence detection is typically used in spaces such as corridors, staircases, warehouses, storerooms or lavatories, and can reduce the energy usage by up to 90 per cent. Instead of lamps being switched on for the whole day they are automatically switched off when not needed.

Thorn High Frequency SensaDigital (HFS) luminaires combine manual dimming with daylight and presence link. These luminaires provide an integrated miniature multi-sensor head. Depending upon the connections provided within the luminaire HFS luminaires may also be used to control standard HFD luminaires in a so-called master and slave arrangement. The number of DSI ballasts incorporated in the master as well as the slave luminaires can be up to four in total: E.g. in an office or a meeting room up to four single-ballast luminaires can be linked to maintain illuminance during the whole day (taking into account the available daylight as well as the ageing of lamps and dirt on the luminaires), and additionally can provide a presence-link function as described above. Alternatively for the control of a larger space with more luminaires, a remote SensaDigital head can be used, for example the “SENSA MRE SEND DSI”. This multi-sensor head can control a group of HFD luminaires incorporating up to eight DSI ballasts in total, and incorporates the same functionality as described above for the SensaDigital luminaires.

This portfolio is called SensaDigital. For the manual control of SensaDigital an infra-red handheld controller “SENSA SENRC” is available, as well as an infra-red programming tool “SENSA SENP” for the configuration of Off delay time, operation mode, maintained illuminance level and many other settings.

For applications such as classrooms and open plan offices either several remote SensaDigital heads connected to standard dimmable luminaires, or several master-slave arrangements of SensaDigital luminaires with standard dimmable luminaires can control several luminaire groups individually, reflecting the flow of daylight within a bigger area

Fig. 7.2 Presence detector

Fig. 7.3 HFS luminaire

Fig. 7.4 Handheld controller

Specific Techniques

Page 129: Technical Handbook Australia COMPLETE 2

Specific Techniques | 129

and the presence of people within the different zones lit by the luminaire groups.

For versatile one-room applications the “SensaModular” system may be used. This is a Lego-like portfolio consisting of two differently sized control modules, and accessories for automation and operation. Both control modules have DSI/DALI auto detection outputs for the use of either HFD or HFX luminaires (“HFX” stands for High Frequency DALI dimmable). The large SensaModular controller shows three digital outputs, the small controller two digital outputs for controlling luminaire groups: Table 6.1 shows the number of ballasts that can be connected:

To keep commissioning and maintenance simple, the addressing feature of DALI is not used with SensaModular when DALI ballasts are connected (so called “broadcast” operation). Both controllers show inputs for the connection of standard double, single momentary action or centre-off retractive switches to manually dim, brighten and switch each output individually. The large controller also shows a switch input for the joint operation of all three outputs. A standard 230VAC presence detector, for example a SwitchLite detector, can be connected to the controllers, and the Off delay time and operation mode (automatic, semi-automatic or corridor) can be set via integrated rotary switches.

Using the intelligent interface - a polarity-free 2-pole connection - the system can be extended. To link the luminaire groups to the incoming daylight, SensaModular provides three possibilities, all reflecting the daylight flow:

• Eitheronelookdownmulti-sensorheadpergroup,idealinlarger and zoned applications such as open plan offices, or

• onemulti-sensorheadforallgroups,idealforsmallerapplications such as single offices, or

3-fold output controller 2-fold output controller

Using DSI ballasts only 50DSI + 50 DSI + 50DSI 50DSI + 50DSI

Using DALI ballasts only 25DALI + 25DALI + 25DALI 25DALI + 25DALI

Using DSI and DALI ballasts 25DSI + 25DSI + 25DALI, or 25DALI + 25DALI + 25DSI 25DSI + 25DALI

Table 7.1 SensaModular Controller Capacity

Fig. 7.5 Look down sensors

Daylight

0% 25% 50%

Artificial light

Specific Techniques

Daylight

0% 25% 50%

500lxArtificial light

Fig. 7.6 Look out sensors

Page 130: Technical Handbook Australia COMPLETE 2

| Specific Techniques 130

• onelookoutphotocellforallgroups,idealforapplicationscomprising rows of luminaires and not requiring infrared control, such as classrooms and sports halls, but especially any application with ceiling heights above 3m.

Both the multi-sensor head and the photocell are part of the SensaModular offer. Different illuminance levels for the the two or three luminaire groups can be set and stored. With the multi-sensor heads the luminaire groups are not only linked to daylight, but also to presence and absence. The configuration of Off delay time and operation mode happens the same way as when a standard detector is used (described above).

With the SensaModular infra-red handheld controller the multi-sensor heads are allocated to the luminaire groups. This remote control can also be used to set and recall three scenes, and to switch, dim and brighten each luminaire group individually.

Alternatively, or additionally, the SensaModular recess wall mounted scene plate enables manual control of the luminaire groups and the setting and recall of three scenes as well, and the active scene is visualised via LED indicators.

In some countries Thorn offers the “SensaAdvanced” portfolio, one of the most versatile systems on the market, allowing the control of up to 99 luminaire, blind and screen groups, in up to 99 rooms, and the possibility to create up to 20 scenes per room. This portfolio works with any type of luminaire and provides different DSI, DALI, relay outputs and phase dimmers. Blinds, blackout blinds and projection screens may also be controlled using SensaAdvanced. Different operation and commissioning units, such as wall mounted scene plates and touch panels are available, as well as infrared control and software to use a PC or laptop for recalling scenes. Time automation enables the installation to be switched at

Specific Techniques

Fig. 7.7 SensaAdvanced components

Page 131: Technical Handbook Australia COMPLETE 2

Specific Techniques | 131

certain times and days and, with sequence automation, dynamic changes of light levels, direction and colour can be achieved. Partition management enables the system to adapt to partition walls being closed or opened, and enables the individual or joint control of the adjacent areas. Scheme design and commissioning of SensaAdvanced is available as a service, please contact your Thorn representative where applicable.

In some countries Thorn offers the “SensaLink” portfolio, enabling the linking of several groups of multi-sensors, either remote sensors or sensors integrated into HFL luminaires (“HFL” stands for high frequency SensaLink) within a larger space, throughout the floor of a building or through the whole building. The sensor groups work as described for SensaDigital above. Additionally these groups can be linked such that a group listens to other groups. This feature is used to keep lights on in corridors or notional corridors, and in staircases and common zones while one of the adjacent areas reports presence. Blackout blinds and projection screens may also be controlled via SensaLink. Different operation units are available such as wall mounted scene plates and infrared control, allowing storing and recall of up to six scenes. A versatile infra-red commissioning tool is used to configure and address the system. This portfolio also provides relay outputs for switchable luminaires. During commissioning DSI outputs can be changed to DALI broadcast outputs if required. The partition management functionality enables the system to adapt to partition walls being closed or opened, and enables individual or joint control of the adjacent areas. Scheme design and commissioning of SensaLink is available as service, please contact your Thorn representative where appropriate.

Specific Techniques

Fig. 7.8 SensaLink components

Page 132: Technical Handbook Australia COMPLETE 2

| Specific Techniques 132

Instead of HFD luminaires containing DSI ballasts, DSI compatible transformers and phase dimmers are available and can be connected to any DSI output:

• Phase dimmers allow the dimming of luminaires with high voltage incandescent or tungsten halogen lamps, as well as luminaires incorporating low voltage tungsten halogen lamps plus electronic or magnetic transformers.

• Electronic transformers allow the control of luminaires incorporating low voltage tungsten halogen lamps without transformers.

Using these DSI controllable devices the connected luminaires can be part of any scheme incorporating Indoor Lighting Controls, can be daylight-linked, can contribute to lighting scenes and much more.

Fig. 7.9 A phase dimmer

Fig. 7.10 An electronic transformer

Specific Techniques

Page 133: Technical Handbook Australia COMPLETE 2

Specific Techniques | 133

7.2 Lighting for display screen equipmentIn areas containing display screen equipment (DSE) special care must be taken to prevent bright images being reflected in the screen from bright surfaces such as windows or luminaire. Display screen equipment is any screen used for displaying information, whether it is attached directly to a personal computer, measuring equipment or specialist applications, for instance air traffic control screens.

These reflections are caused by the geometry between the glare source, screen and user allowing the image of the glare source to be reflected into the users eyes. If the glare source is a luminaire this tends to be the light emitted by the luminaire above 65° (above the black lines in Figure 6.12).

To prevent this either the luminaire should have optical control to remove any bright luminance above 65°, or the display screen should be moved (either rotated or tilted) to alter the geometry, thereby removing unwanted reflections. Note, this is more critical in large rooms or open plan areas, as the geometry of small office spaces normally means that luminaires are unlikely to be seen in a display screen. Yet, in reconfigurable areas care is still needed as removing walls may convert small office spaces into an open plan area.

To help a designer in choosing a suitable luminaire for DSE applications a table of luminance limits has been produced for angles of 65° or higher. This table gives luminance limits dependant upon whether modern screen technology (type I and II) or older screen technology (type III) is being used. Additionally the type of information being displayed has an impact on the susceptibility of the screen to bright images. Negative polarity information (i.e. bright text on a dark background) is more susceptible to disturbing images than positive polarity information (dark text on a light background). This information can be used along with a luminaire manufacturers data to ensure that the luminaires chosen for an installation that contains DSE are suitable.

Fig. 7.11 Reflections in a computer screen caused by lighting

Fig. 7.12 A polar curve showing light emitted above 65°

Specific Techniques

Page 134: Technical Handbook Australia COMPLETE 2

| Specific Techniques 134

For critical applications, such as air traffic control screens, these limits may need to be applied for angles of 55° or higher. However increasing the degree of glare control can produce gloomy spaces unless additional lighting is used to illuminate the ceiling and upper walls.

Note, that whilst newer screen technology has been less likely to reflect disturbing images due to anti-glare coatings and matt screens, some new screens (notably for laptops) are improving technology and are no longer matt, but highly reflective. This development will continue as computers develop as entertainment systems (for watching DVD’s etc.). This is due to matt screen technology tending to blur images very slightly, reducing their sharpness, and also the technology having limited capability to correctly show black. Consequently to correctly show audio-visual content in high definition matt screen technology is not used. This will, unfortunately, mean these screens are more susceptible to problems from glare sources.

Specific Techniques

Table 7.1 Luminance limit recommendations

Page 135: Technical Handbook Australia COMPLETE 2

Specific Techniques | 135

7.3 Light for learningThe importance of light in our learning environments cannot be under estimated. Research shows that light impacts our health and level of alertness and this extends to those spaces in which we are taught. It is now widely accepted that good lighting in schools can have an important effect on educational attainment and rates of learning.

We also need to consider the impact of our designs on the wider environment, from the use of material resources to the impact on the community and the pupil. Lighting in schools needs to be sustainable, to continue to serve the needs of the community and future students, taking into account likely changes in curriculum, demographics, methods of teaching, computer use and so on.

Our lighting design for the future of educational facilities needs to consider the following:

• Theprovenlinkbetweenimprovedschoolenvironmentsand student/staff morale and staff retention

• Theneedtocreateschoolswhichwouldrepresentgoodvalue for money and have a long functional life

• Arequirementtodiversifytheschoolcurriculumandtoextend community use of educational facilities

There is now, more than ever, an imperative to create sustainable schools, which would have a low impact on the environment, exploit natural light and ventilation and reduce use of natural resources. Lighting has a large part to play in each of these, and can do so by using the equipment and complying with the legislation around product application and performance.

Fig. 7.13 A PC intensive university teaching space lit with direct/indirect luminaires

Specific Techniques

Page 136: Technical Handbook Australia COMPLETE 2

| Specific Techniques 136

Methods of teachingThere a generally considered to be three methods of teaching:

• Teacher-leddiscussions,an‘interactive’approachtolearning.

• Largegroupteaching,themoretraditionalformalinstruction.

• Smallgrouplearning,individualpracticalandprojectwork.

Each creates different requirements for the space in which they happen. The first requires flexible lighting, creating a relaxed informal atmosphere. The second is more focused on the tasks within the space - the teacher, the board and the ambient. The last is most specifically about ambient and task, where the task lighting will be local to the student and varied according to their need.

Lighting applicationGenerally there are two recognised illuminance levels required in classrooms and these, whilst general targets to aim for, need to be varied to account for task, time of day and the age of the pupil.

Levelsof‘300-500luxshouldnotbeexceeded,butshouldbefocused on 300 lux for the young and 500 lux for the mature student. A task uniformity of 0.8 is desirable.

To maintain this level and maximise efficiency all teaching spaces should use daylight as a primary source and dim the artificial light accordingly, initially by the windows. To give true sustainability lighting controls must be provided that are simple to understand and operate, give flexibility of use and deliver energy savings. Specific requirements will require task lighting (i.e. the need to specifically light the task, rather than creating high overall ambient lighting levels)

Specular, louvred fittings are not required, except perhaps in dedicated computer suites, and even here their use should be restricted and satin, rather than full mirrored louvres used.

Use of down lighting with a tight cut-off should be avoided as this will lead to strong modelling of facial features making it difficult for the visually, or hearing impaired, to see facial features and to lip-read.

Fig. 7.14 Lighting in large lecture rooms should be flexible to allow different scene setting options to be used to suit the teaching requirements

Specific Techniques

Page 137: Technical Handbook Australia COMPLETE 2

Specific Techniques | 137

It is recommended that light sources should be between 2000-4000K with a colour rendering in excess of Ra80. All light fittings must be flicker-free and provide a Limiting Glare Index of 19.

Primary artificial lighting choice should be direct/indirect in nature to create the right balance of performance, efficiency and comfort in learning spaces. The important thing is to put light onto all surfaces, and in particular, light the face of the teacher and pupils, so that true communicative learning can take place.

While PC use is widespread, and growing, modern screen technology can easily handle high luminance well beyond that covered by EN 12464-1, but note that it has been shown recently that students do not learn well with a high proportion of self-motivated PC teaching alone. Lighting for computer screens should not impinge on lighting for effective teaching.

Effective DistributionLighting for visual comfort is not just about the light sources – it is also about the distribution of light:

• Wallsandceilingsneedlightingwithbothdirectandinter-reflected light

• Thisrequiresrelativelyhighreflectancesurfacefinishes– e.g. >70% for the ceiling, >60% for the walls (display boards may lower this to 30-50%) and as high as practical on the floor

• Glossfinishesshouldbeavoidedastheycancauseveiling reflections and glare

• Somewallsanddisplaysshouldhaveaccentlighting,tocreate the effect of directional light that feeling of dappled sunlight through a window for instance

• Averagesupplementarywallilluminanceshouldbearound2/3rds of the task illuminance

The design approach should concentrate on providing ambient, task and accent lighting

Fig. 7.15 Direct/indirect lighting with good light distribution onto wall displays

Specific Techniques

Page 138: Technical Handbook Australia COMPLETE 2

| Specific Techniques 138

The basic principle is to achieve a well-balanced lighting environment, with good brightness management, which avoids sharp, distracting lighting contrasts. It is important to remember that while working on PCs, students will probably be receiving information from a teacher at the same time, so providing good vertical lighting on the face, which might be viewed from any position in the classroom, is equally important.

In fact, good vertical illuminance is important in all teaching spaces – being able to see the face of the teacher and the facial expressions of other students is a key component of good communication – and is vital to effective learning. About 80% of the information we take in is visual and in a teaching space most of that happens on the desk or within the 40° band (20° above and below the horizontal from the eye).

Get the lighting wrong and it becomes difficult to see the teacher, or the board, for instance. If we can’t see the teachers face because contrast or vertical illuminance is poor, then we may fail to read their body language, or in the case of the hearing-impaired, be unable to lip read. Also consider the colour of the background compared to the teacher’s skin tone. Lighting a light skin tone against a white background presents different problems to a dark skin tone against a white background. Good design will have to cater for all the diverse ethnicities of teaching staff.

Using DaylightGood daylighting is also paramount -- artificial lighting makes up 25 per cent of the energy costs of a typical school. Recent research in the US showed that high levels of daylight are associated with improvements in learning rates, increased attendance and 20 per cent higher results in reading and maths. It also can also lead to energy savings of 30-60 per cent (70 per cent if automatic blinds are used).

So ecologically and on a human level we cannot ignore daylight. All schools need to use daylight as their primary light source, with daylight factors of 4-5 per cent and a minimum 20 per cent of glazing on external walls. As well as letting in daylight, this allows students and staff to retain a link to the outside weather, environment and changing light conditions throughout the day. This helps to improve morale and concentration and to maintain their circadian rhythms.

Fig. 7.16 An example of lighting with good vertical illuminance at the board

Fig. 7.17 A classroom with ample daylight

Specific Techniques

Page 139: Technical Handbook Australia COMPLETE 2

Specific Techniques | 139

Specific Techniques

7.4 Emergency lightingEmergency lighting is provided when the supply to the normal lighting fails. It helps people to see their way and move to evacuate quickly to a safe place out of the building. It also avoids panic, restores confidence and enables specific tasks to be made safe.

Emergency lighting should be provided in all areas where, when the normal lights fail, there is insufficient daylight or borrowed light available for those people on the premises. A risk assessment should be made to identify the places and routes where people may be at risk and need evacuating in the event of the normal lighting failing.

An emergency lighting scheme should be designed with sufficient consideration to the type of premise, size, complexity, kind of activities and type of people involved. Special consideration should be given to places where the elderly and those with disabilities may be present.

There are four main points to consider for an effective emergency lighting scheme:

1 – Exit SignageVisible safety signs and signage to indicate the escape route and final exit should be available at all material times (luminance of the sign’s safety colours must be at least 2 cd/m²). The escape route signs must be located so that occupants from any part of the premises can see and identify the direction for evacuation.

2 – Mandatory PointsEmergency luminaires have to be carefully positioned to ensure a compliant emergency lighting scheme. To provide adequate illumination they need to be mounted close to potential hazards on the route, such as stairs, a change of direction or crossings and places requiring emphasis, such as first aid posts, fire fighting appliances and marshalling points. Also for places where people may need reassurance in the event the normal lights failing, such as lifts, toilets or closets.

Page 140: Technical Handbook Australia COMPLETE 2

| Specific Techniques 140

Specific Techniques

3 – Illumination levels and infill lightingIn addition to the lighting of mandatory points, infill luminaires may be required to achieve the correct lighting levels.

An adequate level of illuminance on the floor of escape areas (minimum 0.5 lx) and escape routes (minimum on centre line 1.0 lx) should be made available within 5 seconds of the mains failing to avoid anxiety, and remain operative for at least 1 hour, or longer if required, for safe evacuation. Additionally take care to illuminate the volume of space (from floor up to a height of 2.0m) through which people move during evacuation by mounting luminaires above head height.

High-risk task areas should be illuminated to an adequate level (minimum 15 lx) within 0.5 seconds of the normal lights failing for as long as required to complete making the task safe or whilst people pass by if it is by the escape route.

Illumination should be carried out with light sources having a colour rendering index of at least Ra 40 so that safety colours in an escape area or on an escape route can be seen and discriminated.

Stylish luminaires should be chosen to blend in with the design of the overall lighting scheme, but they must suit the environmental conditions of the location. For example use IP65 emergency lighting luminaires outside the final exit. The luminaires may be dedicated standalone types or integrated into standard lighting luminaires. They can be self-contained or central power fed depending on the size and complexity of the premises, the operation and servicing and practicalities and through life economics of the installation.

4 – Maintenance and testingOnce the scheme is installed and commissioned, it is essential that the luminaires are properly maintained and ready to perform in the event of an emergency. To make sure installed emergency products are always fit for purpose, regular testing has to be conducted by the building operator. Therefore consideration should be given at the design stage to the intended method - be it local switch, automatic self-testing or an automatic remote/central controlled testing system. Also assess and plan a schedule for servicing the lamps and batteries at required intervals. Finally, remember the commissioning and certification requirements for both the design and the installed scheme.

Page 141: Technical Handbook Australia COMPLETE 2

Specific Techniques | 141

Specific Techniques

Emergency lighting system considerations Standby lighting is used as an alternative to normal lighting but it can also form the emergency escape lighting solution. When it does it must follow the rules governing escape lighting.

Escape lighting covers the need for clearly defined escape routes in the premises formed by corridors or paths indicated by painted lines. Open areas are defined as places where there is no clear route or where the routes are changing such as a large shop, open plan office or multi purpose hall. A high-risk task area is where some uninterruptible activity is ongoing, such as a chemical dip process, or some other process that requires unbroken lighting conditions for safe shut down. In some places where there is high risk of smoke accumulation (airlines, passenger ships) low location way guidance systems are provided to supplement the escape route lighting.

Emergency Lighting

Open area (anti-panic) lighting

Emergency escape lighting

Low location way guidance

Standby lighting

High risk task area lightingEscape route lighting

Fig. 7.18 Specific forms of emergency lighting

Page 142: Technical Handbook Australia COMPLETE 2

| Specific Techniques 142

Specific Techniques

Clearly defined escape routesClearly defined escape routes are taken to be up to 2m wide. Here the horizontal illuminance at floor level on the centre line should be not less than 1 lux, and the centre band of at least 50 per cent of the route width should be illuminated to at least half the centre line value. The diversity of illuminance should not exceed 40:1. Wider routes may be treated as 2m wide strips of escape routes but preferably as open areas. The design illuminance is to be provided within 60 seconds, but preferably within 5 seconds of the supply failure. To avoid dazzling people it is important not to exceed the intensity limits related to the mounting height of the luminaires.

Safety signsStrategically placed signs permanently indicating the escape directions from the premises are essential to alleviate anxiety and confusion by the people present. The signs should conform to the graphic design, colour and luminance criteria given in the EN1838 standard. It is important that during an emergency only signs that give a positive indication to the way out should be illuminated and that the signs are mounted high enough (above 2.0m) so that they are not obscured.

Open areasAreas where the furnishing or equipment on the floor is frequently reconfigured will not have clearly defined escape routes and are therefore treated as open areas, as defined above.

In these the illuminance on the floor should be a minimum 0.5 lux anywhere up to 0.5m from the walls and 50 per cent should be provided within 5 seconds, 100 per cent being provided within 60 seconds of the normal lights failing. The diversity of illuminance should not exceed 40:1. To avoid dazzling people the intensity limits for the luminaire should not be exceeded for the mounting height in the scheme.

Exit signs should be located so that they are visible from any part of the space.

Large areas require min 0.5 lx up to border of 0.5m of the perimeter area. Max. to min. illuminanceratio not greater than 40:1.

Exit sign must be visible from all parts of open area

Fig. 7.20 Escape route illuminance requirements

not less than 1.0 lx along centreline

not less than 0.5 lx

50% of width

not less than 0.5 lx

Fig. 7.19 Escape route plan (up to 2m wide)

Page 143: Technical Handbook Australia COMPLETE 2

Specific Techniques | 143

Specific Techniques

High risk task areasDuring the failure of the normal lighting supply, emergency lighting is required in places where machinery, plant or other processes may present a hazard if left in operation, and that must be shut down before evacuating the area, In some cases the escape route may be alongside these hazardous tasks and therefore needs to be highlighted. There are also places where the task activity cannot be halted and needs standby emergency light (such as in an operating theatre).

The high risk tasks areas should be illuminated as required by the task and in any event the maintained illuminance should be not less than 10 per cent of the required maintained illuminance for that task and should not be less than 15 lux and be available in full within 0.5 seconds. The uniformity should not be less than 0.1. For this a no-break or maintained system should be considered.

Power systems for emergency lightingEmergency lighting systems are usually powered from batteries or generators that are automatically triggered by a detection system as soon as the mains system fails. The system duration or category is defined by the period the system is able supply power to the load. Usually given as 60 minutes (1 hour) or 180 minutes (3 hours). The two main types of electrical systems in use are self-contained and central power:

Self-contained systemsEach luminaire is equipped with battery, charger, indicator and changeover device. These elements may be integral to the luminaire or housed in a separate unit mounted less than 1m from the luminaire. The mains supply charges the battery, which cuts in when the mains system fails. Self-contained systems are easy to install and extend, and require minimal maintenance. The system may include a self- testing facility that can carry out the routine monthly and annual operational tests and give local indications of the status. They can also be connected to a central managed automatic testing system and can give printed report of any defects.

Each luminaire is equipped with batteries and inverter to power one lamp on mains failure

The gear may be remote mounted, if so the box should be within 1m of the luminaire.

Fig. 7.21 Self-contained system

Page 144: Technical Handbook Australia COMPLETE 2

| Specific Techniques 144

Mains mode Emergency mode

Non-maintained (NM)

lamp is off

lamp is on

Maintained (M)

lamp is on

lamp is on

Combined (C)

mains lamp is on

emergency lamp is on

Specific Techniques

Central systemsHere the power is provided by remote central batteries or generators and is distributed through sub-circuits to a number of slave luminaires. These systems are best suited for large premises. They will require space to house the large battery sets or generator. The wiring of the sub-circuits has to be protected and be of high-integrity. During design due allowance should be made for voltage drops. As part of the high integrity considerations the luminaires with loop-in/out wiring facility must also have protected glands and terminal blocks, alternatively the luminaires may be treated as an individual spur connection to a protected emergency power ring sub-circuit. The system must include monitoring of the mains supply and detection of failure of local circuits in each part of the premises to bring on the emergency lighting.

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Mains mode Emergency mode Non-ma intained (NM)

lamp is off

lamp is on Maintained (M)

lamp is on

lamp is on Combined (C)

mains lam p is on

emergency lam p is on

Fig . 6.21 Su mmary of mode s of oper ation

Luminaire mode of operationThere are a number of ways that emergency luminaires can operate. In all cases, where a battery is present, it is charged by the mains supply.

Non-maintained (NM) The lamp is only lit when the mains fail and is operated by an emergency power source.

Maintained (M) The lamp is lit at all material times and is powered by the mains supply under normal conditions. In an emergency, when the mains fail, an emergency power source cuts in to power the lamp.

Fig. 7.23 Summary of modes of operation

Fig. 7.22 Central system

Page 145: Technical Handbook Australia COMPLETE 2

Specific Techniques | 145

Specific Techniques

Combined (C) This is a variant of the maintained luminaire in which one lamp is powered by the mains supply during normal conditions. A second lamp operates only under emergency conditions powered by an emergency power source. This type of luminaire provides light at all material times and is best suited for signage.

Planning SchemesThe lighting calculations involved in emergency lighting are straightforward. It is important to base all calculations on real photometric data for the specific lamp and luminaire, with the output in the worst (minimum) condition. The EN 13032-3 European standard gives the format of the photometric data and defines the critical factors for to be used in calculations.

Planning SequenceThere is no precise sequence to be followed, but this checklist indicates a possible course. (It is most important that consultation with relevant bodies over the specific plans is carried out early in the design process).

1. Establish licensing requirements 2. Examine building plans 3. Mark exits and final exits 4. Mark escape routes 5. Identify open areas and special locations 6. Mark location of hazards, fire-fighting appliances, and

alarm call points. 7. Identify small toilets with no windows and toilets over 8m². 8. Identify closets, control rooms, special plant rooms and lifts 9. Note illuminance and other specification requirements. 10. Select signs and escape luminaires fit for the purpose. 11. Position luminaires at essential locations. 12. Add extra luminaires to complete scheme. 13. Check uniformity and glare. 14. Prepare installations instruction. 15. Prepare commissioning procedure, including illuminance

checks. 16. Prepare operation testing service instructions.17. Prepare logbook.

Page 146: Technical Handbook Australia COMPLETE 2

| Specific Techniques 146

Specific Techniques

Inspection and ServicingRegular inspection and servicing of emergency lighting schemes is essential. In the scheme design these matters must be considered and adequately documented. The standards EN 1838 and EN 50172 provide the framework for certification of completion of installation and certification for periodic testing and servicing. The onus for these activities falls on the competent person of the owner/user of premises. Any faults noticed should be recorded in the logbook

To verify that adequate emergency lighting is available at all material times the system needs to be inspected and tested monthly and to make full duration tests annually. At the end of each test the circuit is restored to charge conditions and the charge indicator should glow to show that the battery is on charge. The inspection needs to confirm that the luminaires are in place as designed, the lamp in maintained luminaires is functioning and the signs are visible. The testing may be made by automatic systems but these must provide noticeable feedback and warning if action is required.

Servicing considerations are straightforward. The batteries or fuel tank for the generator may need topping up. The luminaires need cleaning, failed lamps changing and the batteries in self-contained luminaires replaced at the manufacturers recommended interval. Regular servicing will keep the systems effective and reliable for operation at all material times.

Page 147: Technical Handbook Australia COMPLETE 2

Specific Techniques | 147

Specific Techniques

7.5 Low mount road lightingWhen lighting roads there are a number of cases where conventional lanterns do not provide the best solution to the real road situation. Mounting heights may be restricted by structures or local regulations, obtrusive light may be an issue, or maintenance may have to be completed at very high speeds – for example to reduce operators’ exposure to fast-moving traffic, or where downtime for service has to be reduced to the absolute minimum. In situations such as these conventional lighting is often deficient and an alternative solution is to use a luminaire that incorporates flat beam technology, such as the Thorn Orus lantern. A flat beam lantern is designed to satisfy standard lighting criteria in a low height format, and therefore offers engineers a new resource in road lighting. In the case of the Orus lantern a mounting height of 0.9m is standard. Therefore where the use of high columns or other structures is an issue flat beam lanterns can deliver optimised performance without glare for road users.

Fig. 7.24 A flat beam installation on a road bridge

Page 148: Technical Handbook Australia COMPLETE 2

| Specific Techniques 148

Specific Techniques

The flat beam conceptFlat beam technology must address two issues unique to low-level mounting, glare and performance. By positioning the optical light engine below the driver’s eye line the risk of direct glare is reduced, and by projecting light transverse to the road the optical system can offer a very sharp and controlled light distribution, maximising performance. This controlled distribution lightsaroadsurfaceat‘grazing’incidenceangles,anddriversperceive higher levels of road lighting because the peak of the reflected beam is roughly in the direction of the eye. This does not mean higher glare because the light distribution is sharply reduced, practically nil when the lantern is installed at the optimum height below the driver’s eye line. Therefore flat beam technology can give road users the benefits of increased perceived‘brightness’andvisibility.Anaddedbenefitisthatthelow mounting height acts as a good optical and visual guide to the road layout.

With conventional luminaires, the ratio of spacing to mounting height is between 3.5 and 5, but with a flat beam lantern the figure is between 10 and 18. Similarly taking the ratio of lit width to mounting height conventional luminaires produce a figure between 0.8 and 1.2, whilst with flat beam technology the figure improves to between 8 and 13. This allows increased spacing of the lanterns, between 8m and 15m for Orus, which is important to prevent a flicker effect from the lanterns. With these spacings the eyes can adjust dependent on speed, meaning that the flicker effect is maintained below 4Hz and in most cases less than 2.5Hz, keeping driver discomfort to an acceptable minimum.

Fig. 7.25 A flat beam lantern mounted on a bridge structure

Fig. 7.26 Conventional versus low mount lighting

24m8m

8m

8m

0,90m

24m

Conventional Installation

New concept

Page 149: Technical Handbook Australia COMPLETE 2

Specific Techniques | 149

Specific Techniques

Application of flat beam technologyAs mentioned flat beam lanterns can be used where traditional road lighting using columns or façade mounting is not feasible, for reasons such as:

• Easeofaccess• Extremeweather• Structuralfragility• Maintenancedifficulties• Inthevicinityofairfieldsorothersensitiveareas• Riskofobtrusivelight• Otherenvironmentalorresourceissues

Flat beam lanterns can be specified for use on roads with or without pedestrian traffic. Without pedestrians, the optical design can direct light entirely onto the road. Where pedestrians are present an alternative optical design that createsa‘circle’oflightaroundtheluminairehelpsdriversto detect a pedestrian’s entire body. This option also allows for facial recognition by other pedestrians. Flat beam lighting is also an excellent solution where obtrusive light has to be reduced. For example, it can be specified in certain residential areas, or in areas where the surrounding buildings are illuminated and road lighting should therefore be unobtrusive. Flat beam technology is also suitable for use in parks and gardens. Here the luminaires can spread light at low level without distracting attention from other illuminated features.

DurabilityObviously a potential problem when using flat beam technology is the additional rigors imposed through the lanterns closeness to the road and therefore the harsh effects of road usage, and also the ease of access for vandalism. It is essential that the lanterns are constructed from high quality materials and engineered for low maintenance and a long operating life. Optical components such as the visor need to be strong, UV stabilised and scratch resistant. Tamper resistant screws will be needed and the lantern and mounting will need a suitable IK rating, such as IK10/40 joules. As the lantern is close to the road and therefore the spray caused by road traffic both optic and gear should comply with IP66.

Fig. 7.27 Flat beam lighting in road configurations (upper) and pedestrian configuration (lower)

10m

8m

10m

8m

Page 150: Technical Handbook Australia COMPLETE 2

| Specific Techniques 150

Specific Techniques

Lighting Data for the Thorn Orus lanternWhen flat beam technology was integrated into Orus, priority was given to the limitation of glare. Calculations show that TI is considerably below 10 per cent while luminance and uniformity exceed relevant standards. The system is designed with a specific lamp burner cap so that direct light cannot reach the eyes of a driver or the rear mirrors of a car when installed at the compulsory height of 0.9m. In a complete installation, Orusoffersdriversaunique‘guidance’effectwhichtracksthecontours of the road, ahead and behind. Orus can be installed either single-sided, with luminaire spacing between 8 and 15m, or on both sides of the road with the same spacing. In the latter configuration it will cover roads up to 20m wide, giving ample coverage for roads with multiple lanes including cycle lanes and central reservations. The wide choice of lamps – from 35 to 70W HIT-CE G12, or 60W HIT-CE PGZ12 CosmoWhite – gives planners ample scope to adjust Orus to any project. Light output from Orus luminaires is surprisingly resistant to obstruction by queues of traffic. Tests have shown that there is no occultation nor distracting shadows, while light emitted from the system is distributed ahead of, behind and beneath vehicles. It is also reflected by the road surface. Spacing options between 8and15malsoreduceany‘pools’ofdarkness,whilelightingfrom vehicles further maintains lighting levels. Orus luminaires mix perfectly with classic column mounted systems. Because they use white light they can be used to highlight sections of the highway where care is required, as in a hazard black spot or area of restricted speed.

Fig. 7.28 The Orus lantern

Page 151: Technical Handbook Australia COMPLETE 2

Specific Techniques | 151

Threshholdzone

Entrancezone

Transitionzone

Interiorzone

Exitzone

ExitPortal

Specific Techniques

7.6 Road tunnel lightingThe aim of lighting a tunnel is to create a safe environment that allows road users to pass through the tunnel without any accidents, and the lighting needs to be suitable for both daytime and night-time hours. The most critical requirement is to detect obstacles on the road, especially when you are entering and leaving the tunnel.

To help in the design process tunnels are normally divided into five zones, the entrance zone, the threshold zone, the transition zone, the interior zone and the exit zone.

The entrance zone is the part of the tunnel just before the entrance, and it has a length equal to the stopping distance of a car at the traffic design speed. During daylight hours the driver is adapted to the high luminance outside the tunnel. To avoid the entrance to the tunnel appearing as a black hole and to ensure that a driver approaching the tunnel entrance can detect obstacles on the road, suitable lighting must be installed in the tunnel entrance, the threshold zone.

The threshold zone is the first zone inside the tunnel and has a length equal to the stopping distance of a vehicle at traffic design speed. Luminance values (Lth) should be calculated according to the calculation method shown in the document CIE 88:2004 and this is related to the luminance outside the tunnel and the speed of the traffic passing through the tunnel. The road luminance can be reduced after a distance of half of the stopping distance into the tunnel.

Fig. 7.29 The five zones of a tunnel

Fig. 7.30 The entrance zone

Page 152: Technical Handbook Australia COMPLETE 2

| Specific Techniques 152

Specific Techniques

Between the threshold zone and the interior zone a number of transition zones occur. In these transition zones the luminance is gradually reduced until it reaches the level of the interior zone. The luminance values can be reduced in steps of 3:1, but the last step from transition zone to interior zone should not be greater than two times the interior zones values.

The interior zone is the longest part of the tunnel and the luminance level should comply with the recommendations given in the standard. These recommendations give the luminance level as a function of the stopping distance and traffic flow. For very long tunnels the interior zone may be split into two sub-zones. The first sub-zone is equivalent to the distance of travel of a vehicle at traffic design speed. The second sub-zone contains the remaining length of the interior zone.

The exit zone has to follow the same luminance level as the interior zone, but where additional hazards may occur in the tunnel, or in long tunnels, it is recommended to increase the luminance level immediately prior to the exit.

For all zones the lighting levels on the walls is recommended to be at least 60 per cent of the road luminance values of the relevant zone up to a height of 2 meters above the road surface. Uniformity of luminance in the zones must be a ratio of 0.4 (minimum to average on the road and walls up to a height of 2m above the road surface). A longitudinal uniformity of 0.6 is required along the centre of each lane of the road.

The perception of flicker can occur in a tunnel. This generally occurs when the luminaires are not mounted in a continuous row when discomfort from flicker occurs due to the luminance changes from that of the bright luminaires to the darker surface between luminaires. The length of the experience, the amount of light (peak value and duration) and flicker frequency has an impact on the experience. To minimise flicker discomfort it should be ensured that the flicker frequency is either below 2.5 Hz or above 15Hz.

For example: For a traffic design speed of 60Km/h (16.6m/sec) and a luminaire spacing of 4m the flicker frequency is 16.6/4 = 4.2Hz.

Fig. 7.31 The interior zone of a tunnel lit from one side by a continuous row of luminaires

Fig. 7.32 A tunnel lit using floodlights in an opposite configuration

Page 153: Technical Handbook Australia COMPLETE 2

Specific Techniques | 153

Specific Techniques

Optics for a tunnelThe main aim for the lighting is to provide a good contrast between the object and the road. For this luminaires may be placed either above the road surface, or at the side of the road surface. Two main types of luminaire optics exist for tunnel lighting, giving a different distribution.

Symmetrical opticsThis optic type is often placed above the lanes and the light distribution is symmetrical both along the road and transverse to the road. Symmetrical optics may sometimes be placed in the junction between wall and ceiling making maintenance of the luminaires easier and removing the need to close the tunnel during maintenance time.

Counter beam opticsThis optic type is asymmetrical and main beam is orientated against the traffic, to create a maximum contrast between the object and the road. Luminaires are placed above the traffic lanes

To design a complete tunnel lighting installation takes a high amount of knowledge and experience. The international document CIE 88:2004 gives information on designing a tunnel lighting scheme, and local standards should be consulted for relevant national requirements.

Fig. 7.33 Symmetrical optics

Fig. 7.34 Counter beam optics

Page 154: Technical Handbook Australia COMPLETE 2

| Specific Techniques 154

Specific Techniques

7.7 Lighting maintenanceWhen a lighting installation is first commissioned conditions are at their optimal, that is the luminaires, lamps and reflective surfaces in the space are new and clean. Through the life of the installation these conditions will deteriorate as age and dirt reduce the effectiveness of the lighting. Consequently when designing a lighting installation it is common to design for a maintained lighting value, that is the lighting level achieved when the luminaires, lamps and reflective surfaces are at their oldest or dirtiest.

To calculate maintained lighting levels it is necessary to calculate the light loss at the point when the luminaires, lamps and reflective surfaces are at their oldest or dirtiest. This means that the maintenance cycle for the installation must be defined.

Fig. 7.35 The maintenance cycle

The maintenance cycle consists of three main activities:

1. Cleaning and maintaining the luminaire2. Cleaning and maintaining the lamp3. Cleaning and maintaining the reflective surfaces in the

lit space. In exterior area lighting the impact of reflective surfaces may be negligible. However in applications such as tunnels and underpasses, and also the lighting of building facades regular cleaning can improve the performance of the lighting scheme.

Page 155: Technical Handbook Australia COMPLETE 2

Specific Techniques | 155

Specific Techniques

An example is shown in Figure 7.35, in which the luminaire is cleaned every two years, and is cleaned and re-lamped and the reflective surfaces are cleaned every six years. In this example the installation maintenance factor is 67 per cent, so at worst case only 67 per cent of the initial lighting level is being realised. Note, the installation will never reach the initial lighting levels achieved when new, as deterioration of some of the components within the luminaire, and of the surface finishes within the space, cannot be fully recovered by cleaning.

The main factors that influence the loss of lighting performance through life for an installation are:

• Thecleanlinessoftheenvironment.Inindustrialorurbanenvironments airborne dirt will be much higher than in clean room or rural environments. Therefore either the luminaires and reflective surfaces within the space will need cleaning more often or the maintenance factor for the installation will be reduced.

• Thetypeofluminairespecifiedwithintheinstallation.Indirty environments using an open luminaire will allow dirt deposition within the luminaire that is very difficult to clean. Using a sealed unit prevents dirt from entering the luminaire and therefore only the external surfaces require cleaning and may be cleaned more vigorously.

• Thelamptechnologyusedwithintheinstallation.Differentlamp types have different characteristics with respect to lumen maintenance and lamp life and deciding when to relamp is a compromise between these two factors. Selecting a lamp with good lumen maintenance through life will reduce the light loss due to lamp aging. However, the installation performance also relies on all (or at least the majority) of lamps working. So either a spot lamp replacement system must be used where any failed lamps are immediately replaced, or the installation maintenance factor must include an adjustment for the percentage of broken lamps expected before relamping. Therefore, relamping must be done when the lamp lumens have reached a minimum acceptable value and the number of failed lamps in the installation has reached a maximum acceptable level.

Page 156: Technical Handbook Australia COMPLETE 2

| Specific Techniques 156

Specific Techniques

The installation maintenance factor is then the product of all the maintenance factors of the installation components.

MFinstallation = luminaire MF x lamp lumen MF x lamp survival MF x reflective surface MF

Where

luminaire MF the amount of light lost due to the luminaire through aging and dirt deposition on the luminaire

lamp lumen MF the amount of light lost due to a reduction in lamp flux as the lamp ages

lamp survival MF the amount of light lost due to failed lamps which are not immediately replaced

reflective surface MF the amount of light lost due to reduced reflection from surfaces within the installation

Data for these factors should be available from manufacturers. However the data will assume the unit is operating within normal conditions as specified by the manufacturer. Operating outside these conditions could (and probably will) alter the characteristics of the unit. For example operating a lamp in a hot environment may increase the lumen output of the lamp, but at expense of lumen maintenance and lamp life.

Many lighting design software allow the maintenance schedule to be defined and use this to calculate an installation maintenance factor. However further guidance on calculating and using maintenance factors may be found in publications CIE 97-2006 - Maintenance of Indoor Electric Lighting Systems and CIE 154:2003 - The Maintenance of Outdoor Lighting Systems

Standard tables for luminaire and room surface maintenance factors exist in CIE 97 and in the absence of more comprehensive manufacturers data these may be used. They rely on the classification of the environment being lit into very clean, clean, normal or dirty, and classification of the luminaire according to its resistance to the effects of dirt (type A to G).

Page 157: Technical Handbook Australia COMPLETE 2

Specific Techniques | 157

Specific Techniques

Table 7.2 gives help in deciding which environment should be used, along with advice on typical cleaning intervals.

Inspection interval Environment Activity or Task area

3 yearsVery Clean

Clean

Clean rooms, semi conductor plants, hospital clinical areas*, computer centres

Offices, schools, hospital wards2 years Normal Shops, laboratories, restaurants, warehouses, assembly areas, workshops1 year Dirty Steelworks, chemical works, foundries, welding, polishing, woodwork

Type Luminaire type Luminaire descriptionA Bare batten Bare lamp luminaires

BOpen top housing (natural ventilated and “self cleaning” types)

Direct-indirect luminaires without cover, direct-indirect luminaires with indirect reflector and closed optical device, wallwashing luminaires (vertical opening), wall mounted luminaires open top and base, downlights with open top

C Closed top housing (unventilated) Recessed and surface mounted luminaires (e.g. with louvres), downlights, spotlights

D Enclosed IP2X General purpose luminaires with closed covers and opticsE Dust proof IP5X Dust proof IP5X (protected, clean room luminaires)

F Indirect lighting and uplight Free standing, pendant, wall mounted uplighters with closed base, cove lights

G Air handling and forced ventilated Air handling body and optic used with air-conditioning or ventilation systems

Table 7.2 Typical inspection periods for differing environmental conditions

*In clinical areas more frequent inspections may be required

Table 7.3 Luminaire type and description

Table 7.3 gives guidance on deciding the type of luminaire, which is then used in the luminaire maintenance table to determine the luminaire maintenance factor.

When the environment and luminaire type have been determined the tables shown below may be used to give the luminaire maintenance factor and room surface maintenance factor. The room surface maintenance factor depends upon the downward flux fraction (DFF) for the luminaire, which is defined as

DFF = downward light output ratio / total light output ratio.

Page 158: Technical Handbook Australia COMPLETE 2

| Specific Techniques 158

Specific Techniques

Elapsed time between cleanings in years

0 0.5 1.0 1.5

EnvironmentLuminaire type Any VC C N D VC C N D VC C N D

A 1 0.98 0.95 0.92 0.88 0.96 0.93 0.89 0.83 0.95 0.91 0.87 0.80B 1 0.96 0.95 0.91 0.88 0.95 0.90 0.86 0.83 0.94 0.87 0.83 0.79C 1 0.95 0.93 0.89 0.85 0.94 0.89 0.81 0.75 0.93 0.84 0.74 0.66D 1 0.94 0.92 0.87 0.83 0.94 0.88 0.82 0.77 0.93 0.85 0.79 0.73E 1 0.94 0.96 0.93 0.91 0.96 0.94 0.90 0.86 0.92 0.92 0.88 0.83F 1 0.94 0.92 0.89 0.85 0.93 0.86 0.81 0.74 0.91 0.81 0.73 0.65G 1 1,00 1.00 0.99 0.98 1.00 0.99 0.96 0.93 0.99 0.97 0.94 0.89

Elapsed time between cleanings in years

0 2.0 2.5 3.0

EnvironmentLuminaire type Any VC C N D VC C N D VC C N D

A 1 0.94 0.89 0.84 0.78 0.93 0.87 0.82 0.75 0.92 0.85 0.79 0.73B 1 0.92 0.84 0.80 0.75 0.91 0.82 0.76 0.71 0.89 0.79 0.74 0.68C 1 0.91 0.80 0.69 0.59 0.89 0.77 0.64 0.54 0.87 0.74 0.61 0.52D 1 0.91 0.83 0.77 0.71 0.90 0.81 0.75 0.68 0.89 0.79 0.73 0.65E 1 0.93 0.91 0.86 0.81 0.92 0.90 0.85 0.80 0.92 0.90 0.84 0.79F 1 0.88 0.77 0.66 0.57 0.86 0.73 0.60 0.51 0.85 0.70 0.55 0.45G 1 0.99 0.96 0.92 0.87 0.98 0.95 0.91 0.86 0.98 0.95 0.90 0.85

Table 7.4 Luminaire maintenance factors based upon type and environment

Page 159: Technical Handbook Australia COMPLETE 2

Specific Techniques | 159

Specific Techniques

time/

yrs

0.0

00.5

01.0

01.5

02.0

02.5

03.0

03.5

04.0

04.5

05

.00

5.5

06.0

0

refl

ecta

nces

ce

iling

/walls

/floo

ren

viro

nmen

tro

om s

urfa

ce m

ain

tena

nce

fact

ors

– ut

ilisa

tion

pla

ne

0.80

/0.7

0/0.

20ve

ry c

lean

1.00

0.97

0.96

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

clea

n1.

000.

930.

920.

910.

910.

910.

910.

910.

910.

910.

910.

910.

91no

rmal

1.00

0.88

0.86

0.86

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

dirty

1.00

0.81

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

/0.5

0/0.

20ve

ry c

lean

1.00

0.98

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

clea

n1.

000.

950.

940.

940.

940.

940.

940.

940.

940.

940.

940.

940.

94no

rmal

1.00

0.91

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

dirty

1.00

0.86

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.80

/0.3

0/0.

20ve

ry c

lean

1.00

0.99

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

clea

n1.

000.

970.

960.

960.

960.

960.

960.

960.

960.

960.

960.

960.

96no

rmal

1.00

0.94

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

dirty

1.00

0.91

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.70

/0.7

0/0.

20ve

ry c

lean

1.00

0.97

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

clea

n1.

000.

940.

920.

920.

920.

920.

920.

920.

920.

920.

920.

920.

92no

rmal

1.00

0.89

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

dirty

1.00

0.83

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.70

/0.5

0/0.

20ve

ry c

lean

1.00

0.98

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

clea

n1.

000.

960.

950.

940.

940.

940.

940.

940.

940.

940.

940.

940.

94no

rmal

1.00

0.92

0.91

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

dirty

1.00

0.87

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.70

/0.3

0/0.

20ve

ry c

lean

1.00

0.99

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

clea

n1.

000.

970.

960.

960.

960.

960.

960.

960.

960.

960.

960.

960.

96no

rmal

1.00

0.95

0.94

0.94

0.94

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

dirty

1.00

0.92

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.50

/0.7

0/0.

20ve

ry c

lean

1.00

0.98

0.97

0.97

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

clea

n1.

000.

950.

940.

930.

930.

930.

930.

930.

930.

930.

930.

930.

93no

rmal

1.00

0.91

0.89

0.89

0.89

0.89

0.89

0.89

0.89

0.89

0.89

0.89

0.89

dirty

1.00

0.85

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.50

/0.5

0/0.

20ve

ry c

lean

1.00

0.98

0.98

0.98

0.98

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

clea

n1.

000.

970.

960.

950.

950.

950.

950.

950.

950.

950.

950.

950.

95no

rmal

1.00

0.94

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

dirty

1.00

0.89

0.89

0.88

0.88

0.88

0.88

0.88

0.88

0.88

0.88

0.88

0.88

0.50

/0.3

0/0.

20ve

ry c

lean

1.00

0.99

0.99

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

clea

n1.

000.

980.

970.

970.

970.

970.

970.

970.

970.

970.

970.

970.

97no

rmal

1.00

0.96

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

dirty

1.00

0.93

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

Table 7.5 Room surface maintenance factors for DFF=1.0 (direct luminaires)

Page 160: Technical Handbook Australia COMPLETE 2

| Specific Techniques 160

Specific Techniques

time/

yrs

0.0

00.5

01.0

01.5

02.0

02.5

03.0

03.5

04.0

04.5

05

.00

5.5

06.0

0

refl

ecta

nces

ce

iling

/walls

/floo

ren

viro

nmen

tro

om s

urfa

ce m

ain

tena

nce

fact

ors

– ut

ilisa

tion

pla

ne

0.80

/0.7

0/0.

20ve

ry c

lean

1.00

0.95

0.94

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

clea

n1.

000.

900.

880.

870.

870.

870.

870.

870.

870.

870.

870.

870.

87no

rmal

1.00

0.81

0.78

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

dirty

1.00

0.70

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.80

/0.5

0/0.

20ve

ry c

lean

1.00

0.96

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

clea

n1.

000.

930.

910.

900.

900.

900.

900.

900.

900.

900.

900.

900.

90no

rmal

1.00

0.85

0.83

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

dirty

1.00

0.76

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.80

/0.3

0/0.

20ve

ry c

lean

1.00

0.97

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

clea

n1.

000.

940.

930.

920.

920.

920.

920.

920.

920.

920.

920.

920.

92no

rmal

1.00

0.89

0.87

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

dirty

1.00

0.81

0.79

0.78

0.78

0.78

0.78

0.78

0.78

0.78

0.78

0.78

0.78

0.70

/0.7

0/0.

20ve

ry c

lean

1.00

0.96

0.94

0.94

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

clea

n1.

000.

910.

890.

880.

880.

880.

880.

880.

880.

880.

880.

880.

88no

rmal

1.00

0.83

0.80

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.79

dirty

1.00

0.72

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.70

/0.5

0/0.

20ve

ry c

lean

1.00

0.97

0.96

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

clea

n1.

000.

930.

910.

910.

910.

910.

910.

910.

910.

910.

910.

910.

91no

rmal

1.00

0.87

0.84

0.84

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

dirty

1.00

0.77

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.70

/0.3

0/0.

20ve

ry c

lean

1.00

0.98

0.97

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

clea

n1.

000.

950.

930.

930.

930.

930.

930.

930.

930.

930.

930.

930.

93no

rmal

1.00

0.90

0.88

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

dirty

1.00

0.82

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.50

/0.7

0/0.

20ve

ry c

lean

1.00

0.97

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

clea

n1.

000.

930.

910.

900.

900.

900.

900.

900.

900.

900.

900.

900.

90no

rmal

1.00

0.86

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

dirty

1.00

0.76

0.74

0.74

0.74

0.74

0.74

0.74

0.74

0.74

0.74

0.74

0.74

0.50

/0.5

0/0.

20ve

ry c

lean

1.00

0.97

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

clea

n1.

000.

940.

930.

920.

920.

920.

920.

920.

920.

920.

920.

920.

92no

rmal

1.00

0.89

0.87

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

dirty

1.00

0.81

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.79

0.50

/0.3

0/0.

20ve

ry c

lean

1.00

0.98

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

clea

n1.

000.

960.

950.

940.

940.

940.

940.

940.

940.

940.

940.

940.

94no

rmal

1.00

0.92

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

dirty

1.00

0.85

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

Table 7.6 Room surface maintenance factors for DFF=0.5 (direct/indirect luminaires)

Page 161: Technical Handbook Australia COMPLETE 2

Specific Techniques | 161

Specific Techniques

time/

yrs

0.0

00.5

01.0

01.5

02.0

02.5

03.0

03.5

04.0

04.5

05

.00

5.5

06.0

0

refl

ecta

nces

ce

iling

/walls

/floo

ren

viro

nmen

tro

om s

urfa

ce m

ain

tena

nce

fact

ors

– ut

ilisa

tion

pla

ne

0.80

/0.7

0/0.

20ve

ry c

lean

1.00

0.93

0.91

0.90

0.90

0.90

0.90

0.89

0.89

0.89

0.89

0.89

0.89

clea

n1.

000.

860.

820.

810.

810.

810.

810.

810.

810.

810.

810.

810.

81no

rmal

1.00

0.72

0.67

0.66

0.66

0.66

0.66

0.66

0.66

0.66

0.66

0.66

0.66

dirty

1.00

0.54

0.50

0.49

0.49

0.49

0.49

0.49

0.49

0.49

0.49

0.49

0.49

0.80

/0.5

0/0.

20ve

ry c

lean

1.00

0.94

0.93

0.92

0.92

0.92

0.91

0.91

0.91

0.91

0.91

0.91

0.91

clea

n1.

000.

880.

850.

840.

840.

840.

840.

840.

840.

840.

840.

840.

84no

rmal

1.00

0.76

0.72

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

dirty

1.00

0.59

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.80

/0.3

0/0.

20ve

ry c

lean

1.00

0.96

0.94

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

clea

n1.

000.

900.

880.

870.

870.

870.

870.

870.

870.

870.

870.

870.

87no

rmal

1.00

0.80

0.76

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

dirty

1.00

0.64

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.70

/0.7

0/0.

20ve

ry c

lean

1.00

0.93

0.91

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

0.90

clea

n1.

000.

860.

830.

820.

810.

810.

810.

810.

810.

810.

810.

810.

81no

rmal

1.00

0.73

0.68

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.67

0.67

dirty

1.00

0.55

0.51

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.70

/0.5

0/0.

20ve

ry c

lean

1.00

0.95

0.93

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

clea

n1.

000.

890.

860.

850.

850.

840.

840.

840.

840.

840.

840.

840.

84no

rmal

1.00

0.77

0.73

0.72

0.72

0.72

0.72

0.72

0.72

0.72

0.72

0.72

0.72

dirty

1.00

0.60

0.56

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.70

/0.3

0/0.

20ve

ry c

lean

1.00

0.96

0.94

0.94

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

clea

n1.

000.

910.

880.

870.

870.

870.

870.

870.

870.

870.

870.

870.

87no

rmal

1.00

0.80

0.77

0.76

0.76

0.76

0.76

0.76

0.75

0.75

0.75

0.75

0.75

dirty

1.00

0.65

0.61

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.60

0.50

/0.7

0/0.

20ve

ry c

lean

1.00

0.94

0.92

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.91

0.91

clea

n1.

000.

870.

840.

830.

830.

830.

830.

830.

830.

830.

830.

830.

83no

rmal

1.00

0.75

0.70

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.69

0.69

dirty

1.00

0.57

0.52

0.52

0.52

0.52

0.52

0.52

0.52

0.52

0.52

0.52

0.52

0.50

/0.5

0/0.

20ve

ry c

lean

1.00

0.95

0.93

0.93

0.93

0.92

0.92

0.92

0.92

0.92

0.92

0.92

0.92

clea

n1.

000.

900.

870.

860.

860.

850.

850.

850.

850.

850.

850.

850.

85no

rmal

1.00

0.78

0.74

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

dirty

1.00

0.61

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.50

/0.3

0/0.

20ve

ry c

lean

1.00

0.96

0.95

0.94

0.94

0.94

0.94

0.94

0.94

0.94

0.94

0.94

0.94

clea

n1.

000.

910.

890.

880.

880.

880.

880.

880.

880.

880.

880.

880.

88no

rmal

1.00

0.81

0.78

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

dirty

1.00

0.66

0.62

0.61

0.61

0.61

0.61

0.61

0.61

0.61

0.61

0.61

0.61

Table 7.7 Room surface maintenance factors for DFF=0 (indirect luminaires)

Page 162: Technical Handbook Australia COMPLETE 2

| Specific Techniques 162

Specific Techniques

To determine the lamp lumen maintenance factor and lamp survival factor data published by lamp manufacturers should be used. Examples are shown below.

1000

20

40

60

80

100

120

Lifetime hoursFH/FQFC

Lumen maintenance FH/FQ and FC

Mai

nten

ance

%

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

1000

20

40

60

80

100

120

Lifetime hoursFH/FQFC

Lumen maintenance T5 FQ HO, FH HE and FC

Mai

nten

ance

%

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Figure 7.36 Example lumen maintenance curve (courtesy Osram)

Figure 7.37 Example lamp survival curve (courtesy Osram)

Page 163: Technical Handbook Australia COMPLETE 2

Specific Techniques | 163

Specific Techniques

For example, a closed top recessed louvred luminaire with an upward light output ratio of zero uses 14W T16 lamps (Osram FH), and is installed in an office with surface reflectance’s of ceiling:70%, walls:50% and floor:20%. The room and luminaires are cleaned every three years, and the lamps are replaced every 8000 hours. Therefore:

Luminaire maintenance factor (LMF) Luminaire is a closed top recessed louvred fitting, which is type C. As the luminaire is installed in an office this is a clean environment. Therefore, from Table 7.4 for a cleaning interval of three years the luminaire maintenance factor is given as 0.74.

Room surface maintenance factor (RSMF) As the luminaire has an upward light output ratio of zero the downward light output ratio must be the same as the total light output ratio, and therefore the DFF equals one. Using Table 7.5 for reflectance’s 0.80/0.50/0.20 gives a room surface maintenance factor of 0.94.

Lamp lumen maintenance factor (LLMF) From Figure 7.36 when the lamp has been running for 8000 hours the lamp lumens has reduced to 92% of the original output (red curve).

Lamp survival factor (LSF) From the red curve on Figure 7.37 when the lamps have been operating for 8000 hours 96% of the lamps will still be functional (e.g. 4% of the lamps will have failed).

Thus the maintenance factor is:

MF = MF * RSMF * LLMF * LSF

= 0.74 * 0.94 * 0.92 * 0.96

= 0.614

Page 164: Technical Handbook Australia COMPLETE 2

| Specific Techniques 164

Specific Techniques

7.8 Control of obtrusive lightObtrusive light is the light that does not illuminate a task or reference area but spills onto other non-related areas. This not only reduces the efficiency of the lighting installation as a proportion of the light produced is being wasted, but can also cause inconvenience or damage in the surrounding areas.

Obtrusive light may be thought of as having three components;

• Spilllight,whichislightemittedbyalightinginstallationthat falls outside the boundaries of the property for which the lighting is designed.

• Skyglow,whichislightthatcontributestothebrighteningof the night sky.

• Lighttrespass,whichisaspecialcaseofspilllightwhenlight spills onto surrounding properties. An additional form of light trespass is when the direct view of bright luminaires from normal viewing directions causing annoyance, distraction or discomfort.

Reference area Immediate surrounds Surrounds

Spill light

Sky glow direct and reflected flux

Lighttrespass

ULORWaste light

Waste light

DLOR

Fig. 7.38 An example of an installation producing sky glow

Fig. 7.39 The components of obtrusive light

Page 165: Technical Handbook Australia COMPLETE 2

Specific Techniques | 165

Specific Techniques

A selection of lighting technical parameters are used to define limits for obtrusive light, depending upon the type of obtrusive light being experienced or measured. All the parameters depend upon the environmental zone the installation is within, which effectively defines the amount of background brightness from the surround area. The environmental zones are shown in Table 7.8.

The lighting technical parameters used to define limits for obtrusive light are;

• ULR,theupwardlightratio.Thisistheproportionoflightthat is emitted at or above the horizontal when a luminaire is mounted in its installed position. For an installation it is the sum of individual luminaire upward light ratios in their installed orientation and this indicates the contribution of an installation to sky glow.

Zone Surrounding Lighting Environment Examples

E1 Natural Dark National parks and protected sites

E2 Rural Low brightness Industrial or residential rural areas

E3 Suburban Medium brightness Industrial or residential rural suburbs

E4 Urban High brightness Town centres and commercial areas

LightTechnical Parameter Application Conditions

Environmental Zones

E1 E2 E3 E4

UpwardLight Ratio (ULR)

Ratio of luminous flux incident on horizontal plane just above luminaire in its installed position, to total luminaire flux.

0 0 – 5 0 – 15 0 – 25

Table 7.8 Definitions of environmental zones

Table 7.9 Upward light ratio limits

Page 166: Technical Handbook Australia COMPLETE 2

| Specific Techniques 166

Specific Techniques

• I,themaximumintensityofaluminaireinadesignateddirection. Limits apply to every luminaire in an installation, and are evaluated from every direction where views of bright surfaces of luminaires are likely to be disturbing to residents. Mind you, this only applies where the viewing direction is not short-term, but is likely to be maintained.

• Ev,theverticalilluminanceonsurroundingproperties.Limits apply to nearby dwellings and special attention should be taken to vertical illuminance on windows. If land has been designated for dwellings but no construction has occurred these limits still apply for the potential dwellings.

LightTechnical Parameter Application Conditions

Environmental Zones

E1 E2 E3 E4

Illuminance in vertical plane (Ev) Pre-curfew: 2 lux 5 lux 10 lux 25 lux

Post-curfew: 0 lux 1 lux 2 lux 5 lux

LightTechnical Parameter Application Conditions

Environmental Zones

E1 E2 E3 E4

Luminous intensity emitted by luminaires (I)

Pre-curfew: 2500 cd 7500 cd 10000 cd 25000 cd

Post-curfew: 0 cd 500 cd 1000 cd 2500 cd

Table 7.10 Vertical illuminance limits on properties

Table 7.11 Luminous intensity limits in a designated direction

Page 167: Technical Handbook Australia COMPLETE 2

Specific Techniques | 167

Specific Techniques

• TI,thevalueofthresholdincrement.Thresholdincrementisa measure of the loss of visibility caused by the disability glare from a luminaire installation. The limits apply where users of a transport system are subject to a reduction in visibility caused by a non-transport installation, and limiting values are for positions and viewing directions relevant to the direction of travel for users of the transport system.

LightTechnical Parameter Application Conditions

Environmental Zones

E1 E2 E3 E4

Building Facade Luminance (Lb)Taken as the product of the design average illuminance and reflectance factor divided by .

0 5 cd/m2 10 cd/m2 25 cd/m2

Sign Luminance (Ls)

Taken as the product of the design average illuminance and reflectance factor divided by , or for self-luminous signs the average luminance.

50 cd/m2 400 cd/m2 800 cd/m2 1000cd/m2

LightTechnical Parameter

Road classification (see section 4.05)

No road lighting M5 M4 / M3 M2 / M1

Threshold IncrementTI

15 %based on adaptationluminance of 0.1 cd/m2

15 %based on adaptationluminance of 1 cd/m2

15 %based on adaptationluminance of 2 cd/m2

15 %based on adaptationluminance of 5 cd/m2

Table 7.12 Threshold increment limits

Table 7.13 Luminance limits for building facades and signs

• Lb, the luminance of a building façade. This is the average luminance of the building façade, and may be approximated using

Eav x

Lb =

Where Eav is the average illuminance of the building façade and is the reflectance of the building façade.

• Ls, the luminance of a sign. This is the average luminance of a sign and may be approximated similar to that described above, using the average illuminance and reflectance values for the sign.

Page 168: Technical Handbook Australia COMPLETE 2

| Specific Techniques 168

Specific Techniques

To control obtrusive light various strategies may be used depending upon the application;

• Usingfloodlightsthathaveatightlycontrolledbeamallows more precise control of the light. Therefore the best level of beam control for the application should be used.

• Usingfloodlightsthatallowtheluminairetobeaimedclose to the vertical (i.e. with the face of the floodlight nearly horizontal and pointing downwards) reduces the impact on sky glow due to reduced upward light. Applications which can use specialist “flat-glass” floodlights (which are designed to be mounted with the front face of the floodlight horizontal) should do so, as these are ideal for controlling obtrusive light.

• Ahighermountingheightcanallowfloodlightstobeaimed closer to the vertical, and can allow floodlights with tighter beam control to be used. This allows better control of glare and spill light. However, the structures will be more intrusive during daylight hours.

• Similarlythecloseracolumnistotheareatobelitthebetter the control of the lighting as this allows floodlights to be aimed closer to the vertical and floodlights with a wide distribution can be used with simplified shielding (such as a visor).

• Usingluminaireswithlampsthathavealowerlumenoutput leads to a reduced mounting height, which helps reduce spill light. However, more luminaires will be required which may reduce the efficiency of the installation (but consider that if the control of light is better then more of the light is being usefully utilised within the scheme, therefore less light overall may be required. This is because a scheme that has less light control is over lighting to compensate for the spill light).

Relevant publications for further reading are CIE S 015/E:2005 Lighting of Outdoor Work Places EN12464-2:2007 Lighting of workplaces – part 2: outdoor work places

Page 169: Technical Handbook Australia COMPLETE 2

Specific Techniques | 169

Specific Techniques

7.9 Lighting for crime preventionA firm body of evidence now exists to support the theory that lighting can have a positive effect on crime prevention. With the increasing prevalence of CCTV cameras in shops and public spaces lighting also has an important role in aiding the authorities in identifying suspects. These benefits however have to be designed into a lighting installation, and it should be accepted that improvements in lighting cannot overcome bad design of structures or of a space. (For example the pedestrian tunnel shown has untended shrubs, a perfect hiding place, and an overhang ideal for a person to hide on, even before the pedestrian has entered the blackness of the tunnel).

Lighting can be used to affect two aspects related to crime

• Actualcrime.Thisistheactofacriminaleventoccurring.Lighting can either inhibit crime, or aid in the identification of a suspect.

• Thefearofcrime.Thisisthementalworryofacriminalactoccurring. Fear of crime tends to be more prevalent than it used to be due to improved communications. Knowledge of crime that occurs in a different geographical area can induce fear of crime in a totally unrelated area, however irrational. Lighting can be used to create a safe and reassuring atmosphere.

It is important to understand that when considering lighting for a space it is not always possible to understand the problems of the space without seeing it in all conditions. Frequently the daytime appearance is completely different to that at night.

How can lighting be used as a tool in the fight against crime? Some general points can be made. For exterior areas, including car parks, light fixtures and fittings should incorporate vandal resistant features such as polycarbonate or reinforced glass fittings with sources positioned out of reach. The effect of lighting should not be restricted, either by internal fixtures and furnishings or by exterior structures or landscaping. Lighting columns/fixtures should not aid access, for example over perimeter fencing/walls. And cables and wiring serving lighting systems should be enclosed to restrict accidental damage or criminal attacks.

Fig. 7.40 A forbidding entrance to a pedestrian tunnel

Page 170: Technical Handbook Australia COMPLETE 2

| Specific Techniques 170

Specific Techniques

When lighting for crime prevention the main requirement of lighting is to ensure a high level of visibility and modelling. It must be understand that whilst precisely targeted increases in lighting generally have crime reduction effects, more general increases in lighting seem to have crime prevention effects but this outcome is not universal. However, even untargeted increases in lighting generally make people less fearful of crime and more confident of their own safety.

To increase visibility and modelling requires consideration to the illumination on the vertical or semi-cylindrical planes. Pedestrians need to be able to see other people clearly at a maximum distance, to be able to perceive any possible threat, either from facial expression, posture or objects carried (such as a knife) allowing them sufficient time to react to the threat.

When considering street lighting a change in design approach is required. Generally street lighting is designed for maximum efficiency, using the fewest lanterns/columns and switching lanterns dependant on time. However, lighting should be designed for both road users and pedestrians, either by using lanterns that have a high level of performance in lighting both the road and paths, or with combined lighting units (Figure 7.41), or by separate lighting units for each task. Lighting should provide maximum quality and reduce shadows. Hence, lower wattage lamps spaced closer together are preferable, and lamp type should be chosen carefully to ensure a good colour of light and colour rendering (white light has been shown to increase peoples feelings of security, whilst a lamp that obviously renders colour incorrectly reduces a person’s confidence in the lighting).

If lighting units are dimmed or switched off during the night high levels of maintenance are essential as the failure of a lighting unit will have a larger effect if only some of the lighting units are lit compared with the case if all the lighting units were on.

When lighting footpaths and cycle paths they should be lit in a manner that shows the direction that the path takes. Care should be taken where necessary to illuminate beyond the boundaries of the path in order to increase the visual area and provide more confidence to people using those routes. It should

Fig. 7.41 Combined lighting units with high mount lanterns and bollard height lighting

Page 171: Technical Handbook Australia COMPLETE 2

Specific Techniques | 171

Specific Techniques

be recognised that steps and changes in level are also part of the path and they should not be considered as independent areas. In urban areas it is important not to rely on lighting from commercial premises to supplement the amenity lighting as if the commercial lighting is switched off heavy shadows may occur. Lighting of commercial buildings should be controlled to prevent high levels of illumination resulting in adjacent areas appearing gloomy or dark (as shown). For open areas such as parks or large pedestrian spaces the lighting should give guidance on the configuration of the space.

A specific hazard for footpaths are pedestrian tunnels. These generally have two problems, dark inside and light outside during the daytime, or light inside and dark outside during the night. This has implications for visibility as the eye has to adjust to the different conditions which takes time, especially when passing from relatively bright light into darkness. The lighting needs to be controllable to adjust to the different lighting requirements (e.g. higher light levels during the day and lower light levels at night with lighting outside the tunnel matched to the light levels inside the tunnel). As lighting units in pedestrian subways are generally accessible by the public they should be vandal-resistant and maintained to a high standard.

Car parks should also be considered as pedestrian areas. N.B.;

• Carsaregenerallystationaryatentranceandexitpoints.Therefore these areas need higher lighting levels.

• Specialconsiderationshouldbegiventostairwells,liftareas and areas with payment machines.

• Ifpossiblelightcolouredsurfacetreatmentsshouldbeapplied to ceilings, columns and walls to maximise and reflect the effect of the lighting system

Fig. 7.42 Façade lighting creating areas of deep shadows

Page 172: Technical Handbook Australia COMPLETE 2

| Specific Techniques 172

Specific Techniques

When lighting for CCTV cameras additional points need consideration. To aid in the production of a good image the following ratios should be checked;

Ratio 1 = Upward horizontal illuminance Ideally Ratio 1 > 0.3 Downward horizontal illuminanceRatio 2 = Downward horizontal illuminance Ideally Ratio 2 < 5.0 Vertical illuminance towards cameraRatio 3 = Average luminance of subject Ideally Ratio 3 > 0.3 Average luminance of background and < 3.0Ratio 4 = Vertical illuminance left Ideally Ratio 4 > 0.3 Vertical illuminance right and < 3.0

Ratio 5 = Vertical illuminance to the back Ideally Ratio 5 <3.0 Vertical illuminance toward the camera

For interiors a luminaire with a batwing distribution will give good facial modelling. Additionally when considering the camera position better quality may be achieved by mounting the camera in a position sympathetic to photography (e.g. between light fittings and with a low contrast background. Therefore lighting should not cause heavy contrast patterns down the wall used as a backdrop to the camera sight). It may be possible to channel customers and would be criminals using a roped queuing system to between luminaires where more acceptable light conditions are available. Consider daylight as this can cause problems due to colour differences or high contrast between subject and background

For exteriors the relationship between subject and background brightness should be controlled with a maximum of 3:1 (ratio 3) and the relationship between horizontal and vertical toward camera illuminance should ideally be no greater than 5:1 (ratio 2). Therefore for example, ensure the camera is not aimed so that dark black sky is the background. Vertical illuminances at head height on the three sides of the head should not exceed a ratio of 3:1 between themselves (e.g. right to left, right to front and left to front.). Cameras should not be directed toward any bright light source.

Finally always ensure the lamp used has good colour rendering capabilities to aid in discriminating colour of garments, etc.

Fig. 7.43 CCTV images taken using different lighting systems

Page 173: Technical Handbook Australia COMPLETE 2

Specific Techniques | 173

Specific Techniques

7.10 Lighting and healthWhen producing a lighting design the ability of lighting to provide an atmosphere by manipulating the lit effect is one of the key skills of the designer. The feel of a space can affect the experience of an observer within that space. Within the Thorn PEC philosophy this is the Comfort attribute, and has descriptors such as calm, lively, balanced, reassuring, inspiring, welcoming, glitter, etc. This use of the lit experience whilst possibly affecting our mood does not normally affect our health, except under inappropriate use of lighting for a given situation.

Recent research, however, has shown that how we design luminaires and lighting installations does have implications on our health. Research has discovered a third receptor in our eye, which exists along with the rods and cones that allow us to see. This receptor does not produce a visual effect and has an action spectrum towards the blue end of the visible light spectrum (the yellow curve labelled NI in the diagram).

Fig . 6.45 The pho tic, scotop ic and non -image forming rece ptor respon se curves

Fig. 7.44 The photic, scotopic and non-image forming receptor response curves

Page 174: Technical Handbook Australia COMPLETE 2

| Specific Techniques 174

Specific Techniques

The third receptor has direct implications on our feelings of wellness and well-being. It links into the body’s hormone mechanisms, affecting the body clock, alertness, mood and others. This opens up the possibilities of using light and designing lighting to modify the operation of the body, thereby affecting a person’s physical health. Indeed this is already used in the treatment of seasonal affective disorder (SAD) when very high levels of blue rich light are used to help alleviate this condition, and light has shown promise in treating sleep disorders caused by illnesses such as Alzheimer’s disease, in treating sufferers of delayed phase sleep disorder which is characterised by late sleep onset and late awakening (generally younger people) and in treating advanced phase sleep disorder which is characterised by early sleep onset and early awakening (generally elderly people).

• Visual acuity• Visual performance• Emotions

• Hormones (melatonin)• Sleep quality• Biological clock• Mood and depression• Alertness

Visionroads and cones

Non-visionwellness

3rd receptor

Fig. 7.45 Effects due to the visual and non-visual pathways. The red and blue lines indicate light signal paths through the head.

Nevertheless it is a large step from using light therapy for treatment of specific conditions in a controlled environment to applying this knowledge in general lighting applications to aid health, with a consequent shift of responsibility towards rigorous medical ethics and testing. Research shows it is quite possible to modify the biological clock to optimise its timing for night shift workers. It is also possible to give a burst of blue light at suitable times during the day to enhance alertness, or in a nursing home to increase sleep quality at night. However research also raises questions as to possible side effects.

Page 175: Technical Handbook Australia COMPLETE 2

Specific Techniques | 175

Specific Techniques

A body of knowledge indicates, for example, that during periods of darkness the body produces hormones which act as inhibitors to cancer. The implication of this is that by manipulating the bodies hormone production we would also be affecting the bodies defence against some diseases.

Equally using lighting for health in situations such as residential care homes or nursing homes could be beneficial to the patients, but at the expense of care staff that may be working shift patterns at odds with their patients sleep patterns.

As well as medical factors, practical problems arise. With respect to the shifting of the body clock for night workers the process of shifting the body clock can take several days, which would be inappropriate for rapidly changing shift patterns. Also given a worker will probably travel to or from work in daylight conditions, and daylight normally supplies a much larger illuminance at the eye than that achieved by artificial lighting, this would inhibit the effects of trying to reset the body clock. However, evidence suggests that the body clock does become adjusted without any direct intervention for those doing semi-permanent night shift work, taking a period of approximately 15 nights for adaptation.

It is necessary to understand and accept that people react differently to a stimulus and internal research within Thorn indicates that some people are more sensitive to blue enhanced light than others. As an example, in blue enriched light some workers found white paper to be a glare source, producing headaches. Additionally there was a case of a worker who had had eye surgery finding the blue enhanced light uncomfortable when returning to work immediately after the operation.

Manipulating the lit effect to produce stimulating and interesting environments or controlling light to give dynamically changing spaces can improve the quality of life for users of the space. Yet, until more is known about the effects and side effects of the non-visual effects of lighting, designing to modify biological mechanisms should be treated with extreme caution.

Page 176: Technical Handbook Australia COMPLETE 2

| Specific Techniques 176

Specific Techniques

7.11 SustainabilityOne of the worlds most pressing concerns is achieving a sustainable environment. So what is “sustainability? Sustainability, just like light, is essential to life and needs to be taken seriously. It encompasses the need to conserve resources, reduce energy demands, limit harmful emissions, reduce waste and encourage renewable processes.

All these considerations are to protect our natural environment and life for the future. The urgent need for action is recognised by all and there are an increasing number of national and international initiatives and legislations to drive for sustainable living. A sustainable approach will ensure that the needs of today are fulfilled without compromising the ability of future generations to meet their needs. The ideal sustainable arrangement is when a solution can be perpetually used, reused or renewed with no waste. Electric lighting has a major impact on sustainability. The key to sustainability in lighting is ecodesign, efficient operation and planned recycling at the end of the product life. These are fundamental considerations in the Thorn PEC programme. Eco-design is practiced in the creation of a lighting product, whilst operation is when the product is put into service in lighting schemes. End of life is when the product is no longer required or is unable to fulfil its function.

Sustainable design

LCA

ExtractionRefining

rawmaterials

MaintainEnd of lifeRecycle

DesignManufacture

Package

DistributeInstall

Operate

Fig. 7.47 Product life cycle analysis (LCA)

Fig. 7.46

Page 177: Technical Handbook Australia COMPLETE 2

Specific Techniques | 177

Specific Techniques

Eco-design is design of product with the entire life cycle in mind. The life cycle covers consideration of the product from extraction and refining of raw materials, through design, manufacture, installation, use and maintenance to the end of useful life, when dismantling and recycling of the materials commences. Employing life cycle assessments will check the environmental impact of the solution through life. It ensures that care is taken during design to employ absolutely the minimum amount of restricted hazardous substances and that the minimum amount of virgin materials, water and energy are used during manufacture.

Consider also the energy efficiency during the operation phase and the need to dismantle the product quickly and without waste at the end of life. Luminaires should be designed for disassembly and dematerialisation (eg use of snap fit connectors rather than screws) and making parts multifunctional. All products should be marked for easy identification and removal. The generation of electrical energy required for lighting is a major contributor to CO2 emissions. For every kWh of energy 0.42kg * of CO2 is liberated and added to the “greenhouse” gases in the atmosphere, increasing global warming. The proportion of energy demand by lighting products can be split into three phases: creation (12%), use (80%) and disposal (8%). The most energy consumption by the product is clearly during operation and much of this can be influenced by prudent design and component selection. The key elements of this selection are lamps and control circuit including ballast type. Today the most useful and efficacious light source is the fluorescent lamp. It can be linear or compact and employ poly-phosphor coatings yielding good colour and light output. The lamp requires a ballast to operate, which can be magnetic or electronic. Magnetic ballasts (copper and iron) have the advantage of being lower in cost and recyclable. Electronic ballasts, however, can operate the lamp at high frequencies, in excess of 10 kHz thus eliminating flicker, are more efficacious, use less energy, and are lightweight one-piece control gear that can be dimmable and automatically controlled. Lighting controls add much to operational efficiency. The controls maybe a simple on/off switch or a sophisticated computer programmed system.

Fig. 7.48

Fig. 7.49

* EU average

Page 178: Technical Handbook Australia COMPLETE 2

| Specific Techniques 178

Specific Techniques

Controls save energy use by providing electric light only where and when needed. Controls can link up to respond to constant illuminance, daylight availability and presence of people. With efficient products, correct lighting scheme design and the use of control systems substantial energy saving can be made without jeopardising the quality of the required lighting condition.

The next obvious step is to protect the rapid depletion of raw materials. In this process sustainable product designs must use less material, make greater use of more recycled materials and plan to use more recyclable materials. With such practice of good management of resource, increased energy efficiency, employment of new technologies and the drive for renewable energy generation will ensure good future for light and lighting. Fig. 7.50

Fig. 7.51 Recycling plant

Page 179: Technical Handbook Australia COMPLETE 2

Specific Techniques | 179

Specific Techniques

7.12 Outdoor lighting controls (OLC) The prevalent technology used in conventional outdoor lighting has minimal control. Time clocks or photocells determine if a luminaire is on or off and monitoring and reporting of luminaire faults is dependant upon local residents or street patrols. The lighting is therefore inflexible and the quality of maintenance can be poor.

The use of modern outdoor lighting controls can overcome these difficulties and supply many additional benefits. Benefits of using lighting controls can be

• Areductioninunnecessarynight-timelightingbyprovidingfacilities to dim or turn-off luminaires based upon user needs.

• Contributingtothereductionoftrafficaccidentsandcrimerates by providing needs-specific lighting, for example increasing lighting levels during busy times at road junctions, motorway exits or areas of mixed pedestrian and motorised traffic.

• Toallowlightingtoeasilyadapttospecialoccasions.Forexample during a street festival lighting can be controlled to ensure suitable light levels based on the needs of the event (this may involve increased lighting or even a decrease in light levels if festival lights are being used).

• Allowingenergyneedstobemoreaccuratelydefinedandoptimised, reducing energy consumption and therefore CO2 emissions and also saving money.

Additional benefits in the management of the lighting equipment may be

• Allowingthestatusofluminairestobemonitoredandfailures to be automatically reported, so that defective components may be replaced when they fail.

• Allowingmaintenanceschedulestoberationalisedbasedupon computer records of lamp burning hours, luminaire cleaning schedules, etc.

Page 180: Technical Handbook Australia COMPLETE 2

| Specific Techniques 180

Specific Techniques

• Reducingtravelcoststhroughautomaticreportingoffaults,removing the need for street patrols

Lighting control and monitoring are the two central abilities of the Thorn Telea system. Telea offers the flexibility of two communication technologies :

• APowerlinecommunicationsystemusesthemainscablingto transmit signals

• AnRFcommunicationsystemusesradiofrequencytotransmit data.

In both cases there is no need to install new cables, and both systems allow instant reporting of fault conditions using SMS messages to an assigned person.

A Telea installation consists of:

• Luminairecontrollers

• Comboxes

• CentralManagementserver

Fig. 7.52 Components of a Telea installation

Powerline Data Communication

Radio Frequency Data Communication

Network connection, e.g. TCP/IP

Powerline Data Communication

Page 181: Technical Handbook Australia COMPLETE 2

Specific Techniques | 181

Specific Techniques

Luminaire controllers These are installed in each individual luminaire, either inside the lantern or within the column. The controller switches the lamp on and off and depending on the capabilities of the ballast may also control power reduction/dimming. The controller allows various operating parameters to be measured (such as burning hours, lamp faults, etc) and feeds the information back to the Combox. It contains an astrological clock and internal memory enables programmes to continue to operate in the event of signal breakdown. The two types of controller (Powerline and Radio Frequency) may be mixed on one single installation.

Repeater functionality integrated into Telea controllers make the communication extremely reliable and adaptable to any grid topology and also remove the need for external relays.

Combox featuresA Combox consists of the following components :

• oneComboxcontroller

• onetransceiver(PLorRF)

• one24Vpowersupply

• threefilters(PLonly)

• oneGSMmodem

Installed at the switch cabinet, the Combox controls up to 255 luminaire controllers. It integrates all switching programmes and feedback from the controllers and feeds information back to the central server. It can send error messages reporting luminaire faults to one or several designated mobile phones.

There are two types of Comboxes, used respectively for Powerline or Radio Frequency luminaire controllers. Both types can control up to 255 luminaire controllers. The RF Combox does not actually need to be contained within a switch cabinet, only requiring power to operate, but the use of a switch cabinet is normal practice.

Maximum distances between the Combox and the first luminaire controller, or between two controllers are approximately 200m for Powerline and 100m for Radio Frequency installations. Fig. 7.54 Telea Combox RF SMS

Fig. 7.53 Telea Powerline luminaire controller

Page 182: Technical Handbook Australia COMPLETE 2

| Specific Techniques 182

Specific Techniques

CME central server featuresInstalled in the control room this comprises a hardware and the CME software. The CME server is optional (an installation may run with only Comboxes and luminaire controllers) but is necessary for central monitoring and offers an intuitive interface for configuring and monitoring the installation.

Data transfer between the server and Comboxes is achieved through telephone (GSM) or computer network (TCP/IP) communication protocols. In the case of GSM communication the data transfer is usually programmed to occur at the end of night, so that errors that might have arisen during the night can be visualised on the screen the following morning.

The CME server can be interfaced with existing servers within technical limitations. For example, the Geographical Information System (GIS) enables lighting points to be visualised on a map and faults or maintenance data such as burning hours to be easily recognisable using colour coding. Please contact your Thorn representative for further information.

Upgrading existing luminairesThe Telea system can be implemented into existing as well as new lighting installations. For example the RF switch controller (LSRF) fits into any luminaire equipped with a NEMA socket, adding Telea functionality to the standard photocell. In addition, all Powerline controllers can be supplied in boxes designed for installation in poles, enabling retrofit installation when mechanical and temperature constraints prevent the integration into the gear compartment.

Telea for new lighting installationsFor new installations Thorn can integrate Telea luminaire controllers into several Thorn streetlighting luminaires. This completely in-house service guarantees the conformity of all of the luminaires to existing standards, including Electro-Magnetic Compliancy (EMC).

Fig. 7.55 Telea CME software

Page 183: Technical Handbook Australia COMPLETE 2

Checklists | 183

8 Checklists

8.1 Life cycle analysisWhen installing new lighting, or refurbishing an existing scheme, it is important to quantify and compare the benefits of possible alternative replacement lighting systems. These benefits are quantified in terms of a life cycle calculation for each lighting system, that is over the planned life of the installation how much will each system cost. These values can be compared and the most favourable option chosen. (Note that the most favourable option from a financial viewpoint may not be the best option from a lighting viewpoint. At some point a decision will have to be made as to the relative importance of these factors and a compromise reached).

If the chosen system is to be a replacement for an existing installation a cost benefit of the new system compared to the existing installation may be made by calculating the pay back period, as shown Section 8.2.

Worksheet 8.1 aids life cycle analysis. Formulae used is this worksheet are:

(Note that the model given on the following page is a static model in that it ignores the costs of depreciation of equipment and interest payments).

Luminaire costs = Number of luminaires x cost of one luminaire

Lamp costs = number of luminaires x number of lamps per luminaire x cost of one lamp

Installation costs = number of luminaires x installation cost per luminaire

Room cleaning costs = cost of room cleaning x service life of system (years) room cleaning interval (years)

Luminaire cleaning costs = cost of luminaire cleaning x service life of system (years) luminaire cleaning interval (years)

Lamp replacement costs = cost of lamp replacement x service life of system (years) lamp replacement interval (years)

Energy costs = (number of luminaires x system power of luminaire x service life of system x annual burning hours x energy cost per kWh x %energy savings due to controls)/1000

Operating costs = room cleaning costs + luminaire cleaning costs + lamp replacement costs + energy costs

Annual operating costs = operating costs/service life of system

Page 184: Technical Handbook Australia COMPLETE 2

| Checklists 184

ChecklistsChecklistsBuilding Project

Luminaire type (1)Luminaire dataNumber of lamps per luminaire (2)System power of luminaire (W) (3)Operating dataService life of system (years) (4)Annual burning hours (5)Lamp replacement interval (years) (6)Luminaire cleaning interval (years) (7)Room cleaning interval (years) (8)Number of luminairesLamp lumens maintenance factor (9)Lamp survival factor (10)Luminaire maintenance factor (11)Room surface maintenance factor (12)Maintenance factor [ (9)x(10)x(11)x(12) ] (13)Number of luminaires (14)Itemised investment costsCost of one luminaire (15)Cost of one lamp (16)Installation costs per luminaire (17)Itemised operating costsCost of lamp replacement (18)Cost of luminaire cleaning (19)Cost of room cleaning (20)Energy costs per KWh (21)%Energy savings due to control system (22)Investment costsLuminaire costs [ (14)x(15) ] (23)Lamp costs [ (14)x(2)x(16) ] (24)Installation costs [ (14)x(17) ] (25)Investment costs [ (23)+(24)+(25) ] (26)Operating costsRoom cleaning costs [ (20)x(4) / (8) ] (27)Luminaire cleaning costs [ (19)x(4) / (7) ] (28)Lamp replacement costs [ (18)x(4) / (6) ] (29)Energy costs [ (14)x(3)x(4)x(5)x(21)x(22) / 1000 ] (30)Operating costs [ (27)+(28)+(29)+(30) ] (31)Annual operating costs [ (31) / (4) ] (32)

Total costs over installation life [ (31)+(26) ] (33)

Worksheet 8.1

Option 1 Option 2

Page 185: Technical Handbook Australia COMPLETE 2

Checklists | 185

Checklists

8.2 EconomicsWhen refurbishing an existing installation it is important to be able to quantify the benefits of the new lighting system compared with the existing system. These benefits are quantified in terms of the payback period. This is a comparison of the expenditure in terms of investment costs to buy and install a new system, compared with the savings in annual operating costs through having the new system. Thus if a payback time is 5 years this means that after 5 years the savings from using the new system have cancelled out the costs of buying the new system.

Worksheet 8.2 aids in the calculation of this value. Formulae used is this worksheet are:

(Note that the model given in Worksheet 8.2 is a static model in that it ignores the costs of depreciation of equipment and interest payments).

Luminaire costs = Number of luminaires x cost of one luminaire

Lamp costs = number of luminaires x number of lamps per luminaire x cost of one lamp Installation costs = number of luminaires x installation cost per luminaire

Room cleaning costs = cost of room cleaning x service life of system (years) room cleaning interval (years)

Luminaire cleaning costs = cost of luminaire cleaning x service life of system (years) luminaire cleaning interval (years)

Lamp replacement costs = cost of lamp replacement x service life of system (years) lamp replacement interval (years)

Energy costs = (number of luminaires x system power of luminaire x service life of system x annual burning hours x energy cost per kWh x %energy savings due to controls)/1000

Operating costs = room cleaning costs + luminaire cleaning costs + lamp replacement costs + energy costs

Annual operating costs = operating costs / service life of system

Pay back period = investment cost proposed installation – investment cost existing installation annual operating costs existing installation - annual operating costs proposed installation

Page 186: Technical Handbook Australia COMPLETE 2

| Checklists 186

Building Project

Luminaire type (1)Luminaire dataNumber of lamps per luminaire (2)System power of luminaire (W) (3)Operating dataService life of system (years) (4)Annual burning hours (5)Lamp replacement interval (years) (6)Luminaire cleaning interval (years) (7)Room cleaning interval (years) (8)Number of luminairesLamp lumens maintenance factor (9)Lamp survival factor (10)Luminaire maintenance factor (11)Room surface maintenance factor (12)Maintenance factor [ (9)x(10)x(11)x(12) ] (13)Number of luminaires (14)Itemised investment costsCost of one luminaire (15)Cost of one lamp (16)Installation costs per luminaire (17)Itemised operating costsCost of lamp replacement (18)Cost of luminaire cleaning (19)Cost of room cleaning (20)Energy costs per KWh (21)%Energy savings due to control system (22)Investment costsLuminaire costs [ (14)x(15) ] (23)Lamp costs [ (14)x(2)x(16) ] (24)Installation costs [ (14)x(17) ] (25)Investment costs [ (23)+(24)+(25) ] (26)Operating costsRoom cleaning costs [ (20)x(4) / (8) ] (27)Luminaire cleaning costs [ (19)x(4) / (7) ] (28)Lamp replacement costs [ (18)x(4) / (6) ] (29)Energy costs [ (14)x(3)x(4)x(5)x(21)x(22) / 1000 ] (30)Operating costs [ (27)+(28)+(29)+(30) ] (31)Annual operating costs [ (31) / (4) ] (32)

0000

Worksheet 8.2

Existing installation

Proposed installation

Pay back period* = (26)Proposed – (26)Existing (years) (32)Existing – (32)ProposedPay back period* = – = years –

*excludes depreciation and interest

Page 187: Technical Handbook Australia COMPLETE 2

Checklists | 187

Checklists

8.3 Lighting energy numeric indicator (LENI)It is becoming increasingly important to estimate the energy requirements of lighting in buildings and to quantify these requirements against best practice. To help, the CEN EN 15193 document has been produced, which introduces the Lighting Energy Numeric Indicator (LENI). The document also provides guidance with notional limits derived from reference standards. Note that whilst responsible use of energy is important it must not lead to inadequate lighting schemes being produced. Both the lighting requirements and energy usage requirements should be fulfilled.

Some terminology used in the LENI calculation may be unfamiliar and is, therefore, given below.

Total installed charging power for emergency lighting (Pem) – installation input charging power, in watts, of all emergency lighting luminaires in an area. Units: kWh/(m2 x year).

Pem = Pei

i

Where Pei is the emergency lighting charging power in watts.

Total installed control circuit parasitic power (Ppc) – installation input power, in watts, of all control systems within luminaires in an area when the lamps are not operating. Units: kWh/(m2 x year).

Ppc = Pci

i

where Pci is the parasitic power consumed by the controls when the lamps are off, in watts.

Total installed lighting power (Pn) – installation power in watts of all luminaires in an area. Units: W/m2.

Pn = Pi

i

where Pi is the luminaire power in watts.

Daylight operating hours (tD) – installation operating hours when daylight is present. Units: hours.

Non-daylight operating hours (tN) – installation operating hours where daylight is not present. Units: hours.

Page 188: Technical Handbook Australia COMPLETE 2

| Checklists 188

Annual operating time (tO) – the annual number of hours with the lamps operating (i.e. turned on)

to=to+tnwhere tD and tN are defined above.

Standard year time (ty) – the time taken for one standard year to pass, taken as 8760 hours.

Emergency lighting charge time (te) – the operating hours during which the emergency lighting batteries are being charged. Units: hours.

Constant illuminance factor (FC) – this is a factor relating to the usage of the total installed power when constant illuminance control is in operation in the area . When constant illuminance control is not in operation this has the value of 1. Units: none.

Occupancy dependency factor (FO) – this is a factor relating the usage of the total installed lighting power when occupancy control is in operation in the area. When occupancy control is not in operation this has the value of 1. Units: none

Daylight dependency factor (FD) – this is a factor relating the usage of the total installed lighting power to daylight availability in the area. When daylight control is not in operation this has the value of 1. Units: none

The LENI formula is

WLENI = A

where

W is the total energy used for lighting a room or zone in kWh/year and A is the total useful floor area of the building in m2.

W is composed of two components

W=WL+WP

where

WL is the annual lighting energy required to provide illumination so that the building may be used.

WP is the annual parasitic energy required to provide charging energy for emergency lighting systems and standby energy for lighting control systems.

Checklists

Page 189: Technical Handbook Australia COMPLETE 2

Checklists | 189

WL may be calculated using the formula

WL = {(PnxFC)x[(tDxFOxFD)+(tNxFO)]}/1000

where the individual terms are defined above.

WP may be calculated using the formula

WP = {{PPCx[ty – (tD + tN)]} + (Pemxte)}/1000

where the individual terms are defined above.

Worksheet 8.3 helps calculate the LENI value. Note that values entered in the spreadsheet are the total values for all luminaires in the installation. If more than one luminaire type is used the total energy usage value (18) should be calculated for each luminaire type and the results summed. This summed value should then be used to calculate the LENI value.

Checklists

Page 190: Technical Handbook Australia COMPLETE 2

| Checklists 190

ChecklistsBuilding Project

Parasitic powerTotal emergency charging power (Pem) (1)Total lighting controls standby power (Ppc) (2)

Luminaire dataTotal installed power (Pn) (3)

Operating hoursDaylight operating hours (tD) (4)Non-daylight operating hours (tN) (5)Standard year time (ty) (6)Emergency lighting charge time (te) (7)

FactorsConstant illuminance factor (FC) (8)Occupancy dependency factor (FO) (9)Daylight dependency factor (FD) (10)

Parasitic energyLighting controls parasitic power(2) x [ (6) - ( (4) + (5) ) ] (11)Emergency lighting parasitic factor(1) x (7) (12)

Total parasitic energy usage( (11) + (12) ) / 1000 (13)

Illumination energyEnergy usage without daylight/occupancy control (3) x (8) (14)Daylight energy usage(4) x (9) x (10) (15)Non-daylight energy usage(5) x (9) (16)

Total energy usage for illumination{ (14) x [ (15) + (16) ] } / 1000 (17) Total annual energy usage (13) + (17) (18)

Total useful floor area in m2 (19)

Lighting energy numeric indicator (LENI)(18) / (19)

8760 8760

Worksheet 8.3

Installation 1 Installation 2

Page 191: Technical Handbook Australia COMPLETE 2

Checklists | 191

Checklists

Worked example – LENI calculationProject – Electronic device assembly plantLocation North East EnglandSize Length = 55m, Width = 48m, H = 6m,

Useful area = 2640m²Roof 20% glazed to allow entry of daylightWalls 2 sides 30% glazed to allow daylightInterior Light colour with open plan assembly line layout

Operational hours = 4000 hrs/year (2500 daylight, 1500 no daylight)

Standard year hours = 8760 hrs/yearLighting requirements – 500 lx on work plane, Uo > 0.7,

UGR <19, Ra > 80,Lighting quality class – medium (two star)

Lighting solution – 230 off Primata II 2x49W T16 lamps battens with slotted white reflector optic and DALI controlled dimmable HF ballast linked daylight detection and auto off control30 off as above but with E3 emergency lighting capability6 off 1x18W T26 Exit signs

Required data – Circuit watts of the Primata II luminaire – 106 WCharge power for Primata II emergency lighting circuit – 3.5 W/luminaireStandby power for DALI ballast in the Primata II – 0.4 W/luminaireCharge power for Exit sign luminaires – 10 W/luminaire

EstimationsPem – {(3.5 x 30 x 8760) + (10 x 6 x 8760)}/(2640 x 1000)

= 0.55 kWh/m²/yearPpc – (0.4 x 260 x 8760)/(2640 x 1000) = 0.35 kWh/

m²/yearPn – (106 x 260)/2640 = 10.4 W/m²Fc (constant illuminance control MF = 0.8) – 0.9Fd (daylight link control medium daylight supply) – 0.8Fo (presence control manual on/auto off) – 0.9

LENI = (0.9 x 10.4)/1000 x {(2500 x 0.8 x 0.9) + (1500 x 0.9)} + 0.55 + {0.35/8760 x (8760 – (2500 + 1500)]} = (8.4/1000) x (1800 + 1350) + 0.55 + (0.35/8760 x 4760) = (9.36 x 3.15) + 0.55 + 0.19 = 30.22 kWh/m²/year LENI = 30.22 kWh/m²/year

Page 192: Technical Handbook Australia COMPLETE 2

| Checklists 192

Checklists

Table 8.1 shows the parameters and results for this project in line B. It shows that the addition of the controls will yield a 21% reduction in the energy requirements.

Line A shows the energy requirements if daylight was not admitted into the building and Line C show the Benchmark values for this type of project taken from EN 15193-2007 Annex F Table F1.

Building Q Pm Ppc Pload tD tN Fc FO FD

Qualityclass

ParasiticEmergencykWh/ (m2 x year)

ParasiticControlkWh/ (m2 x year) W h h

no constantilluminance

constantilluminance

Manual-

Auto-

Manual-

Auto-

Manufacture ** A 0.55 0.35 10.4 2500 1500 1 0.9 1 0.9 1 1

** B 0.55 0.35 10.4 2500 1500 1 0.9 1 0.9 1 0.8

** C 1 5 20 2500 1500 1 0.9 1 1 1 1

Building LENI LENI LENI LENI

no constant illumination constant illumination

Manual Auto Manual AutoGain%kWh/(m2/year) kWh/(m2/year)

Manufacture 42.3 38.2 38.2 34.4 10

42.3 33.5 38.2 30.2 21

83.7 83.7 75.7 75.7 0

Table 8.1

Page 193: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 193

9 Lamps, LEDs and Circuits

9.1 Choosing the right lampPart of the expertise of the lighting designer is the ability to find the most suitable combination of lamp and luminaire to light a given environment. Choosing the correct lamp depends upon what is required of the lighting. The relevant key lighting characteristics of lamps are given below.

Luminous flux/luminous efficacyThe total amount of light generated by the lamp. The rated luminous flux is measured under standard conditions at 25°C in units of lumen (lm). The ratio of luminous flux to electrical power consumption gives the luminous efficacy (lm/W). The system luminous efficiency also includes the power consumption of the control gear. The greater the efficacy for a given output, the lower the electricity cost, and therefore the lower the contribution of the power station to global warming.

Rated lifeThe average rated life is normally specified. This is the time by which statistically half of a test sample of lamps are still working (e.g. half have failed) under standardised conditions.

Light colourThe light colour relates to the correlated colour temperature (CCT) of a white light source. This describes the colour impression made by a light source; from relatively warm (low colour temperature with predominant red) to cool (high colour temperature with predominant blue).

Colour renditionThe spectral components present in light produced by a lamp determine how well the lamp reproduces object colours. The higher the colour rendition index (Ra or CRI), or the lower the colour rendition group number, the better the colour rendition.

Fig. 9.1 Considerations in choosing a lamp

Table 9.1 Colour rendering groups linked to lamp Ra

Colour rendering group Ra

1A 90-1001B 80-892 60-79

3 40-59

4 20-39- <20

Increasing colour rendition

Luminous flux/luminous efficacy

Lamp power Warm-up time Re-start timeDimming capability

Luminous flux maintenance

Rated life Light colour Colour rendition

Burning position

Page 194: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 194

Burning positionCertain lamps only permit a restricted selection of mounting orientations for correct operation. Manufacturers specify these permitted burning positions for their lamps. For example for some metal halide lamps only certain burning positions are allowed to prevent unstable operating conditions, whilst compact fluorescent lamps may generally be mounted in any orientation (although luminous flux output may vary with burning position).

Dimming capabilityIncandescent, tungsten halogen, fluorescent and compact fluorescent lamps may all be dimmed over almost any range. The output of high-pressure sodium and mercury vapour lamps may be varied, but in a more limited fashion and generally only by discrete levels. Metal halide lamps are not approved for dimming by most manufacturers due to the effect this may have on light quality and lamp life.

Warm-up timeMany lamps need between 30 seconds and several minutes to warm up and output their full luminous flux. These include high-pressure discharge lamps and fluorescent lamps.

Re-start timeWhen high-pressure discharge lamps (also known as high-intensity discharge lamps or H.I.D. lamps) are turned off they need to cool down for several minutes before they can be started again. This has implications in applications where after a dip in the power supply instant re-strike is required.

Lamp powerThe electrical power consumed by the lamp, as opposed to the electrical power consumed by a system consisting of lamp and control gear.

Luminous flux maintenanceAs a lamp ages through life the peak luminous flux output by the lamp decreases due to deterioration in the performance of the lamp chemicals and in the physical lamp structure. Manufacturers produce lumen maintenance curves for their lamps showing how the luminous flux depreciates over time.

Lamps, LEDs and Circuits

Page 195: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 195

9.2 Tungsten halogen lamps

Key attributesFor mains or low-voltage operationLonger rated life and higher luminous efficacy than incandescent lampsEasy to dimBrilliant lightLow-voltage types are very small and are ideal for precise direction of light (but do require a transformer)Excellent colour rendition

Key application areasRetail and domesticRestaurants and catering

How they workCurrent flows through a filament and heats it up, just as in incandescent lamps. These lamps therefore generate a relatively large amount of heat. The halogen cycle increases the efficiency and extends the rated life compared with traditional incandescent lamps. (The halogen cycle is a chemical mechanism that causes tungsten that evaporates from the filament during operation to be deposited back onto the filament, thereby reducing blackening of the bulb wall. Chemicals used in the halogen cycle also slow down the rate of diffusion of filament material, thereby increasing the filament life, which is the principal failure mechanism)

9.3 Fluorescent lamps

Key attributesHigh to very high luminous efficacyGood to excellent colour renditionLong rated lifeExtensive range of typesDimmable

Key application areasExtensively used in most application areas

How they workAn alternating electric field generates UV radiation (which is in itself invisible to the human eye) between the two electrodes in the discharge tube. This UV radiation is converted into

Lamps, LEDs and Circuits

Fig 9.2 Tungsten halogen lamps

Fig 9.3 Fluorescent lamps

Page 196: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 196

visible light in the phosphor coating on the tube wall. The colour rendering and colour temperature attributes of the light produced depend upon the chemical composition of the phosphors. The lamp needs a starting aid and a current limiting device, which may be combined in an electronic ballast. The luminous flux is highly dependent on the ambient temperature around the lamp.

Application notesT16 fluorescent lamps differ from T26 versions in several characteristics that the user should be particularly aware of.

1. Luminous flux vs. temperature curve

As with all fluorescent lamps, the luminous flux produced by the lamp is temperature dependant. An optimum ambient temperature exists for which the light output is a maximum, and the light output decreases as the ambient temperature moves away from this optimum. Both the T16 and T26 lamps have the same basic shaped curve, however the optimum temperature for a T16 is 35°C, whereas the optimum temperature for a T26 lamp is 25°C. The reason for this is that the lamp cool spot for a T16 lamp is at the end of the tube with the manufacturers label printed on it, whereas the cool spot for a T26 lamp is in the centre of the tube.

One effect of this differing optimum temperature is that the rated luminous flux quoted by manufacturers is at a standard temperature of 25°C. For the T16 lamp the maximum value of flux lies above this value, and therefore the luminaire light output ratio (LOR) may have levels greater than 100%.

Lamps, LEDs and Circuits

110100

908070605040302010

05 10 15 20 25 30 35 40 45 50 55

T16

T26

Ambient temperature ˚C

Rela

tive

lum

inou

s flu

x %

Fig. 9.4 Curves relating luminous flux to ambient temperature for T16 and T26 linear fluorescent lamps

Page 197: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 197

Lamps, LEDs and Circuits

2. Lamp Orientation

Owing to the two electrodes (tube ends) not being identical in design it matters how one or more lamps are fitted in the luminaires, In general, lamp ends should always have the same orientation (so that the lamp labels should be at the same lamp ends for all luminaires). In cold environments it could be a benefit to lamp output to have the lamp labels at opposite ends to aid heating of the lamp cold spot.

3. Ageing/burning in

Brand new lamps stabilise during the initial aging phase. This is the period immediately after the lamps are switched on for the first time, when the initially encapsulated mercury is vaporised and evenly distributed throughout the lamp. Unstabilised lamps may differ in brightness and light colour, and may exhibit flickering at low dimming levels. To ensure perfect operation a period of two to four days of operation without switching or dimming should be allowed, particularly in installation which allow dimming. One should also wait for proper ageing before assessing an installation for illuminance levels and light quality.

Table 9.2 Summary of selected lamps

T16 T26

Length PowerRated luminous flux (25°C)

Length PowerRated luminous flux (25°C)

549mm 14W 1200lm 590mm 18W 1350lm24W 1750lm

849mm 21W 1900lm 895mm 30W 2350lm

39W 3100lm1149mm 28W 2600lm 1200mm 36W 3350lm

54W 4450lm1449mm 35W 3300lm 1500mm 58W 5200lm

49W 4300lm

80W 6150lm

Page 198: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 198

Lamps, LEDs and Circuits

9.4 Compact fluorescent lamps

Key attributesCompact designsHigh luminous efficacyExcellent colour renditionExtensive range of typesDimmable

Key application areasCommercial

Domestic, hotels and many exteriors

How they workThese lamps are compact versions of the linear or circular fluorescent lamps and operate in a very similar way. The luminous flux depends upon the burning position and ambient temperature around the lamp.

Application notes1. Amalgam lamps

The strong temperature dependence of the luminous flux of traditional and compact fluorescent lamps can be compensated by adding amalgam that helps to trap mercury and slow its release. This helps to check the steep drop-off of luminous flux at higher or lower temperatures so that at least 90% of the maximum luminous flux is achieved over a wide temperature range, typically about +5 to +70°C. Above and below this range however, the light level still falls off sharply. Note that amalgam lamps are comparatively slow to run-up and should not be used for emergency lighting of dangerous workplaces (100% luminous flux required after 0.5 seconds). Amalgam lamps are also unsuitable for installations with high quality dimming requirements since lamps may not dim uniformly.

2. Lamp orientationThe luminous flux from compact fluorescent lamps is highly dependant upon the burning position. Ensuring the lamps are correctly inserted can therefore optimise the light output ratio. Standard types of lamp have a cool spot in the exposed lamp bend, so that self-heating and convection may lead to a temperature rise here. (In amalgam lamps the cool spot lies in the base). In compact luminaires with

Fig. 9.5 Compact fluorescent lamps

Page 199: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 199

Lamps, LEDs and Circuits

horizontal lamp arrangement, such as downlights, it is therefore recommended to fit the lamps with electrodes uppermost wherever possible. Since the lamp end does not allow consistent identification of the electrode position, that lamp side on which adjacent tubes are not connected should be placed uppermost – these are the two tube ends containing the internal electrodes.

9.5 Metal halide lamps

Key attributesHigh luminous efficacyGood to excellent colour renditionHigh colour stability for ceramic discharge-tube lampsLimited dimming. Some manufacturers advise no dimming of this lamp

Key application areasIndustrialSpotlightingFloodlightingRetail areas

How they workIn metal halide lamps a highly compact electric arc is produced in a discharge tube. The composition of the chemicals in the tube determines the quality of light produced. An ignitor is needed to switch on the lamp, and the current must be controlled by a ballast. The use of ceramic discharge tubes further improves the lamp properties.

Application notes1. Ballasts

The manufacturers of metal halide lamps use a range of operating principles, resulting in different electrical operating values. Some lamps are therefore approved for operation with both ballasts for metal halide lamps and with ballasts for high-pressure sodium vapour lamps. The higher operating current then leads to higher luminous flux levels for the same lamps, together with slightly altered light quality. In both cases suitable ignitors are required.

Fig. 9.6 Metal halide lamps

Page 200: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 200

Lamps, LEDs and Circuits

2. IgnitorsAn ignitor is a starting device that generates voltage pulses to start a discharge lamp. A basic ignitor will do this until the lamp strikes, which means that if there is a problem with the lamp or circuit that prevents the lamp starting the ignitor will continue to try to start the lamp until the circuit is turned off or potentially the ballast is damaged. Modern ignitors therefore normally incorporate anti-cycling control that can sense the normal end-of–life mode of a lamp and disables the ignitor. This normally happens after the ignitor has tried to start the lamp a few times, and for metal halide lamps this is generally after approximately 15 minutes. (For high pressure sodium lamps this will be after approximately 5 minutes).

3. Glass coversIn general metal halide lamps require a glass cover to protect people and property in the event of the lamp exploding. It is the manufacturers responsibility to decide whether to permit individual lamp types to be used in uncovered luminaires. Suitable safety devices are installed in the lamps for this purpose (e.g. integral safety tube, outer protective coating). The detailed information from the manufacturer must be observed without fail.

4. Rated life characteristicsThe average rated lamp life and the reduction in luminous flux with age can vary markedly between lamp types. They also depend on the switching frequency and the position of use. Detailed data from the manufacturer should be used to determine suitable maintenance factors for the operation of the lamp (lamp survival factor and lamp luminous flux maintenance factor).

9.6 Sodium vapour high pressure lamps

Key attributesHigh luminous efficacy and long rated lifeSatisfactory to poor colour renditionCan be dimmed in discrete stepsColour improved sodium lamp - Good colour renditionWarm light

Fig. 9.7 Sodium vapour high pressure lamps

Page 201: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 201

Lamps, LEDs and Circuits

Key application areasIndustrialStreet lightingColour improved sodium lamp - Retail areas

How they workThe discharge in the linearly extended ceramic discharge tube is defined by sodium, so the light is yellowish and only suitable for certain applications although colour improved versions of the lamp do exist, An ignitor is needed to switch on the lamp (although some lamps have a built-in ignitor and do not need any external starting aids), and the current must be controlled by a ballast.

Note, sodium vapour low pressure lamps generate poor quality yellow light with extreme high efficacy. They are often used for street lighting.

9.7 Mercury vapour lamps

Key attributesNo starter required, just a ballastSatisfactory to poor colour renditionCan be dimmed in discrete stepsLow efficacy

Key application areasIndustrialStreet lightingWalkways

How they workThe almost obsolete high-pressure mercury lamp is actually the forerunner to the modern metal halide lamp, although it provides poorer colour rendering and efficacy. The lamps can be started at mains voltage, and so only need a ballast to limit the current.

Fig. 9.8 Mercury vapour lamps

Page 202: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 202

Lamps, LEDs and Circuits

9.8 Induction lamps

Key attributesRotationally symmetrical light distributionLong rated lifeNot dimmable

Key application areasAreas where it is difficult to replace lampsCommercial and industrial interiorsRetailIndoor and outdoor public areas

How they workA very high-frequency electromagnetic field is coupled into the glass bulb using an antenna protruding into the bulb. This field excites the mercury to produce UV radiation that is then converted into visible light using phosphors, just as in fluorescent lamps. The amalgam technology used in these lamps makes their luminous flux only very slightly temperature dependant. The lamps can only be operated with special electronic ballasts and have a built in microwave screen. Systems have a very long service life due to the absence of any electrodes, however the effects of lumen depreciation should still be considered. As yet there are no dimmable electronic ballasts available.

9.9 Light Emitting Diodes (LEDs)

Key AttributesGood luminous efficacy Long service lifeLow voltage DurableEmit very little heatSmall dimensions

Key application areasExterior signage, display and directional lighting Dynamic colour effects

How they workAn LED is a small solid-state semiconductor device that emits light when an electric current passes through it. The LED consists of a diode chip that is encased in an epoxy, plastic, resin

Fig. 9.9 Induction lamp

Fig. 9.10 LED

Page 203: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 203

Lamps, LEDs and Circuits

or ceramic housing. This LED housing may be in a variety of shapes and sizes and helps determine the optical characteristics of the LED. Generally a second optical controller is used in the form of a lens mounted on the epoxy housing, and the overall characteristics of the system, from the shape and size of the LED to the configuration of the lens and distance from the diode chip to the lens define the final optical performance of the system.

As well as the optical control of the system, designing using LEDs requires careful control of heat removal from the package. Whilst the ratio of light to heat produced by LEDs is much higher than for an incandescent light source (such as a GLS light bulb) they do still produce a significant amount of heat. This heat must be removed from the LED using heat sinking, as LEDs are very sensitive to the junction temperature of the internal diode, and excess heat will shorten the life of the LED or cause failure.

Finally to operate LEDs requires a regulated direct current supply, usually supplied by a self-contained “driver” which converts the AC mains electricity to the correct DC voltage. This driver must be correctly matched to the LED it is powering as incorrect voltage and current will at best provide poor light, and may severely reduce the life of the LED or cause instantaneous failure of the system. The driver must also protect the LED system from voltage fluctuations that may cause damage. The driver can provide a quite advanced level of control, allowing dimming down to 0%, and with a cluster of different coloured diodes and the use of technology such as DMX protocols linked to a light mixing console extremely complex lighting effects may be produced.

LEDs have reasonable electrical efficiency in terms of lumens per watt (i.e. the power input to the driver compared with the light produced by the LEDs) and they are improving all the time but currently they do not compare with the high values from discharge lamp technology.

So the LED is not a true lamp, generally being supplied as a complete electrical and optical system, which is then embodied into a housing.

LED chip

Copper cladding

Heat

Cathode pin

+–

Fig. 9.11 Structure of an LED

Page 204: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 204

RYGB white

RYG(B) Phosphers

Blue or UVLED

Phosphordown-conversion

Colourmixing

Mixingoptics

RYGBLEDs

RYGB white

Lamps, LEDs and Circuits

The light produced by an LED is monochromatic and the colour of the emitted light depends on the material used in the fabrication of the LED and varies from red through orange, yellow, green and blue. To produce white light a variety of methods are used. The best method in terms of quality of the spectrum of light is produced using a blue LED with a yellowish phosphor coating, in principal similar to a fluorescent lamp. This is termed a phosphor down conversion. The use of a phosphor does, however, decrease the efficiency of the system. LED packages may also be configured to produce mixed or blended light, either through the use of three or more different coloured LEDs (such as a mixture of red, yellow, green and blue) or through a multicolour LED that incorporates two or more different colour chips within the same epoxy package. These blended systems whilst suitable for lighting within the entertainment industry or in colour changing applications should be used with caution in the wider lighting environment as while they may visually produce white light the actual spectrum of the light is still three or more monochromatic peaks of light and therefore accuracy of colour rendering can be poor.

An additional consideration is that the process for producing LEDs cannot accurately reproduce LEDs with identical colour appearances, especially for white LEDs. If a random set of LEDs was taken which were all nominally white they would have differing appearances. To overcome this a process called binning is used, in which the LEDs are sorted into groups of similar colour appearance. The accuracy of the colour match depends upon the bin size, a larger bin size will contain a wider spread of colour appearance than a smaller bin size. However, decreasing the bin size increases manufacturing and LED costs. When using groups of LEDs or LED luminaires it is essential that the LEDs come from the same bin to give a consistent appearance.

When buying LEDs, either as a component to insert into a fixture or as a complete luminaire the LEDs may be supplied in various configurations, varying from individual LEDs to clustered or linear formats. They may also be supplied with or without a secondary lens. This gives flexibility in application, the configuration being chosen to suit the fixture it is to be used within.

Fig. 9.12 White LED using phosphor coating

Fig. 9.13 White LED using colour blending

Page 205: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 205

Lamps, LEDs and Circuits

A benefit of LED technology is the relatively long life of the systems, manufacturers quote upwards of 50,000 hours life for LEDs, but other factors should be considered. Whilst an LED may produce light for a long period the amount of light produced will deteriorate over time. Therefore, and especially in critical applications such as emergency lighting, care should be taken to ensure that there is still sufficient light output at end of life. This depreciation of light output is mainly due to discoloration of the epoxy housing of the LED over time. Lumen depreciation and LED life varies between manufacturers, and even between colours of LEDs so manufacturers data should be consulted.

So how is an LED luminaire used? A major advantage of LEDs is their small size and long life. This makes them ideal for effects lighting where hidden lights are used to create an atmosphere in a space. Additionally, LEDs are already used extensively in signage and signaling, and in the entertainment industry. The use of LEDs in emergency lighting is becoming more common, and LED luminaires are good for providing guidance and emphasis due to their small size and availability in many colours of light. Impressive applications of LEDs may be seen, including domestic residences, retail and social environments, and in the exterior lighting of buildings. Additionally as the light produced by an LED is “cold” it has major benefits in applications such as museums where heat produced by the lighting of an artifact may cause significant damage to that artifact. However, a limitation of LEDs for this type of lighting is their monochromatic nature, except for phosphor white LEDs.

At the moment the technology is not suitably advanced to allow extensive use in the general lighting environment or more specialized applications such as streetlighting or floodlighting, but with future developments this may come.

Fig . 8.14 Examples of LED packa ge configura tions

Fig. 9.14 Examples of LED package configurations

Fig . 8.15 An exampl e of an LED syst em in tegra ted with buil ding

arch itecture

Fig. 9.15 An example of an LED system integrated with building architecture

Page 206: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 206

Lamps, LEDs and Circuits

9.10 Lamp coding systems – LBS/ILCOS

ILCOS lamp codeTo support the worldwide identification of compatible lamp types the IEC has produced a generic lamp coding system standard, called the International Lamp Coding System or ILCOS, published in 1993 as IEC TS 61231. The system is directly linked to the IEC standard for specific lamps. The lamp standard has data sheets that are identified by the ILCOS code. ILCOS offers a short code “ILCOS L” that can be expanded, in code, to cover several features of the lamp. The standard code “ILCOS D” gives the complete designation of the lamp. All lamp manufacturers made a direct link between their private brand code and the ILCOS system. The responsibility for maintaining the ILCOS system is with the IEC lamp technical committee.

LBS lamp code systemIn 1994 the Zentralverband Elektrotechnik und Elecktronikindustrie, better known as ZVEI, the Industry Federation in Germany, produced a lamp coding system called Lampenbezeichnungssystem or LBS for short. The codes are widely used by luminaire makers and clients in Europe. The system is of simple codes and has short descriptions and is maintained by ZVEI, but it is not supported by all lamp-makers or by international standards.

A selection of ILCOS and equivalent LBS codes with their meanings are given in Table 9.3.

Fig. 9.16 LED lighting providing a distinctive atmosphere to a space

Fig. 9.17 An LED ground recessed luminaire

Fig . 8.16 LED lighting provi ding a dis tinctive atmosp here to a space

Page 207: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 207

Lamps, LEDs and Circuits

LBS (ZVEI) ILCOS Description

A IA General purpose incandescent lamp

R IRR Reflector lamps

QT HSG Halogen incandescent lamps

QT-DE HDG Halogen incandescent lamps, linear double-ended

QPAR HA Halogen incandescent lamps for mains voltage with reflector

QR HAG / HMG Low voltage halogen incandescent lamps with reflector

QR-CBC HRG Low voltage halogen incandescent lamp with dichroic reflector and glass cover

T16 FDH Fluorescent lamps Ø16mm

T26 FD Fluorescent lamps Ø26mm

T16-R FSC Circular fluorescent lamps Ø16mm

TC-S FSD Compact fluorescent lamps (1 tube)

TC-SEL FSDH Compact fluorescent lamps (1 tube) for electronic ballast up to 80W

TC-L FSD Compact fluorescent lamps (1 tube) up to 36W

TC-D FSQ Compact fluorescent lamps (2 tubes)

TC-DEL FSQH Compact fluorescent lamps (2 tubes) for electronic ballast

TC-T FSM Compact fluorescent lamps (3 tubes) up to 36W

TC-TEL FSMH Compact fluorescent lamps (3 tubes) for electronic ballast up to 120W

TC-DD FSS Compact fluorescent lamps (double D)

LMG-lHf FSS Induction lamps (Philips QL type)

HIT-DE MD Double ended tubular metal halide lamp

HIT-DE-CE MT Double ended tubular metal halide lamp with ceramic burner

HIT MT Single ended tubular metal halide lamp

HIE ME Single ended elliptical metal halide lamp

HIE-CE ME Single ended elliptical metal halide lamp with ceramic burner

HME QE High pressure mercury discharge lamp

HSE SE Single ended elliptical high pressure sodium lamp

HSE-I SE/I Single ended elliptical high pressure sodium lamp with internal ignitor

HST ST Single ended tubular high pressure sodium lamp

HSE-MF SE Single ended elliptical high pressure sodium lamp, increased light output (MF = more luminous flux)

HST-MF ST Single ended tubular high pressure sodium lamp, increased light output (MF = more luminous flux)

HSE-CRI SEM Single ended elliptical high pressure sodium lamp improved colour rendering (Philips SON Comfort Pro type)

HST-CRI STH Single ended tubular high pressure sodium lamp improved colour rendering (Philips SON-T Comfort Pro type)

HST STH Single ended tubular high pressure sodium lamp with high colour rendering (e.g. Philips SDW-T, Iwasaki NHT-SDX)

HST-DE SD Double ended tubular high pressure sodium lamp

LST LS Single ended tubular low pressure sodium lamp

Table 9.3 Selection of LBS and ILCOS lamp coding systems

Page 208: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 208

Lamps, LEDs and CircuitsTy

pe

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Fluo

resc

ent

lam

ps

Line

ar

fluo

resc

ent,

sta

ndard

- h

alo

pho

spha

te (

othe

r co

lour

tem

per

atu

res

ava

ilable

)15

0mm

T16

FDT5

(T16

)G

5W

hite

,Whi

te(2

3),W

hite

TL

37.5

435

003

5000

150

-30

0mm

T16

FDT5

(T16

)G

5W

hite

,Whi

te(2

3),W

hite

TL

508

3500

350

0040

0-

530m

mT1

6FD

T5 (T

16)

G5

Whi

te,W

hite

(23)

,Whi

te T

L65

.413

3500

350

0085

0-

450m

mT2

6FD

T8 (T

26)

G13

War

m W

hite

,War

m

Whi

te(3

0),W

arm

Whi

te

TLD

63.3

1529

503

9000

950

-

1500

mm

T38

FDT1

2 (T

38)

G13

Whi

te76

.9/6

2.5

65/8

034

503

9000

5000

-Li

near

fluo

resc

ent,

Tri

-pho

spho

r (o

ther

col

our

tem

per

atu

res

ava

ilable

, es

pec

ially

65

00K

)55

0mm

T16

FDH

T5 (T

16)

G5

Star

coat

,Lum

ilux

FH,T

L5 H

E85

.714

2700

- 40

001B

2000

012

00-

850m

mT1

6FD

HT5

(T16

)G

5St

arco

at,L

umilu

x FH

,TL5

HE

90.5

2127

00 -

4000

1B20

000

1900

-

1150

mm

T16

FDH

T5 (T

16)

G5

Star

coat

,Lum

ilux

FH,T

L5 H

E92

.928

2700

- 40

001B

2000

026

00-

1450

mm

T16

FDH

T5 (T

16)

G5

Star

coat

,Lum

ilux

FH,T

L5 H

E94

.335

2700

- 40

001B

2000

033

00-

550m

mT1

6FD

HT5

(T16

)G

5St

arco

at,L

umilu

x FQ

,TL5

H

O72

.924

2700

- 40

001B

/1A

2000

017

50-

T16

FDH

T5 (T

16)

G5

Lum

ilux

FQ,T

L5 H

O66

.724

6000

1B20

000

1600

-85

0mm

T16

FDH

T5 (T

16)

G5

Star

coat

,Lum

ilux

FQ,T

L5

HO

79.5

3927

00 -

4000

1B20

000

3100

-

T16

FDH

T5 (T

16)

G5

Lum

ilux

FQ,T

L5 H

O73

.139

6000

1B20

000

2850

-14

50m

mT1

6FD

HT5

(T16

)G

5St

arco

at,L

umilu

x FQ

,TL5

H

O87

.849

2700

- 40

001B

/1A

2000

043

00-

1150

mm

T16

FDH

T5 (T

16)

G5

Star

coat

,Lum

ilux

FQ,T

L5

HO

82.4

5427

00 -

4000

1B/1

A20

000

4450

-

1150

mm

T16

FDH

T5 (T

16)

G5

Star

coat

,Lum

ilux

FQ,T

L5

HO

76.9

8027

00 -

4000

1B20

000

6150

-

600m

mT2

6FD

T8 (T

26)

G13

Poly

lux

XLR

840,

Lum

ilux

L840

,Sup

er 8

0/84

075

.018

4000

1B15

000

1350

-

1050

mm

T26

FDT8

(T26

)G

13Po

lylu

x 83

0,Su

per

80/8

3086

.838

3000

1B12

000

3300

-

1200

mm

T26

FDT8

(T26

)G

13Po

lylu

x XL

R 84

0,Lu

milu

x L8

40,S

uper

80/

840

93.1

3640

001B

1500

033

50-

1500

mm

T26

FDT8

(T26

)G

13Po

lylu

x XL

R 84

0,Lu

milu

x L8

40,S

uper

80/

840

89.7

5840

001B

1500

052

00-

1800

mm

T26

FDT8

(T26

)G

13Po

lylu

x XR

L 84

0,Lu

milu

x L8

40,S

uper

80/

840

88.6

7040

001B

1500

062

00-

Page 209: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 209

Lamps, LEDs and Circuits24

00m

mT3

8FD

T12

(T38

)G

13Po

lylu

x 84

094

.010

040

001B

1200

094

00-

Line

ar

fluo

resc

ent,

Mul

ti-pho

spho

r (o

ther

col

our

tem

per

atu

res

ava

ilable

)60

0mm

T26

FDT8

(T26

)G

13Po

lylu

x D

lx 9

40,L

umilu

x de

Lu

xe 9

40,9

0 de

luxe

/940

55.6

1840

001A

1200

010

00-

1200

mm

T26

FDT8

(T26

)G

13Po

lylu

x D

lx 9

40,L

umilu

x de

Lu

xe 9

40,9

0 de

luxe

/940

65.3

3640

001A

1200

023

50-

1500

mm

T26

FDT8

(T26

)G

13Po

lylu

x D

lx 9

40,L

umilu

x de

Lu

xe 9

40,9

0 de

luxe

/940

64.7

5840

001A

1200

037

50-

Circ

ular

fluo

resc

ent

lam

ps

T16-

RFS

CH

T5-C

(T

16-R

)2G

X13

FC,T

L5C

81.8

2227

00 -

4000

1B16

000

1800

-

T16-

RFS

CH

T5-C

(T

16-R

)2G

X13

FC,T

L5C

82.5

4027

00 -

4000

1B16

000

3300

-

T16-

RFS

CH

T5-C

(T

16-R

)2G

X13

FC,T

L5C

81.8

5530

00 -

4000

1B16

000

4500

-

Com

pact

fluo

resc

ent

lam

ps

(oth

er c

olou

r te

mper

atu

res

ava

ilable

)TC

-EL

FBT

-E2

7D

ulux

EL

Inte

gral

gea

r57

.17

2700

1B10

000

400

-TC

-SFS

D2L

2-p

inG

23Bi

ax S

,Dul

ux S

,PL-S

/2p

50.0

535

001B

1000

025

0-

TC-S

FSD

2L 2

-pin

G23

Biax

S,D

ulux

S,P

L-S/2

p57

.17

3500

1B10

000

400

-TC

-SFS

D2L

2-p

inG

23Bi

ax S

,Dul

ux S

,PL-S

/2p

66.7

935

001B

1000

060

0-

TC-S

FSD

2L 2

-pin

G23

Biax

S,D

ulux

S,P

L-S/2

p81

.811

3500

1B10

000

900

-TC

-SEL

FSD

2L 4

-pin

2G7

Biax

S/E

,Dul

ux S

/E,P

L-S/

4p66

.79

4000

1B10

000

600

-

TC-S

ELFS

D2L

4-p

in2G

7Bi

ax S

/E,D

ulux

S/E

,PL-

S/4p

81.8

1140

001B

1000

090

0-

TC-L

FSD

2L 4

-pin

2G11

Biax

L,D

ulux

L,P

L-L69

.418

3500

1B10

000

1250

-TC

-LFS

D2L

4-p

in2G

11Bi

ax L

,Dul

ux L

,PL-L

75.0

2435

001B

1000

018

00-

TC-L

FSD

2L 4

-pin

2G11

Biax

L82

.434

3500

1B10

000

2800

-TC

-LFS

D2L

4-p

in2G

11Bi

ax L

,Dul

ux L

,PL-L

80.6

3635

001B

1000

029

00-

TC-L

FSD

H2L

4-p

in2G

11Bi

ax L

,Dul

ux L

,PL-L

87.5

4035

001B

1000

035

00-

TC-L

FSD

H2L

4-p

in2G

11Bi

ax L

,Dul

ux L

,PL-L

88.2

5535

001B

1000

048

50-

TC-L

FSD

H2L

4-p

in2G

11Bi

ax H

LBX,

Dul

ux L

,PL-L

75.0

8030

001B

1200

060

00TC

-DD

FSS

2D 2

-pin

GR8

Biax

2D

,CFL

Squ

are

65.6

1635

001B

1000

010

50-

TC-D

DFS

S2D

2-p

inG

R8Bi

ax 2

D,C

FL S

quar

e73

.228

3500

1B10

000

2050

-TC

-DD

ELFS

S2D

4-p

inG

R10

Biax

2D

/E,C

FL S

quar

e65

.616

3500

1B10

000

1050

-TC

-DD

ELFS

S2D

4-p

inG

R10

Biax

2D

/E64

.321

3500

1B10

000

1350

-TC

-DD

ELFS

S2D

4-p

inG

R10

Biax

2D

/E,C

FL S

quar

e73

.228

3500

1B10

000

2050

-TC

-DD

ELFS

S2D

4-p

inG

R10

Biax

2D

/E,C

FL S

quar

e75

.038

3500

1B10

000

2850

-TC

-DD

ELFS

S2D

4-p

inG

R10

Biax

2D

/E70

.955

3500

1B10

000

3900

-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 210: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 210

Lamps, LEDs and CircuitsTC

-DFS

Q4L

2-p

inG

24d-

1Bi

ax D

,Dul

ux D

,PL-C

/2p

60.0

1035

001B

1000

060

0-

TC-D

ELFS

Q4L

4-p

inG

24q-

1Bi

ax D

/E,D

ulux

D/E

,PL-

C/4

p60

.010

3500

1B12

000

600

-

TC-D

FSQ

4L 2

-pin

G24

d-1

Biax

D,D

ulux

D,P

L-C/2

p69

.213

3500

1B10

000

900

-TC

-DEL

FSQ

4L 4

-pin

G24

q-1

Biax

D/E

,Dul

ux D

/E,P

L-C

/4p

69.2

1335

001B

1200

090

0-

TC-D

FSQ

4L 2

-pin

G24

d-2

Biax

D,D

ulux

D,P

L-C/2

p66

.718

3500

1B10

000

1200

-TC

-DEL

FSQ

4L 4

-pin

G24

q-2

Biax

D/E

,Dul

ux D

/E,P

L-C

/4p

66.7

1835

001B

1200

012

00-

TC-D

FSQ

4L 2

-pin

G24

d-3

Biax

D,D

ulux

D,P

L-C/2

p69

.226

3500

1B10

000

1800

-TC

-DEL

FSQ

4L 4

-pin

G24

q-3

Biax

D/E

,Dul

ux D

/E,P

L-C

/4p

69.2

2635

001B

1200

018

00-

TC-F

FSS

Flat

4L4

-pin

2G10

Dul

ux F

77.8

3635

001B

1000

028

00-

TC-T

FSM

6L 2

-pin

GX2

4d-1

Biax

T,D

ulux

T P

lus

68.5

1335

001B

1000

089

0-

TC-T

ELFS

M6L

4-p

inG

X24q

-1Bi

ax T

/E a

mal

gam

,Dul

ux

T/E

Plus

68.5

1335

001B

1200

089

0-

TC-T

FSM

6L 2

-pin

GX2

4d-2

Biax

T,D

ulux

T P

lus,

PL-T

/2p

amal

gam

63.9

1835

001B

1000

011

50-

TC-T

EL

amal

gam

FSM

6L 4

-pin

GX2

4q-2

Biax

T/E

,Dul

ux T

/E IN

Pl

us,P

L-T/4

p63

.918

3500

1B12

000

1150

-

TC-T

FSM

6L 2

-pin

GX2

4d-3

Biax

T,D

ulux

T,P

L-T/2

p am

alga

m65

.826

3500

1B10

000

1710

-

TC-T

EL

amal

gam

FSM

6L 4

-pin

GX2

4q-3

Biax

T/E

,Dul

ux T

/E IN

Pl

us,P

L-T/4

p65

.826

3500

1B12

000

1710

-

TC-T

EL

amal

gam

FSM

6L 4

-pin

GX2

4q-3

Biax

T/E

,Dul

ux T

/E IN

Pl

us,P

L-T/4

p68

.832

3500

1B12

000

2200

-

TC-T

EL

amal

gam

FSM

6L 4

-pin

GX2

4q-4

Dul

ux T

/E IN

Plu

s,PL

-T/4

p76

.242

3500

1B10

000

3200

-

TC-T

EL

amal

gam

FSM

6L 4

-pin

GX2

4q-5

Dul

ux T

/E IN

Plu

s75

.457

3000

1B10

000

4300

-

TC-T

EL

amal

gam

FSM

6L 4

-pin

GX2

4q-6

Dul

ux T

/E IN

Plu

s74

.370

4000

1B10

000

5200

-

TC-T

ELI

FSM

8L 4

-pin

2G8-

1PL

-H66

.760

3000

1B20

000

4000

-TC

-TEL

IFS

M8L

4-p

in2G

8-1

PL-H

70.6

8530

001B

2000

060

00-

TC-T

ELI

FSM

8L 4

-pin

2G8-

1D

ulux

HO

Con

stant

,PL-H

75.0

120

3000

1B20

000

9000

-M

etal h

alid

e dis

charg

e la

mps

Refl

ecto

r-ce

ram

icH

IR 3

5/10

°M

R-

GX8

.5Po

wer

ball

HC

I-R1

11,C

DM

-R 1

1135

3000

1B60

00+

-30

000

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 211: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 211

Lamps, LEDs and CircuitsH

IR 3

5/24

°M

R-

GX8

.5Po

wer

ball

HC

I-R1

11,C

DM

-R 1

1135

3000

1B60

00+

-85

00

HIR

35/

45°

MR

-G

X8.5

Pow

erba

ll H

CI-R

111

(40°

),CD

M-R

111

3530

001B

6000

+-

-

HI-P

AR

20/1

0°M

R-

E27

CM

H-PA

R,Po

wer

ball

HC

I-PA

R,C

DM

-R P

AR2

035

3000

1B60

00-

2300

0

HI-P

AR

20/3

0°M

R-

E27

CM

H-PA

R,Po

wer

ball

HC

I-PA

R,C

DM

-R P

AR2

035

3000

1B60

00-

5000

HI-P

AR

30/1

0°M

R-

E27

CM

H-PA

R,Po

wer

ball

HC

I-PA

R,C

DM

-R P

AR3

070

3000

1B60

00-

6800

0

HI-P

AR

30/4

0°M

R-

E27

CM

H-PA

R,Po

wer

ball

HC

I-PA

R,C

DM

-R P

AR3

070

3000

1B60

00-

1000

0

Dou

ble

end

ed c

ompact

(ch

oice

of

colo

ur 3

000 -

5400K

)H

IT-D

EM

DM

BI-T

DRX

7sA

rcstr

eam

,Pow

ersta

r HQ

I-TS

,MH

(N)-T

D78

.670

4200

1B60

0055

00-

HIT-

DE

MD

MBI

-TD

RX7s

Arc

strea

m,P

ower

star H

QI-

TS,M

H(N

)-TD

80.0

150

4200

1B60

0012

000

-

HIT-

DE

MD

MBI

-TD

Fc2

Arc

strea

m,P

ower

star H

QI-

TS,M

HN

-TD

80.0

250

4000

1B60

0020

000

-

HIT-

DE

MD

-Fc

2Po

wer

star H

QI-T

S/D

80.0

250

5100

1A60

0020

000

-H

IT-D

EM

DM

BI-T

DFc

2Po

wer

star H

QI-T

S90

.040

054

001A

1500

036

000

-D

ouble

end

ed c

ompact

- c

eram

ic (

choi

ce o

f co

lour

3000 -

4200K

)H

IT-D

E-C

EM

DM

BI-T

DRX

7sC

MH

-TD

,Pow

erba

ll H

CI-

TS,M

aste

rcol

our C

DM

-TD

100.

070

3000

1B15

000

7000

-

HIT-

DE-

CE

MD

MBI

-TD

RX7s

CM

H-T

D,P

ower

ball

HC

I-TS

,Mas

terc

olou

r CD

M-T

D96

.715

030

001B

1500

014

500

-

Sing

le e

nded

com

pact

(ch

oice

of

colo

ur 2

600 -

4200K

)H

ITM

TM

BI-T

G12

Arc

strea

m,P

ower

star H

QI-T

74.3

7042

001B

6000

5200

-H

ITM

TM

BI-T

G12

Arc

strea

m,P

ower

star H

QI-T

80.0

150

4200

1B60

0012

000

-H

ITM

TM

BI-T

GY9

.5M

SD67

.520

059

001B

2000

1350

0-

HIT

MT

-PG

Z 12

Cos

moW

hite

114.

260

2800

212

000

6850

-H

ITM

T-

PGZ

12C

osm

oWhi

te11

7.9

140

2800

212

000

1650

0-

Sing

le e

nded

com

pact

- c

eram

icH

IT-TC

-CE

MT

-G

8.5

CM

H-T

C,P

ower

ball

HC

I-TC

85.0

2030

001B

9000

1700

-H

IT-TC

-CE

MT

MBI

-TG

8.5

CM

H-T

C,P

ower

ball

HC

I-TC

,Mas

terc

olou

r CD

M-T

C97

.135

3000

1B10

000

3400

-

HIT-

TC-C

EM

TM

BI-T

G8.

5C

MH

-TC

,Pow

erba

ll H

CI-

TC,M

aste

rcol

our C

DM

-TC

88.6

7030

001B

9000

6200

-

HIT-

TC-C

EM

T-

PGJ5

Mas

terc

olou

r CD

M-T

M75

.020

3000

1B90

0015

00-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 212: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 212

Lamps, LEDs and CircuitsH

IT-C

EM

T-

PG12

-2M

aste

rcol

our C

DM

-TP

85.7

7030

001B

-60

00-

HIT-

CE

MT

-PG

X12-

2M

aste

rcol

our C

DM

-TP

86.7

150

3000

1B-

1300

0-

HIT-

CE

MT

MBI

-TG

12C

MH

-T,Po

wer

ball

HC

I-T,

Mas

terc

olou

r CD

M-T

97.1

3530

001B

1000

034

00-

HIT-

CE

MT

MBI

-TG

12C

MH

-T,Po

wer

ball

HC

I-T,

Mas

terc

olou

r CD

M-T

91.4

7030

001B

1500

064

00-

HIT-

CE

MT

MBI

-TG

12C

MH

-T,Po

wer

ball

HC

I-T,

Mas

terc

olou

r CD

M-T

93.3

150

3000

1B12

000

1400

0-

HIT-

CE

MT

-G

12Po

wer

ball

HC

I-T,C

DM

-SA

/T86

.015

042

001A

9000

1290

0-

HIT-

CE

MT

-G

12M

aste

rcol

our C

DM

-T92

.025

030

001B

9000

2300

0El

liptic

al c

oate

d (

cera

mic

ver

sion

s als

o ava

ilable

)H

IEM

EM

BIF

E27

Pow

ersta

r HQ

I-E70

.070

3800

1B90

0049

00-

HIE

ME

MBI

FE2

7A

rcstr

eam

85.0

100

3200

215

000

8500

-H

IEM

EM

BIF

E40

Arc

strea

m78

.025

040

002

1200

019

500

-H

IEM

E-

E40

Pow

ersta

r HQ

I-E76

.025

052

001A

1900

0-

HIE

ME

HIE

E40

Whi

teLu

x82

.025

037

002

1000

020

500

-H

IEM

EM

BIF

E40

Kolo

rarc

80.0

400

4000

214

000

3200

0-

HIE

ME

-E4

0Po

wer

star H

QI-E

107.

540

038

002

4300

0-

HIE

ME

HIE

E40

Whi

telu

x90

.040

037

002

2000

036

000

-H

IEM

EH

IEE4

0Po

wer

star H

QI-E

110.

010

0037

502B

1200

011

0000

-El

liptic

al c

oate

d -

for

enc

lose

d fi

ttin

gs

only

HIE

ME

HIE

E40

Whi

telu

x87

.225

037

002

1500

021

800

-H

IEM

EH

IEE4

0W

hite

lux

97.0

400

3700

220

000

3880

0-

Tubul

ar

clea

r (o

ther

col

our

tem

per

atu

res

ava

ilable

)H

ITM

TM

BI-T

E27

Col

or A

rc M

T-SD

W71

.470

4500

1A60

0050

00-

HIT

MT

MBI

-TE4

0A

rcstr

eam

84.0

250

4200

260

0021

000

-H

ITM

T-

E40

Arc

strea

m,P

ower

star

HQ

I-T/D

80.0

250

5300

1A-

2000

0-

HIT

MT

-E4

0H

SI/T

SX84

.025

040

002

-21

000

-H

ITM

TM

BI-T

E40

Arc

strea

m,P

ower

star H

QI-T

87.5

400

4200

260

0035

000

-H

ITM

TM

BI-T

E40

HPI

-T+

76.0

250

4500

2-

1900

0-

HIT

MT

MBI

-TE4

0H

PI-T

+87

.540

043

002

-35

000

-H

ITM

T-

E40

Pow

ersta

r HQ

I-T/N

105.

040

037

002B

-42

000

-H

ITM

T-

E40

Pow

ersta

r HQ

I-T/N

80.0

400

5200

1A-

3200

0-

HIT

MT

MBI

-TE4

0H

PI-T

85.0

1000

4500

2-

8500

0-

HIT

MT

MBI

-TE4

0Po

wer

star H

QI-T

80.0

1000

6000

1A90

0080

000

-H

ITM

T-

E40

Pow

ersta

r T90

.020

0060

001A

-18

0000

-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 213: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 213

Lamps, LEDs and CircuitsH

ITM

T-

E40

Pow

ersta

r T/N

120.

020

0040

002B

-24

0000

-Tu

bul

ar

clea

r -

cera

mic

HIT-

CE

MT

-E2

7C

MH

-TT,

Pow

erba

ll H

CI-

TT,C

DO

-TT

91.4

7030

001B

1200

064

00-

HIT-

CE

MT

-E4

0C

MH

-TT,

Pow

erba

ll H

CI-

TT,C

DO

-TT

93.3

150

3000

1B12

014

000

-

Dou

ble

end

ed -

hig

h w

att

age

HIT-

DE

MD

-C

able

MH

N-LA

90.0

1000

5600

1A-

9000

0-

HIT-

DE

MD

-C

able

MH

N-LA

100.

010

0042

001B

-10

0000

-H

IT-D

EM

NM

BIL

RX7s

Spor

tligh

t80

.015

0052

002

6000

1200

00-

HIT-

DE

MN

MBI

LC

able

Spor

tligh

t10

0.0

2000

5200

260

0020

0000

-H

IT-D

EM

DM

BIL

Cab

leM

HN

-LA95

.020

0056

001A

-19

0000

-H

IT-D

EM

DM

BIL

Cab

leM

HN

-LA11

0.0

2000

4200

1B-

2200

00-

HIT-

DE

MD

MBI

LC

able

Pow

ersta

r HQ

I-TS/

D/S

100.

020

0058

001A

4000

2000

00-

HIT-

DE

MD

MBI

LC

able

Pow

ersta

r HQ

I-TS

112.

520

0044

002B

8000

2250

00-

HIT-

DE

MD

MBI

LC

able

MH

N-S

B10

0.0

2000

5600

1B-

2000

00-

HIT-

DE

MD

MBI

LC

able

Sylv

ania

HSI

-TD

100.

020

0056

001A

3000

2000

00-

Com

pact

met

al h

alid

e la

mps

HIR

MR

CSI

G38

CSI

/PA

R 64

76.0

1000

4000

235

0076

000

-H

igh

pre

ssur

e m

ercu

ry d

isch

arg

e la

mps

(col

our

tem

per

atu

res

vary

)H

ME

QE/

RM

BFE2

7Ko

lorlu

x St

anda

rd,H

QL,

HPL

-N36

.050

4000

312

000

1800

-

HM

EQ

E/R

MBF

E27

Kolo

rlux

Stan

dard

,HQ

L,H

PL-N

47.5

8040

003

1600

038

00-

HM

EQ

E/R

MBF

E27

Kolo

rlux

Stan

dard

,HQ

L,H

PL-N

50.4

125

4000

320

000

6300

-

HM

EQ

E/R

MBF

E40

Kolo

rlux

Stan

dard

,HQ

L,H

PL-N

52.0

250

4000

320

000

1300

0-

HM

EQ

E/R

MBF

E40

Kolo

rlux

Stan

dard

,HQ

L,H

PL-N

56.3

400

4000

320

000

2250

0-

HM

EQ

E/R

MBF

E40

Kolo

rlux

Stan

dard

,HQ

I-E,

HPL

-N57

.010

0035

503

2900

057

000

-

HM

EQ

E/R

MBF

SDE2

7Ko

lorlu

x D

elux

e,H

QL

DE

LUXE

,HPL

Com

fort

40.0

5035

003

1600

020

00-

HM

EQ

E/R

MBF

SDE2

7Ko

lorlu

x D

elux

e,H

QL

DE

LUXE

,HPL

Com

fort

50.0

8034

003

1600

040

00-

HM

EQ

E/R

MBF

SDE2

7Ko

lorlu

x D

elux

e,H

QL

DE

LUXE

,HPL

Com

fort

52.0

125

3350

320

000

6500

-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 214: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 214

Lamps, LEDs and CircuitsH

ME

QE/

RM

BFSD

E40

Kolo

rlux

Del

uxe,

HQ

L D

E LU

XE,H

PL C

omfo

rt56

.025

033

503

2400

014

000

-

HM

EQ

E/R

MBF

SDE4

0Ko

lorlu

x D

elux

e,H

QL

DE

LUXE

,HPL

Com

fort

60.0

400

3400

324

000

2400

0-

Hig

h pre

ssur

e so

diu

m d

isch

arg

e la

mps

Stand

ard

Tub

ular

and

Elli

ptic

al

HSE

SEH

PS-E

E27

Luca

lox

E,Vi

alox

NAV

-E,

50SO

N-E

66.0

5020

004

2850

033

00-

HSE

-ISE

HPS

-E-I

E27

Luca

lox

I,NAV

-E

50/1

,50S

ON

-I68

.050

2000

412

000

3400

-

HSE

SEH

PS-E

E27

Luca

lox

E,Vi

alox

NAV

-E,

70SO

N-E

82.9

7020

004

2850

058

00-

HSE

-I D

iffus

eSE

HPS

-E-I

Diff

use

E27

Luca

lox

I,NAV

-E

70/1

,70S

ON

-I82

.970

2000

412

000

5800

-

HSE

-I C

lear

SCH

PS-E

-I C

lear

E27

Luca

lox

I,70S

ON

-I85

.770

2000

412

000

6000

-

HST

STH

PS-T

E27

Luca

lox

T68

.050

2000

428

500

3400

-H

STST

HPS

-TE2

7Lu

calo

x T,

Vial

ox N

AV-

T,70

SON

-T85

.770

2000

428

500

6000

-

HSE

SEH

PS-E

E40

Luca

lox

E92

.010

020

004

2850

092

00-

HST

STH

PS-T

E40

Luca

lox

T96

.010

020

004

2850

096

00-

HSE

SEH

PS-E

E27

Luca

lox

E-Z,

Vial

ox N

AV-E

80.0

110

2000

416

000

8800

-H

SESE

HPS

-EE4

0Lu

calo

x E,

Vial

ox N

AV-

E,15

0SO

N96

.715

020

004

2850

014

500

-

HST

STH

PS-T

E40

Luca

lox

T,Vi

alox

NAV

-T,

150S

ON

-T10

0.0

150

2000

428

500

1500

0-

HSE

SEH

PS-E

E40

Luca

lox

E,Vi

alox

NAV

-E,

250S

ON

104.

025

020

004

2850

026

000

-

HST

STH

PS-T

E40

Luca

lox

T,Vi

alox

NAV

-T,

250S

ON

-T11

0.0

250

2000

428

500

2750

0-

HSE

SEH

PS-E

E40

Luca

lox

E,Vi

alox

NAV

-E,

400S

ON

118.

840

020

004

2850

047

500

-

HST

STH

PS-T

E40

Luca

lox

T,Vi

alox

NAV

-T,

400S

ON

-T12

5.0

400

2000

428

500

5000

0-

HST

STH

PS-T

E40

Luca

lox

T,Vi

alox

NAV

-T,

600S

ON

-T15

0.0

600

2000

424

000

9000

0-

HST

STH

PS-T

E40

Luca

lox

T,Vi

alox

NAV

-T,

1000

SON

-T13

0.0

1000

2000

424

000

1300

00-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 215: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 215

Lamps, LEDs and CircuitsIn

crea

sed li

ght

out

put

- T

ubul

ar

HST

-MF

STH

PS-T

(HO

)E2

7Lu

calo

x H

O,V

ialo

x N

AV

Supe

r,SO

N-T

PLU

S80

.050

2000

428

500

4000

-

HST

-MF

STH

PS-T

(HO

)E2

7Lu

calo

x H

O,V

ialo

x N

AV

Supe

r,SO

N-T

PLU

S92

.970

2000

428

500

6500

-

HST

-MF

STH

PS-T

(HO

)E4

0Lu

calo

x H

O,V

ialo

x N

AV

Supe

r,SO

N-T

PLU

S10

0.0

100

2000

428

500

1000

0-

HST

-MF

STH

PS-T

(HO

)E4

0Lu

calo

x H

O,V

ialo

x N

AV

Supe

r,SO

N-T

PLU

S11

6.7

150

2000

428

500

1750

0-

HST

-MF

STH

PS-T

(HO

)E4

0Lu

calo

x H

O,V

ialo

x N

AV

Supe

r,SO

N-T

PLU

S13

2.0

250

2000

428

500

3300

0-

HST

-MF

STH

PS-T

(HO

)E4

0Lu

calo

x H

O,V

ialo

x N

AV

Supe

r,SO

N-T

PLU

S14

1.3

400

2000

428

500

5650

0-

HST

-MF

STH

PS-T

(HO

)E4

0Lu

calo

x H

O,V

ialo

x N

AV

Supe

r,SO

N-T

PLU

S15

0.0

600

2000

428

500

9000

0-

Impro

ved c

olou

r re

nder

ing -

Tub

ular

and

Elli

ptic

al

HSE

-CRI

SEH

PS-E

(DL)

E40

Luca

lox

Cla

ssiq

ue,V

ialo

x N

AV D

elux

e, S

ON

C

omfo

rt

80.0

150

2200

214

000

1200

0-

HST

-CRI

STH

PS-T

(DL)

E40

Luca

lox

Cla

ssiq

ue,V

ialo

x N

AV D

elux

e, S

ON

C

omfo

rt

86.7

150

2200

214

000

1300

0-

HSE

-CRI

SEH

PS-E

(DL)

E40

Luca

lox

Cla

ssiq

ue,V

ialo

x N

AV D

elux

e, S

ON

C

omfo

rt

88.0

250

2200

214

000

2200

0-

HST

-CRI

STH

PS-T

(DL)

E40

Luca

lox

Cla

ssiq

ue,V

ialo

x N

AV D

elux

e, S

ON

C

omfo

rt

92.0

250

2200

214

000

2300

0-

HSE

-CRI

SEH

PS-E

(DL)

E40

Luca

lox

Cla

ssiq

ue,V

ialo

x N

AV D

elux

e, S

ON

C

omfo

rt

90.0

400

2200

214

000

3600

0-

HST

-CRI

STH

PS-T

(DL)

E40

Luca

lox

Cla

ssiq

ue,V

ialo

x N

AV D

elux

e, S

ON

C

omfo

rt

92.5

400

2200

214

000

3700

0-

“Whi

te”

SON

and

Min

i “W

hite

” SO

NH

ST-C

RIST

HH

PS-

T(W

hite

)PG

12-I

SDW

-T37

.135

2500

1B10

000

1300

-

HST

-CRI

STH

HPS

-T(

Whi

te)

PG12

-ISD

W-T

46.0

5025

001B

1000

023

00-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 216: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 216

Lamps, LEDs and CircuitsH

ST-C

RIST

HH

PS-

T(W

hite

)PG

12-I

SDW

-T50

.010

025

501B

1000

050

00

HST

-CRI

STH

HPS

-T(

Whi

te)

GX1

2SD

W-T

G46

.050

2500

1B10

000

2300

HST

-CRI

STH

HPS

-T(

Whi

te)

GX1

2SD

W-T

G48

.010

025

001B

1000

048

00-

HST

-CRI

STH

HPS

-T(

Whi

te)

E27

NH

T-SD

X50

.070

2500

1B60

0035

00-

HST

-CRI

STH

HPS

-T(

Whi

te)

E27

NH

T-SD

X50

.010

025

001B

6000

5000

-

HST

-CRI

STH

HPS

-T(

Whi

te)

E40

NH

T-SD

X52

.015

025

001B

9000

7800

-

HST

-CRI

STH

HPS

-T(

Whi

te)

E40

NH

T-SD

X54

.025

025

001B

9000

1350

0-

Dou

ble

end

edH

ST-D

ESD

HPS

-D

E(H

O)

RX7s

Vial

ox N

AV-S

uper

91.4

7019

004

3000

064

00-

HST

-DE

SDH

PS-

DE(

HO

)RX

7s-2

4Vi

alox

NAV

-Sup

er96

.015

019

004

3000

014

400

-

HST

-DE

SDH

PS-D

EFc

2Vi

alox

NAV

-TS

102.

025

021

004

2600

025

500

-H

ST-D

ESD

HPS

-DE

Fc2

Vial

ox N

AV-T

S12

0.0

400

2100

426

000

4800

0-

Low

pre

ssur

e so

diu

m d

isch

arg

e la

mps

LST

LSSO

XBY

22d

SOX

131.

435

1800

-16

000

4600

-LS

TLS

SOX

BY22

dSO

X13

9.1

5518

00-

1600

076

50-

LST

LSSO

XBY

22d

SOX

141.

790

1800

-16

000

1275

0-

LST

LSSO

XBY

22d

SOX

163.

013

518

00-

1600

022

000

-LS

T-HY

LSE

SOX-

EBY

22d

SOX-

E15

6.2

2618

00-

1600

040

60-

LST-H

YLS

ESO

X-E

BY22

dSO

X-E

177.

836

1800

-16

000

6400

-LS

T-HY

LSE

SOX-

EBY

22d

SOX-

E16

3.6

6618

00-

1600

010

800

-H

alo

gen

lam

ps

Halo

gen

refl

ecto

r -

dic

hroi

c m

irro

r (1

2V

sup

ply

)Q

R-C

BC35

/10°

HRG

M26

5G

U4

Prec

ise M

R11,

Dec

osta

r 35

S,St

anda

rdlin

e35

2900

1A35

00-

6300

QR-

CBC

35/2

1°H

RGM

266

GU

4Pr

ecise

MR1

135

2900

1A35

00-

2070

QR-

CBC

51/1

8°H

RGM

270

GU

5.3

Brig

ht M

R16,

Dec

osta

r 5l

(24°

),Sta

ndar

dlin

e (2

4°)

3531

001A

4000

2950

QR-

CBC

51/8

°H

RGM

249

GU

5.3

Brig

ht M

R16,

Dec

osta

r 5l

(10°

),Sta

ndar

dlin

e (1

0°)

5031

001A

4000

8000

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 217: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 217

Lamps, LEDs and CircuitsQ

R-C

BC51

/18°

HRG

M25

0G

U5.

3Br

ight

MR1

6,D

ecos

tar

51 (2

4°),

5030

001A

4000

-47

50

QR-

CBC

51/3

6°H

RGM

258

GU

5.3

Brig

ht M

R16,

Dec

osta

r 51

(38°

),Sta

ndar

dlin

e50

3000

1A40

00-

2100

QR-

CBC

51/6

0°H

RGM

280

GU

5.3

Brig

ht M

R16,

Dec

osta

r 5l

,Sta

ndar

dlin

e50

3100

1A40

0095

0

QR-

CBC

51/1

0°H

RGM

271

GU

5.3

Dec

osta

r 51,

Stan

dard

line

3531

001A

4000

-72

00

QR-

CBC

51/3

6°H

RGM

281

GU

5.3

Brig

ht M

R16,

Dec

osta

r 51

(38°

),Sta

ndar

dlin

e35

3000

1A40

00-

1300

Halo

gen

refl

ecto

r -

alu

min

ised

(1

2V

sup

ply

)Q

R-51

/38°

HA

GM

58A

GU

5.3

Dec

osta

r ALU

5029

501A

3000

-16

00Q

R-C

51/2

4°H

AG

Blac

kG

U5.

350

3000

1A35

00-

3000

QR-

C51

/24°

HA

GSi

lver

GU

5.3

5030

001A

3500

-30

00H

alo

gen

met

al r

eflec

tor

- alu

min

ium

(12V

sup

ply

)Q

R70/

8°H

MG

-BA

15d

Hal

ospo

t 70

5030

001A

3000

-12

500

QR7

0/24

°H

MG

-BA

15d

Hal

ospo

t 70

5030

001A

3000

-26

00Q

R111

/4°

HM

G-

G53

Hal

ospo

t 111

3530

001A

3000

-45

000

QR1

11/2

4°H

MG

-G

53A

R111

,Hal

ospo

t 111

3530

001A

3000

-25

00Q

R111

/8°

HM

G-

G53

AR1

11,H

alos

pot

111,

ALU

line

PRO

-111

5030

001A

3000

-20

000

QR1

11/2

4°H

MG

-G

53A

R111

,Hal

ospo

t 11

1,A

LUlin

e PR

O-1

1150

3000

1A30

00-

3500

QR1

11/8

°H

MG

-G

53A

R111

,Hal

ospo

t 11

1,A

LUlin

e PR

O-1

1175

3000

1A30

00-

3000

0

QR1

11/2

4°H

MG

-G

53A

R111

,Hal

ospo

t 11

1,A

LUlin

e PR

O-1

1175

3000

1A30

00-

5300

QR1

11/4

5°H

MG

-G

53A

R111

,Hal

ospo

t 11

1,A

LUlin

e PR

O-1

1175

3000

1A30

00-

1700

QR1

11/8

°H

MG

-G

53A

R111

,Hal

ospo

t 111

100

3000

1A30

00-

4800

0Q

R111

/24°

HM

G-

G53

AR1

11,H

alos

pot

111,

ALU

line

PRO

-111

100

3000

1A30

00-

8500

QR1

11/4

5°H

MG

-G

53A

R111

,Hal

ospo

t 11

1,A

LUlin

e PR

O-1

1110

030

001A

3000

-28

00

Halo

gen

capsu

le (

12

V s

upply

). L

ow p

ress

ure

for

use

with

open

lum

inair

esQ

T-LP

12-a

x fro

sted

HSG

-G

4H

alos

tar,C

apsu

lelin

e Pr

o15

.020

3000

1A20

0030

0-

QT-L

P 12

-ax

HSG

-G

4Q

20T2

, Hal

osta

r, C

apsu

lelin

e Pr

o16

.020

3000

1A20

0032

0-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 218: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 218

Lamps, LEDs and CircuitsQ

T-LP

12-a

xH

SG-

GY6

.35

Q20

T3, H

alos

tar,

Cap

sule

line

Pro

15.0

2030

001A

2000

300

-

QT-L

P12-

ax

froste

dH

SG-

GY6

.35

Cap

sule

line

Pro

17.0

2030

001A

2000

340

-

QT-L

P12-

ax

froste

dH

SG-

GY6

.35

Hal

osta

r,Cap

sule

line

Pro

18.0

3530

001A

2000

630

-

QT-L

P12-

axH

SG-

GY6

.35

Q20

T3, H

alos

tar,

Cap

sule

line

Pro

17.1

3530

001A

2000

600

-

QT-L

P12-

ax

froste

dH

SG-

GY6

.35

Cap

sule

line

Pro

19.5

5030

001A

2000

975

-

QT-L

P12-

axH

SG-

GY6

.35

Q50

T3,H

alos

tar,

Cap

sule

line

Pro

19.0

5030

001A

2000

950

-

QT-L

P12-

axH

SG-

GY6

.35

Q75

T3,H

alos

tar,

Cap

sule

line

Pro

18.0

7530

001A

2000

1350

-

QT-L

P12-

axH

SG-

GY6

.35

Hal

osta

r20

.090

3000

1A40

0018

00-

QT-L

P12-

axH

SG-

GY6

.35

Cap

sule

line

Pro

22.0

100

3000

1A20

0022

00-

Halo

gen

capsu

le (

12

V s

upply

) fo

r us

e w

ith c

lose

d lu

min

air

esQ

T 12

-ax

HSG

M75

GY6

.35

M75

17.1

3530

001A

4000

600

-Q

T 12

-trH

SGM

32G

Y6.3

5M

32,H

alos

tar

17.0

5030

001A

3000

850

-Q

T 12

-ax

HSG

M74

GY6

.35

M74

18.0

5030

001A

4000

900

-Q

T 12

-ax

HSG

M73

GY6

.35

M73

18.0

7530

001A

4000

1350

-Q

T 12

-trH

SGM

28G

Y6.3

5M

2822

.010

030

001A

2000

2200

-Q

T 12

-ax

HSG

M18

0G

Y6.3

5M

180

21.5

100

3000

1A40

0021

50-

Halo

gen

capsu

le (

24

V s

upply

) fo

r us

e w

ith c

lose

d lu

min

air

es)

QT

16-a

xH

SG-

GY6

.35

Hal

osta

r21

.315

030

001A

2000

3200

-H

alo

gen

alu

min

ised

refl

ecto

r (P

AR)

QPA

R16/

25°

HA

RI-

GU

10H

i-Spo

t 80

3529

001A

2000

-80

0Q

PAR1

6/25

°H

ARI

-G

U10

MR1

6, H

i-Spo

t 50

,TW

ISTl

ine

Alu

5028

001A

2000

-12

50

QPA

R16/

50°

HA

RI-

GU

10M

R16,

Hi-S

pot

50,T

WIS

Tlin

e A

lu50

2800

1A20

00-

600

QPA

R20/

10°

HA

PAR

-E2

750

PAR2

0,H

alop

ar 2

0,H

i-Sp

ot 6

3,H

alog

en A

5029

001A

2000

-30

00

QPA

R20/

25°

HA

PAR

-E2

750

PAR2

0,H

alop

ar 2

0 (3

0°),H

alog

en A

5029

001A

2000

-10

00

QPA

R20/

25°

HA

PAR

-G

U10

Hi-S

pot E

S63

7527

001A

2500

-25

00Q

PAR2

0/50

°H

APA

R-

GU

10H

i-Spo

t ES6

375

2700

1A25

00-

1000

QPA

R25/

10°

HA

PAR

-E2

7H

i-Spo

t 80

5029

001A

2000

-40

00Q

PAR2

5/25

°H

APA

R-

E27

Hi-S

pot 8

050

2900

1A20

00-

1100

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 219: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 219

Lamps, LEDs and CircuitsQ

PAR2

5/10

°H

APA

R-

E27

Hi-S

pot 8

075

2900

1A20

00-

5500

QPA

R25/

25°

HA

PAR

-E2

775

PAR2

5, H

i-Spo

t 80

,Hal

ogen

A75

2900

1A30

00-

1300

QPA

R30/

10°

HA

PAR

-E2

775

PAR3

0,H

alop

ar 3

0,H

i-Sp

ot 9

575

2900

1A30

00-

6900

QPA

R30/

30°

HA

PAR

-E2

775

PAR3

0,H

alop

ar 3

0,H

i-Sp

ot 9

575

2900

1A30

00-

2200

QPA

R30S

/10°

HA

PAR

-E2

7H

alog

en A

7529

001A

3000

-65

00Q

PAR3

0S/3

0°H

APA

R-

E27

Hal

ogen

A75

2900

1A30

00-

2000

QPA

R30/

10°

HA

PAR

-E2

710

0PA

R30,

Hi-S

pot 9

510

029

001A

3000

-10

000

QPA

R30/

30°

HA

PAR

-E2

710

0PA

R30,

Hi-S

pot 9

510

029

001A

3000

-35

00Q

PAR3

0S/1

0°H

APA

R-

E27

Hal

ogen

A10

029

001A

3000

-90

00Q

PAR3

0S/3

0°H

APA

R-

E27

Hal

ogen

A10

029

001A

3000

-30

00H

alo

gen

dic

hroi

c re

flec

tor

(PA

R)

QPA

R-C

B16/

25°

HR

-G

Z10

Hi-S

pot E

SD50

,TW

ISTl

ine

Dic

h50

2700

1A25

00-

1250

QPA

R-C

B16/

50°

HR

-G

Z10

Hi-S

pot E

SD50

,TW

ISTl

ine

Dic

h50

2700

1A25

00-

500

QPA

R-C

B20/

25°

HRG

1-

GZ1

0H

i-Spo

t ESD

6375

2850

1A25

00-

2500

QPA

R-C

B20/

50°

HRG

1-

GZ1

0H

i-Spo

t ESD

6375

2850

1A25

00-

1000

Dou

ble

end

ed h

alo

gen

QT-D

E 12

HD

GK9

R7s

K9,H

alol

ine,

Plus

line

16.0

300

2900

1A20

0048

00-

QT-D

E 12

HD

GK1

R7s

K1,H

alol

ine,

Plus

line

19.0

500

3000

1A20

0095

00-

QT-D

E 12

HD

GK4

R7s

K4,H

alol

ine,

Plus

line

22.0

1000

3000

1A20

0022

000

-Q

T-DE

12H

DG

K5R7

sK5

,Hal

olin

e,Pl

uslin

e22

.015

0030

001A

2000

3300

0-

Sing

le e

nded

halo

gen

QT-1

4H

S-

G9

Hal

opin

,MV

Cap

sule

s10

.225

2900

1A15

0025

5-

QT-1

4H

S-

G9

Hal

opin

,MV

Cap

sule

s12

.340

2900

1A15

0049

0-

QT-3

2H

SGT

-E2

7H

alol

ux C

eram

13.7

/15

60/1

0029

001A

2000

820/

1500

-Q

T-32

HSG

T-

E27

Hal

olux

Cer

am5.

5/16

.815

0/25

029

001A

2000

2500

\ 42

00-

QT-1

8H

SGT

-B1

5dH

alol

ux C

eram

16.7

150

2900

1A20

0025

00-

QT

HSG

TM

38G

Y9.5

M38

17.3

300

2950

1A20

0052

00-

QT

HSG

TM

40G

Y9.5

M40

20.0

500

2950

1A20

0010

000

-

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Page 220: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 220

Lamps, LEDs and CircuitsIn

cand

esce

nt la

mps

AIA

GLS

E27

GLS

11.7

/15

60/1

0027

001A

1000

700/

1500

-Sp

ot (

main

s su

pply

, ex

cept

whe

re s

tate

d)

PAR

IPAR

PAR3

8/15

°E2

7PA

R38,

Con

cent

ra P

ar38

120

2700

1A20

00-

7000

PAR

IPAR

PAR3

8/30

°E2

7PA

R38,

Con

cent

ra P

ar38

120

2700

1A20

00-

3000

PAR

IPAR

12V/

PAR5

6/40

°G

X16

term

inal

PAR5

630

027

001A

--

1600

0

Induc

tion

lam

ps

(18

5-2

55

V s

upply

)LM

G-Ih

fFS

G1

QL

-Q

L63

.655

3 Cho

ices

1B60

000

3500

-

LMG

-lhf

FSG

1Q

L-

QL

70.6

853 C

hoic

es1B

6000

060

00-

NO

TE. V

alue

s gi

ven

in th

is ta

ble

are

gene

ric a

nd a

re in

dica

tive

of p

erfo

rman

ce fo

r a g

iven

type

of l

amp.

For

defi

nitiv

e va

lues

you

sho

uld

refe

r to

lam

p m

anuf

actu

rers

data

.

Type

Des

igna

tions

Lam

p

cap

Lam

p m

anu

fact

urer

bra

nd n

am

esLu

min

ous

effica

cyLa

mp

watt

age

W

Colo

urte

mp.

K

Colo

urre

nder

ing

gro

up

Rate

dlif

eho

urs

Initi

al

lam

plu

men

slm

Peak

inte

nsity

cd

LBS

(ZV

EI)

ILCO

SPr

evio

us

Table 9.4 Characteristic values of the major lamps

Page 221: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 221

9.12 Energy efficiency considerationsMost of the electrical power consumed by a luminaire is due to the lamp and its control gear. However this power consumption may be modified slightly by the operating conditions inside the luminaire (i.e. thermal conditions altering the operation of the lamp/ballast system). Additionally minor luminaire losses may occur due to parasitic losses from electronic control or emergency lighting capabilities of the luminaire.

The energy efficiency index (EEI) classifies fluorescent lamp ballasts into seven categories as shown in Table 8.6 and is used by the industry in ballast labelling.

Lamps, LEDs and Circuits

9.13 CircuitsThe circuits shown in this section are generic, in that they are not specific to any manufacturer or make of control gear but serve to illustrate the principles. They are split into fluorescent and sodium/metal halide lamp circuits as these have distinct wiring and control techniques.

Class Ballasts

A1 Dimmable electronic ballasts

A2 Reduced-loss electronic ballasts

A3 Electronic ballasts

B1 Magnetic ballasts, very low loss (low loss ballast)

B2 Magnetic ballasts, low loss (low loss ballast)

C Magnetic ballasts, moderate loss (conventional ballast) Prohibited from sale since 21st November 2005

D Magnetic ballasts, very high loss (conventional ballast) Prohibited from sale since 21st May 2002

Table 9.5 Fluorescent lamp ballast classifications

Page 222: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 222

DefinitionsBallast

The general term for control gear inserted between the mains supply and one or more discharge lamps or fluorescent lamps, which by means of inductance, capacitance or resistance, singly or in combination, serves mainly to limit the current to the lamp(s) to the required value. A ballast may also incorporate means of:

Transforming the supply voltage,Providing a starting voltage,Providing a pre-heating current,Improving cold starting,Reducing stroboscopic effects,Correcting power factor,Suppressing radio interference.

IgnitorA starting device, intended to generate voltage pulses to start discharge lamps, which does not provide for the pre-heating of electrodes. A basic ignitor will do this until the lamp strikes, which means that if there is a problem with the lamp or circuit that prevents the lamp starting the ignitor will continue to try to start the lamp until the circuit is turned off or potentially the ballast is damaged. Modern ignitors therefore normally incorporate anti-cycling control that can sense the normal end-of–life mode of a lamp and disables the ignitor. This normally happens after the ignitor has tried to start the lamp a few times, and for metal halide lamps this is generally after approximately 15 minutes. (For high pressure sodium lamps this will be after approximately five minutes)

Lamps, LEDs and Circuits

Page 223: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 223

Starter switchA device which initiates a surge of high voltage across the lamp.

Sodium/metal halide lamp circuits

Lamps, LEDs and Circuits

A series ignitor circuit. Here the lamp is wired across the ignitor and the neutral. This type of circuit is common when using high-pressure sodium and metal halide lamps.

Ballast

Ignitor

Ph

E

Power factorcapacitor

Ballast

Ignitor

Ph

E

Power factorcapacitor

Fig. 9.18 Series ignitor circuit

Fig. 9.19 Parallel ignitor circuitA parallel ignitor circuit. Here the lamp is wired across the ballast and the neutral in parallel with the ignitor. This type of circuit is common when using low-pressure sodium lamps.

Page 224: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 224

Fluorescent lamp circuits

Lamps, LEDs and Circuits

Fig. 9.21 Electronic circuit

A circuit typical of magnetic ballast, incorporating a power factor correction capacitor and a starter. The circuit is essentially a series circuit, from the input phase through the ballast, through one end of the lamp, through the starter, through the second end of the lamp and out to neutral.

A circuit typical of electronic control gear. Here no power factor capacitor or starter is required as this is dealt with by the electronics. Wiring is according to the connector designations on the ballast with the lamp being wired across the ballast. Additional control lines may be used for ballasts incorporating dimming functionality.

Ballast

Lamp

Starter

Ph

E

Power factorcapacitor

Fig. 9.20 Typical magnetic ballast circuit

Ballast

Lamp

Ph

N

Page 225: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 225

Lamps, LEDs and Circuits

Figure 8.22 shows a typical emergency lighting circuit for a maintained luminaire. Two additional components are required, an inverter and a battery pack, and the inverter controls the circuit. Under normal conditions with a mains supply present the inverter supplies the ballast with a phase supply from the mains, and the lamp is driven from the ballast, via the inverter. When the mains supply fails the lamp is driven from the inverter, which receives power from the battery pack.

Ballast

Invertor

LampBattery

Ph

Ph

N

N

For circuits with more than one lamp only the lamp used in emergency mode is connected to the inverter, additional lamps being connected directly to the ballast. As the ballast receives no power supply during mains failure these lamps are extinguished and again the emergency lamp is lit using a supply from the batteries via the inverter.

9.14 Properties of electronic ballastsWith the implementation of European Directive 2000/55/EC on energy efficiency requirements for ballasts for fluorescent lighting and the Energy using Products Directive 2005/32/EC type C and D magnetic ballasts are banned for sale within the European Union. The benefits of using electronic technology over magnetic ballasts are:

• Energysavings1.Energycostsarecutbyusingelectroniccontrol gear, and further savings may be made using presence detection and dimming technology to ensure that light is not wasted by lighting empty spaces or over lighting an area.

Fig. 9.22 Emergency lighting circuit

Page 226: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 226

• Energysaving2.Usinglessenergyreducestheheatingeffects in a space due to the installed lighting. This reduces the load on air-conditioning and ventilation equipment.

• Fewercomponents.Usingelectroniccontrolgearremovesthe need for starter switches and power factor correction capacitors.

• Reducedmaintenancecosts.Usingcontrolgearwithcathode pre-heating ensures that the length of life of lamps in a luminaire is maximised, reducing the frequency of re-lamping and therefore maintenance costs.

• Flickerfreelight.Electroniccontrolgearoperatesathighfrequencies, producing flicker free light. Flicker from lights has been shown to be a cause of headaches and discomfort.

• Lownoiseoperation.Electroniccontrolgearensuresquietoperation with quiet starting and no background hum as may be produced by magnetic gear.

• Faultdetection.Intheeventofafaultoccurringinacircuit, such as a lamp failing, electronic ballasts may automatically shut off a faulty lamp, or switch off in the event of a more general fault. This prevents flickering lamps staying active or fault conditions causing a potentially dangerous situation.

For control of electronic control gear for dimming etc. three main methods of control are used

AnalogueThis uses a 1-10V analogue signal as a control input to the ballast. The main restriction on this method is interference caused by cable length or mains interference.

DSIThis uses an 8-bit digital signal as a control input to the ballast. The use of a digital signal helps ensure interference free reliable communications, and also helps prevent wiring faults as the digital control wires are polarity reversible, unlike an analogue input signal. Grouping of luminaires depends upon the hard-wiring of the control lines.

As DSI allows bidirectional communication it is possible to interrogate luminaires about their current operating state, fault conditions, etc., and to use a computer based graphical interface to control installations.

Lamps, LEDs and Circuits

Page 227: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 227

DALIDALI uses a digital communications protocol but is almost a programming language for lighting control gear, allowing complete flexibility of control of lighting units. Grouping of luminaires is via software as every luminaire is individually addressable. As DALI allows bidirectional communication it is possible to interrogate luminaires about their current operating state, fault conditions, etc., and to use a computer based graphical interface to control installations.

9.15 Voltage drop

When designing cabling for installation of luminaires it should be remembered that there will be a voltage drop along the length of the cable. This is due to the electrical resistance of the cable and means that the voltage measured at the end of the cable will be less than that measured at the start of the cable. The voltage drop for a given current carried is related to the cable materials and manufacturing process and is therefore individual to each cable type and manufacturer. Values are normally quoted in terms of voltage drop per ampere per metre. Note that the wiring regulations give limits on permissible voltage drop.

In the absence of manufacturers data the following formula for calculating voltage drop may be used.

2(Ix0.0175xL)U =

A

where U is the voltage drop across the length of the cable in voltsI is the current being carried by the cable in ampsL is the length of the cable in metresA is the cross-sectional area of a single conductor in mm2

Note this formula is for a twin copper conductor (phase and neutral) at 15˚C.

This can have a major effect upon the lighting installation as a relatively small voltage drop can reduce the light output of the luminaire or for larger voltage drops can even prevent the luminaire from operating. An effect of this, especially for

Lamps, LEDs and Circuits

Page 228: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 228

installations using high-pressure discharge lamps (e.g. for floodlighting), is that luminaires closer to the supply transformer may produce more light than those furthest from the transformer.

To help reduce the voltage drops in an installation the following steps may be considered;

• Thevoltagedropofacableisrelatedtothecablegaugeor cross-sectional surface area. A cable with a larger cross-sectional area will have less voltage drop than a smaller cable.

• Thevoltagedropofacableisrelatedtothelengthofthecable. Longer cable runs will produce a larger voltage drop. Therefore smaller cable runs should be used.

• Increasingthenumberoftransformerswillallowthetransformer sizes to be reduced and also allow the length of the cable runs to be reduced.

• Theuseoflowerwattagelampsorfewerluminairesoneach cable run will reduce the loading on the cabling and therefore the voltage drop (as voltage drop is related to circuit current).

9.16 FusingFuses are the simplest form of circuit protection. Whilst they have generally been replaced by electromechanical methods of protection a benefit of fuses is that they can withstand much higher fault levels than other electromechanical methods of protection.

However, circuit breakers are most commonly used for protecting circuits on high voltage and low voltage circuits. For low voltage, low current applications typical of lighting installations miniature circuit breakers (MCBs) may be used to protect the final circuit. Three different categories of MCB are defined, giving different levels of performance depending upon application. These are;

Type B used with resistive loads such as tungsten lightingType C used where a mixture of light inductive and resistive

loads are presentType D used where strong inductive loads such as motors or

switched mode power supplies are present

Lamps, LEDs and Circuits

Page 229: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 229

For lighting circuits generally type B MCBs are commonly used although type C variants may be present depending upon the application area.

When a lighting circuit is switched on high transient current peaks occur due to parasitic capacitances that can accumulate with the number of luminaires. These high switch-on currents can cause problems with automatic conductor cutouts. Therefore only surge-current-proof automatic cutouts should be used for lighting systems. This is of especial concern with lighting circuits using luminaires with electronic control gear. Electronic control gear starts all lamps in a circuit simultaneously, thereby causing a higher switch-on current peak than when using a choke/starter circuit, as in a choke/starter circuit lamps do not ignite simultaneously.

It should also be noted that the type of fuse used could influence the number of ballasts that may be used on one device. When using a multi-pole fuse the number of ballasts that may be connected is typically reduced by 20% compared to a single pole fuse.

You should always check manufacturers literature as to how many ballasts may be connected through one device, and remember that a luminaire may contain multiple ballasts not necessarily of the same type.

9.17 Wiring regulationsIt is of great importance that the electrical connections to any lighting equipment are correctly specified. Standards for this exist, international standards such as IEC 60364 - Low-voltage electrical installations, and local standards such as BS 7671.

Previously three categories of electrical circuit were defined and lighting circuits generally fell within category 1. Now however two voltage bands have replaced these categories and generally lighting installations will fall within the requirements of voltage band II. This contains the requirements for supplies to households and most commercial and industrial installations. It should be noted that IEC 60364 and associated local versions do not apply to public street lighting installations and these are considered part of the public power gird.

Lamps, LEDs and Circuits

Page 230: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 230

When specifying electrical connections it is essential that the cabling used within the installation is correctly rated. Voltage rating for cables is expressed as two numbers, for example 600/1000V. The first number is the maximum allowable voltage between any conductor and earth; the second number is the maximum voltage allowable between any two conductors. Extra care must be taken in situations where industrial installations use high voltages as the phase to earth voltage may exceed the rating of some cable types.

Two main factors determine the specification of cabling size or cross-section; the maximum continuous current rating and the voltage drop within the circuit. The insulation material used in the cable determines the maximum continuous current rating. Electrical currents cause a heating effect in the cable conductor, and the maximum temperature rating of the insulation determines the limit on allowable current and therefore heat. When installing cable in areas with restricted airflow it is important to check with the cable manufacturers the effect this will have on the cable rating, as preventing adequate heat removal from the cable may cause the insulation to fail within the nominal cable rating.

Whilst both the maximum current rating and voltage drop should be considered for all circuits generally only one of these factors will be the determining factor for cable selection. For long final circuits from a transformer or sub-main generally this is the voltage drop and this is especially true for large outdoor installations.

An additional factor to consider is the degree of protection against mechanical shock required. In certain environments (such as industrial areas) the risk of mechanical damage to a cable is increased. Protection for the cable can be either through a suitable containment system such as heavy-duty trunking or conduit, or through the use of armoured cables. Glands for cable entry into electrical equipment should be of a mechanical specification suitable for the cable type. Glands for flexible cabling are normally made of nylon or plastic, whilst glands for armoured cabling are normally brass. Glands should be also specified by IP rating (ingress protection), suitable for the equipment they will be used with.

Lamps, LEDs and Circuits

Page 231: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 231

When installing cables care should be taken to ensure that the minimum-bending radius quoted by the manufacturer for the cable is not exceeded, otherwise damage to the insulation and also the sheathing in multicore cables may occur. If a bend occurs close to the cable entry point into electrical equipment the cable should be firmly secured by the entry point to ensure that it is straight when passing through the cable entry gland, and that no strain is being put on the gland due to the cable bend.

For electrical connections to emergency services such as emergency luminaires powered from central battery systems or luminaires with external battery packs, the wiring from the batteries to the luminaire should be with fire survival cables in separate or segregated circuits to minimise the risk of the loss of emergency lighting. Fire survival cables are defined by their resistance to fire; to fire with water and to fire with mechanical shock.

9.18 Fault detectionThe following lists give common reasons for the failure of a lighting installation to perform to the expected level, or the failure of a luminaire to operate correctly. Note that whilst some checks do not require any specific qualifications most of these tests should only be performed by a qualified and competent person such as a commissioning engineer or where electricity is involved an appropriately qualified electrician. Lighting circuits can generate extremely high and potentially fatal voltages and access to a lighting installation may be difficult or require specialist equipment and training.

When measuring lamp voltages it is essential that they are measured using a true RMS meter, as due to waveform distortion other meters may give false readings. Be aware that high intensity discharge circuits incorporating an ignitor may generate 25kV pulses at the lamp holder and that components within the ignitor can operate up to 18kV. For these circuits it is important to isolate the supply before changing the ignitor and to discharge capacitors by touching all exposed metal parts and terminals to earth using an insulated probe before commencing any examination of the circuit and components.

Lamps, LEDs and Circuits

Page 232: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 232

When faced with an inoperative luminaire it is usual first to replace the lamp with a new one. If the lamp has shattered or a fuse has blown it is advisable to inspect the ballast and wiring for incorrect installation or signs of overheating or damage before inserting a second lamp.

Certain types of lamp must be operated with the front glass of the luminaire in position, as a possible catastrophic failure mode may cause the lamp to explode. Always check the lamp type and manufacturers recommendations before operating the lamp without the luminaire fully assembled.

Lighting installation does not perform to the expected level

General

Have the correct luminaires and attachments been installed compared to the specification? Yes / No

Are the luminaires installed at the correct mounting height? Yes / No

Are the luminaires installed at the correct mounting position? Yes / No

Are the luminaires correctly orientated (rotation, tilt)? For floodlights have they been installed upside-down? Yes / No

Have the lamps been run for >100 hours to ensure lamp stability? Yes / No

Is the quality of the electrical supply suitable (voltage, current, voltage surges or dips, harmonics)? Yes / No

For high-pressure discharge lamps have they been on for > 20 minutes before measurement? Yes / No

For fluorescent lamps have they been on for > 4 hours before measurement? Yes / No

Is the light meter calibrated and does it have adequate accuracy of measurement? Yes / No

Are the measurements being made at the correct height and orientation? Yes / No

Are the measurement points correctly positioned? Yes / No

Interior

Is the space empty or furnished and was the scheme calculation for the same condition? Yes / No

Are the surface reflection factors the same as used in the scheme calculation? Yes / No

Is the ambient temperature different to that expected and is this affecting the running temperature of the lamps? Yes / No

Has the protective film been removed from luminaire component such as louvres and diffusers Yes / No

Outdoor

Has the electrical supply cable been correctly sized? Yes / No

Is the voltage and current supplied to the lamp correct? Yes / No

Lamps, LEDs and Circuits

Page 233: Technical Handbook Australia COMPLETE 2

Lamps, LEDs and Circuits | 233

Lamps, LEDs and Circuits

High intensity discharge luminaire fails to operate correctlySymptom Possible cause Test and remedyLamp does not light but is visibly intact

Faulty lamp Test lamp in a working luminaire and replace if necessaryFaulty lamp holder Check that the lamp is properly seated in the lamp holder(s). For high

voltage lamps with non-screw thread connection check lamp holders are in sound condition. Lamp holders with pitting or corrosion must be replaced

Supply interruption Check for voltage at circuit input terminals. Check any fuses and ensure cabling is correctly sized

Open circuit in wiring or ballast Check for voltage at lamp holderCircuit misconnection Check that the circuit is wired in accordance with manufacturers

installation instructionsIgnitor fault For circuits incorporating an ignitor substitute a new ignitorEnd of lamp life Lamp could have developed a high striking characteristic towards the

end of life. Check that the lamp has not completed a full lifeInsufficient re-strike time Some high intensity discharge lamps require a cooling period before

they will re-ignitePoor light output End of lamp life Test lamp in a working luminaire and relate to lamp usage

Outer of lamp or luminaire dirty Clean and try againLow supply voltage Test voltage applied to luminaire/circuit. Check that the ballast is

correctly rated and tapped. For parallel ballast circuits check both ballasts are operating correctly

Outer of lamp broken or cracked

Explosion Look for obvious signs of misuse/overload on the lamp. Check that the circuit is wired correctly and suitably tapped. Check that voltage is correct. Check ballast for signs of overheating and damage to windings. If in doubt replace ballast and test for impedance before reusing the luminaire

Outer of lamp broken or cracked

Thermal shock Check for any internal moisture due to luminaire seals failing

Mechanical damage/transit damage

Lamps that have incurred damage during transit may operate for a period of time before failing due to a weakened construction. Damage and deterioration of inner lamp components should be visible after a short period of running if the outer envelope is faulty

Light output unstable /fluctuating

End of lamp life Test lamp in a working luminaire and relate to lamp usageLow supply voltage Check voltage applied to the luminaireCircuit misconnection Check that the circuit is wired correctly and suitably tapped. Check

that there is no fault on the ballast. Check that the power factor capacitor is connected correctly

Lamp holder contact Check that the lamp is properly seated in the lamp holder(s). Check for any signs of arcing. For high voltage lamps with non-screw thread connection check lamp holders are in sound condition. Lamp holders with pitting or corrosion must be replaced

Light output unstable /fluctuating

Supply voltage dip Lamp extinction could be associated with sudden dips in supply voltage, possibly caused by switching of heavy loads

Lamp orientation Some lamps are sensitive to burning position. Check lamp is orientated according to manufacturers recommendations

Lamp extinguishing Temperature Check ballast operating temperature. Ballast may incorporate a thermal cut-out

Page 234: Technical Handbook Australia COMPLETE 2

| Lamps, LEDs and Circuits 234

Lamps, LEDs and Circuits

Fluorescent tube luminaire fails to operate correctlySymptom Possible cause Test and remedyTube does not attempt to strike – no end glow from tube

Fuse blown Check for voltage at circuit input terminalsFaulty starter (non-electronic control gear)

Insert starter switch in working luminaire

Faulty tube Insert tube into working luminaire. NOTE if one or more of the cathodes are broken check for faulty wiring (short circuit to earth or wrong control gear) before inserting a new tube

Open circuit Test for open circuit on control gear or short to earth between control gear and tube

Tube fails to strike – bright glow from one end of the tube

Crossed leads in twin lamp luminaires

Check that the correct lamp holders are connected to each tube

Short circuit on lamp holder Test for short circuit across lamp holder lead or for short circuit to earth on wiring

Short circuit on tube Test for internal short circuits on cathode of tubeTube does not attempt to strike – bright glow from both ends of the tube

Short circuit on starter switch or associated wiring (non-electronic control gear)

Test starter switch in working luminaire. If satisfactory test starter switch socket and associated wiring

Tube flashes on and off – fails to maintain discharge

Faulty tube (end of life) Test tube in working luminaire. At end of life other symptoms are reduced light output, increased flicker and reddish glow from cathodes

Low voltage Test voltage at terminal block of luminaire. If low check external wiring for excessive voltage drop

Faulty starter (non-electronic control gear)

Test starter switch on working luminaire

Low temperature Screen open type luminairesCrossed leads in twin lamp luminaires

Check that the correct lamp holders are connected to each tube

Ballast overheats Lack of ventilation Check installation of luminaire to manufacturers recommendationsSupply volts high Check supply voltageFault in ballast Replace ballast

It should be noted that some types of electronic control gear will detect fault conditions and prevent any attempt to start the lamp. If the lamp fails to start the lamp, ballast or wiring could be faulty and should be checked.

Page 235: Technical Handbook Australia COMPLETE 2

Standards and Directives | 235

10.0 Standards and Directives

10.1 DirectivesDirectives are European laws that apply to all EU member states. Directives that follow Article 175 permit member states some local variation, but directives that follow Article 95 apply equally and unaltered to all member states.

CE MarkingThe CE mark signifies that a product conforms to the requirements of relevant EEC directives. The prime purpose of the mark is to assist customs and market inspectors in facilitating the free trading and movement of products within the EEC. Some of the directives appropriate to general lighting products are the Low Voltage Directive (LVD), the Electromagnetic Compatibility (EMC) Directive and the Energy Efficiency (Ballasts for Fluorescent Lighting) Directive. CE marking is compulsory to indicate LVD, EMC and Ballast Efficiency conformity.

Low Voltage Directive (LVD)Low Voltage directive for selling safe products. This demands that products are designed, manufactured and tested to give proof of electrical safety. Conformity to EN 60598 guarantees compliance.

Electromagnetic Compatibility Directive (EMC)The ElectroMagnetic Compatibility directive requires that the product are designed and operate so that they meet limits of electrical and magnetic interference by emission and conduction with other electrical devices. Also requires that adequate capacity is built in for immunity (rejection) to interference imposed by other electrical devices upon the lighting product. Conformity can be verified by the appropriate IEC standard.

WEEE DirectiveDirective 2002/96/EC on waste electrical and electronic equipment (WEEE) is an Article 175 directive and defines requirements and responsibilities for the management of waste lighting equipment within the European Union. This places responsibility for managing waste on the producer, reseller (in cases of re-branded product) or importer of the product. To fulfil these obligations many lighting companies have registered with third party recycling companies who then take on the

Page 236: Technical Handbook Australia COMPLETE 2

| Standards and Directives 236

responsibility of handling the electrical waste. If a company has not done this then they are themselves responsible for the recovery and handling of their waste products. Irrespective of the method of waste management, lighting products should be marked with the symbol shown to indicate that it may not be disposed of as unsorted waste. Therefore when purchasing lighting products it is important to ascertain how these products will be managed at their end of life, and when removing lighting units it must be ensured that they are handled separately and the appropriate company is contacted to remove the product.

RoHS DirectiveDirective 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment is and article 95 directive, and products purchased within the European Union must conform to these restrictions. However certain exemptions exist including mercury in lamps, lead in the glass of fluorescent tubes and nickel cadmium in batteries for emergency lighting products. However these exempted items are still required to be correctly disposed of. Therefore when purchasing exempted items it is important to ascertain how these items will be managed at their end of life, and when removing exempted items it must be ensured that they are handled separately and the appropriate company is contacted to remove the product. (Note that when removing complete light fittings it is generally not necessary to separate out lamps, batteries, etc. This will be performed within the overall waste management process).

Other DirectivesOther important European energy efficiency directives are;

EELP Energy Efficiency Labelling of Product directive This requires that manufacturers add an energy class label to relevant products (fluorescent lamp and ballast)

EPB Energy Performance of Buildings directive This requires that an estimate of the energy requirements of a building and its services is made. This is displayed using a label with energy details. This applies both for existing buildings and new buildings which must pass design criteria during the planning permission process for approval to build.

Standards and directives

Page 237: Technical Handbook Australia COMPLETE 2

Standards and Directives | 237

EuP Ecodesign of Energy-using Products directive The aim of this directive is to reduce the consumption of natural resources and energy, and to minimise environmental impacts of products across the whole of their life cycle. Manufacturers must practice ecodesign, give instruction on correct and efficient product use and limit power consumption including that by stand-by devices

10.2 StandardsA variety of documents exist to ensure a product conforms to relevant directives and safety requirements. Some of the relevant standards are listed in Table 10.1.

Standards and directives

Subject European Standard International Standard

Luminaires – General requirements and tests EN 60598-1

Luminaires – General types EN 60598 2-1 IEC 60598-2-1

Luminaires – Recessed EN 60598 2-2 IEC 60598-2-2

Luminaires – Street lighting EN 60598 2-3 IEC 60598-2-3

Luminaires – Floodlights EN 60598 2-5 IEC 60598-2-5

Luminaires – with transformers EN 60598-2-6 IEC 60598-2-6

Luminaires – Air handling EN 60598 2-19 IEC 60598-2-19

Luminaires – Emergency EN 60598 2-22 IEC 60598-2-22

Luminaires Track systems EN 60570 IEC 60570

Photometric Measurements CIE 24/CIE 27

Photometry and data transfer EN 10302-1: 2004

Photometry for workplace luminaires EN 10302-2: 2004

Photometry for emergency luminaires EN 13032-3: 2007

EMC Emissions-Lighting EN 55015 CISPR 15

EMC Immunity-Lighting EN 61547 IEC 61547

Quality Systems EN ISO 9000 ISO 9000

Emergency Lighting EN 1838

Electronic transformers for lamps EN 61347-2-2 IEC 61347-2-2

Safety

Electronic transformers for lamps EN 61047 IEC 61047

Performance

Safety isolating transformers EN 60742 IEC 742

Lighting Columns EN 40

Page 238: Technical Handbook Australia COMPLETE 2

| Standards and Directives 238

Standards and directives

Application

Lighting of workplaces – indoor workplaces EN 12464-1: 2003

Lighting of workplaces – outdoor workplaces EN 12464-2: 2007 CIE S 015/E:2005

Light and lighting – Sports lighting EN 12193:1999

Emergency lighting EN 1838 CIE S 020/E:2007

Emergency lighting – testing and inspection EN 50172: 2004

Road lighting practice EN 13201-1/4: 2004

Energy performance of buildings, lighting EN 15193: 2007

Radiation exposure limits EN 14255

Maintenance of indoor electric lighting CIE 97.2

Lighting education CIE 99

Discomfort glare in interior lighting UGR CIE 117

Obtrusive light CIE 150

Maintenance of outdoor electric lighting CIE 154

ENEC MarkingFor luminaires and lighting components, European harmonisation of national approval marks has been achieved through introduction of the ENEC mark. The ENEC mark may be awarded by any one of the recognised European approval authorities, such as BSI, VDE or SEMKO, in the same way as a national approval mark. ENEC is important however, because it indicates that the product is suitable for use throughout Europe and that all of the most onerous special national conditions of test standards have been complied with.

EN40When designing an exterior lighting installation it must be ensured that the lighting columns are not only strong enough to support the weight of the equipment attached to them but are also strong enough to withstand the more significant loading effect from wind pressure against the project area of the complete structure. In Europe document EN40 is used to check suitability, allowing the structure to be verified against statistical data for a geographical area and thereby ensuring that the column can withstand the wind conditions. The calculation process takes into account variables such as the height of the site above local ground level, the height above sea level, the distance from the coastline and the degree of shelter provided by local obstructions and features as all of these

Table 10.1 Selection of relevant standards

12

Page 239: Technical Handbook Australia COMPLETE 2

Standards and Directives | 239

Standards and directives

cause variations in the wind pressure at the location. It must be emphasised that the calculation process is for the complete system, including the column and all equipment attached to it (luminaires, brackets, etc.) so a column cannot be certified in isolation. It should also be noted that a CE mark cannot be applied to a column in isolation, but applies to the complete system.

10.3 Quality and safety marksIt is important that a product is suitable for the method of installation, environmental conditions and usage it will encounter. Some safety consideration and markings are given below.

Quality Standard Marks (Kite Marks)A third party approval is an independent endorsement that product design is in accordance with published standards, and that controls to maintain quality in manufacture are applied. Many products carry European Test House approvals such as those shown. This can assist wider market acceptance in Europe.

Electrical safety classificationClass I Luminaires in this class are electrically insulated and provided with a connection to earth. Earthing protects exposed metal parts that could become live in the event of basic insulation failure.

Class II Luminaires in this class are designed and constructed so that protection against electric shock does not rely on basic insulation only. This can be achieved by means of reinforced or double insulation. No provision for earthing is provided.

Class III Here protection against electric shock relies on supply at Safety Extra - Low Voltage (SELV) and in which voltages higher than those of SELV are not generated (max. 50V ac rms).

Page 240: Technical Handbook Australia COMPLETE 2

| Standards and Directives 240

Standards and directives

F markF mark (mounting surface) Luminaires suitable for mounting on normally combustible surfaces (ignition temperature at least 200°C) are marked with the ‘F’ symbol.

F mark (Thermal Insulation Covering)Recessed luminaires suitable for covering in the ceiling void with thermal insulating material (without causing overheating to the luminaire) are marked with this variation of the F mark symbol.

Ingress ProtectionThe ingress protection (IP) code denotes the protection against dust, solid objects and moisture provided by the luminaire enclosure. If no code is marked the luminaire is deemed to be IP20.

First digit of code denotes protection against dust and solid objects

Second digit of code denotes protection against moisture

IP2X No entry of standard test finger to live parts IPX0 No special protection

IP3X No entry of 2.5mm ø probe to live parts IPX1 Protection against drops of condensed water

IP4X No entry of 1mm ø probe to live parts IPX2 Drip-proof (vertical falling drops of liquid)

IP5X Dust proof. (no dust deposit around live parts) IPX3 Rain-proof (rain up to angles of 60°)

IP6X Dust tight (no dust entry) IPX4 Splash proof (spray from any angle)

IPX5 Water jet

IPX6 Heavy downpours

IPX7 Temporary immersion

IPX8 Submersion to declared depth

ATEX classificationThe IP rating is not sufficient as a safety criterion in areas with particularly hazardous or explosive atmospheres. Equipment for use in these environments is classified according to the expected conditions using the ATEX group category, as shown in Table 10.3.

Table 10.2 IP Code

Page 241: Technical Handbook Australia COMPLETE 2

Standards and Directives | 241

Standards and directives

Ta classificationDenotes the maximum ambient temperature in which the luminaire is suitable for use. No ta mark indicates suitable for use in maximum 25°C ambient.

750°/850°/950° hot wireAbbreviation for compliance with glow wire test for plastic parts tested at the stated temperature.

Impact ResistanceThe use of Joules (Newton metres - Nm) has been common for many years. More recently an IK rating normally used for electrical enclosures and cabinets (EN50102:1995) has emerged as manufacturers apply it to their luminaires, as they also enclose electrical circuits. Table 10.4 compares both ratings:

Table 10.3 ATEX classifications

Table 10.4 Comparison of impact resistance ratings

ATEX category

Equivalent zonal classification

Level of protection provided

Environmental conditions for use

1 Zone 0 (gas) Zone 20 (dust)

Very high An explosive atmosphere of gas/vapour/haze/dust is continuously present or present for long periods (> 1000 hours/year)

2 Zone 1 (gas) Zone 21 (dust

High An explosive atmosphere of gas/vapour/haze/dust is likely to be present (between 10 and 1000 hours/year)

3 Zone2 (gas) Zone 22 (dust)

Normal An explosive atmosphere of gas/vapour/haze/dust is unlikely to occur or could occur for a short period (< 10 hours/year)

IK rating IK01 IK02 IK03 IK04 IK05 IK06 IK07 IK08 IK09 IK10Joules of energy 0.15j 0.23j 0.35j 0.5j 0.7j 1.0j 2.0j 5.0j 10.0j 20. 0j

Page 242: Technical Handbook Australia COMPLETE 2

| Standards and Directives 242

10.4 Product/corrosion compatibility guideWhen designing an installation in an area that is potentially harmful due to concentrations of chemicals in the atmosphere care must be taken to ensure that the materials used in the construction of the luminaire are suitable for the environment it is being used in. Different materials have differing tolerances to chemical agents and all materials used in the luminaire need to be considered.

Table 10.5 gives information on six luminaires suitable for use in chemically hazardous areas. This information is provided to give guidance about luminaire selection assuming prolonged exposure to potentially aggressive chemicals or atmospheres. Occasional exposure to low concentrations of potential aggressors is unlikely to be harmful to any of these luminaires. The risk of damage to the luminaires is dependent on the concentration of the aggressor, the duration and frequency of exposure and environmental conditions. If there is any doubt about the suitability of a luminaire for a particular application please enquire with details of the chemicals that will be present and the conditions of use.

Standards and directives

Page 243: Technical Handbook Australia COMPLETE 2

Standards and Directives | 243

Standards and directives

Chemical Type Chemicals Specific ImpactForce CorrosionForce ColdForce HeatForce StormForce StormForce

GRP body GRP body GRP body GRP body GRP body GRP body

PC diffuser PMMA diffuser PC diffuser PC diffuser PC diffuser PMMA diffuserStainless toggle

Stainless toggle

Stainless toggle

Stainless toggle

Stainless toggle

Stainless toggle

Acids acetic <30% Y Y Y Ynitric <10% Y Y Y Y Y Ysulphuric <20% Y Y Y Y Y Yhydrochloric <10% Y Y Y Y Y Ychromic <20% Y Y Y Y Y Yphosphoric <40% Y Y Y Y Y Y

Salts marine salts Y Y Y Y Y Ycopper sulphate Y Y Y Y Y Ysodium chloride Y Y Y Y Y Y

Organics (Aliphatics)

(aromatics)

ethanol <30% Y Y Y Y Y Ypropanol<30% Y Y Y Y Y Ymethane Y Y Y Y Y Ypropane Y Y Y Y Y Yformaldehyde/formalin Y Y Y Y Y Y

formic acid<5% Y Y Y Y Y Ystearic acid soap Y Y Y Y Y Yurea Y Y Y Y Y Yethylene glycol (antifreeze) Y Y Y Y Y Y

glucose sugar Y Y Y Y Y Yglycerol/glycerine Y Y Y Y Y Y

Foodstuffs, cooking products drinks, beverages

milk Y Y Y Y Y Yfruit juices Y Y Y Y Y Yvegetable oils (cold) Y Y Y Y Y Yvegetable oils (hot) Y Ymeats, beef, lamb, pork, game, poultry Y Y Y Y Y Y

fish Y Y Y Y Y Ypork fat Y Ycooking fats (cold) Y Y Y Y Y Ycooking fats (hot) Y Yalcoholic beverages beer Y Y Y Y Y Y

carbonated beverages, lemonade Y Y Y Y Y Y

wines & spirits Y Y Y Y Y Ywater <60°C Y Y Y Y Y Yvinegar Y Y Y Y Y Y

Gases ozone Y Y Y Y Y Ysulphur dioxide industrial pollutant Y Y Y Y Y Y

Page 244: Technical Handbook Australia COMPLETE 2

| Standards and Directives 244

Chemical Type Chemicals Specific ImpactForce CorrosionForce ColdForce HeatForce StormForce StormForce

GRP body GRP body GRP body GRP body GRP body GRP body

PC diffuser PMMA diffuser PC diffuser PC diffuser PC diffuser PMMA diffuser

Stainless toggle

Stainless toggle

Stainless toggle

Stainless toggle

Stainless toggle

Stainless toggle

Building materials, paints

emulsion paints water based Y Y Y Y Y Y

oil based paint Y Ywhite spirit/turps substitute Y Y Y Y Y Y

cement Y Y Y Y Y YOils, fats fuels

mineral oils Y Y Y Y Y Yanimal fats (cold) but not pork Y Y

silicone oil Y Y Y Y Y Ydiesel Y Y Y Y Y Ykerosene/paraffin oil Y Ypetroleum spirit/petroleum ether Y Y Y Y Y Y

Disinfectants, cleaning agents

hydrogen peroxide <40% Y Y Y Y Y Y

sodium hypochlorite <10% Y Y Y Y Y Y

soaps Y Y Y Y Y Ywetting agents/biocides (dilute) Y Y Y Y Y Y

Standards and directives

Table 10.5 Product/corrosion compatibility guide for Thorn X-Force rangeA selection of the most common chemicals that are used in applications the X-Force would come into contact with. The tabled information is valid under the following conditions:• The chemical substance listed in the table is an element and not part of a chemical compound• The ambient temperature is 22°C

Page 245: Technical Handbook Australia COMPLETE 2

Tools | 245

11 Tools

11.1 Tools

Thorn Product ExplorerThe Thorn Product Explorer is available on DVD. It features an electronic catalogue with an intuitive user interface including powerful search functions, and can be used as a data plug-in for the programs DIALux and Relux Professional to allow lighting calculations to be performed using Thorn data within these popular design tools. Copies of the Product Explorer may be obtained from your local Thorn representative or downloaded from your local Thorn web-site as shown on the back of the handbook.

Thorn CalcExpressThorn CalcExpress is a one-click interior design facility that allows quick design of lighting installations for simple rectangular spaces. It is integrated within the Thorn Product Explorer and an on-line version is being produced for use over the Internet.

Thorn Electronic CatalogueThe Thorn Electronic Catalogue allows you to browse the complete Thorn product portfolio on-line over the internet. For each product information may be downloaded, from installation sheets to photometric data. Additional links with Dialux and Relux allow “drag and drop” functionality into these popular design tools.

Thorn CRF IndicatorThis simple to use do-it-yourself tool can indicate how effectively the lighting scheme in an office or lecture room minimises unwanted shiny reflections that reduces the contrast of printed or written visual tasks. The higher the contrast the better you see. Rather like using a barometer to judge the weather this measure looks at the lighting from a human dimension that will benefit the owner and occupier alike.

Page 246: Technical Handbook Australia COMPLETE 2

| Tools 246

ThornQEThornQE is a software tool for Quick and Easy design of interior, area and road lighting schemes using Thorn products for standard design criteria. Reports may be customised with specific company details. This software enables product selection, lighting design and reporting of results to be performed from one simple process.

Thorn Primata ConfiguratorPre-wired trunking systems save time and money. They are increasingly popular in today’s cost-sensitive market because they are quick and easy to assemble, and simple to install without special tools Primata II is a pre-wired continuous row system with a comprehensive selection of fluorescent luminaires and various optics.

The Primata II configurator allows definition of Primata II products required in an installation. It produces a bill of materials for Primata II installations and automatically includes ancillary equipment such as couplers, end-caps, grommets, etc.

DIALuxDIALux is an independent and manufacturer-neutral third party software available free of charge. It is available in 26 languages (at present). As well as allowing calculation of lighting design parameters it also allows import and export to and from CAD programmes in .dxf and .dwg format, photo realistic visualization and creation of photo realistic films to help present a design http://www.dial.de/

ReluxThe Relux Professional calculation and light design program is an independent and manufacturer-neutral third party software available free of charge. It is available in many languages. As well as allowing calculation of lighting design parameters it also allows the import of 2D and 3D objects in dxf, vrml, 3ds and wmf format and has several add-on tools to extend the functionality of the program. http://www.relux.biz/

Tools

Page 247: Technical Handbook Australia COMPLETE 2

Tools | 247

Lighting RealityLighting Reality is an independent and manufacturer neutral exterior calculation and lighting design program. It contains data from many manufacturers including Thorn Lighting and allows designs to be produced conforming to BS, EN and IESNA criteria.

AGI32AGI32 is a comprehensive lighting calculation and rendering software for both interior and exterior schemes, with or without daylight. AGI32 incorporates an integrated model builder capable of constructing almost any architectural environment and 3D CAD geometry may be imported via the DXF and DWG file formats. AGI32 uses the IESNA photometric file format and files in this format may be extracted from the Thorn Product Explorer or on-line using the Thorn electronic catalogue.

Tools

Page 248: Technical Handbook Australia COMPLETE 2

| Glossary 248

12 Glossary

BallastBallasts are electrical devices used with fluorescent or high intensity discharge (HID) lamps to supply sufficient voltage to start and operate the lamp but then to limit the current during operation. They can be either magnetic or electronic.

Batten and trunking systemsThese are generally fitted with fluorescent lamps and are primarily used in commercial and industrial environments. Designed either as surface-mounted or pendant units, they are generally simple to install and can be used singly or as strip lighting. Suitable housings ensure that the light is directed as required and that glare is kept to a minimum.

Carbon dioxide (CO2)An important greenhouse gas. Countries that ratified the Kyoto agreement have committed to reduce their emissions. Lighting designers have the power to hold down CO2 emissions into the atmosphere, the amount of CO2 being dependant upon the fuel used for the production of electricity.

Colour AppearanceThe colour emitted by a near-white light source can be indicated by its correlated colour temperature (CCT). Each lamp type has a specific correlated colour temperature measured in degrees Kelvin e.g. 3000K and are described as warm, intermediate, cool and cold.

Colour RenderingThe ability of a light source to reveal the colours of an object. It is determined by the spectral power distribution or spectrum of the light source. Measured by the colour rendering index (Ra). The higher the number the better, up to a maximum of 100.

Control gearMost artificial light sources other than incandescent lamps require special control gear to start the lamp and control the current after starting. Depending on the type of lamp involved, the control gear can take the form of ballasts, ignitors or transformers.

Page 249: Technical Handbook Australia COMPLETE 2

Glossary | 249

Diffusers and moisture-proof fittingsLuminaires of a higher protection class. These are closed luminaires for humid, wet, chemically aggressive or dusty environments where the requirements for glare control are generally rudimentary.

Digital Serial Interface (DSI)A lighting control protocol created by the Zumtobel Group, for applications where the addressing feature of DALI is not required.

DownlightCeiling luminaire that concentrates the light in a downward direction. Downlights are generally round or square and recessed into the ceiling, but may also be surface-mounted. They may feature an open reflector and/or a shielding device.

ColumnsPoles for mounting roadlighting lanterns or floodlights. Also known as “masts” and “towers”.

ContrastSubjective experience of comparative brightness between points or areas of luminance, seen simultaneously or successively.

Contrast Rendering Factor (CRF)A measure of the degradation of contrast that is caused by veiling reflections (bright reflections in the task).

Digital Addressable Lighting Interface (DALI)A lighting control protocol set out in the technical standard IEC 929

EfficacyMeasured in lumens per Watt (lm/W) and a useful parameter for assessing how much light is available from the lamp for each Watt of power. Luminaire efficacy is often expressed by dividing the initial lamp lumens by the combined lamp and control gear power.

Emergency lightingLighting provided for use when the mains supply for the general lighting fails for whatever reason.

Glossary

Page 250: Technical Handbook Australia COMPLETE 2

| Glossary 250

GlareGlare is the result of excessive contrasts of luminance in the field of view. The effect may vary from mild discomfort to an actual impairment of the ability to see. When the ability to see is impaired this is called disability glare. Discomfort glare is associated more with interiors; it refers to the discomfort or distraction caused by bright windows or luminaires.

High bayAs the term implies, these are for use when mounting heights of around 8-10m or above are encountered.

High frequency electronic control gear (HF)Most artificial light sources other than incandescent lamps require special control gear to start the lamp and control the current after starting. HF electronic gear operates fluorescent tube(s) at high frequency (typically at 30-60 kHz) instead of the mains frequency of 50 Hz offering benefits of higher quality lighting, reduced running costs and ease of use, combined with safe reliable operation. Dimmable versions available. They may also be used with high intensity discharge lamps.

IgnitorIgnitors are required for lamps that cannot be started using the normal line voltage alone. This is the case with high-pressure discharge lamps such as metal halide lamps and high-pressure sodium vapour lamps.

Illuminance (lx)The amount of light falling on an area divided by that area - measured in lx. Generally, 500 lx is needed for office work, whereas a watchmaker requires 4,000 lx. In summer, the sun shines on the ground with 120,000 lx, and a full moon produces 3 lx.

Indirect LightingSystem of illumination where the light from lamps and luminaires is first reflected from a ceiling, wall or secondary optic.

Ingress protection (IP)Denotes the protection against entry of dust/solid objects and moisture/water, provided by the luminaire enclosure.

Glossary

Page 251: Technical Handbook Australia COMPLETE 2

Glossary | 251

Glossary

LampLamps are artificial sources of light. There are many types, distinguished by the way they generate light, their light output or luminous flx, their power consumption, their luminous efficiency, their geometry, the spectral composition of the radiation emitted, their luminance and their beam characteristics.

LED/light-emitting diodeAn LED or light-emitting diode is a small semiconductor device which emits light, usually coloured, when an electric current passes through it. LEDs are energy saving and have a long service life. LED light engines can generate any colour by mixing the individual spectral

Lighting control systemLighting control systems are used to actively change the lighting situation. Such changes can take place automatically or as a result of intervention by a user. Lighting control systems often include operating equipment. Lighting can automatically respond to the level of daylight, it can be controlled by presence sensors to switch on or off depending whether people are in the room or can also progress through a sequence of changing scenarios.

Lighting Energy Numeric Indicator (LENI)Defined in the European standard for assessing the Energy Performance of Buildings (EPBD), EN 15193 as the measure for the annual lighting energy requirement for the building per square metre. The quick method of calculation being:

LENI = W/AW is the total annual energy used for lighting {kWh/year}A is the total useful floor area of the building {m²}

Lighting managementLighting management covers the entire concept of a controlled or regulated lighting system including emergency lighting and its use. As well as permitting efficient, user-focused operation of the lighting system, it also allows it to be monitored, thus facilitating maintenance.

Page 252: Technical Handbook Australia COMPLETE 2

| Glossary 252

Glossary

Light Output Ratio (LOR)The ratio of the total light output of the luminaire to the output of the lamp(s), under stated conditions.

Low bayLuminaires housing high intensity discharge lamps mounted horizontally at low heights 4-8m, typically in industrial, sporting and public concourses.

Lumen (lm)The unit of luminous flx or the rate of flow of light from a source or received by a surface. When a ray of light hits a solid surface, the process is known as illumination.

LuminaireModern term for “light fitting” or “fixture”. A complete lighting unit that controls the distribution of light given by a lamp(s). Includes components for fixing and protecting the lamp(s) and for connecting them to the supply circuit. Luminaires for road lighting are often known as lanterns.

Luminaire-lumens per circuit wattIs the luminaire efficiency factor given by LOR x (total bare lamp flx in the luminaire/circuit Watts).

Luminance (cd/m2)The measured brightness of a surface. The unit is cd/m².

Luminous intensity (candelas)The amount of light that a small light source at the tip of a cone emits through a narrow cone in a given direction.

Lux (lx)The unit of illuminance, equal to one lumen per square metre.

ModellingThe use of light to bring out the form of three-dimensional objects, structures or spaces.

OpticThe reflector and/or refractor system that directs the light emission from the lamp in the luminaire into required directions.